/////////////////////////////////////////////////////////////////////////////// // // // DxilDebugInstrumentation.cpp // // Copyright (C) Microsoft Corporation. All rights reserved. // // This file is distributed under the University of Illinois Open Source // // License. See LICENSE.TXT for details. // // // // Adds instrumentation that enables shader debugging in PIX // // // /////////////////////////////////////////////////////////////////////////////// #include "dxc/HLSL/DxilGenerationPass.h" #include "dxc/HLSL/DxilOperations.h" #include "dxc/HLSL/DxilModule.h" #include "llvm/IR/Module.h" #include "llvm/IR/Constants.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/IRBuilder.h" using namespace llvm; using namespace hlsl; // Overview of instrumentation: // // In summary, instructions are added that cause a "trace" of the execution of the shader to be written // out to a UAV. This trace is then used by a debugger application to provide a post-mortem debugging // experience that reconstructs the execution history of the shader. // // The trace is only required for a particular shader instance of interest, and a branchless mechanism // is used to write the trace either to an incrementing location within the UAV, or to a "dumping ground" // area at the top of the UAV if the instance is not of interest. // // The following modifications are made: // // First, instructions are added to the top of the entry point function that implement the following: // - Examine the input variables that define the instance of the shader that is running. This will // be SV_Position for pixel shaders, SV_Vertex+SV_Instance for vertex shaders, thread id for compute // shaders etc. If these system values need to be added to the shader, then they are also added to the // input signature, if appropriate. // - Compare the above variables with the instance of interest defined by the invoker of this pass. // Deduce two values: a multiplicand and an addend that together allow a branchless calculation of // the offset into the UAV at which to write via "offset = offset * multiplicand + addend." // If the instance is NOT of interest, the multiplicand is zero and the addend is // sizeof(UAV)-(a little bit), causing writes for uninteresting invocations to end up at the top of // the UAV. Otherwise the multiplicand is 1 and the addend is 0. // - Calculate an "instance identifier". Even with the above instance identification, several invocations may // end up matching the selection criteria. Specifically, this happens during a draw call in which many // triangles overlap the pixel of interest. More on this below. // // During execution, the instrumentation for most instructions cause data to be emitted to the UAV. // The index at which data is written is identified by treating the first uint32 of the UAV as an index // which is atomically incremented by the instrumentation. The very first value of this counter that is // encountered by each invocation is used as the "instance identifier" mentioned above. That instance // identifier is written out with each packet, since many pixel shaders executing in parallel will emit // interleaved packets, and the debugger application uses the identifiers to group packets from each separate // invocation together. // // If an instruction has a non-void and primitive return type, i.e. isn't a struct, then the instrumentation // will write that value out to the UAV as well as part of the "step" data packet. // // The limiting size of the UAV is enforced in a branchless way by ANDing the offset with a precomputed // value that is sizeof(UAV)-64. The actual size of the UAV allocated by the caller is required to be // a power of two plus 64 for this reason. The caller detects UAV overrun by examining a canary value // close to the end of the power-of-two size of the UAV. If this value has been overwritten, the debug session // is deemed to have overflowed the UAV. The caller will than allocate a UAV that is twice the size and // try again, up to a predefined maximum. // Keep this in sync with the same-named value in the debugger application's WinPixShaderUtils.h constexpr uint64_t DebugBufferDumpingGroundSize = 64 * 1024; // These definitions echo those in the debugger application's debugshaderrecord.h file enum DebugShaderModifierRecordType { DebugShaderModifierRecordTypeInvocationStartMarker, DebugShaderModifierRecordTypeStep, DebugShaderModifierRecordTypeEvent, DebugShaderModifierRecordTypeInputRegister, DebugShaderModifierRecordTypeReadRegister, DebugShaderModifierRecordTypeWrittenRegister, DebugShaderModifierRecordTypeRegisterRelativeIndex0, DebugShaderModifierRecordTypeRegisterRelativeIndex1, DebugShaderModifierRecordTypeRegisterRelativeIndex2, DebugShaderModifierRecordTypeDXILStepVoid = 251, DebugShaderModifierRecordTypeDXILStepFloat = 252, DebugShaderModifierRecordTypeDXILStepUint32 = 253, DebugShaderModifierRecordTypeDXILStepUint64 = 254, DebugShaderModifierRecordTypeDXILStepDouble = 255, }; // These structs echo those in the debugger application's debugshaderrecord.h file, but are recapitulated here // because the originals use unnamed unions which are disallowed by DXCompiler's build. // #pragma pack(push,4) struct DebugShaderModifierRecordHeader { union { struct { uint32_t SizeDwords : 4; uint32_t Flags : 4; uint32_t Type : 8; uint32_t HeaderPayload : 16; } Details; uint32_t u32Header; } Header; uint32_t UID; }; struct DebugShaderModifierRecordDXILStepBase { union { struct { uint32_t SizeDwords : 4; uint32_t Flags : 4; uint32_t Type : 8; uint32_t Opcode : 16; } Details; uint32_t u32Header; } Header; uint32_t UID; uint32_t InstructionOffset; }; template< typename ReturnType > struct DebugShaderModifierRecordDXILStep : public DebugShaderModifierRecordDXILStepBase { ReturnType ReturnValue; }; template< > struct DebugShaderModifierRecordDXILStep : public DebugShaderModifierRecordDXILStepBase { }; #pragma pack(pop) uint32_t DebugShaderModifierRecordPayloadSizeDwords(size_t recordTotalSizeBytes) { return ((recordTotalSizeBytes - sizeof(DebugShaderModifierRecordHeader)) / sizeof(uint32_t)); } class DxilDebugInstrumentation : public ModulePass { private: union ParametersAllTogether { unsigned Parameters[3]; struct PixelShaderParameters { unsigned X; unsigned Y; } PixelShader; struct VertexShaderParameters { unsigned VertexId; unsigned InstanceId; } VertexShader; struct ComputeShaderParameters { unsigned ThreadIdX; unsigned ThreadIdY; unsigned ThreadIdZ; } ComputeShader; struct GeometryShaderParameters { unsigned PrimitiveId; unsigned InstanceId; } GeometryShader; } m_Parameters = { 0,0,0 }; union SystemValueIndices { struct PixelShaderParameters { unsigned Position; } PixelShader; struct VertexShaderParameters { unsigned VertexId; unsigned InstanceId; } VertexShader; struct GeometryShaderParameters { unsigned PrimitiveId; unsigned InstanceId; } GeometryShader; }; uint64_t m_UAVSize = 1024*1024; Value * m_SelectionCriterion = nullptr; CallInst * m_HandleForUAV = nullptr; Value * m_InvocationId = nullptr; // Together these two values allow branchless writing to the UAV. An invocation of the shader // is either of interest or not (e.g. it writes to the pixel the user selected for debugging // or it doesn't). If not of interest, debugging output will still occur, but it will be // relegated to the very top few bytes of the UAV. Invocations of interest, by contrast, will // be written to the UAV at sequentially increasing offsets. // This value will either be one or zero (one if the invocation is of interest, zero otherwise) Value * m_OffsetMultiplicand = nullptr; // This will either be zero (if the invocation is of interest) or (UAVSize)-(SmallValue) if not. Value * m_OffsetAddend = nullptr; Constant * m_OffsetMask = nullptr; std::map m_IncrementInstructionBySize; unsigned int m_InstructionIndex = 0; struct BuilderContext { Module &M; DxilModule &DM; LLVMContext & Ctx; OP * HlslOP; IRBuilder<> & Builder; }; uint32_t m_RemainingReservedSpaceInBytes = 0; Value * m_CurrentIndex = nullptr; public: static char ID; // Pass identification, replacement for typeid explicit DxilDebugInstrumentation() : ModulePass(ID) {} const char *getPassName() const override { return "Add PIX debug instrumentation"; } void applyOptions(PassOptions O) override; bool runOnModule(Module &M) override; private: SystemValueIndices addRequiredSystemValues(BuilderContext &BC); void addUAV(BuilderContext &BC); void addInvocationSelectionProlog(BuilderContext &BC, SystemValueIndices SVIndices); Value * addPixelShaderProlog(BuilderContext &BC, SystemValueIndices SVIndices); Value * addGeometryShaderProlog(BuilderContext &BC, SystemValueIndices SVIndices); Value * addComputeShaderProlog(BuilderContext &BC); Value * addVertexShaderProlog(BuilderContext &BC, SystemValueIndices SVIndices); void addDebugEntryValue(BuilderContext &BC, Value * TheValue); void addInvocationStartMarker(BuilderContext &BC); void reserveDebugEntrySpace(BuilderContext &BC, uint32_t SpaceInDwords); void addStepDebugEntry(BuilderContext &BC, Instruction *Inst); uint32_t UAVDumpingGroundOffset(); template void addStepEntryForType(DebugShaderModifierRecordType RecordType, BuilderContext &BC, Instruction *Inst); }; void DxilDebugInstrumentation::applyOptions(PassOptions O) { for (const auto & option : O) { if (0 == option.first.compare("parameter0")) { m_Parameters.Parameters[0] = atoi(option.second.data()); } else if (0 == option.first.compare("parameter1")) { m_Parameters.Parameters[1] = atoi(option.second.data()); } else if (0 == option.first.compare("parameter2")) { m_Parameters.Parameters[2] = atoi(option.second.data()); } else if (0 == option.first.compare("UAVSize")) { m_UAVSize = std::stoull(option.second.data()); } } } uint32_t DxilDebugInstrumentation::UAVDumpingGroundOffset() { return static_cast(m_UAVSize - DebugBufferDumpingGroundSize); } DxilDebugInstrumentation::SystemValueIndices DxilDebugInstrumentation::addRequiredSystemValues(BuilderContext &BC) { SystemValueIndices SVIndices{}; hlsl::DxilSignature & InputSignature = BC.DM.GetInputSignature(); auto & InputElements = InputSignature.GetElements(); auto ShaderModel = BC.DM.GetShaderModel(); switch (ShaderModel->GetKind()) { case DXIL::ShaderKind::Pixel: { auto Existing_SV_Position = std::find_if( InputElements.begin(), InputElements.end(), [](const std::unique_ptr & Element) { return Element->GetSemantic()->GetKind() == hlsl::DXIL::SemanticKind::Position; }); // SV_Position, if present, has to have full mask, so we needn't worry // about the shader having selected components that don't include x or y. // If not present, we add it. if (Existing_SV_Position == InputElements.end()) { auto Added_SV_Position = std::make_unique(DXIL::SigPointKind::PSIn); Added_SV_Position->Initialize("Position", hlsl::CompType::getF32(), hlsl::DXIL::InterpolationMode::Linear, 1, 4); Added_SV_Position->AppendSemanticIndex(0); Added_SV_Position->SetSigPointKind(DXIL::SigPointKind::PSIn); Added_SV_Position->SetKind(hlsl::DXIL::SemanticKind::Position); auto index = InputSignature.AppendElement(std::move(Added_SV_Position)); SVIndices.PixelShader.Position = InputElements[index]->GetID(); } else { SVIndices.PixelShader.Position = Existing_SV_Position->get()->GetID(); } } break; case DXIL::ShaderKind::Vertex: { { auto Existing_SV_VertexId = std::find_if( InputElements.begin(), InputElements.end(), [](const std::unique_ptr & Element) { return Element->GetSemantic()->GetKind() == hlsl::DXIL::SemanticKind::VertexID; }); if (Existing_SV_VertexId == InputElements.end()) { auto Added_SV_VertexId = std::make_unique(DXIL::SigPointKind::VSIn); Added_SV_VertexId->Initialize("VertexId", hlsl::CompType::getF32(), hlsl::DXIL::InterpolationMode::Undefined, 1, 1); Added_SV_VertexId->AppendSemanticIndex(0); Added_SV_VertexId->SetSigPointKind(DXIL::SigPointKind::VSIn); Added_SV_VertexId->SetKind(hlsl::DXIL::SemanticKind::VertexID); auto index = InputSignature.AppendElement(std::move(Added_SV_VertexId)); SVIndices.VertexShader.VertexId = InputElements[index]->GetID(); } else { SVIndices.VertexShader.VertexId = Existing_SV_VertexId->get()->GetID(); } } { auto Existing_SV_InstanceId = std::find_if( InputElements.begin(), InputElements.end(), [](const std::unique_ptr & Element) { return Element->GetSemantic()->GetKind() == hlsl::DXIL::SemanticKind::InstanceID; }); if (Existing_SV_InstanceId == InputElements.end()) { auto Added_SV_InstanceId = std::make_unique(DXIL::SigPointKind::VSIn); Added_SV_InstanceId->Initialize("InstanceId", hlsl::CompType::getF32(), hlsl::DXIL::InterpolationMode::Undefined, 1, 1); Added_SV_InstanceId->AppendSemanticIndex(0); Added_SV_InstanceId->SetSigPointKind(DXIL::SigPointKind::VSIn); Added_SV_InstanceId->SetKind(hlsl::DXIL::SemanticKind::InstanceID); auto index = InputSignature.AppendElement(std::move(Added_SV_InstanceId)); SVIndices.VertexShader.InstanceId = InputElements[index]->GetID(); } else { SVIndices.VertexShader.InstanceId = Existing_SV_InstanceId->get()->GetID(); } } } break; case DXIL::ShaderKind::Geometry: // GS Instance Id and Primitive Id are not in the input signature break; case DXIL::ShaderKind::Compute: // Compute thread Id is not in the input signature break; default: assert(false); // guaranteed by runOnModule } return SVIndices; } Value * DxilDebugInstrumentation::addComputeShaderProlog(BuilderContext &BC) { Constant* Zero32Arg = BC.HlslOP->GetU32Const(0); Constant* One32Arg = BC.HlslOP->GetU32Const(1); Constant* Two32Arg = BC.HlslOP->GetU32Const(2); auto ThreadIdFunc = BC.HlslOP->GetOpFunc(DXIL::OpCode::ThreadId, Type::getInt32Ty(BC.Ctx)); Constant* Opcode = BC.HlslOP->GetU32Const((unsigned)DXIL::OpCode::ThreadId); auto ThreadIdX = BC.Builder.CreateCall(ThreadIdFunc, { Opcode, Zero32Arg }, "ThreadIdX"); auto ThreadIdY = BC.Builder.CreateCall(ThreadIdFunc, { Opcode, One32Arg }, "ThreadIdY"); auto ThreadIdZ = BC.Builder.CreateCall(ThreadIdFunc, { Opcode, Two32Arg }, "ThreadIdZ"); // Compare to expected thread ID auto CompareToX = BC.Builder.CreateICmpEQ(ThreadIdX, BC.HlslOP->GetU32Const(m_Parameters.ComputeShader.ThreadIdX), "CompareToThreadIdX"); auto CompareToY = BC.Builder.CreateICmpEQ(ThreadIdY, BC.HlslOP->GetU32Const(m_Parameters.ComputeShader.ThreadIdY), "CompareToThreadIdY"); auto CompareToZ = BC.Builder.CreateICmpEQ(ThreadIdZ, BC.HlslOP->GetU32Const(m_Parameters.ComputeShader.ThreadIdZ), "CompareToThreadIdZ"); auto CompareXAndY = BC.Builder.CreateAnd(CompareToX, CompareToY, "CompareXAndY"); auto CompareAll = BC.Builder.CreateAnd(CompareXAndY, CompareToZ, "CompareAll"); return CompareAll; } Value * DxilDebugInstrumentation::addVertexShaderProlog(BuilderContext &BC, SystemValueIndices SVIndices) { Constant* Zero32Arg = BC.HlslOP->GetU32Const(0); Constant* Zero8Arg = BC.HlslOP->GetI8Const(0); UndefValue* UndefArg = UndefValue::get(Type::getInt32Ty(BC.Ctx)); auto LoadInputOpFunc = BC.HlslOP->GetOpFunc(DXIL::OpCode::LoadInput, Type::getInt32Ty(BC.Ctx)); Constant* LoadInputOpcode = BC.HlslOP->GetU32Const((unsigned)DXIL::OpCode::LoadInput); Constant* SV_Vert_ID = BC.HlslOP->GetU32Const(SVIndices.VertexShader.VertexId); auto VertId = BC.Builder.CreateCall(LoadInputOpFunc, { LoadInputOpcode, SV_Vert_ID, Zero32Arg /*row*/, Zero8Arg /*column*/, UndefArg }, "VertId"); Constant* SV_Instance_ID = BC.HlslOP->GetU32Const(SVIndices.VertexShader.InstanceId); auto InstanceId = BC.Builder.CreateCall(LoadInputOpFunc, { LoadInputOpcode, SV_Instance_ID, Zero32Arg /*row*/, Zero8Arg /*column*/, UndefArg }, "InstanceId"); // Compare to expected vertex ID and instance ID auto CompareToVert = BC.Builder.CreateICmpEQ(VertId, BC.HlslOP->GetU32Const(m_Parameters.VertexShader.VertexId), "CompareToVertId"); auto CompareToInstance = BC.Builder.CreateICmpEQ(InstanceId, BC.HlslOP->GetU32Const(m_Parameters.VertexShader.InstanceId), "CompareToInstanceId"); auto CompareBoth = BC.Builder.CreateAnd(CompareToVert, CompareToInstance, "CompareBoth"); return CompareBoth; } Value * DxilDebugInstrumentation::addGeometryShaderProlog(BuilderContext &BC, SystemValueIndices SVIndices) { auto PrimitiveIdOpFunc = BC.HlslOP->GetOpFunc(DXIL::OpCode::PrimitiveID, Type::getInt32Ty(BC.Ctx)); Constant* PrimitiveIdOpcode = BC.HlslOP->GetU32Const((unsigned)DXIL::OpCode::PrimitiveID); auto PrimId = BC.Builder.CreateCall(PrimitiveIdOpFunc, { PrimitiveIdOpcode }, "PrimId"); auto CompareToPrim = BC.Builder.CreateICmpEQ(PrimId, BC.HlslOP->GetU32Const(m_Parameters.GeometryShader.PrimitiveId), "CompareToPrimId"); if (BC.DM.GetGSInstanceCount() <= 1) { return CompareToPrim; } auto GSInstanceIdOpFunc = BC.HlslOP->GetOpFunc(DXIL::OpCode::GSInstanceID, Type::getInt32Ty(BC.Ctx)); Constant* GSInstanceIdOpcode = BC.HlslOP->GetU32Const((unsigned)DXIL::OpCode::GSInstanceID); auto GSInstanceId = BC.Builder.CreateCall(GSInstanceIdOpFunc, { GSInstanceIdOpcode }, "GSInstanceId"); // Compare to expected vertex ID and instance ID auto CompareToInstance = BC.Builder.CreateICmpEQ(GSInstanceId, BC.HlslOP->GetU32Const(m_Parameters.GeometryShader.InstanceId), "CompareToInstanceId"); auto CompareBoth = BC.Builder.CreateAnd(CompareToPrim, CompareToInstance, "CompareBoth"); return CompareBoth; } Value * DxilDebugInstrumentation::addPixelShaderProlog(BuilderContext &BC, SystemValueIndices SVIndices) { Constant* Zero32Arg = BC.HlslOP->GetU32Const(0); Constant* Zero8Arg = BC.HlslOP->GetI8Const(0); Constant* One8Arg = BC.HlslOP->GetI8Const(1); UndefValue* UndefArg = UndefValue::get(Type::getInt32Ty(BC.Ctx)); // Convert SV_POSITION to UINT Value * XAsInt; Value * YAsInt; { auto LoadInputOpFunc = BC.HlslOP->GetOpFunc(DXIL::OpCode::LoadInput, Type::getFloatTy(BC.Ctx)); Constant* LoadInputOpcode = BC.HlslOP->GetU32Const((unsigned)DXIL::OpCode::LoadInput); Constant* SV_Pos_ID = BC.HlslOP->GetU32Const(SVIndices.PixelShader.Position); auto XPos = BC.Builder.CreateCall(LoadInputOpFunc, { LoadInputOpcode, SV_Pos_ID, Zero32Arg /*row*/, Zero8Arg /*column*/, UndefArg }, "XPos"); auto YPos = BC.Builder.CreateCall(LoadInputOpFunc, { LoadInputOpcode, SV_Pos_ID, Zero32Arg /*row*/, One8Arg /*column*/, UndefArg }, "YPos"); XAsInt = BC.Builder.CreateCast(Instruction::CastOps::FPToUI, XPos, Type::getInt32Ty(BC.Ctx), "XIndex"); YAsInt = BC.Builder.CreateCast(Instruction::CastOps::FPToUI, YPos, Type::getInt32Ty(BC.Ctx), "YIndex"); } // Compare to expected pixel position and primitive ID auto CompareToX = BC.Builder.CreateICmpEQ(XAsInt, BC.HlslOP->GetU32Const(m_Parameters.PixelShader.X), "CompareToX"); auto CompareToY = BC.Builder.CreateICmpEQ(YAsInt, BC.HlslOP->GetU32Const(m_Parameters.PixelShader.Y), "CompareToY"); auto ComparePos = BC.Builder.CreateAnd(CompareToX, CompareToY, "ComparePos"); return ComparePos; } void DxilDebugInstrumentation::addUAV(BuilderContext &BC) { // Set up a UAV with structure of a single int unsigned int UAVResourceHandle = static_cast(BC.DM.GetUAVs().size()); SmallVector Elements{ Type::getInt32Ty(BC.Ctx) }; llvm::StructType *UAVStructTy = llvm::StructType::create(Elements, "PIX_DebugUAV_Type"); std::unique_ptr pUAV = llvm::make_unique(); pUAV->SetGlobalName("PIX_DebugUAVName"); pUAV->SetGlobalSymbol(UndefValue::get(UAVStructTy->getPointerTo())); pUAV->SetID(UAVResourceHandle); pUAV->SetSpaceID((unsigned int)-2); // This is the reserved-for-tools register space pUAV->SetSampleCount(1); pUAV->SetGloballyCoherent(false); pUAV->SetHasCounter(false); pUAV->SetCompType(CompType::getI32()); pUAV->SetLowerBound(0); pUAV->SetRangeSize(1); pUAV->SetKind(DXIL::ResourceKind::RawBuffer); pUAV->SetRW(true); auto ID = BC.DM.AddUAV(std::move(pUAV)); assert(ID == UAVResourceHandle); BC.DM.m_ShaderFlags.SetEnableRawAndStructuredBuffers(true); // Create handle for the newly-added UAV Function* CreateHandleOpFunc = BC.HlslOP->GetOpFunc(DXIL::OpCode::CreateHandle, Type::getVoidTy(BC.Ctx)); Constant* CreateHandleOpcodeArg = BC.HlslOP->GetU32Const((unsigned)DXIL::OpCode::CreateHandle); Constant* UAVVArg = BC.HlslOP->GetI8Const(static_cast::type>(DXIL::ResourceClass::UAV)); Constant* MetaDataArg = BC.HlslOP->GetU32Const(ID); // position of the metadata record in the corresponding metadata list Constant* IndexArg = BC.HlslOP->GetU32Const(0); // Constant* FalseArg = BC.HlslOP->GetI1Const(0); // non-uniform resource index: false m_HandleForUAV = BC.Builder.CreateCall(CreateHandleOpFunc, { CreateHandleOpcodeArg, UAVVArg, MetaDataArg, IndexArg, FalseArg }, "PIX_DebugUAV_Handle"); } void DxilDebugInstrumentation::addInvocationSelectionProlog(BuilderContext &BC, SystemValueIndices SVIndices) { auto ShaderModel = BC.DM.GetShaderModel(); Value * ParameterTestResult; switch (ShaderModel->GetKind()) { case DXIL::ShaderKind::Pixel: ParameterTestResult = addPixelShaderProlog(BC, SVIndices); break; case DXIL::ShaderKind::Geometry: ParameterTestResult = addGeometryShaderProlog(BC, SVIndices); break; case DXIL::ShaderKind::Vertex: ParameterTestResult = addVertexShaderProlog(BC, SVIndices); break; case DXIL::ShaderKind::Compute: ParameterTestResult = addComputeShaderProlog(BC); break; default: assert(false); // guaranteed by runOnModule } // This is a convenient place to calculate the values that modify the UAV offset for invocations of interest and for // UAV size. m_OffsetMultiplicand = BC.Builder.CreateCast(Instruction::CastOps::ZExt, ParameterTestResult, Type::getInt32Ty(BC.Ctx), "OffsetMultiplicand"); auto InverseOffsetMultiplicand = BC.Builder.CreateSub(BC.HlslOP->GetU32Const(1), m_OffsetMultiplicand, "ComplementOfMultiplicand"); m_OffsetAddend = BC.Builder.CreateMul(BC.HlslOP->GetU32Const(UAVDumpingGroundOffset()), InverseOffsetMultiplicand, "OffsetAddend"); m_OffsetMask = BC.HlslOP->GetU32Const(UAVDumpingGroundOffset() - 1); m_SelectionCriterion = ParameterTestResult; } void DxilDebugInstrumentation::reserveDebugEntrySpace(BuilderContext &BC, uint32_t SpaceInBytes) { assert(m_CurrentIndex == nullptr); assert(m_RemainingReservedSpaceInBytes == 0); m_RemainingReservedSpaceInBytes = SpaceInBytes; // Insert the UAV increment instruction: Function* AtomicOpFunc = BC.HlslOP->GetOpFunc(OP::OpCode::AtomicBinOp, Type::getInt32Ty(BC.Ctx)); Constant* AtomicBinOpcode = BC.HlslOP->GetU32Const((unsigned)OP::OpCode::AtomicBinOp); Constant* AtomicAdd = BC.HlslOP->GetU32Const((unsigned)DXIL::AtomicBinOpCode::Add); Constant* Zero32Arg = BC.HlslOP->GetU32Const(0); UndefValue* UndefArg = UndefValue::get(Type::getInt32Ty(BC.Ctx)); // so inc will be zero for uninteresting invocations: Value * IncrementForThisInvocation; auto findIncrementInstruction = m_IncrementInstructionBySize.find(SpaceInBytes); if (findIncrementInstruction == m_IncrementInstructionBySize.end()) { Constant* Increment = BC.HlslOP->GetU32Const(SpaceInBytes); auto it = m_IncrementInstructionBySize.emplace( SpaceInBytes, BC.Builder.CreateMul(Increment, m_OffsetMultiplicand, "IncrementForThisInvocation")); findIncrementInstruction = it.first; } IncrementForThisInvocation = findIncrementInstruction->second; auto PreviousValue = BC.Builder.CreateCall(AtomicOpFunc, { AtomicBinOpcode,// i32, ; opcode m_HandleForUAV, // %dx.types.Handle, ; resource handle AtomicAdd, // i32, ; binary operation code : EXCHANGE, IADD, AND, OR, XOR, IMIN, IMAX, UMIN, UMAX Zero32Arg, // i32, ; coordinate c0: index in bytes UndefArg, // i32, ; coordinate c1 (unused) UndefArg, // i32, ; coordinate c2 (unused) IncrementForThisInvocation, // i32); increment value }, "UAVIncResult"); if (m_InvocationId == nullptr) { m_InvocationId = PreviousValue; } auto MaskedForLimit = BC.Builder.CreateAnd(PreviousValue, m_OffsetMask, "MaskedForUAVLimit"); // The return value will either end up being itself (multiplied by one and added with zero) // or the "dump uninteresting things here" value of (UAVSize - a bit). auto MultipliedForInterest = BC.Builder.CreateMul(MaskedForLimit, m_OffsetMultiplicand, "MultipliedForInterest"); auto AddedForInterest = BC.Builder.CreateAdd(MultipliedForInterest, m_OffsetAddend, "AddedForInterest"); m_CurrentIndex = AddedForInterest; } void DxilDebugInstrumentation::addDebugEntryValue(BuilderContext &BC, Value * TheValue) { assert(m_RemainingReservedSpaceInBytes > 0); auto TheValueTypeID = TheValue->getType()->getTypeID(); if (TheValueTypeID == Type::TypeID::DoubleTyID) { Function* SplitDouble = BC.HlslOP->GetOpFunc(OP::OpCode::SplitDouble, TheValue->getType()); Constant* SplitDoubleOpcode = BC.HlslOP->GetU32Const((unsigned)DXIL::OpCode::SplitDouble); auto SplitDoubleIntruction = BC.Builder.CreateCall(SplitDouble, { SplitDoubleOpcode, TheValue }, "SplitDouble"); auto LowBits = BC.Builder.CreateExtractValue(SplitDoubleIntruction, 0, "LowBits"); auto HighBits = BC.Builder.CreateExtractValue(SplitDoubleIntruction, 1, "HighBits"); //addDebugEntryValue(BC, BC.HlslOP->GetU32Const(0)); // padding addDebugEntryValue(BC, LowBits); addDebugEntryValue(BC, HighBits); } else if (TheValueTypeID == Type::TypeID::IntegerTyID && TheValue->getType()->getIntegerBitWidth() == 64) { auto LowBits = BC.Builder.CreateTrunc(TheValue, Type::getInt32Ty(BC.Ctx), "LowBits"); auto ShiftedBits = BC.Builder.CreateLShr(TheValue, 32, "ShiftedBits"); auto HighBits = BC.Builder.CreateTrunc(ShiftedBits, Type::getInt32Ty(BC.Ctx), "HighBits"); //addDebugEntryValue(BC, BC.HlslOP->GetU32Const(0)); // padding addDebugEntryValue(BC, LowBits); addDebugEntryValue(BC, HighBits); } else if (TheValueTypeID == Type::TypeID::IntegerTyID && (TheValue->getType()->getIntegerBitWidth() == 16 || TheValue->getType()->getIntegerBitWidth() == 1)) { auto As32 = BC.Builder.CreateZExt(TheValue, Type::getInt32Ty(BC.Ctx), "As32"); addDebugEntryValue(BC, As32); } else if (TheValueTypeID == Type::TypeID::HalfTyID) { auto AsFloat = BC.Builder.CreateFPCast(TheValue, Type::getFloatTy(BC.Ctx), "AsFloat"); addDebugEntryValue(BC, AsFloat); } else { Function* StoreValue = BC.HlslOP->GetOpFunc(OP::OpCode::BufferStore, TheValue->getType()); // Type::getInt32Ty(BC.Ctx)); Constant* StoreValueOpcode = BC.HlslOP->GetU32Const((unsigned)DXIL::OpCode::BufferStore); UndefValue* Undef32Arg = UndefValue::get(Type::getInt32Ty(BC.Ctx)); Constant* ZeroArg; UndefValue* UndefArg; if (TheValueTypeID == Type::TypeID::IntegerTyID) { ZeroArg = BC.HlslOP->GetU32Const(0); UndefArg = UndefValue::get(Type::getInt32Ty(BC.Ctx)); } else if (TheValueTypeID == Type::TypeID::FloatTyID) { ZeroArg = BC.HlslOP->GetFloatConst(0.f); UndefArg = UndefValue::get(Type::getFloatTy(BC.Ctx)); } else { // The above are the only two valid types for a UAV store assert(false); } Constant* WriteMask_X = BC.HlslOP->GetI8Const(1); (void)BC.Builder.CreateCall(StoreValue, { StoreValueOpcode, // i32 opcode m_HandleForUAV, // %dx.types.Handle, ; resource handle m_CurrentIndex, // i32 c0: index in bytes into UAV Undef32Arg, // i32 c1: unused TheValue, UndefArg, // unused values UndefArg, // unused values UndefArg, // unused values WriteMask_X }); m_RemainingReservedSpaceInBytes -= 4; assert(m_RemainingReservedSpaceInBytes < 1024); // check for underflow if (m_RemainingReservedSpaceInBytes != 0) { m_CurrentIndex = BC.Builder.CreateAdd(m_CurrentIndex, BC.HlslOP->GetU32Const(4)); } else { m_CurrentIndex = nullptr; } } } void DxilDebugInstrumentation::addInvocationStartMarker(BuilderContext &BC) { DebugShaderModifierRecordHeader marker{ 0 }; reserveDebugEntrySpace(BC, sizeof(marker)); marker.Header.Details.SizeDwords = DebugShaderModifierRecordPayloadSizeDwords(sizeof(marker));; marker.Header.Details.Flags = 0; marker.Header.Details.Type = DebugShaderModifierRecordTypeInvocationStartMarker; addDebugEntryValue(BC, BC.HlslOP->GetU32Const(marker.Header.u32Header)); addDebugEntryValue(BC, m_InvocationId); } template void DxilDebugInstrumentation::addStepEntryForType(DebugShaderModifierRecordType RecordType, BuilderContext &BC, Instruction *Inst) { DebugShaderModifierRecordDXILStep step = {}; reserveDebugEntrySpace(BC, sizeof(step)); step.Header.Details.SizeDwords = DebugShaderModifierRecordPayloadSizeDwords(sizeof(step)); step.Header.Details.Type = static_cast(RecordType); addDebugEntryValue(BC, BC.HlslOP->GetU32Const(step.Header.u32Header)); addDebugEntryValue(BC, m_InvocationId); addDebugEntryValue(BC, BC.HlslOP->GetU32Const(m_InstructionIndex++)); if (RecordType != DebugShaderModifierRecordTypeDXILStepVoid) { addDebugEntryValue(BC, Inst); } } void DxilDebugInstrumentation::addStepDebugEntry(BuilderContext &BC, Instruction *Inst) { if (Inst->getOpcode() == Instruction::OtherOps::PHI) { return; } Type::TypeID ID = Inst->getType()->getTypeID(); switch (ID) { case Type::TypeID::StructTyID: case Type::TypeID::VoidTyID: addStepEntryForType(DebugShaderModifierRecordTypeDXILStepVoid, BC, Inst); break; case Type::TypeID::FloatTyID: addStepEntryForType(DebugShaderModifierRecordTypeDXILStepFloat, BC, Inst); break; case Type::TypeID::IntegerTyID: if (Inst->getType()->getIntegerBitWidth() == 64) { addStepEntryForType(DebugShaderModifierRecordTypeDXILStepUint64, BC, Inst); } else { addStepEntryForType(DebugShaderModifierRecordTypeDXILStepUint32, BC, Inst); } break; case Type::TypeID::DoubleTyID: addStepEntryForType(DebugShaderModifierRecordTypeDXILStepDouble, BC, Inst); break; case Type::TypeID::HalfTyID: addStepEntryForType(DebugShaderModifierRecordTypeDXILStepFloat, BC, Inst); break; case Type::TypeID::PointerTyID: // Skip pointer calculation instructions. They aren't particularly meaningful to the user (being a mere // implementation detail for lookup tables, etc.), and their type is problematic from a UI point of view. // The subsequent instructions that dereference the pointer will be properly instrumented and show the // (meaningful) retrieved value. break; case Type::TypeID::FP128TyID: case Type::TypeID::LabelTyID: case Type::TypeID::MetadataTyID: case Type::TypeID::FunctionTyID: case Type::TypeID::ArrayTyID: case Type::TypeID::VectorTyID: assert(false); } } bool DxilDebugInstrumentation::runOnModule(Module &M) { DxilModule &DM = M.GetOrCreateDxilModule(); LLVMContext & Ctx = M.getContext(); OP *HlslOP = DM.GetOP(); auto ShaderModel = DM.GetShaderModel(); switch (ShaderModel->GetKind()) { case DXIL::ShaderKind::Pixel: case DXIL::ShaderKind::Vertex: case DXIL::ShaderKind::Compute: case DXIL::ShaderKind::Geometry: break; default: return false; } // First record pointers to all instructions in the function: std::vector AllInstructions; for (inst_iterator I = inst_begin(DM.GetEntryFunction()), E = inst_end(DM.GetEntryFunction()); I != E; ++I) { AllInstructions.push_back(&*I); } // Branchless instrumentation requires taking care of a few things: // -Each invocation of the shader will be either of interest or not of interest // -If of interest, the offset into the output UAV will be as expected // -If not, the offset is forced to (UAVsize) - (Small Amount), and that output is ignored by the CPU-side code. // -The invocation of interest may overflow the UAV. This is handled by taking the modulus of the // output index. Overflow is then detected on the CPU side by checking for the presence of a canary // value at (UAVSize) - (Small Amount) * 2 (which is actually a conservative definition of overflow). // Instruction* firstInsertionPt = DM.GetEntryFunction()->getEntryBlock().getFirstInsertionPt(); IRBuilder<> Builder(firstInsertionPt); BuilderContext BC{ M, DM, Ctx, HlslOP, Builder }; addUAV(BC); auto SystemValues = addRequiredSystemValues(BC); addInvocationSelectionProlog(BC, SystemValues); addInvocationStartMarker(BC); // Instrument original instructions: for (auto & Inst : AllInstructions) { // Instrumentation goes after the instruction if it has a return value. // Otherwise, the instruction might be a terminator so we HAVE to put the instrumentation before if (Inst->getType()->getTypeID() != Type::TypeID::VoidTyID) { // Has a return type, so can't be a terminator, so start inserting before the next instruction IRBuilder<> Builder(Inst->getNextNode()); BuilderContext BC2{ BC.M, BC.DM, BC.Ctx, BC.HlslOP, Builder }; addStepDebugEntry(BC2, Inst); } else { // Insert before this instruction IRBuilder<> Builder(Inst); BuilderContext BC2{ BC.M, BC.DM, BC.Ctx, BC.HlslOP, Builder }; addStepDebugEntry(BC2, Inst); } } DM.ReEmitDxilResources(); return true; } char DxilDebugInstrumentation::ID = 0; ModulePass *llvm::createDxilDebugInstrumentationPass() { return new DxilDebugInstrumentation(); } INITIALIZE_PASS(DxilDebugInstrumentation, "hlsl-dxil-debug-instrumentation", "HLSL DXIL debug instrumentation for PIX", false, false)