/////////////////////////////////////////////////////////////////////////////// // // // ValidationTest.cpp // // Copyright (C) Microsoft Corporation. All rights reserved. // // Licensed under the MIT license. See COPYRIGHT in the project root for // // full license information. // // // // // /////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include "WexTestClass.h" #include "DxcTestUtils.h" #include "HlslTestUtils.h" using namespace std; class ValidationTest { public: BEGIN_TEST_CLASS(ValidationTest) TEST_METHOD_PROPERTY(L"Priority", L"0") END_TEST_CLASS() TEST_METHOD(WhenCorrectThenOK); TEST_METHOD(WhenMisalignedThenFail); TEST_METHOD(WhenEmptyFileThenFail); TEST_METHOD(WhenIncorrectMagicThenFail); TEST_METHOD(WhenIncorrectTargetTripleThenFail); TEST_METHOD(WhenIncorrectModelThenFail); TEST_METHOD(WhenIncorrectPSThenFail); TEST_METHOD(WhenWaveAffectsGradientThenFail); TEST_METHOD(WhenMultipleModulesThenFail); TEST_METHOD(WhenUnexpectedEOFThenFail); TEST_METHOD(WhenUnknownBlocksThenFail); TEST_METHOD(LoadOutputControlPointNotInPatchConstantFunction); TEST_METHOD(StorePatchControlNotInPatchConstantFunction); TEST_METHOD(OutputControlPointIDInPatchConstantFunction); TEST_METHOD(GsVertexIDOutOfBound) TEST_METHOD(StreamIDOutOfBound) TEST_METHOD(SignatureStreamIDForNonGS) TEST_METHOD(TypedUAVStoreFullMask0) TEST_METHOD(TypedUAVStoreFullMask1) TEST_METHOD(Recursive) TEST_METHOD(Recursive2) TEST_METHOD(ResourceRangeOverlap0) TEST_METHOD(ResourceRangeOverlap1) TEST_METHOD(ResourceRangeOverlap2) TEST_METHOD(ResourceRangeOverlap3) TEST_METHOD(CBufferOverlap0) TEST_METHOD(CBufferOverlap1) TEST_METHOD(ControlFlowHint) TEST_METHOD(ControlFlowHint1) TEST_METHOD(ControlFlowHint2) TEST_METHOD(SemanticLength1) TEST_METHOD(SemanticLength64) TEST_METHOD(PullModelPosition) TEST_METHOD(StructBufStrideAlign) TEST_METHOD(StructBufStrideOutOfBound) TEST_METHOD(StructBufGlobalCoherentAndCounter) TEST_METHOD(StructBufLoadCoordinates) TEST_METHOD(StructBufStoreCoordinates) TEST_METHOD(TypedBufRetType) TEST_METHOD(VsInputSemantic) TEST_METHOD(VsOutputSemantic) TEST_METHOD(HsInputSemantic) TEST_METHOD(HsOutputSemantic) TEST_METHOD(PatchConstSemantic) TEST_METHOD(DsInputSemantic) TEST_METHOD(DsOutputSemantic) TEST_METHOD(GsInputSemantic) TEST_METHOD(GsOutputSemantic) TEST_METHOD(PsInputSemantic) TEST_METHOD(PsOutputSemantic) TEST_METHOD(ArrayOfSVTarget) TEST_METHOD(InfiniteLog) TEST_METHOD(InfiniteAsin) TEST_METHOD(InfiniteAcos) TEST_METHOD(InfiniteDdxDdy) TEST_METHOD(IDivByZero) TEST_METHOD(UDivByZero) TEST_METHOD(UnusedMetadata) TEST_METHOD(WhenInstrDisallowedThenFail); TEST_METHOD(WhenDepthNotFloatThenFail); TEST_METHOD(BarrierFail); TEST_METHOD(CBufferLegacyOutOfBoundFail); TEST_METHOD(CBufferOutOfBoundFail); TEST_METHOD(CsThreadSizeFail); TEST_METHOD(DeadLoopFail); TEST_METHOD(EvalFail); TEST_METHOD(GetDimCalcLODFail); TEST_METHOD(HsAttributeFail); TEST_METHOD(InnerCoverageFail); TEST_METHOD(InterpChangeFail); TEST_METHOD(InterpOnIntFail); TEST_METHOD(InvalidSigCompTyFail); TEST_METHOD(MultiStream2Fail); TEST_METHOD(PhiTGSMFail); TEST_METHOD(ReducibleFail); TEST_METHOD(SampleBiasFail); TEST_METHOD(SamplerKindFail); TEST_METHOD(SemaOverlapFail); TEST_METHOD(SigOutOfRangeFail); TEST_METHOD(SigOverlapFail); TEST_METHOD(SimpleHs1Fail); TEST_METHOD(SimpleHs3Fail); TEST_METHOD(SimpleHs4Fail); TEST_METHOD(SimpleDs1Fail); TEST_METHOD(SimpleGs1Fail); TEST_METHOD(UavBarrierFail); TEST_METHOD(UndefValueFail); TEST_METHOD(UpdateCounterFail); TEST_METHOD(WhenSmUnknownThenFail); TEST_METHOD(WhenMetaFlagsUsageDeclThenOK); TEST_METHOD(WhenMetaFlagsUsageThenFail); dxc::DxcDllSupport m_dllSupport; void TestCheck(LPCWSTR name) { std::wstring fullPath = hlsl_test::GetPathToHlslDataFile(name); FileRunTestResult t = FileRunTestResult::RunFromFileCommands(fullPath.c_str()); if (t.RunResult != 0) { CA2W commentWide(t.ErrorMessage.c_str(), CP_UTF8); WEX::Logging::Log::Comment(commentWide); WEX::Logging::Log::Error(L"Run result is not zero"); } } bool CheckOperationResultMsg(IDxcOperationResult *pResult, const char *pErrorMsg, bool maySucceedAnyway) { HRESULT status; VERIFY_SUCCEEDED(pResult->GetStatus(&status)); if (pErrorMsg == nullptr) { VERIFY_SUCCEEDED(status); } else { if (SUCCEEDED(status) && maySucceedAnyway) { return false; } //VERIFY_FAILED(status); CComPtr text; VERIFY_SUCCEEDED(pResult->GetErrorBuffer(&text)); const char *pStart = (const char *)text->GetBufferPointer(); const char *pEnd = pStart + text->GetBufferSize(); const char *pMatch = std::search(pStart, pEnd, pErrorMsg, pErrorMsg + strlen(pErrorMsg)); VERIFY_ARE_NOT_EQUAL(pEnd, pMatch); } return true; } void CheckValidationMsg(IDxcBlob *pBlob, const char *pErrorMsg) { CComPtr pValidator; CComPtr pResult; if (!m_dllSupport.IsEnabled()) { VERIFY_SUCCEEDED(m_dllSupport.Initialize()); } VERIFY_SUCCEEDED(m_dllSupport.CreateInstance(CLSID_DxcValidator, &pValidator)); VERIFY_SUCCEEDED(pValidator->Validate(pBlob, DxcValidatorFlags_Default, &pResult)); CheckOperationResultMsg(pResult, pErrorMsg, false); } void CheckValidationMsg(const char *pBlob, size_t blobSize, const char *pErrorMsg) { if (!m_dllSupport.IsEnabled()) { VERIFY_SUCCEEDED(m_dllSupport.Initialize()); } CComPtr pLibrary; CComPtr pBlobEncoding; // Encoding doesn't actually matter, it's binary. VERIFY_SUCCEEDED(m_dllSupport.CreateInstance(CLSID_DxcLibrary, &pLibrary)); VERIFY_SUCCEEDED(pLibrary->CreateBlobWithEncodingFromPinned((LPBYTE)pBlob, blobSize, CP_UTF8, &pBlobEncoding)); CheckValidationMsg(pBlobEncoding, pErrorMsg); } void CompileSource(IDxcBlobEncoding *pSource, LPCSTR pShaderModel, IDxcBlob **pResultBlob) { CComPtr pCompiler; CComPtr pResult; CComPtr pProgram; if (!m_dllSupport.IsEnabled()) { VERIFY_SUCCEEDED(m_dllSupport.Initialize()); } CA2W shWide(pShaderModel, CP_UTF8); VERIFY_SUCCEEDED( m_dllSupport.CreateInstance(CLSID_DxcCompiler, &pCompiler)); VERIFY_SUCCEEDED(pCompiler->Compile(pSource, L"hlsl.hlsl", L"main", shWide, nullptr, 0, nullptr, 0, nullptr, &pResult)); VERIFY_SUCCEEDED(pResult->GetResult(pResultBlob)); } void CompileSource(LPCSTR pSource, LPCSTR pShaderModel, IDxcBlob **pResultBlob) { if (!m_dllSupport.IsEnabled()) { VERIFY_SUCCEEDED(m_dllSupport.Initialize()); } CComPtr pSourceBlob; Utf8ToBlob(m_dllSupport, pSource, &pSourceBlob); CompileSource(pSourceBlob, pShaderModel, pResultBlob); } void DisassembleProgram(IDxcBlob *pProgram, std::string *text) { CComPtr pCompiler; CComPtr pDisassembly; if (!m_dllSupport.IsEnabled()) { VERIFY_SUCCEEDED(m_dllSupport.Initialize()); } VERIFY_SUCCEEDED( m_dllSupport.CreateInstance(CLSID_DxcCompiler, &pCompiler)); VERIFY_SUCCEEDED(pCompiler->Disassemble(pProgram, &pDisassembly)); *text = BlobToUtf8(pDisassembly); } void RewriteAssemblyCheckMsg(LPCSTR pSource, LPCSTR pShaderModel, LPCSTR pLookFor, LPCSTR pReplacement, LPCSTR pErrorMsg) { CComPtr pText; CComPtr pSourceBlob; if (!m_dllSupport.IsEnabled()) { VERIFY_SUCCEEDED(m_dllSupport.Initialize()); } Utf8ToBlob(m_dllSupport, pSource, &pSourceBlob); RewriteAssemblyToText(pSourceBlob, pShaderModel, pLookFor, pReplacement, &pText); CComPtr pAssembler; CComPtr pAssembleResult; VERIFY_SUCCEEDED( m_dllSupport.CreateInstance(CLSID_DxcAssembler, &pAssembler)); VERIFY_SUCCEEDED(pAssembler->AssembleToContainer(pText, &pAssembleResult)); if (!CheckOperationResultMsg(pAssembleResult, pErrorMsg, true)) { // Assembly succeeded, try validation. CComPtr pBlob; VERIFY_SUCCEEDED(pAssembleResult->GetResult(&pBlob)); CheckValidationMsg(pBlob, pErrorMsg); } } void RewriteAssemblyToText(IDxcBlobEncoding *pSource, LPCSTR pShaderModel, LPCSTR pLookFor, LPCSTR pReplacement, IDxcBlob **pBlob) { CComPtr pProgram; std::string disassembly; CompileSource(pSource, pShaderModel, &pProgram); DisassembleProgram(pProgram, &disassembly); if (pLookFor && *pLookFor) { bool found = false; size_t pos = 0; size_t lookForLen = strlen(pLookFor); size_t replaceLen = strlen(pReplacement); for (;;) { pos = disassembly.find(pLookFor, pos); if (pos == std::string::npos) break; found = true; // at least once disassembly.replace(pos, lookForLen, pReplacement); pos += replaceLen; } VERIFY_IS_TRUE(found); } Utf8ToBlob(m_dllSupport, disassembly.c_str(), pBlob); } void RewriteAssemblyCheckMsg(LPCWSTR name, LPCSTR pShaderModel, LPCSTR pLookFor, LPCSTR pReplacement, LPCSTR pErrorMsg) { std::wstring fullPath = hlsl_test::GetPathToHlslDataFile(name); CComPtr pLibrary; CComPtr pSource; if (!m_dllSupport.IsEnabled()) { VERIFY_SUCCEEDED(m_dllSupport.Initialize()); } VERIFY_SUCCEEDED(m_dllSupport.CreateInstance(CLSID_DxcLibrary, &pLibrary)); VERIFY_SUCCEEDED( pLibrary->CreateBlobFromFile(fullPath.c_str(), nullptr, &pSource)); CComPtr pText; RewriteAssemblyToText(pSource, pShaderModel, pLookFor, pReplacement, &pText); CComPtr pAssembler; CComPtr pAssembleResult; VERIFY_SUCCEEDED( m_dllSupport.CreateInstance(CLSID_DxcAssembler, &pAssembler)); VERIFY_SUCCEEDED(pAssembler->AssembleToContainer(pText, &pAssembleResult)); if (!CheckOperationResultMsg(pAssembleResult, pErrorMsg, true)) { // Assembly succeeded, try validation. CComPtr pBlob; VERIFY_SUCCEEDED(pAssembleResult->GetResult(&pBlob)); CheckValidationMsg(pBlob, pErrorMsg); } } }; TEST_F(ValidationTest, WhenCorrectThenOK) { CComPtr pProgram; CompileSource("float4 main() : SV_Target { return 1; }", "ps_5_0", &pProgram); CheckValidationMsg(pProgram, nullptr); } // Lots of these going on below for simplicity in setting up payloads. // // warning C4838: conversion from 'int' to 'const char' requires a narrowing conversion // warning C4309: 'initializing': truncation of constant value #pragma warning(disable: 4838) #pragma warning(disable: 4309) TEST_F(ValidationTest, WhenMisalignedThenFail) { // Bitcode size must 4-byte aligned const char blob[] = { 'B', 'C', }; CheckValidationMsg(blob, _countof(blob), "Invalid bitcode size"); } TEST_F(ValidationTest, WhenEmptyFileThenFail) { // No blocks after signature. const char blob[] = { 'B', 'C', 0xc0, 0xde }; CheckValidationMsg(blob, _countof(blob), "Malformed IR file"); } TEST_F(ValidationTest, WhenIncorrectMagicThenFail) { // Signature isn't 'B', 'C', 0xC0 0xDE const char blob[] = { 'B', 'C', 0xc0, 0xdd }; CheckValidationMsg(blob, _countof(blob), "Invalid bitcode signature"); } TEST_F(ValidationTest, WhenIncorrectTargetTripleThenFail) { const char blob[] = { 'B', 'C', 0xc0, 0xde }; CheckValidationMsg(blob, _countof(blob), "Malformed IR file"); } TEST_F(ValidationTest, WhenMultipleModulesThenFail) { const char blob[] = { 'B', 'C', 0xc0, 0xde, 0x21, 0x0c, 0x00, 0x00, // Enter sub-block, BlockID = 8, Code Size=3, padding x2 0x00, 0x00, 0x00, 0x00, // NumWords = 0 0x08, 0x00, 0x00, 0x00, // End-of-block, padding // At this point, this is valid bitcode (but missing required DXIL metadata) // Trigger the case we're looking for now 0x21, 0x0c, 0x00, 0x00, // Enter sub-block, BlockID = 8, Code Size=3, padding x2 }; CheckValidationMsg(blob, _countof(blob), "Unused bits in buffer"); } TEST_F(ValidationTest, WhenUnexpectedEOFThenFail) { // Importantly, this is testing the usage of report_fatal_error during deserialization. const char blob[] = { 'B', 'C', 0xc0, 0xde, 0x21, 0x0c, 0x00, 0x00, // Enter sub-block, BlockID = 8, Code Size=3, padding x2 0x00, 0x00, 0x00, 0x00, // NumWords = 0 }; CheckValidationMsg(blob, _countof(blob), "Invalid record"); } TEST_F(ValidationTest, WhenUnknownBlocksThenFail) { const char blob[] = { 'B', 'C', 0xc0, 0xde, // Signature 0x31, 0x00, 0x00, 0x00 // Enter sub-block, BlockID != 8 }; CheckValidationMsg(blob, _countof(blob), "Unrecognized block found"); } TEST_F(ValidationTest, WhenInstrDisallowedThenFail) { TestCheck(L"val-inst-disallowed.ll"); } TEST_F(ValidationTest, WhenDepthNotFloatThenFail) { TestCheck(L"dxil_validation\\IntegerDepth.ll"); } TEST_F(ValidationTest, BarrierFail) { TestCheck(L"dxil_validation\\barrier.ll"); } TEST_F(ValidationTest, CBufferLegacyOutOfBoundFail) { TestCheck(L"dxil_validation\\cbuffer1.50_legacy.ll"); } TEST_F(ValidationTest, CBufferOutOfBoundFail) { TestCheck(L"dxil_validation\\cbuffer1.50.ll"); } TEST_F(ValidationTest, CsThreadSizeFail) { TestCheck(L"dxil_validation\\csThreadSize.ll"); } TEST_F(ValidationTest, DeadLoopFail) { TestCheck(L"dxil_validation\\deadloop.ll"); } TEST_F(ValidationTest, EvalFail) { TestCheck(L"dxil_validation\\Eval.ll"); } TEST_F(ValidationTest, GetDimCalcLODFail) { TestCheck(L"dxil_validation\\GetDimCalcLOD.ll"); } TEST_F(ValidationTest, HsAttributeFail) { TestCheck(L"dxil_validation\\hsAttribute.ll"); } TEST_F(ValidationTest, InnerCoverageFail) { TestCheck(L"dxil_validation\\InnerCoverage.ll"); } TEST_F(ValidationTest, InterpChangeFail) { TestCheck(L"dxil_validation\\interpChange.ll"); } TEST_F(ValidationTest, InterpOnIntFail) { TestCheck(L"dxil_validation\\interpOnInt.ll"); } TEST_F(ValidationTest, InvalidSigCompTyFail) { TestCheck(L"dxil_validation\\invalidSigCompTy.ll"); } TEST_F(ValidationTest, MultiStream2Fail) { TestCheck(L"dxil_validation\\multiStream2.ll"); } TEST_F(ValidationTest, PhiTGSMFail) { TestCheck(L"dxil_validation\\phiTGSM.ll"); } TEST_F(ValidationTest, ReducibleFail) { TestCheck(L"dxil_validation\\reducible.ll"); } TEST_F(ValidationTest, SampleBiasFail) { TestCheck(L"dxil_validation\\sampleBias.ll"); } TEST_F(ValidationTest, SamplerKindFail) { TestCheck(L"dxil_validation\\samplerKind.ll"); } TEST_F(ValidationTest, SemaOverlapFail) { TestCheck(L"dxil_validation\\semaOverlap.ll"); } TEST_F(ValidationTest, SigOutOfRangeFail) { TestCheck(L"dxil_validation\\sigOutOfRange.ll"); } TEST_F(ValidationTest, SigOverlapFail) { TestCheck(L"dxil_validation\\sigOverlap.ll"); } TEST_F(ValidationTest, SimpleHs1Fail) { TestCheck(L"dxil_validation\\SimpleHs1.ll"); } TEST_F(ValidationTest, SimpleHs3Fail) { TestCheck(L"dxil_validation\\SimpleHs3.ll"); } TEST_F(ValidationTest, SimpleHs4Fail) { TestCheck(L"dxil_validation\\SimpleHs4.ll"); } TEST_F(ValidationTest, SimpleDs1Fail) { TestCheck(L"dxil_validation\\SimpleDs1.ll"); } TEST_F(ValidationTest, SimpleGs1Fail) { TestCheck(L"dxil_validation\\SimpleGs1.ll"); } TEST_F(ValidationTest, UavBarrierFail) { TestCheck(L"dxil_validation\\uavBarrier.ll"); } TEST_F(ValidationTest, UndefValueFail) { TestCheck(L"dxil_validation\\UndefValue.ll"); } TEST_F(ValidationTest, UpdateCounterFail) { TestCheck(L"dxil_validation\\UpdateCounter.ll"); } TEST_F(ValidationTest, WhenIncorrectModelThenFail) { TestCheck(L"val-failures.hlsl"); } TEST_F(ValidationTest, WhenIncorrectPSThenFail) { TestCheck(L"val-failures-ps.hlsl"); } TEST_F(ValidationTest, WhenSmUnknownThenFail) { RewriteAssemblyCheckMsg("float4 main() : SV_Target { return 1; }", "ps_6_0", "{!\"ps\", i32 6, i32 0}", "{!\"ps\", i32 1, i32 2}", "Unknown shader model 'ps_1_2'"); } TEST_F(ValidationTest, WhenMetaFlagsUsageDeclThenOK) { RewriteAssemblyCheckMsg( "uint u; float4 main() : SV_Target { uint64_t n = u; n *= u; return (uint)(n >> 32); }", "ps_6_0", "1048576", "1048577", // inhibit optimization, which should work fine nullptr); } TEST_F(ValidationTest, GsVertexIDOutOfBound) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\SimpleGs1.hlsl", "gs_6_0", "dx.op.loadInput.f32(i32 4, i32 0, i32 0, i8 2, i32 0)", "dx.op.loadInput.f32(i32 4, i32 0, i32 0, i8 2, i32 1)", "expect VertexID between 0~1, got 1"); } TEST_F(ValidationTest, StreamIDOutOfBound) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\SimpleGs1.hlsl", "gs_6_0", "dx.op.emitStream(i32 97, i8 0)", "dx.op.emitStream(i32 97, i8 1)", "expect StreamID between 0 , got 1"); } TEST_F(ValidationTest, SignatureStreamIDForNonGS) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\abs1.hlsl", "ps_6_0", ", i8 0, i32 1, i8 4, i32 0, i8 0, null}", ", i8 0, i32 1, i8 4, i32 0, i8 0, !19}\n!19 = !{i32 0, i32 1}", "expect StreamID for none GS between 0, got 1"); } TEST_F(ValidationTest, TypedUAVStoreFullMask0) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\uav_typed_store.hlsl", "ps_6_0", "float 2.000000e+00, i8 15)", "float 2.000000e+00, i8 undef)", "Mask of TextureStore must be an immediate constant"); } TEST_F(ValidationTest, TypedUAVStoreFullMask1) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\uav_typed_store.hlsl", "ps_6_0", "float 3.000000e+00, i8 15)", "float 3.000000e+00, i8 undef)", "Mask of BufferStore must be an immediate constant"); } TEST_F(ValidationTest, Recursive) { TestCheck(L"..\\CodeGenHLSL\\recursive.hlsl"); } TEST_F(ValidationTest, Recursive2) { TestCheck(L"..\\CodeGenHLSL\\recursive2.hlsl"); } TEST_F(ValidationTest, ResourceRangeOverlap0) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\resource_overlap.hlsl", "ps_6_0", "!\"B\", i32 0, i32 1", "!\"B\", i32 0, i32 0", "Resource B with base 0 size 1 overlap"); } TEST_F(ValidationTest, ResourceRangeOverlap1) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\resource_overlap.hlsl", "ps_6_0", "!\"s1\", i32 0, i32 1", "!\"s1\", i32 0, i32 0", "Resource s1 with base 0 size 1 overlap"); } TEST_F(ValidationTest, ResourceRangeOverlap2) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\resource_overlap.hlsl", "ps_6_0", "!\"uav2\", i32 0, i32 0", "!\"uav2\", i32 0, i32 3", "Resource uav2 with base 3 size 1 overlap"); } TEST_F(ValidationTest, ResourceRangeOverlap3) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\resource_overlap.hlsl", "ps_6_0", "!\"srv2\", i32 0, i32 1", "!\"srv2\", i32 0, i32 0", "Resource srv2 with base 0 size 1 overlap"); } TEST_F(ValidationTest, CBufferOverlap0) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\cbufferOffset.hlsl", "ps_6_0", "i32 6, !\"g2\", i32 3, i32 0", "i32 6, !\"g2\", i32 3, i32 8", "CBuffer Foo1 has offset overlaps at 16"); } TEST_F(ValidationTest, CBufferOverlap1) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\cbufferOffset.hlsl", "ps_6_0", " = !{i32 32, !", " = !{i32 16, !", "CBuffer Foo1 size insufficient for element at offset 16"); } TEST_F(ValidationTest, ControlFlowHint) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\if1.hlsl", "ps_6_0", "!\"dx.controlflow.hints\", i32 1", "!\"dx.controlflow.hints\", i32 5", "Attribute forcecase only works for switch"); } TEST_F(ValidationTest, ControlFlowHint1) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\if1.hlsl", "ps_6_0", "!\"dx.controlflow.hints\", i32 1", "!\"dx.controlflow.hints\", i32 1, i32 2", "Can't use branch and flatten attributes together"); } TEST_F(ValidationTest, ControlFlowHint2) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\if1.hlsl", "ps_6_0", "!\"dx.controlflow.hints\", i32 1", "!\"dx.controlflow.hints\", i32 3", "Invalid control flow hint"); } TEST_F(ValidationTest, SemanticLength1) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\binary1.hlsl", "ps_6_0", "!\"C\"", "!\"\"", "Semantic length must be at least 1 and at most 64"); } TEST_F(ValidationTest, SemanticLength64) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\binary1.hlsl", "ps_6_0", "!\"C\"", "!\"CSESESESESESESESESESESESESESESESESESESESESESESESESESESESESESESESE\"", "Semantic length must be at least 1 and at most 64"); } TEST_F(ValidationTest, PullModelPosition) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\eval.hlsl", "ps_5_0", "!\"A\", i8 9, i8 0", "!\"SV_Position\", i8 9, i8 3", "does not support pull-model evaluation of position"); } TEST_F(ValidationTest, StructBufGlobalCoherentAndCounter) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\struct_buf1.hlsl", "ps_5_0", "!\"buf2\", i32 0, i32 0, i32 1, i32 12, i1 false, i1 false", "!\"buf2\", i32 0, i32 0, i32 1, i32 12, i1 true, i1 true", "globallycoherent cannot be used with append/consume buffers'buf2'"); } TEST_F(ValidationTest, StructBufStrideAlign) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\struct_buf1.hlsl", "ps_5_0", "!7 = !{i32 1, i32 52}", "!7 = !{i32 1, i32 50}", "structured buffer element size must be a multiple of 4 bytes (actual size 50 bytes)"); } TEST_F(ValidationTest, StructBufStrideOutOfBound) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\struct_buf1.hlsl", "ps_5_0", "!7 = !{i32 1, i32 52}", "!7 = !{i32 1, i32 2052}", "structured buffer elements cannot be larger than 2048 bytes (actual size 2052 bytes)"); } TEST_F(ValidationTest, StructBufLoadCoordinates) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\struct_buf1.hlsl", "ps_5_0", "bufferLoad.f32(i32 69, %dx.types.Handle %buf1_texture_structbuf, i32 1, i32 8)", "bufferLoad.f32(i32 69, %dx.types.Handle %buf1_texture_structbuf, i32 1, i32 undef)", "structured buffer require 2 coordinates"); } TEST_F(ValidationTest, StructBufStoreCoordinates) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\struct_buf1.hlsl", "ps_5_0", "bufferStore.f32(i32 70, %dx.types.Handle %buf2_UAV_structbuf, i32 0, i32 0", "bufferStore.f32(i32 70, %dx.types.Handle %buf2_UAV_structbuf, i32 0, i32 undef", "structured buffer require 2 coordinates"); } TEST_F(ValidationTest, TypedBufRetType) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\sample5.hlsl", "ps_5_0", "%class.Texture2D = type { <4 x float>", "%class.Texture2D = type { <4 x double>", "elements of typed buffers and textures must fit in four 32-bit quantities"); } TEST_F(ValidationTest, VsInputSemantic) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\clip_planes.hlsl", "vs_5_0", "!\"POSITION\", i8 9, i8 0", "!\"SV_Target\", i8 9, i8 16", "Semantic 'SV_Target' is invalid as vs Input"); } TEST_F(ValidationTest, VsOutputSemantic) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\clip_planes.hlsl", "vs_5_0", "!\"NORMAL\", i8 9, i8 0", "!\"SV_Target\", i8 9, i8 16", "Semantic 'SV_Target' is invalid as vs Output"); } TEST_F(ValidationTest, HsInputSemantic) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\SimpleHs1.hlsl", "hs_5_0", "!\"TEXCOORD\", i8 9, i8 0", "!\"VertexID\", i8 4, i8 1", "Semantic 'VertexID' is invalid as hs Input"); } TEST_F(ValidationTest, HsOutputSemantic) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\SimpleHs1.hlsl", "hs_5_0", "!\"TEXCOORD\", i8 9, i8 0", "!\"VertexID\", i8 4, i8 1", "Semantic 'VertexID' is invalid as hs Output"); } TEST_F(ValidationTest, PatchConstSemantic) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\SimpleHs1.hlsl", "hs_5_0", "!\"SV_TessFactor\", i8 9, i8 25", "!\"VertexID\", i8 4, i8 1", "Semantic 'VertexID' is invalid as hs PatchConstant"); } TEST_F(ValidationTest, DsInputSemantic) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\SimpleDs1.hlsl", "ds_5_0", "!\"TEXCOORD\", i8 9, i8 0", "!\"VertexID\", i8 4, i8 1", "Semantic 'VertexID' is invalid as ds Input"); } TEST_F(ValidationTest, DsOutputSemantic) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\SimpleDs1.hlsl", "ds_5_0", "!\"TEXCOORD\", i8 9, i8 0", "!\"VertexID\", i8 4, i8 1", "Semantic 'VertexID' is invalid as ds Output"); } TEST_F(ValidationTest, GsInputSemantic) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\SimpleGs1.hlsl", "gs_5_0", "!\"POSSIZE\", i8 9, i8 0", "!\"VertexID\", i8 4, i8 1", "Semantic 'VertexID' is invalid as gs Input"); } TEST_F(ValidationTest, GsOutputSemantic) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\SimpleGs1.hlsl", "gs_5_0", "!\"TEXCOORD\", i8 9, i8 0", "!\"VertexID\", i8 4, i8 1", "Semantic 'VertexID' is invalid as gs Output"); } TEST_F(ValidationTest, PsInputSemantic) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\abs2.hlsl", "ps_5_0", "!\"A\", i8 4, i8 0", "!\"VertexID\", i8 4, i8 1", "Semantic 'VertexID' is invalid as ps Input"); } TEST_F(ValidationTest, PsOutputSemantic) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\abs2.hlsl", "ps_5_0", "!\"SV_Target\", i8 9, i8 16", "!\"VertexID\", i8 4, i8 1", "Semantic 'VertexID' is invalid as ps Output"); } TEST_F(ValidationTest, ArrayOfSVTarget) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\targetArray.hlsl", "ps_5_0", "i32 6, !\"SV_Target\", i8 9, i8 16, !36, i8 0, i32 1", "i32 6, !\"SV_Target\", i8 9, i8 16, !36, i8 0, i32 2", "Pixel shader output registers are not indexable."); } TEST_F(ValidationTest, InfiniteLog) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\intrinsic_val_imm.hlsl", "ps_5_0", "op.unary.f32(i32 22, float %3)", "op.unary.f32(i32 22, float 0x7FF0000000000000)", "No indefinite logarithm"); } TEST_F(ValidationTest, InfiniteAsin) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\intrinsic_val_imm.hlsl", "ps_5_0", "op.unary.f32(i32 16, float %3)", "op.unary.f32(i32 16, float 0x7FF0000000000000)", "No indefinite arcsine"); } TEST_F(ValidationTest, InfiniteAcos) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\intrinsic_val_imm.hlsl", "ps_5_0", "op.unary.f32(i32 15, float %3)", "op.unary.f32(i32 15, float 0x7FF0000000000000)", "No indefinite arccosine"); } TEST_F(ValidationTest, InfiniteDdxDdy) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\intrinsic_val_imm.hlsl", "ps_5_0", "op.unary.f32(i32 86, float %3)", "op.unary.f32(i32 86, float 0x7FF0000000000000)", "No indefinite derivative calculation"); } TEST_F(ValidationTest, IDivByZero) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\intrinsic_val_imm.hlsl", "ps_5_0", "sdiv i32 %8, %9", "sdiv i32 %8, 0", "No signed integer division by zero"); } TEST_F(ValidationTest, UDivByZero) { RewriteAssemblyCheckMsg( L"..\\CodeGenHLSL\\intrinsic_val_imm.hlsl", "ps_5_0", "udiv i32 %5, %6", "udiv i32 %5, 0", "No unsigned integer division by zero"); } TEST_F(ValidationTest, UnusedMetadata) { RewriteAssemblyCheckMsg(L"..\\CodeGenHLSL\\loop2.hlsl", "ps_5_0", ", !llvm.loop ", ", !llvm.loop2 ", "All metadata must be used by dxil"); } TEST_F(ValidationTest, WhenWaveAffectsGradientThenFail) { TestCheck(L"val-wave-failures-ps.hlsl"); } TEST_F(ValidationTest, WhenMetaFlagsUsageThenFail) { RewriteAssemblyCheckMsg( "uint u; float4 main() : SV_Target { uint64_t n = u; n *= u; return (uint)(n >> 32); }", "ps_6_0", "1048576", "0", // remove the int64 flag "Flags must match usage"); } TEST_F(ValidationTest, StorePatchControlNotInPatchConstantFunction) { RewriteAssemblyCheckMsg( "struct PSSceneIn \ { \ float4 pos : SV_Position; \ float2 tex : TEXCOORD0; \ float3 norm : NORMAL; \ }; \ \ struct HSPerVertexData \ { \ PSSceneIn v; \ }; \ struct HSPerPatchData \ { \ float edges[ 3 ] : SV_TessFactor; \ float inside : SV_InsideTessFactor; \ }; \ HSPerPatchData HSPerPatchFunc( const InputPatch< PSSceneIn, 3 > points, \ OutputPatch outpoints) \ { \ HSPerPatchData d; \ \ d.edges[ 0 ] = points[0].tex.x + outpoints[0].v.tex.x; \ d.edges[ 1 ] = 1; \ d.edges[ 2 ] = 1; \ d.inside = 1; \ \ return d; \ }\ [domain(\"tri\")]\ [partitioning(\"fractional_odd\")]\ [outputtopology(\"triangle_cw\")]\ [patchconstantfunc(\"HSPerPatchFunc\")]\ [outputcontrolpoints(3)]\ HSPerVertexData main( const uint id : SV_OutputControlPointID,\ const InputPatch< PSSceneIn, 3 > points )\ {\ HSPerVertexData v;\ \ v.v = points[ id ];\ \ return v;\ }\ ", "hs_6_0", "dx.op.storeOutput.f32(i32 5", "dx.op.storePatchConstant.f32(i32 109", "opcode 'StorePatchConstant' should only used in 'PatchConstant function'"); } TEST_F(ValidationTest, LoadOutputControlPointNotInPatchConstantFunction) { RewriteAssemblyCheckMsg( "struct PSSceneIn \ { \ float4 pos : SV_Position; \ float2 tex : TEXCOORD0; \ float3 norm : NORMAL; \ }; \ \ struct HSPerVertexData \ { \ PSSceneIn v; \ }; \ struct HSPerPatchData \ { \ float edges[ 3 ] : SV_TessFactor; \ float inside : SV_InsideTessFactor; \ }; \ HSPerPatchData HSPerPatchFunc( const InputPatch< PSSceneIn, 3 > points, \ OutputPatch outpoints) \ { \ HSPerPatchData d; \ \ d.edges[ 0 ] = points[0].tex.x + outpoints[0].v.tex.x; \ d.edges[ 1 ] = 1; \ d.edges[ 2 ] = 1; \ d.inside = 1; \ \ return d; \ }\ [domain(\"tri\")]\ [partitioning(\"fractional_odd\")]\ [outputtopology(\"triangle_cw\")]\ [patchconstantfunc(\"HSPerPatchFunc\")]\ [outputcontrolpoints(3)]\ HSPerVertexData main( const uint id : SV_OutputControlPointID,\ const InputPatch< PSSceneIn, 3 > points )\ {\ HSPerVertexData v;\ \ v.v = points[ id ];\ \ return v;\ }\ ", "hs_6_0", "dx.op.loadInput.f32(i32 4", "dx.op.loadOutputControlPoint.f32(i32 106", "opcode 'LoadOutputControlPoint' should only used in 'PatchConstant function'"); } TEST_F(ValidationTest, OutputControlPointIDInPatchConstantFunction) { RewriteAssemblyCheckMsg( "struct PSSceneIn \ { \ float4 pos : SV_Position; \ float2 tex : TEXCOORD0; \ float3 norm : NORMAL; \ }; \ \ struct HSPerVertexData \ { \ PSSceneIn v; \ }; \ struct HSPerPatchData \ { \ float edges[ 3 ] : SV_TessFactor; \ float inside : SV_InsideTessFactor; \ }; \ HSPerPatchData HSPerPatchFunc( const InputPatch< PSSceneIn, 3 > points, \ OutputPatch outpoints) \ { \ HSPerPatchData d; \ \ d.edges[ 0 ] = points[0].tex.x + outpoints[0].v.tex.x; \ d.edges[ 1 ] = 1; \ d.edges[ 2 ] = 1; \ d.inside = 1; \ \ return d; \ }\ [domain(\"tri\")]\ [partitioning(\"fractional_odd\")]\ [outputtopology(\"triangle_cw\")]\ [patchconstantfunc(\"HSPerPatchFunc\")]\ [outputcontrolpoints(3)]\ HSPerVertexData main( const uint id : SV_OutputControlPointID,\ const InputPatch< PSSceneIn, 3 > points )\ {\ HSPerVertexData v;\ \ v.v = points[ id ];\ \ return v;\ }\ ", "hs_6_0", "ret void", "call i32 @dx.op.outputControlPointID.i32(i32 110)\n ret void", "opcode 'OutputControlPointID' should only used in 'hull function'"); } // TODO: reject non-zero padding