/////////////////////////////////////////////////////////////////////////////// // // // ExecutionTest.cpp // // Copyright (C) Microsoft Corporation. All rights reserved. // // This file is distributed under the University of Illinois Open Source // // License. See LICENSE.TXT for details. // // // // These tests run by executing compiled programs, and thus involve more // // moving parts, like the runtime and drivers. // // // /////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include "CompilationResult.h" #include "HLSLTestData.h" #include #include #include #include #undef _read #include "WexTestClass.h" #include "HlslTestUtils.h" #include "DxcTestUtils.h" #include "dxc/Support/Global.h" #include "dxc/Support/WinIncludes.h" #include "dxc/Support/FileIOHelper.h" #include "dxc/Support/Unicode.h" // // d3d12.h and dxgi1_4.h are included in the Windows 10 SDK // https://msdn.microsoft.com/en-us/library/windows/desktop/dn899120(v=vs.85).aspx // https://developer.microsoft.com/en-US/windows/downloads/windows-10-sdk // #include #include #include #include #include #include #include #include #include "ShaderOpTest.h" #pragma comment(lib, "d3dcompiler.lib") #pragma comment(lib, "windowscodecs.lib") #pragma comment(lib, "dxguid.lib") #pragma comment(lib, "version.lib") // A more recent Windows SDK than currently required is needed for these. typedef HRESULT(WINAPI *D3D12EnableExperimentalFeaturesFn)( UINT NumFeatures, __in_ecount(NumFeatures) const IID* pIIDs, __in_ecount_opt(NumFeatures) void* pConfigurationStructs, __in_ecount_opt(NumFeatures) UINT* pConfigurationStructSizes); static const GUID D3D12ExperimentalShaderModelsID = { /* 76f5573e-f13a-40f5-b297-81ce9e18933f */ 0x76f5573e, 0xf13a, 0x40f5, { 0xb2, 0x97, 0x81, 0xce, 0x9e, 0x18, 0x93, 0x3f } }; using namespace DirectX; using namespace hlsl_test; template static bool contains(TSequence s, const T &val) { return std::cend(s) != std::find(std::cbegin(s), std::cend(s), val); } template static bool contains(InputIterator b, InputIterator e, const T &val) { return e != std::find(b, e, val); } static HRESULT EnableExperimentalShaderModels() { HMODULE hRuntime = LoadLibraryW(L"d3d12.dll"); if (hRuntime == NULL) { return HRESULT_FROM_WIN32(GetLastError()); } D3D12EnableExperimentalFeaturesFn pD3D12EnableExperimentalFeatures = (D3D12EnableExperimentalFeaturesFn)GetProcAddress(hRuntime, "D3D12EnableExperimentalFeatures"); if (pD3D12EnableExperimentalFeatures == nullptr) { FreeLibrary(hRuntime); return HRESULT_FROM_WIN32(GetLastError()); } HRESULT hr = pD3D12EnableExperimentalFeatures(1, &D3D12ExperimentalShaderModelsID, nullptr, nullptr); FreeLibrary(hRuntime); return hr; } static HRESULT ReportLiveObjects() { CComPtr pDebug; IFR(DXGIGetDebugInterface1(0, IID_PPV_ARGS(&pDebug))); IFR(pDebug->ReportLiveObjects(DXGI_DEBUG_ALL, DXGI_DEBUG_RLO_ALL)); return S_OK; } static void WriteInfoQueueMessages(void *pStrCtx, st::OutputStringFn pOutputStrFn, ID3D12InfoQueue *pInfoQueue) { bool allMessagesOK = true; UINT64 count = pInfoQueue->GetNumStoredMessages(); CAtlArray message; for (UINT64 i = 0; i < count; ++i) { // 'GetMessageA' rather than 'GetMessage' is an artifact of user32 headers. SIZE_T msgLen = 0; if (FAILED(pInfoQueue->GetMessageA(i, nullptr, &msgLen))) { allMessagesOK = false; continue; } if (message.GetCount() < msgLen) { if (!message.SetCount(msgLen)) { allMessagesOK = false; continue; } } D3D12_MESSAGE *pMessage = (D3D12_MESSAGE *)message.GetData(); if (FAILED(pInfoQueue->GetMessageA(i, pMessage, &msgLen))) { allMessagesOK = false; continue; } CA2W msgW(pMessage->pDescription, CP_ACP); pOutputStrFn(pStrCtx, msgW.m_psz); pOutputStrFn(pStrCtx, L"\r\n"); } if (!allMessagesOK) { pOutputStrFn(pStrCtx, L"Failed to retrieve some messages.\r\n"); } } class CComContext { private: bool m_init; public: CComContext() : m_init(false) {} ~CComContext() { Dispose(); } void Dispose() { if (!m_init) return; m_init = false; CoUninitialize(); } HRESULT Init() { HRESULT hr = CoInitializeEx(0, COINIT_MULTITHREADED); if (SUCCEEDED(hr)) { m_init = true; } return hr; } }; static void SavePixelsToFile(LPCVOID pPixels, DXGI_FORMAT format, UINT32 m_width, UINT32 m_height, LPCWSTR pFileName) { CComContext ctx; CComPtr pFactory; CComPtr pBitmap; CComPtr pEncoder; CComPtr pFrameEncode; CComPtr pStream; CComPtr pMalloc; struct PF { DXGI_FORMAT Format; GUID PixelFormat; UINT32 PixelSize; bool operator==(DXGI_FORMAT F) const { return F == Format; } } Vals[] = { // Add more pixel format mappings as needed. { DXGI_FORMAT_R8G8B8A8_UNORM, GUID_WICPixelFormat32bppRGBA, 4 } }; PF *pFormat = std::find(Vals, Vals + _countof(Vals), format); VERIFY_SUCCEEDED(ctx.Init()); VERIFY_SUCCEEDED(CoCreateInstance(CLSID_WICImagingFactory, NULL, CLSCTX_INPROC_SERVER, IID_IWICImagingFactory, (LPVOID*)&pFactory)); VERIFY_SUCCEEDED(CoGetMalloc(1, &pMalloc)); VERIFY_SUCCEEDED(hlsl::CreateMemoryStream(pMalloc, &pStream)); VERIFY_ARE_NOT_EQUAL(pFormat, Vals + _countof(Vals)); VERIFY_SUCCEEDED(pFactory->CreateBitmapFromMemory(m_width, m_height, pFormat->PixelFormat, m_width * pFormat->PixelSize, m_width * m_height * pFormat->PixelSize, (BYTE *)pPixels, &pBitmap)); VERIFY_SUCCEEDED(pFactory->CreateEncoder(GUID_ContainerFormatBmp, nullptr, &pEncoder)); VERIFY_SUCCEEDED(pEncoder->Initialize(pStream, WICBitmapEncoderNoCache)); VERIFY_SUCCEEDED(pEncoder->CreateNewFrame(&pFrameEncode, nullptr)); VERIFY_SUCCEEDED(pFrameEncode->Initialize(nullptr)); VERIFY_SUCCEEDED(pFrameEncode->WriteSource(pBitmap, nullptr)); VERIFY_SUCCEEDED(pFrameEncode->Commit()); VERIFY_SUCCEEDED(pEncoder->Commit()); hlsl::WriteBinaryFile(pFileName, pStream->GetPtr(), pStream->GetPtrSize()); } // Setup for wave intrinsics tests enum class ShaderOpKind { WaveSum, WaveProduct, WaveActiveMax, WaveActiveMin, WaveCountBits, WaveActiveAllEqual, WaveActiveAnyTrue, WaveActiveAllTrue, WaveActiveBitOr, WaveActiveBitAnd, WaveActiveBitXor, ShaderOpInvalid }; struct ShaderOpKindPair { LPCWSTR name; ShaderOpKind kind; }; static ShaderOpKindPair ShaderOpKindTable[] = { { L"WaveActiveSum", ShaderOpKind::WaveSum }, { L"WaveActiveUSum", ShaderOpKind::WaveSum }, { L"WaveActiveProduct", ShaderOpKind::WaveProduct }, { L"WaveActiveUProduct", ShaderOpKind::WaveProduct }, { L"WaveActiveMax", ShaderOpKind::WaveActiveMax }, { L"WaveActiveUMax", ShaderOpKind::WaveActiveMax }, { L"WaveActiveMin", ShaderOpKind::WaveActiveMin }, { L"WaveActiveUMin", ShaderOpKind::WaveActiveMin }, { L"WaveActiveCountBits", ShaderOpKind::WaveCountBits }, { L"WaveActiveAllEqual", ShaderOpKind::WaveActiveAllEqual }, { L"WaveActiveAnyTrue", ShaderOpKind::WaveActiveAnyTrue }, { L"WaveActiveAllTrue", ShaderOpKind::WaveActiveAllTrue }, { L"WaveActiveBitOr", ShaderOpKind::WaveActiveBitOr }, { L"WaveActiveBitAnd", ShaderOpKind::WaveActiveBitAnd }, { L"WaveActiveBitXor", ShaderOpKind::WaveActiveBitXor }, { L"WavePrefixSum", ShaderOpKind::WaveSum }, { L"WavePrefixUSum", ShaderOpKind::WaveSum }, { L"WavePrefixProduct", ShaderOpKind::WaveProduct }, { L"WavePrefixUProduct", ShaderOpKind::WaveProduct }, { L"WavePrefixMax", ShaderOpKind::WaveActiveMax }, { L"WavePrefixUMax", ShaderOpKind::WaveActiveMax }, { L"WavePrefixMin", ShaderOpKind::WaveActiveMin }, { L"WavePrefixUMin", ShaderOpKind::WaveActiveMin }, { L"WavePrefixCountBits", ShaderOpKind::WaveCountBits } }; ShaderOpKind GetShaderOpKind(LPCWSTR str) { for (size_t i = 0; i < sizeof(ShaderOpKindTable)/sizeof(ShaderOpKindPair); ++i) { if (_wcsicmp(ShaderOpKindTable[i].name, str) == 0) { return ShaderOpKindTable[i].kind; } } DXASSERT(false, "Invalid ShaderOp name: %s", str); return ShaderOpKind::ShaderOpInvalid; } // Virtual class to compute the expected result given a set of inputs struct TableParameter; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { return 0; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { OutType sum = 0; for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue) { sum += inputs.at(i); } } return sum; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { OutType prod = 1; for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue) { prod *= inputs.at(i); } } return prod; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { OutType maximum = std::numeric_limits::min(); for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue && inputs.at(i) > maximum) maximum = inputs.at(i); } return maximum; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { OutType minimum = std::numeric_limits::max(); for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue && inputs.at(i) < minimum) minimum = inputs.at(i); } return minimum; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { OutType count = 0; for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue && inputs.at(i) > 3) { count++; } } return count; } }; // In HLSL, boolean is represented in a 4 byte (uint32) format, // So we cannot use c++ bool type to represent bool in HLSL // HLSL returns 0 for false and 1 for true template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue && inputs.at(i) != 0) { return 1; } } return 0; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue && inputs.at(i) == 0) { return 0; } } return 1; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { const InType *val = nullptr; for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue) { if (val && *val != inputs.at(i)) { return 0; } val = &inputs.at(i); } } return 1; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { OutType bits = 0x00000000; for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue) { bits |= inputs.at(i); } } return bits; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { OutType bits = 0xffffffff; for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue) { bits &= inputs.at(i); } } return bits; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { OutType bits = 0x00000000; for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue) { bits ^= inputs.at(i); } } return bits; } }; // Mask functions used to control active lanes static int MaskAll(int i) { return 1; } static int MaskEveryOther(int i) { return i % 2 == 0 ? 1 : 0; } static int MaskEveryThird(int i) { return i % 3 == 0 ? 1 : 0; } typedef int(*MaskFunction)(int); static MaskFunction MaskFunctionTable[] = { MaskAll, MaskEveryOther, MaskEveryThird }; template static OutType computeExpectedWithShaderOp(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index, LPCWSTR str) { ShaderOpKind kind = GetShaderOpKind(str); switch (kind) { case ShaderOpKind::WaveSum: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveProduct: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveActiveMax: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveActiveMin: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveCountBits: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveActiveBitOr: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveActiveBitAnd: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveActiveBitXor: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveActiveAnyTrue: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveActiveAllTrue: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveActiveAllEqual: return computeExpected()(inputs, masks, maskValue, index); default: DXASSERT(false, "Invalid ShaderOp Name: %s", str); return (OutType) 0; } }; // Checks if the given warp version supports the given operation. bool IsValidWarpDllVersion(unsigned int minBuildNumber) { HMODULE pLibrary = LoadLibrary("D3D10Warp.dll"); if (pLibrary) { char path[MAX_PATH]; DWORD length = GetModuleFileName(pLibrary, path, MAX_PATH); if (length) { DWORD dwVerHnd = 0; DWORD dwVersionInfoSize = GetFileVersionInfoSize(path, &dwVerHnd); std::unique_ptr VffInfo(new int[dwVersionInfoSize]); if (GetFileVersionInfo(path, NULL, dwVersionInfoSize, VffInfo.get())) { LPVOID versionInfo; UINT size; if (VerQueryValue(VffInfo.get(), "\\", &versionInfo, &size)) { if (size) { VS_FIXEDFILEINFO *verInfo = (VS_FIXEDFILEINFO *)versionInfo; unsigned int warpBuildNumber = verInfo->dwFileVersionLS >> 16 & 0xffff; if (verInfo->dwSignature == 0xFEEF04BD && warpBuildNumber >= minBuildNumber) { return true; } } } } } FreeLibrary(pLibrary); } return false; } class ExecutionTest { public: // By default, ignore these tests, which require a recent build to run properly. BEGIN_TEST_CLASS(ExecutionTest) TEST_CLASS_PROPERTY(L"Parallel", L"true") TEST_CLASS_PROPERTY(L"Ignore", L"true") TEST_METHOD_PROPERTY(L"Priority", L"0") END_TEST_CLASS() TEST_CLASS_SETUP(ExecutionTestClassSetup) TEST_METHOD(BasicComputeTest); TEST_METHOD(BasicTriangleTest); TEST_METHOD(BasicTriangleOpTest); TEST_METHOD(OutOfBoundsTest); TEST_METHOD(SaturateTest); TEST_METHOD(SignTest); TEST_METHOD(Int64Test); TEST_METHOD(WaveIntrinsicsTest); TEST_METHOD(WaveIntrinsicsInPSTest); TEST_METHOD(PartialDerivTest); // TODO: Change the priority to 0 once there is a driver that fixes the issue with WaveActive operations BEGIN_TEST_METHOD(WaveIntrinsicsActiveIntTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#WaveIntrinsicsActiveIntTable") END_TEST_METHOD() BEGIN_TEST_METHOD(WaveIntrinsicsActiveUintTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#WaveIntrinsicsActiveUintTable") END_TEST_METHOD() BEGIN_TEST_METHOD(WaveIntrinsicsPrefixIntTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#WaveIntrinsicsPrefixIntTable") END_TEST_METHOD() BEGIN_TEST_METHOD(WaveIntrinsicsPrefixUintTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#WaveIntrinsicsPrefixUintTable") END_TEST_METHOD() // TAEF data-driven tests. BEGIN_TEST_METHOD(UnaryFloatOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#UnaryFloatOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(BinaryFloatOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#BinaryFloatOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(TertiaryFloatOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#TertiaryFloatOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(UnaryIntOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#UnaryIntOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(BinaryIntOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#BinaryIntOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(TertiaryIntOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#TertiaryIntOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(UnaryUintOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#UnaryUintOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(BinaryUintOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#BinaryUintOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(TertiaryUintOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#TertiaryUintOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(DotTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#DotOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(Msad4Test) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#Msad4Table") END_TEST_METHOD() dxc::DxcDllSupport m_support; bool m_ExperimentalModeEnabled = false; static const float ClearColor[4]; template void WaveIntrinsicsActivePrefixTest( TableParameter *pParameterList, size_t numParameter, bool isPrefix); bool UseDxbc() { return GetTestParamBool(L"DXBC"); } bool UseDebugIfaces() { return true; } bool SaveImages() { return GetTestParamBool(L"SaveImages"); } void CompileFromText(LPCSTR pText, LPCWSTR pEntryPoint, LPCWSTR pTargetProfile, ID3DBlob **ppBlob) { VERIFY_SUCCEEDED(m_support.Initialize()); CComPtr pCompiler; CComPtr pLibrary; CComPtr pTextBlob; CComPtr pResult; HRESULT resultCode; VERIFY_SUCCEEDED(m_support.CreateInstance(CLSID_DxcCompiler, &pCompiler)); VERIFY_SUCCEEDED(m_support.CreateInstance(CLSID_DxcLibrary, &pLibrary)); VERIFY_SUCCEEDED(pLibrary->CreateBlobWithEncodingFromPinned((LPBYTE)pText, strlen(pText), CP_UTF8, &pTextBlob)); VERIFY_SUCCEEDED(pCompiler->Compile(pTextBlob, L"hlsl.hlsl", pEntryPoint, pTargetProfile, nullptr, 0, nullptr, 0, nullptr, &pResult)); VERIFY_SUCCEEDED(pResult->GetStatus(&resultCode)); if (FAILED(resultCode)) { CComPtr errors; VERIFY_SUCCEEDED(pResult->GetErrorBuffer(&errors)); LogCommentFmt(L"Failed to compile shader: %s", BlobToUtf16(errors).data()); } VERIFY_SUCCEEDED(resultCode); VERIFY_SUCCEEDED(pResult->GetResult((IDxcBlob **)ppBlob)); } void CreateComputeCommandQueue(ID3D12Device *pDevice, LPCWSTR pName, ID3D12CommandQueue **ppCommandQueue) { D3D12_COMMAND_QUEUE_DESC queueDesc = {}; queueDesc.Flags = D3D12_COMMAND_QUEUE_FLAG_NONE; queueDesc.Type = D3D12_COMMAND_LIST_TYPE_COMPUTE; VERIFY_SUCCEEDED(pDevice->CreateCommandQueue(&queueDesc, IID_PPV_ARGS(ppCommandQueue))); VERIFY_SUCCEEDED((*ppCommandQueue)->SetName(pName)); } void CreateComputePSO(ID3D12Device *pDevice, ID3D12RootSignature *pRootSignature, LPCSTR pShader, ID3D12PipelineState **ppComputeState) { CComPtr pComputeShader; // Load and compile shaders. if (UseDxbc()) { DXBCFromText(pShader, L"main", L"cs_6_0", &pComputeShader); } else { CompileFromText(pShader, L"main", L"cs_6_0", &pComputeShader); } // Describe and create the compute pipeline state object (PSO). D3D12_COMPUTE_PIPELINE_STATE_DESC computePsoDesc = {}; computePsoDesc.pRootSignature = pRootSignature; computePsoDesc.CS = CD3DX12_SHADER_BYTECODE(pComputeShader); VERIFY_SUCCEEDED(pDevice->CreateComputePipelineState(&computePsoDesc, IID_PPV_ARGS(ppComputeState))); } bool CreateDevice(_COM_Outptr_ ID3D12Device **ppDevice) { const D3D_FEATURE_LEVEL FeatureLevelRequired = D3D_FEATURE_LEVEL_11_0; CComPtr factory; CComPtr pDevice; *ppDevice = nullptr; VERIFY_SUCCEEDED(CreateDXGIFactory1(IID_PPV_ARGS(&factory))); if (GetTestParamUseWARP(true)) { CComPtr warpAdapter; VERIFY_SUCCEEDED(factory->EnumWarpAdapter(IID_PPV_ARGS(&warpAdapter))); HRESULT createHR = D3D12CreateDevice(warpAdapter, FeatureLevelRequired, IID_PPV_ARGS(&pDevice)); if (FAILED(createHR)) { LogCommentFmt(L"The available version of WARP does not support d3d12."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Blocked); return false; } } else { CComPtr hardwareAdapter; WEX::Common::String AdapterValue; IFT(WEX::TestExecution::RuntimeParameters::TryGetValue(L"Adapter", AdapterValue)); GetHardwareAdapter(factory, AdapterValue, &hardwareAdapter); if (hardwareAdapter == nullptr) { WEX::Logging::Log::Error( L"Unable to find hardware adapter with D3D12 support."); return false; } VERIFY_SUCCEEDED(D3D12CreateDevice(hardwareAdapter, FeatureLevelRequired, IID_PPV_ARGS(&pDevice))); DXGI_ADAPTER_DESC1 AdapterDesc; VERIFY_SUCCEEDED(hardwareAdapter->GetDesc1(&AdapterDesc)); LogCommentFmt(L"Using Adapter: %s", AdapterDesc.Description); } if (pDevice == nullptr) return false; if (!UseDxbc()) { // Check for DXIL support. // This is defined in d3d.h for Windows 10 Anniversary Edition SDK, but we only // require the Windows 10 SDK. typedef enum D3D_SHADER_MODEL { D3D_SHADER_MODEL_5_1 = 0x51, D3D_SHADER_MODEL_6_0 = 0x60 } D3D_SHADER_MODEL; typedef struct D3D12_FEATURE_DATA_SHADER_MODEL { _Inout_ D3D_SHADER_MODEL HighestShaderModel; } D3D12_FEATURE_DATA_SHADER_MODEL; const UINT D3D12_FEATURE_SHADER_MODEL = 7; D3D12_FEATURE_DATA_SHADER_MODEL SMData; SMData.HighestShaderModel = D3D_SHADER_MODEL_6_0; VERIFY_SUCCEEDED(pDevice->CheckFeatureSupport( (D3D12_FEATURE)D3D12_FEATURE_SHADER_MODEL, &SMData, sizeof(SMData))); if (SMData.HighestShaderModel != D3D_SHADER_MODEL_6_0) { LogCommentFmt(L"The selected device does not support " L"shader model 6 (required for DXIL)."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Blocked); return false; } } if (UseDebugIfaces()) { CComPtr pInfoQueue; if (SUCCEEDED(pDevice->QueryInterface(&pInfoQueue))) { pInfoQueue->SetMuteDebugOutput(FALSE); } } *ppDevice = pDevice.Detach(); return true; } void CreateGraphicsCommandQueue(ID3D12Device *pDevice, ID3D12CommandQueue **ppCommandQueue) { D3D12_COMMAND_QUEUE_DESC queueDesc = {}; queueDesc.Flags = D3D12_COMMAND_QUEUE_FLAG_NONE; queueDesc.Type = D3D12_COMMAND_LIST_TYPE_DIRECT;; VERIFY_SUCCEEDED(pDevice->CreateCommandQueue(&queueDesc, IID_PPV_ARGS(ppCommandQueue))); } void CreateGraphicsCommandQueueAndList( ID3D12Device *pDevice, ID3D12CommandQueue **ppCommandQueue, ID3D12CommandAllocator **ppAllocator, ID3D12GraphicsCommandList **ppCommandList, ID3D12PipelineState *pPSO) { CreateGraphicsCommandQueue(pDevice, ppCommandQueue); VERIFY_SUCCEEDED(pDevice->CreateCommandAllocator( D3D12_COMMAND_LIST_TYPE_DIRECT, IID_PPV_ARGS(ppAllocator))); VERIFY_SUCCEEDED(pDevice->CreateCommandList( 0, D3D12_COMMAND_LIST_TYPE_DIRECT, *ppAllocator, pPSO, IID_PPV_ARGS(ppCommandList))); } void CreateGraphicsPSO(ID3D12Device *pDevice, D3D12_INPUT_LAYOUT_DESC *pInputLayout, ID3D12RootSignature *pRootSignature, LPCSTR pShaders, ID3D12PipelineState **ppPSO) { CComPtr vertexShader; CComPtr pixelShader; if (UseDxbc()) { DXBCFromText(pShaders, L"VSMain", L"vs_6_0", &vertexShader); DXBCFromText(pShaders, L"PSMain", L"ps_6_0", &pixelShader); } else { CompileFromText(pShaders, L"VSMain", L"vs_6_0", &vertexShader); CompileFromText(pShaders, L"PSMain", L"ps_6_0", &pixelShader); } // Describe and create the graphics pipeline state object (PSO). D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {}; psoDesc.InputLayout = *pInputLayout; psoDesc.pRootSignature = pRootSignature; psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader); psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader); psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT); psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT); psoDesc.DepthStencilState.DepthEnable = FALSE; psoDesc.DepthStencilState.StencilEnable = FALSE; psoDesc.SampleMask = UINT_MAX; psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE; psoDesc.NumRenderTargets = 1; psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM; psoDesc.SampleDesc.Count = 1; VERIFY_SUCCEEDED( pDevice->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(ppPSO))); } void CreateRenderTargetAndReadback(ID3D12Device *pDevice, ID3D12DescriptorHeap *pHeap, UINT width, UINT height, ID3D12Resource **ppRenderTarget, ID3D12Resource **ppBuffer) { const DXGI_FORMAT format = DXGI_FORMAT_R8G8B8A8_UNORM; const size_t formatElementSize = 4; CComPtr pRenderTarget; CComPtr pBuffer; CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHandle( pHeap->GetCPUDescriptorHandleForHeapStart()); CD3DX12_HEAP_PROPERTIES rtHeap(D3D12_HEAP_TYPE_DEFAULT); CD3DX12_RESOURCE_DESC rtDesc( CD3DX12_RESOURCE_DESC::Tex2D(format, width, height)); CD3DX12_CLEAR_VALUE rtClearVal(format, ClearColor); rtDesc.Flags = D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET; VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &rtHeap, D3D12_HEAP_FLAG_NONE, &rtDesc, D3D12_RESOURCE_STATE_COPY_DEST, &rtClearVal, IID_PPV_ARGS(&pRenderTarget))); pDevice->CreateRenderTargetView(pRenderTarget, nullptr, rtvHandle); // rtvHandle.Offset(1, rtvDescriptorSize); // Not needed for a single // resource. CD3DX12_HEAP_PROPERTIES readHeap(D3D12_HEAP_TYPE_READBACK); CD3DX12_RESOURCE_DESC readDesc( CD3DX12_RESOURCE_DESC::Buffer(width * height * formatElementSize)); VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &readHeap, D3D12_HEAP_FLAG_NONE, &readDesc, D3D12_RESOURCE_STATE_COPY_DEST, nullptr, IID_PPV_ARGS(&pBuffer))); *ppRenderTarget = pRenderTarget.Detach(); *ppBuffer = pBuffer.Detach(); } void CreateRootSignatureFromDesc(ID3D12Device *pDevice, const D3D12_ROOT_SIGNATURE_DESC *pDesc, ID3D12RootSignature **pRootSig) { CComPtr signature; CComPtr error; VERIFY_SUCCEEDED(D3D12SerializeRootSignature(pDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error)); VERIFY_SUCCEEDED(pDevice->CreateRootSignature( 0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(pRootSig))); } void CreateRtvDescriptorHeap(ID3D12Device *pDevice, UINT numDescriptors, ID3D12DescriptorHeap **pRtvHeap, UINT *rtvDescriptorSize) { D3D12_DESCRIPTOR_HEAP_DESC rtvHeapDesc = {}; rtvHeapDesc.NumDescriptors = numDescriptors; rtvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_RTV; rtvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE; VERIFY_SUCCEEDED( pDevice->CreateDescriptorHeap(&rtvHeapDesc, IID_PPV_ARGS(pRtvHeap))); if (rtvDescriptorSize != nullptr) { *rtvDescriptorSize = pDevice->GetDescriptorHandleIncrementSize( D3D12_DESCRIPTOR_HEAP_TYPE_RTV); } } void CreateTestUavs(ID3D12Device *pDevice, ID3D12GraphicsCommandList *pCommandList, LPCVOID values, UINT32 valueSizeInBytes, ID3D12Resource **ppUavResource, ID3D12Resource **ppReadBuffer, ID3D12Resource **ppUploadResource) { CComPtr pUavResource; CComPtr pReadBuffer; CComPtr pUploadResource; D3D12_SUBRESOURCE_DATA transferData; D3D12_HEAP_PROPERTIES defaultHeapProperties = CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT); D3D12_HEAP_PROPERTIES uploadHeapProperties = CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD); D3D12_RESOURCE_DESC bufferDesc = CD3DX12_RESOURCE_DESC::Buffer(valueSizeInBytes, D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS); D3D12_RESOURCE_DESC uploadBufferDesc = CD3DX12_RESOURCE_DESC::Buffer(valueSizeInBytes); CD3DX12_HEAP_PROPERTIES readHeap(D3D12_HEAP_TYPE_READBACK); CD3DX12_RESOURCE_DESC readDesc(CD3DX12_RESOURCE_DESC::Buffer(valueSizeInBytes)); VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &defaultHeapProperties, D3D12_HEAP_FLAG_NONE, &bufferDesc, D3D12_RESOURCE_STATE_COPY_DEST, nullptr, IID_PPV_ARGS(&pUavResource))); VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &uploadHeapProperties, D3D12_HEAP_FLAG_NONE, &uploadBufferDesc, D3D12_RESOURCE_STATE_GENERIC_READ, nullptr, IID_PPV_ARGS(&pUploadResource))); VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &readHeap, D3D12_HEAP_FLAG_NONE, &readDesc, D3D12_RESOURCE_STATE_COPY_DEST, nullptr, IID_PPV_ARGS(&pReadBuffer))); transferData.pData = values; transferData.RowPitch = valueSizeInBytes; transferData.SlicePitch = transferData.RowPitch; UpdateSubresources<1>(pCommandList, pUavResource.p, pUploadResource.p, 0, 0, 1, &transferData); RecordTransitionBarrier(pCommandList, pUavResource, D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_UNORDERED_ACCESS); *ppUavResource = pUavResource.Detach(); *ppReadBuffer = pReadBuffer.Detach(); *ppUploadResource = pUploadResource.Detach(); } template void CreateVertexBuffer(ID3D12Device *pDevice, TVertex(&vertices)[len], ID3D12Resource **ppVertexBuffer, D3D12_VERTEX_BUFFER_VIEW *pVertexBufferView) { size_t vertexBufferSize = sizeof(vertices); CComPtr pVertexBuffer; CD3DX12_HEAP_PROPERTIES heapProps(D3D12_HEAP_TYPE_UPLOAD); CD3DX12_RESOURCE_DESC bufferDesc( CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize)); VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &heapProps, D3D12_HEAP_FLAG_NONE, &bufferDesc, D3D12_RESOURCE_STATE_GENERIC_READ, nullptr, IID_PPV_ARGS(&pVertexBuffer))); UINT8 *pVertexDataBegin; CD3DX12_RANGE readRange(0, 0); VERIFY_SUCCEEDED(pVertexBuffer->Map( 0, &readRange, reinterpret_cast(&pVertexDataBegin))); memcpy(pVertexDataBegin, vertices, vertexBufferSize); pVertexBuffer->Unmap(0, nullptr); // Initialize the vertex buffer view. pVertexBufferView->BufferLocation = pVertexBuffer->GetGPUVirtualAddress(); pVertexBufferView->StrideInBytes = sizeof(TVertex); pVertexBufferView->SizeInBytes = vertexBufferSize; *ppVertexBuffer = pVertexBuffer.Detach(); } // Requires Anniversary Edition headers, so simplifying things for current setup. const UINT D3D12_FEATURE_D3D12_OPTIONS1 = 8; struct D3D12_FEATURE_DATA_D3D12_OPTIONS1 { BOOL WaveOps; UINT WaveLaneCountMin; UINT WaveLaneCountMax; UINT TotalLaneCount; BOOL ExpandedComputeResourceStates; BOOL Int64ShaderOps; }; bool DoesDeviceSupportInt64(ID3D12Device *pDevice) { D3D12_FEATURE_DATA_D3D12_OPTIONS1 O; if (FAILED(pDevice->CheckFeatureSupport((D3D12_FEATURE)D3D12_FEATURE_D3D12_OPTIONS1, &O, sizeof(O)))) return false; return O.Int64ShaderOps != FALSE; } bool DoesDeviceSupportWaveOps(ID3D12Device *pDevice) { D3D12_FEATURE_DATA_D3D12_OPTIONS1 O; if (FAILED(pDevice->CheckFeatureSupport((D3D12_FEATURE)D3D12_FEATURE_D3D12_OPTIONS1, &O, sizeof(O)))) return false; return O.WaveOps != FALSE; } void DXBCFromText(LPCSTR pText, LPCWSTR pEntryPoint, LPCWSTR pTargetProfile, ID3DBlob **ppBlob) { CW2A pEntryPointA(pEntryPoint, CP_UTF8); CW2A pTargetProfileA(pTargetProfile, CP_UTF8); CComPtr pErrors; D3D_SHADER_MACRO d3dMacro[2]; ZeroMemory(d3dMacro, sizeof(d3dMacro)); d3dMacro[0].Definition = "1"; d3dMacro[0].Name = "USING_DXBC"; HRESULT hr = D3DCompile(pText, strlen(pText), "hlsl.hlsl", d3dMacro, nullptr, pEntryPointA, pTargetProfileA, 0, 0, ppBlob, &pErrors); if (pErrors != nullptr) { CA2W errors((char *)pErrors->GetBufferPointer(), CP_ACP); LogCommentFmt(L"Compilation failure: %s", errors.m_szBuffer); } VERIFY_SUCCEEDED(hr); } HRESULT EnableDebugLayer() { // The debug layer does net yet validate DXIL programs that require rewriting, // but basic logging should work properly. HRESULT hr = S_FALSE; if (UseDebugIfaces()) { CComPtr debugController; hr = D3D12GetDebugInterface(IID_PPV_ARGS(&debugController)); if (SUCCEEDED(hr)) { debugController->EnableDebugLayer(); hr = S_OK; } } return hr; } HRESULT EnableExperimentalMode() { if (m_ExperimentalModeEnabled) { return S_OK; } if (!GetTestParamBool(L"ExperimentalShaders")) { return S_FALSE; } HRESULT hr = EnableExperimentalShaderModels(); if (SUCCEEDED(hr)) { m_ExperimentalModeEnabled = true; } return hr; } struct FenceObj { HANDLE m_fenceEvent = NULL; CComPtr m_fence; UINT64 m_fenceValue; ~FenceObj() { if (m_fenceEvent) CloseHandle(m_fenceEvent); } }; void InitFenceObj(ID3D12Device *pDevice, FenceObj *pObj) { pObj->m_fenceValue = 1; VERIFY_SUCCEEDED(pDevice->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&pObj->m_fence))); // Create an event handle to use for frame synchronization. pObj->m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr); if (pObj->m_fenceEvent == nullptr) { VERIFY_SUCCEEDED(HRESULT_FROM_WIN32(GetLastError())); } } void ReadHlslDataIntoNewStream(LPCWSTR relativePath, IStream **ppStream) { VERIFY_SUCCEEDED(m_support.Initialize()); CComPtr pLibrary; CComPtr pBlob; CComPtr pStream; std::wstring path = GetPathToHlslDataFile(relativePath); VERIFY_SUCCEEDED(m_support.CreateInstance(CLSID_DxcLibrary, &pLibrary)); VERIFY_SUCCEEDED(pLibrary->CreateBlobFromFile(path.c_str(), nullptr, &pBlob)); VERIFY_SUCCEEDED(pLibrary->CreateStreamFromBlobReadOnly(pBlob, &pStream)); *ppStream = pStream.Detach(); } void RecordRenderAndReadback(ID3D12GraphicsCommandList *pList, ID3D12DescriptorHeap *pRtvHeap, UINT rtvDescriptorSize, UINT instanceCount, D3D12_VERTEX_BUFFER_VIEW *pVertexBufferView, ID3D12RootSignature *pRootSig, ID3D12Resource *pRenderTarget, ID3D12Resource *pReadBuffer) { D3D12_RESOURCE_DESC rtDesc = pRenderTarget->GetDesc(); D3D12_VIEWPORT viewport; D3D12_RECT scissorRect; memset(&viewport, 0, sizeof(viewport)); viewport.Height = rtDesc.Height; viewport.Width = rtDesc.Width; viewport.MaxDepth = 1.0f; memset(&scissorRect, 0, sizeof(scissorRect)); scissorRect.right = rtDesc.Width; scissorRect.bottom = rtDesc.Height; if (pRootSig != nullptr) { pList->SetGraphicsRootSignature(pRootSig); } pList->RSSetViewports(1, &viewport); pList->RSSetScissorRects(1, &scissorRect); // Indicate that the buffer will be used as a render target. RecordTransitionBarrier(pList, pRenderTarget, D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_RENDER_TARGET); CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHandle(pRtvHeap->GetCPUDescriptorHandleForHeapStart(), 0, rtvDescriptorSize); pList->OMSetRenderTargets(1, &rtvHandle, FALSE, nullptr); pList->ClearRenderTargetView(rtvHandle, ClearColor, 0, nullptr); pList->IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST); pList->IASetVertexBuffers(0, 1, pVertexBufferView); pList->DrawInstanced(3, instanceCount, 0, 0); // Transition to copy source and copy into read-back buffer. RecordTransitionBarrier(pList, pRenderTarget, D3D12_RESOURCE_STATE_RENDER_TARGET, D3D12_RESOURCE_STATE_COPY_SOURCE); // Copy into read-back buffer. UINT rowPitch = rtDesc.Width * 4; if (rowPitch % D3D12_TEXTURE_DATA_PITCH_ALIGNMENT) rowPitch += D3D12_TEXTURE_DATA_PITCH_ALIGNMENT - (rowPitch % D3D12_TEXTURE_DATA_PITCH_ALIGNMENT); D3D12_PLACED_SUBRESOURCE_FOOTPRINT Footprint; Footprint.Offset = 0; Footprint.Footprint = CD3DX12_SUBRESOURCE_FOOTPRINT(DXGI_FORMAT_R8G8B8A8_UNORM, rtDesc.Width, rtDesc.Height, 1, rowPitch); CD3DX12_TEXTURE_COPY_LOCATION DstLoc(pReadBuffer, Footprint); CD3DX12_TEXTURE_COPY_LOCATION SrcLoc(pRenderTarget, 0); pList->CopyTextureRegion(&DstLoc, 0, 0, 0, &SrcLoc, nullptr); } void RunRWByteBufferComputeTest(ID3D12Device *pDevice, LPCSTR shader, std::vector &values); void SetDescriptorHeap(ID3D12GraphicsCommandList *pCommandList, ID3D12DescriptorHeap *pHeap) { ID3D12DescriptorHeap *const pHeaps[1] = { pHeap }; pCommandList->SetDescriptorHeaps(1, pHeaps); } void WaitForSignal(ID3D12CommandQueue *pCQ, FenceObj &FO) { ::WaitForSignal(pCQ, FO.m_fence, FO.m_fenceEvent, FO.m_fenceValue++); } }; const float ExecutionTest::ClearColor[4] = { 0.0f, 0.2f, 0.4f, 1.0f }; #define WAVE_INTRINSIC_DXBC_GUARD \ "#ifdef USING_DXBC\r\n" \ "uint WaveGetLaneIndex() { return 1; }\r\n" \ "uint WaveReadLaneFirst(uint u) { return u; }\r\n" \ "bool WaveIsFirstLane() { return true; }\r\n" \ "uint WaveGetLaneCount() { return 1; }\r\n" \ "uint WaveReadLaneAt(uint n, uint u) { return u; }\r\n" \ "bool WaveActiveAnyTrue(bool b) { return b; }\r\n" \ "bool WaveActiveAllTrue(bool b) { return false; }\r\n" \ "uint WaveActiveAllEqual(uint u) { return u; }\r\n" \ "uint4 WaveActiveBallot(bool b) { return 1; }\r\n" \ "uint WaveActiveCountBits(uint u) { return 1; }\r\n" \ "uint WaveActiveSum(uint u) { return 1; }\r\n" \ "uint WaveActiveProduct(uint u) { return 1; }\r\n" \ "uint WaveActiveBitAnd(uint u) { return 1; }\r\n" \ "uint WaveActiveBitOr(uint u) { return 1; }\r\n" \ "uint WaveActiveBitXor(uint u) { return 1; }\r\n" \ "uint WaveActiveMin(uint u) { return 1; }\r\n" \ "uint WaveActiveMax(uint u) { return 1; }\r\n" \ "uint WavePrefixCountBits(uint u) { return 1; }\r\n" \ "uint WavePrefixSum(uint u) { return 1; }\r\n" \ "uint WavePrefixProduct(uint u) { return 1; }\r\n" \ "uint QuadReadLaneAt(uint a, uint u) { return 1; }\r\n" \ "uint QuadReadAcrossX(uint u) { return 1; }\r\n" \ "uint QuadReadAcrossY(uint u) { return 1; }\r\n" \ "uint QuadReadAcrossDiagonal(uint u) { return 1; }\r\n" \ "#endif\r\n" static void SetupComputeValuePattern(std::vector &values, size_t count) { values.resize(count); // one element per dispatch group, in bytes for (size_t i = 0; i < count; ++i) { values[i] = i; } } bool ExecutionTest::ExecutionTestClassSetup() { HRESULT hr = EnableExperimentalMode(); if (FAILED(hr)) { LogCommentFmt(L"Unable to enable shader experimental mode - 0x%08x.", hr); } else if (hr == S_FALSE) { LogCommentFmt(L"Experimental mode not enabled."); } else { LogCommentFmt(L"Experimental mode enabled."); } hr = EnableDebugLayer(); if (FAILED(hr)) { LogCommentFmt(L"Unable to enable debug layer - 0x%08x.", hr); } else { LogCommentFmt(L"Debug layer enabled."); } return true; } void ExecutionTest::RunRWByteBufferComputeTest(ID3D12Device *pDevice, LPCSTR pShader, std::vector &values) { static const int DispatchGroupX = 1; static const int DispatchGroupY = 1; static const int DispatchGroupZ = 1; CComPtr pCommandList; CComPtr pCommandQueue; CComPtr pUavHeap; CComPtr pCommandAllocator; UINT uavDescriptorSize; FenceObj FO; const size_t valueSizeInBytes = values.size() * sizeof(uint32_t); CreateComputeCommandQueue(pDevice, L"RunRWByteBufferComputeTest Command Queue", &pCommandQueue); InitFenceObj(pDevice, &FO); // Describe and create a UAV descriptor heap. D3D12_DESCRIPTOR_HEAP_DESC heapDesc = {}; heapDesc.NumDescriptors = 1; heapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV; heapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE; VERIFY_SUCCEEDED(pDevice->CreateDescriptorHeap(&heapDesc, IID_PPV_ARGS(&pUavHeap))); uavDescriptorSize = pDevice->GetDescriptorHandleIncrementSize(heapDesc.Type); // Create root signature. CComPtr pRootSignature; { CD3DX12_DESCRIPTOR_RANGE ranges[1]; ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 0, 0, 0); CD3DX12_ROOT_PARAMETER rootParameters[1]; rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_ALL); CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_NONE); CreateRootSignatureFromDesc(pDevice, &rootSignatureDesc, &pRootSignature); } // Create pipeline state object. CComPtr pComputeState; CreateComputePSO(pDevice, pRootSignature, pShader, &pComputeState); // Create a command allocator and list for compute. VERIFY_SUCCEEDED(pDevice->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_COMPUTE, IID_PPV_ARGS(&pCommandAllocator))); VERIFY_SUCCEEDED(pDevice->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COMPUTE, pCommandAllocator, pComputeState, IID_PPV_ARGS(&pCommandList))); pCommandList->SetName(L"ExecutionTest::RunRWByteButterComputeTest Command List"); // Set up UAV resource. CComPtr pUavResource; CComPtr pReadBuffer; CComPtr pUploadResource; CreateTestUavs(pDevice, pCommandList, values.data(), valueSizeInBytes, &pUavResource, &pReadBuffer, &pUploadResource); VERIFY_SUCCEEDED(pUavResource->SetName(L"RunRWByteBufferComputeText UAV")); VERIFY_SUCCEEDED(pReadBuffer->SetName(L"RunRWByteBufferComputeText UAV Read Buffer")); VERIFY_SUCCEEDED(pUploadResource->SetName(L"RunRWByteBufferComputeText UAV Upload Buffer")); // Close the command list and execute it to perform the GPU setup. pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); VERIFY_SUCCEEDED(pCommandAllocator->Reset()); VERIFY_SUCCEEDED(pCommandList->Reset(pCommandAllocator, pComputeState)); // Run the compute shader and copy the results back to readable memory. { D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {}; uavDesc.Format = DXGI_FORMAT_R32_TYPELESS; uavDesc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER; uavDesc.Buffer.FirstElement = 0; uavDesc.Buffer.NumElements = values.size(); uavDesc.Buffer.StructureByteStride = 0; uavDesc.Buffer.CounterOffsetInBytes = 0; uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_RAW; CD3DX12_CPU_DESCRIPTOR_HANDLE uavHandle(pUavHeap->GetCPUDescriptorHandleForHeapStart()); CD3DX12_GPU_DESCRIPTOR_HANDLE uavHandleGpu(pUavHeap->GetGPUDescriptorHandleForHeapStart()); pDevice->CreateUnorderedAccessView(pUavResource, nullptr, &uavDesc, uavHandle); SetDescriptorHeap(pCommandList, pUavHeap); pCommandList->SetComputeRootSignature(pRootSignature); pCommandList->SetComputeRootDescriptorTable(0, uavHandleGpu); } pCommandList->Dispatch(DispatchGroupX, DispatchGroupY, DispatchGroupZ); RecordTransitionBarrier(pCommandList, pUavResource, D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COPY_SOURCE); pCommandList->CopyResource(pReadBuffer, pUavResource); pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); { MappedData mappedData(pReadBuffer, valueSizeInBytes); uint32_t *pData = (uint32_t *)mappedData.data(); memcpy(values.data(), pData, valueSizeInBytes); } WaitForSignal(pCommandQueue, FO); } TEST_F(ExecutionTest, BasicComputeTest) { // // BasicComputeTest is a simple compute shader that can be used as the basis // for more interesting compute execution tests. // The HLSL is compatible with shader models <=5.1 to allow using the DXBC // rendering code paths for comparison. // static const char pShader[] = "RWByteAddressBuffer g_bab : register(u0);\r\n" "[numthreads(8,8,1)]\r\n" "void main(uint GI : SV_GroupIndex) {" " uint addr = GI * 4;\r\n" " uint val = g_bab.Load(addr);\r\n" " DeviceMemoryBarrierWithGroupSync();\r\n" " g_bab.Store(addr, val + 1);\r\n" "}"; static const int NumThreadsX = 8; static const int NumThreadsY = 8; static const int NumThreadsZ = 1; static const int ThreadsPerGroup = NumThreadsX * NumThreadsY * NumThreadsZ; static const int DispatchGroupCount = 1; CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::vector values; SetupComputeValuePattern(values, ThreadsPerGroup * DispatchGroupCount); VERIFY_ARE_EQUAL(values[0], 0); RunRWByteBufferComputeTest(pDevice, pShader, values); VERIFY_ARE_EQUAL(values[0], 1); } TEST_F(ExecutionTest, BasicTriangleTest) { static const UINT FrameCount = 2; static const UINT m_width = 320; static const UINT m_height = 200; static const float m_aspectRatio = static_cast(m_width) / static_cast(m_height); struct Vertex { XMFLOAT3 position; XMFLOAT4 color; }; // Pipeline objects. CComPtr pDevice; CComPtr pRenderTarget; CComPtr pCommandAllocator; CComPtr pCommandQueue; CComPtr pRootSig; CComPtr pRtvHeap; CComPtr pPipelineState; CComPtr pCommandList; CComPtr pReadBuffer; UINT rtvDescriptorSize; CComPtr pVertexBuffer; D3D12_VERTEX_BUFFER_VIEW vertexBufferView; // Synchronization objects. FenceObj FO; // Shaders. static const char pShaders[] = "struct PSInput {\r\n" " float4 position : SV_POSITION;\r\n" " float4 color : COLOR;\r\n" "};\r\n\r\n" "PSInput VSMain(float4 position : POSITION, float4 color : COLOR) {\r\n" " PSInput result;\r\n" "\r\n" " result.position = position;\r\n" " result.color = color;\r\n" " return result;\r\n" "}\r\n\r\n" "float4 PSMain(PSInput input) : SV_TARGET {\r\n" " return 1; //input.color;\r\n" "};\r\n"; if (!CreateDevice(&pDevice)) return; struct BasicTestChecker { CComPtr m_pDevice; CComPtr m_pInfoQueue; bool m_OK = false; void SetOK(bool value) { m_OK = value; } BasicTestChecker(ID3D12Device *pDevice) : m_pDevice(pDevice) { if (FAILED(m_pDevice.QueryInterface(&m_pInfoQueue))) return; m_pInfoQueue->PushEmptyStorageFilter(); m_pInfoQueue->PushEmptyRetrievalFilter(); } ~BasicTestChecker() { if (!m_OK && m_pInfoQueue != nullptr) { UINT64 count = m_pInfoQueue->GetNumStoredMessages(); bool invalidBytecodeFound = false; CAtlArray m_pBytes; for (UINT64 i = 0; i < count; ++i) { SIZE_T len = 0; if (FAILED(m_pInfoQueue->GetMessageA(i, nullptr, &len))) continue; if (m_pBytes.GetCount() < len && !m_pBytes.SetCount(len)) continue; D3D12_MESSAGE *pMsg = (D3D12_MESSAGE *)m_pBytes.GetData(); if (FAILED(m_pInfoQueue->GetMessageA(i, pMsg, &len))) continue; if (pMsg->ID == D3D12_MESSAGE_ID_CREATEVERTEXSHADER_INVALIDSHADERBYTECODE || pMsg->ID == D3D12_MESSAGE_ID_CREATEPIXELSHADER_INVALIDSHADERBYTECODE) { invalidBytecodeFound = true; break; } } if (invalidBytecodeFound) { LogCommentFmt(L"%s", L"Found an invalid bytecode message. This " L"typically indicates that experimental mode " L"is not set up properly."); if (!GetTestParamBool(L"ExperimentalShaders")) { LogCommentFmt(L"Note that the ExperimentalShaders test parameter isn't set."); } } else { LogCommentFmt(L"Did not find corrupt pixel or vertex shaders in " L"queue - dumping complete queue."); WriteInfoQueueMessages(nullptr, OutputFn, m_pInfoQueue); } } } static void __stdcall OutputFn(void *pCtx, const wchar_t *pMsg) { LogCommentFmt(L"%s", pMsg); } }; BasicTestChecker BTC(pDevice); { InitFenceObj(pDevice, &FO); CreateRtvDescriptorHeap(pDevice, FrameCount, &pRtvHeap, &rtvDescriptorSize); CreateRenderTargetAndReadback(pDevice, pRtvHeap, m_width, m_height, &pRenderTarget, &pReadBuffer); // Create an empty root signature. CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init( 0, nullptr, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT); CreateRootSignatureFromDesc(pDevice, &rootSignatureDesc, &pRootSig); // Create the pipeline state, which includes compiling and loading shaders. // Define the vertex input layout. D3D12_INPUT_ELEMENT_DESC inputElementDescs[] = { {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0}, {"COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0}}; D3D12_INPUT_LAYOUT_DESC InputLayout = { inputElementDescs, _countof(inputElementDescs) }; CreateGraphicsPSO(pDevice, &InputLayout, pRootSig, pShaders, &pPipelineState); CreateGraphicsCommandQueueAndList(pDevice, &pCommandQueue, &pCommandAllocator, &pCommandList, pPipelineState); // Define the geometry for a triangle. Vertex triangleVertices[] = { { { 0.0f, 0.25f * m_aspectRatio, 0.0f },{ 1.0f, 0.0f, 0.0f, 1.0f } }, { { 0.25f, -0.25f * m_aspectRatio, 0.0f },{ 0.0f, 1.0f, 0.0f, 1.0f } }, { { -0.25f, -0.25f * m_aspectRatio, 0.0f },{ 0.0f, 0.0f, 1.0f, 1.0f } } }; CreateVertexBuffer(pDevice, triangleVertices, &pVertexBuffer, &vertexBufferView); WaitForSignal(pCommandQueue, FO); } // Render and execute the command list. RecordRenderAndReadback(pCommandList, pRtvHeap, rtvDescriptorSize, 1, &vertexBufferView, pRootSig, pRenderTarget, pReadBuffer); VERIFY_SUCCEEDED(pCommandList->Close()); ExecuteCommandList(pCommandQueue, pCommandList); // Wait for previous frame. WaitForSignal(pCommandQueue, FO); // At this point, we've verified that execution succeeded with DXIL. BTC.SetOK(true); // Read back to CPU and examine contents. { MappedData data(pReadBuffer, m_width * m_height * 4); const uint32_t *pPixels = (uint32_t *)data.data(); if (SaveImages()) { SavePixelsToFile(pPixels, DXGI_FORMAT_R8G8B8A8_UNORM, m_width, m_height, L"basic.bmp"); } uint32_t top = pPixels[m_width / 2]; // Top center. uint32_t mid = pPixels[m_width / 2 + m_width * (m_height / 2)]; // Middle center. VERIFY_ARE_EQUAL(0xff663300, top); // clear color VERIFY_ARE_EQUAL(0xffffffff, mid); // white } } TEST_F(ExecutionTest, Int64Test) { static const char pShader[] = "RWByteAddressBuffer g_bab : register(u0);\r\n" "[numthreads(8,8,1)]\r\n" "void main(uint GI : SV_GroupIndex) {" " uint addr = GI * 4;\r\n" " uint val = g_bab.Load(addr);\r\n" " uint64_t u64 = val;\r\n" " u64 *= val;\r\n" " g_bab.Store(addr, (uint)(u64 >> 32));\r\n" "}"; static const int NumThreadsX = 8; static const int NumThreadsY = 8; static const int NumThreadsZ = 1; static const int ThreadsPerGroup = NumThreadsX * NumThreadsY * NumThreadsZ; static const int DispatchGroupCount = 1; CComPtr pDevice; if (!CreateDevice(&pDevice)) return; if (!DoesDeviceSupportInt64(pDevice)) { // Optional feature, so it's correct to not support it if declared as such. WEX::Logging::Log::Comment(L"Device does not support int64 operations."); return; } std::vector values; SetupComputeValuePattern(values, ThreadsPerGroup * DispatchGroupCount); VERIFY_ARE_EQUAL(values[0], 0); RunRWByteBufferComputeTest(pDevice, pShader, values); VERIFY_ARE_EQUAL(values[0], 0); } TEST_F(ExecutionTest, SignTest) { static const char pShader[] = "RWByteAddressBuffer g_bab : register(u0);\r\n" "[numthreads(8,1,1)]\r\n" "void main(uint GI : SV_GroupIndex) {" " uint addr = GI * 4;\r\n" " int val = g_bab.Load(addr);\r\n" " g_bab.Store(addr, (uint)(sign(val)));\r\n" "}"; static const int NumThreadsX = 8; static const int NumThreadsY = 1; static const int NumThreadsZ = 1; static const int ThreadsPerGroup = NumThreadsX * NumThreadsY * NumThreadsZ; static const int DispatchGroupCount = 1; CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::vector values = { (uint32_t)-3, (uint32_t)-2, (uint32_t)-1, 0, 1, 2, 3, 4}; RunRWByteBufferComputeTest(pDevice, pShader, values); VERIFY_ARE_EQUAL(values[0], -1); VERIFY_ARE_EQUAL(values[1], -1); VERIFY_ARE_EQUAL(values[2], -1); VERIFY_ARE_EQUAL(values[3], 0); VERIFY_ARE_EQUAL(values[4], 1); VERIFY_ARE_EQUAL(values[5], 1); VERIFY_ARE_EQUAL(values[6], 1); VERIFY_ARE_EQUAL(values[7], 1); } TEST_F(ExecutionTest, WaveIntrinsicsTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); struct PerThreadData { uint32_t id, flags, laneIndex, laneCount, firstLaneId, preds, firstlaneX, lane1X; uint32_t allBC, allSum, allProd, allAND, allOR, allXOR, allMin, allMax; uint32_t pfBC, pfSum, pfProd; uint32_t ballot[4]; uint32_t diver; // divergent value, used in calculation int32_t i_diver; // divergent value, used in calculation int32_t i_allMax, i_allMin, i_allSum, i_allProd; int32_t i_pfSum, i_pfProd; }; static const char pShader[] = WAVE_INTRINSIC_DXBC_GUARD "struct PerThreadData {\r\n" " uint id, flags, laneIndex, laneCount, firstLaneId, preds, firstlaneX, lane1X;\r\n" " uint allBC, allSum, allProd, allAND, allOR, allXOR, allMin, allMax;\r\n" " uint pfBC, pfSum, pfProd;\r\n" " uint4 ballot;\r\n" " uint diver;\r\n" " int i_diver;\r\n" " int i_allMax, i_allMin, i_allSum, i_allProd;\r\n" " int i_pfSum, i_pfProd;\r\n" "};\r\n" "RWStructuredBuffer g_sb : register(u0);\r\n" "[numthreads(8,8,1)]\r\n" "void main(uint GI : SV_GroupIndex, uint3 GTID : SV_GroupThreadID) {" " PerThreadData pts = g_sb[GI];\r\n" " uint diver = GTID.x + 2;\r\n" " pts.diver = diver;\r\n" " pts.flags = 0;\r\n" " pts.preds = 0;\r\n" " if (WaveIsFirstLane()) pts.flags |= 1;\r\n" " pts.laneIndex = WaveGetLaneIndex();\r\n" " pts.laneCount = WaveGetLaneCount();\r\n" " pts.firstLaneId = WaveReadLaneFirst(pts.id);\r\n" " pts.preds |= ((WaveActiveAnyTrue(diver == 1) ? 1 : 0) << 0);\r\n" " pts.preds |= ((WaveActiveAllTrue(diver == 1) ? 1 : 0) << 1);\r\n" " pts.preds |= ((WaveActiveAllEqual(diver) ? 1 : 0) << 2);\r\n" " pts.preds |= ((WaveActiveAllEqual(GTID.z) ? 1 : 0) << 3);\r\n" " pts.preds |= ((WaveActiveAllEqual(WaveReadLaneFirst(diver)) ? 1 : 0) << 4);\r\n" " pts.ballot = WaveActiveBallot(diver > 3);\r\n" " pts.firstlaneX = WaveReadLaneFirst(GTID.x);\r\n" " pts.lane1X = WaveReadLaneAt(GTID.x, 1);\r\n" "\r\n" " pts.allBC = WaveActiveCountBits(diver > 3);\r\n" " pts.allSum = WaveActiveSum(diver);\r\n" " pts.allProd = WaveActiveProduct(diver);\r\n" " pts.allAND = WaveActiveBitAnd(diver);\r\n" " pts.allOR = WaveActiveBitOr(diver);\r\n" " pts.allXOR = WaveActiveBitXor(diver);\r\n" " pts.allMin = WaveActiveMin(diver);\r\n" " pts.allMax = WaveActiveMax(diver);\r\n" "\r\n" " pts.pfBC = WavePrefixCountBits(diver > 3);\r\n" " pts.pfSum = WavePrefixSum(diver);\r\n" " pts.pfProd = WavePrefixProduct(diver);\r\n" "\r\n" " int i_diver = pts.i_diver;\r\n" " pts.i_allMax = WaveActiveMax(i_diver);\r\n" " pts.i_allMin = WaveActiveMin(i_diver);\r\n" " pts.i_allSum = WaveActiveSum(i_diver);\r\n" " pts.i_allProd = WaveActiveProduct(i_diver);\r\n" " pts.i_pfSum = WavePrefixSum(i_diver);\r\n" " pts.i_pfProd = WavePrefixProduct(i_diver);\r\n" "\r\n" " g_sb[GI] = pts;\r\n" "}"; static const int NumtheadsX = 8; static const int NumtheadsY = 8; static const int NumtheadsZ = 1; static const int ThreadsPerGroup = NumtheadsX * NumtheadsY * NumtheadsZ; static const int DispatchGroupCount = 1; CComPtr pDevice; if (!CreateDevice(&pDevice)) return; if (!DoesDeviceSupportWaveOps(pDevice)) { // Optional feature, so it's correct to not support it if declared as such. WEX::Logging::Log::Comment(L"Device does not support wave operations."); return; } std::vector values; values.resize(ThreadsPerGroup * DispatchGroupCount); for (size_t i = 0; i < values.size(); ++i) { memset(&values[i], 0, sizeof(PerThreadData)); values[i].id = i; values[i].i_diver = (int)i; values[i].i_diver *= (i % 2) ? 1 : -1; } static const int DispatchGroupX = 1; static const int DispatchGroupY = 1; static const int DispatchGroupZ = 1; CComPtr pCommandList; CComPtr pCommandQueue; CComPtr pUavHeap; CComPtr pCommandAllocator; UINT uavDescriptorSize; FenceObj FO; bool dxbc = UseDxbc(); const size_t valueSizeInBytes = values.size() * sizeof(PerThreadData); CreateComputeCommandQueue(pDevice, L"WaveIntrinsicsTest Command Queue", &pCommandQueue); InitFenceObj(pDevice, &FO); // Describe and create a UAV descriptor heap. D3D12_DESCRIPTOR_HEAP_DESC heapDesc = {}; heapDesc.NumDescriptors = 1; heapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV; heapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE; VERIFY_SUCCEEDED(pDevice->CreateDescriptorHeap(&heapDesc, IID_PPV_ARGS(&pUavHeap))); uavDescriptorSize = pDevice->GetDescriptorHandleIncrementSize(heapDesc.Type); // Create root signature. CComPtr pRootSignature; { CD3DX12_DESCRIPTOR_RANGE ranges[1]; ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 0, 0, 0); CD3DX12_ROOT_PARAMETER rootParameters[1]; rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_ALL); CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_NONE); CComPtr signature; CComPtr error; VERIFY_SUCCEEDED(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error)); VERIFY_SUCCEEDED(pDevice->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&pRootSignature))); } // Create pipeline state object. CComPtr pComputeState; CreateComputePSO(pDevice, pRootSignature, pShader, &pComputeState); // Create a command allocator and list for compute. VERIFY_SUCCEEDED(pDevice->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_COMPUTE, IID_PPV_ARGS(&pCommandAllocator))); VERIFY_SUCCEEDED(pDevice->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COMPUTE, pCommandAllocator, pComputeState, IID_PPV_ARGS(&pCommandList))); // Set up UAV resource. CComPtr pUavResource; CComPtr pReadBuffer; CComPtr pUploadResource; CreateTestUavs(pDevice, pCommandList, values.data(), valueSizeInBytes, &pUavResource, &pReadBuffer, &pUploadResource); // Close the command list and execute it to perform the GPU setup. pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); VERIFY_SUCCEEDED(pCommandAllocator->Reset()); VERIFY_SUCCEEDED(pCommandList->Reset(pCommandAllocator, pComputeState)); // Run the compute shader and copy the results back to readable memory. { D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {}; uavDesc.Format = DXGI_FORMAT_UNKNOWN; uavDesc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER; uavDesc.Buffer.FirstElement = 0; uavDesc.Buffer.NumElements = values.size(); uavDesc.Buffer.StructureByteStride = sizeof(PerThreadData); uavDesc.Buffer.CounterOffsetInBytes = 0; uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_NONE; CD3DX12_CPU_DESCRIPTOR_HANDLE uavHandle(pUavHeap->GetCPUDescriptorHandleForHeapStart()); CD3DX12_GPU_DESCRIPTOR_HANDLE uavHandleGpu(pUavHeap->GetGPUDescriptorHandleForHeapStart()); pDevice->CreateUnorderedAccessView(pUavResource, nullptr, &uavDesc, uavHandle); SetDescriptorHeap(pCommandList, pUavHeap); pCommandList->SetComputeRootSignature(pRootSignature); pCommandList->SetComputeRootDescriptorTable(0, uavHandleGpu); } pCommandList->Dispatch(DispatchGroupX, DispatchGroupY, DispatchGroupZ); RecordTransitionBarrier(pCommandList, pUavResource, D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COPY_SOURCE); pCommandList->CopyResource(pReadBuffer, pUavResource); pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); { MappedData mappedData(pReadBuffer, valueSizeInBytes); PerThreadData *pData = (PerThreadData *)mappedData.data(); memcpy(values.data(), pData, valueSizeInBytes); // Gather some general data. // The 'firstLaneId' captures a unique number per first-lane per wave. // Counting the number distinct firstLaneIds gives us the number of waves. std::vector firstLaneIds; for (size_t i = 0; i < values.size(); ++i) { PerThreadData &pts = values[i]; uint32_t firstLaneId = pts.firstLaneId; if (!contains(firstLaneIds, firstLaneId)) { firstLaneIds.push_back(firstLaneId); } } // Waves should cover 4 threads or more. LogCommentFmt(L"Found %u distinct lane ids: %u", firstLaneIds.size()); if (!dxbc) { VERIFY_IS_GREATER_THAN_OR_EQUAL(values.size() / 4, firstLaneIds.size()); } // Now, group threads into waves. std::map > > waves; for (size_t i = 0; i < firstLaneIds.size(); ++i) { waves[firstLaneIds[i]] = std::make_unique >(); } for (size_t i = 0; i < values.size(); ++i) { PerThreadData &pts = values[i]; std::unique_ptr > &wave = waves[pts.firstLaneId]; wave->push_back(&pts); } // Verify that all the wave values are coherent across the wave. for (size_t i = 0; i < values.size(); ++i) { PerThreadData &pts = values[i]; std::unique_ptr > &wave = waves[pts.firstLaneId]; // Sort the lanes by increasing lane ID. struct LaneIdOrderPred { bool operator()(PerThreadData *a, PerThreadData *b) { return a->laneIndex < b->laneIndex; } }; std::sort(wave.get()->begin(), wave.get()->end(), LaneIdOrderPred()); // Verify some interesting properties of the first lane. uint32_t pfBC, pfSum, pfProd; int32_t i_pfSum, i_pfProd; int32_t i_allMax, i_allMin; { PerThreadData *ptdFirst = wave->front(); VERIFY_IS_TRUE(0 != (ptdFirst->flags & 1)); // FirstLane sets this bit. VERIFY_IS_TRUE(0 == ptdFirst->pfBC); VERIFY_IS_TRUE(0 == ptdFirst->pfSum); VERIFY_IS_TRUE(1 == ptdFirst->pfProd); VERIFY_IS_TRUE(0 == ptdFirst->i_pfSum); VERIFY_IS_TRUE(1 == ptdFirst->i_pfProd); pfBC = (ptdFirst->diver > 3) ? 1 : 0; pfSum = ptdFirst->diver; pfProd = ptdFirst->diver; i_pfSum = ptdFirst->i_diver; i_pfProd = ptdFirst->i_diver; i_allMax = i_allMin = ptdFirst->i_diver; } // Calculate values which take into consideration all lanes. uint32_t preds = 0; preds |= 1 << 1; // AllTrue starts true, switches to false if needed. preds |= 1 << 2; // AllEqual starts true, switches to false if needed. preds |= 1 << 3; // WaveActiveAllEqual(GTID.z) is always true preds |= 1 << 4; // (WaveActiveAllEqual(WaveReadLaneFirst(diver)) is always true uint32_t ballot[4] = { 0, 0, 0, 0 }; int32_t i_allSum = 0, i_allProd = 1; for (size_t n = 0; n < wave->size(); ++n) { std::vector &lanes = *wave.get(); // pts.preds |= ((WaveActiveAnyTrue(diver == 1) ? 1 : 0) << 0); if (lanes[n]->diver == 1) preds |= (1 << 0); // pts.preds |= ((WaveActiveAllTrue(diver == 1) ? 1 : 0) << 1); if (lanes[n]->diver != 1) preds &= ~(1 << 1); // pts.preds |= ((WaveActiveAllEqual(diver) ? 1 : 0) << 2); if (lanes[0]->diver != lanes[n]->diver) preds &= ~(1 << 2); // pts.ballot = WaveActiveBallot(diver > 3);\r\n" if (lanes[n]->diver > 3) { // This is the uint4 result layout: // .x -> bits 0 .. 31 // .y -> bits 32 .. 63 // .z -> bits 64 .. 95 // .w -> bits 96 ..127 uint32_t component = lanes[n]->laneIndex / 32; uint32_t bit = lanes[n]->laneIndex % 32; ballot[component] |= 1 << bit; } i_allMax = std::max(lanes[n]->i_diver, i_allMax); i_allMin = std::min(lanes[n]->i_diver, i_allMin); i_allProd *= lanes[n]->i_diver; i_allSum += lanes[n]->i_diver; } for (size_t n = 1; n < wave->size(); ++n) { // 'All' operations are uniform across the wave. std::vector &lanes = *wave.get(); VERIFY_IS_TRUE(0 == (lanes[n]->flags & 1)); // non-firstlanes do not set this bit VERIFY_ARE_EQUAL(lanes[0]->allBC, lanes[n]->allBC); VERIFY_ARE_EQUAL(lanes[0]->allSum, lanes[n]->allSum); VERIFY_ARE_EQUAL(lanes[0]->allProd, lanes[n]->allProd); VERIFY_ARE_EQUAL(lanes[0]->allAND, lanes[n]->allAND); VERIFY_ARE_EQUAL(lanes[0]->allOR, lanes[n]->allOR); VERIFY_ARE_EQUAL(lanes[0]->allXOR, lanes[n]->allXOR); VERIFY_ARE_EQUAL(lanes[0]->allMin, lanes[n]->allMin); VERIFY_ARE_EQUAL(lanes[0]->allMax, lanes[n]->allMax); VERIFY_ARE_EQUAL(i_allMax, lanes[n]->i_allMax); VERIFY_ARE_EQUAL(i_allMin, lanes[n]->i_allMin); VERIFY_ARE_EQUAL(i_allProd, lanes[n]->i_allProd); VERIFY_ARE_EQUAL(i_allSum, lanes[n]->i_allSum); // first-lane reads and uniform reads are uniform across the wave. VERIFY_ARE_EQUAL(lanes[0]->firstlaneX, lanes[n]->firstlaneX); VERIFY_ARE_EQUAL(lanes[0]->lane1X, lanes[n]->lane1X); // the lane count is uniform across the wave. VERIFY_ARE_EQUAL(lanes[0]->laneCount, lanes[n]->laneCount); // The predicates are uniform across the wave. VERIFY_ARE_EQUAL(lanes[n]->preds, preds); // the lane index is distinct per thread. for (size_t prior = 0; prior < n; ++prior) { VERIFY_ARE_NOT_EQUAL(lanes[prior]->laneIndex, lanes[n]->laneIndex); } // Ballot results are uniform across the wave. VERIFY_ARE_EQUAL(0, memcmp(ballot, lanes[n]->ballot, sizeof(ballot))); // Keep running total of prefix calculation. Prefix values are exclusive to // the executing lane. VERIFY_ARE_EQUAL(pfBC, lanes[n]->pfBC); VERIFY_ARE_EQUAL(pfSum, lanes[n]->pfSum); VERIFY_ARE_EQUAL(pfProd, lanes[n]->pfProd); VERIFY_ARE_EQUAL(i_pfSum, lanes[n]->i_pfSum); VERIFY_ARE_EQUAL(i_pfProd, lanes[n]->i_pfProd); pfBC += (lanes[n]->diver > 3) ? 1 : 0; pfSum += lanes[n]->diver; pfProd *= lanes[n]->diver; i_pfSum += lanes[n]->i_diver; i_pfProd *= lanes[n]->i_diver; } // TODO: add divergent branching and verify that the otherwise uniform values properly diverge } // Compare each value of each per-thread element. for (size_t i = 0; i < values.size(); ++i) { PerThreadData &pts = values[i]; VERIFY_ARE_EQUAL(i, pts.id); // ID is unchanged. } } } // This test is assuming that the adapter implements WaveReadLaneFirst correctly TEST_F(ExecutionTest, WaveIntrinsicsInPSTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); struct Vertex { XMFLOAT3 position; }; struct PerPixelData { XMFLOAT4 position; uint32_t id, flags, laneIndex, laneCount, firstLaneId, sum1; uint32_t id0, id1, id2, id3; uint32_t acrossX, acrossY, acrossDiag, quadActiveCount; }; const UINT RTWidth = 128; const UINT RTHeight = 128; // Shaders. static const char pShaders[] = WAVE_INTRINSIC_DXBC_GUARD "struct PSInput {\r\n" " float4 position : SV_POSITION;\r\n" "};\r\n\r\n" "PSInput VSMain(float4 position : POSITION) {\r\n" " PSInput result;\r\n" "\r\n" " result.position = position;\r\n" " return result;\r\n" "}\r\n\r\n" "typedef uint uint32_t;\r\n" "uint pos_to_id(float4 pos) { return pos.x * 128 + pos.y; }\r\n" "struct PerPixelData {\r\n" " float4 position;\r\n" " uint32_t id, flags, laneIndex, laneCount, firstLaneId, sum1;\r\n" " uint32_t id0, id1, id2, id3;\r\n" " uint32_t acrossX, acrossY, acrossDiag, quadActiveCount;\r\n" "};\r\n" "AppendStructuredBuffer g_sb : register(u1);\r\n" "float4 PSMain(PSInput input) : SV_TARGET {\r\n" " uint one = 1;\r\n" " PerPixelData d;\r\n" " d.position = input.position;\r\n" " d.id = pos_to_id(input.position);\r\n" " d.flags = 0;\r\n" " if (WaveIsFirstLane()) d.flags |= 1;\r\n" " d.laneIndex = WaveGetLaneIndex();\r\n" " d.laneCount = WaveGetLaneCount();\r\n" " d.firstLaneId = WaveReadLaneFirst(d.id);\r\n" " d.sum1 = WaveActiveSum(one);\r\n" " d.id0 = QuadReadLaneAt(d.id, 0);\r\n" " d.id1 = QuadReadLaneAt(d.id, 1);\r\n" " d.id2 = QuadReadLaneAt(d.id, 2);\r\n" " d.id3 = QuadReadLaneAt(d.id, 3);\r\n" " d.acrossX = QuadReadAcrossX(d.id);\r\n" " d.acrossY = QuadReadAcrossY(d.id);\r\n" " d.acrossDiag = QuadReadAcrossDiagonal(d.id);\r\n" " d.quadActiveCount = one + QuadReadAcrossX(one) + QuadReadAcrossY(one) + QuadReadAcrossDiagonal(one);\r\n" " g_sb.Append(d);\r\n" " return 1;\r\n" "};\r\n"; CComPtr pDevice; CComPtr pCommandQueue; CComPtr pUavHeap, pRtvHeap; CComPtr pCommandAllocator; CComPtr pCommandList; CComPtr pPSO; CComPtr pRenderTarget, pReadBuffer; UINT uavDescriptorSize, rtvDescriptorSize; CComPtr pVertexBuffer; D3D12_VERTEX_BUFFER_VIEW vertexBufferView; if (!CreateDevice(&pDevice)) return; if (!DoesDeviceSupportWaveOps(pDevice)) { // Optional feature, so it's correct to not support it if declared as such. WEX::Logging::Log::Comment(L"Device does not support wave operations."); return; } FenceObj FO; InitFenceObj(pDevice, &FO); // Describe and create a UAV descriptor heap. D3D12_DESCRIPTOR_HEAP_DESC heapDesc = {}; heapDesc.NumDescriptors = 1; heapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV; heapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE; VERIFY_SUCCEEDED(pDevice->CreateDescriptorHeap(&heapDesc, IID_PPV_ARGS(&pUavHeap))); uavDescriptorSize = pDevice->GetDescriptorHandleIncrementSize(heapDesc.Type); CreateRtvDescriptorHeap(pDevice, 1, &pRtvHeap, &rtvDescriptorSize); CreateRenderTargetAndReadback(pDevice, pRtvHeap, RTHeight, RTWidth, &pRenderTarget, &pReadBuffer); // Create root signature: one UAV. CComPtr pRootSignature; { CD3DX12_DESCRIPTOR_RANGE ranges[1]; ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 1, 0, 0); CD3DX12_ROOT_PARAMETER rootParameters[1]; rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_ALL); CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT); CreateRootSignatureFromDesc(pDevice, &rootSignatureDesc, &pRootSignature); } D3D12_INPUT_ELEMENT_DESC elementDesc[] = { {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0}}; D3D12_INPUT_LAYOUT_DESC InputLayout = {elementDesc, _countof(elementDesc)}; CreateGraphicsPSO(pDevice, &InputLayout, pRootSignature, pShaders, &pPSO); CreateGraphicsCommandQueueAndList(pDevice, &pCommandQueue, &pCommandAllocator, &pCommandList, pPSO); // Single triangle covering half the target. Vertex vertices[] = { { { -1.0f, 1.0f, 0.0f } }, { { 1.0f, 1.0f, 0.0f } }, { { -1.0f, -1.0f, 0.0f } } }; const UINT TriangleCount = _countof(vertices) / 3; CreateVertexBuffer(pDevice, vertices, &pVertexBuffer, &vertexBufferView); bool dxbc = UseDxbc(); // Set up UAV resource. std::vector values; values.resize(RTWidth * RTHeight * 2); UINT valueSizeInBytes = values.size() * sizeof(PerPixelData); memset(values.data(), 0, valueSizeInBytes); CComPtr pUavResource; CComPtr pUavReadBuffer; CComPtr pUploadResource; CreateTestUavs(pDevice, pCommandList, values.data(), valueSizeInBytes, &pUavResource, &pUavReadBuffer, &pUploadResource); // Set up the append counter resource. CComPtr pUavCounterResource; CComPtr pReadCounterBuffer; CComPtr pUploadCounterResource; BYTE zero[sizeof(UINT)] = { 0 }; CreateTestUavs(pDevice, pCommandList, zero, sizeof(zero), &pUavCounterResource, &pReadCounterBuffer, &pUploadCounterResource); // Close the command list and execute it to perform the GPU setup. pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); VERIFY_SUCCEEDED(pCommandAllocator->Reset()); VERIFY_SUCCEEDED(pCommandList->Reset(pCommandAllocator, pPSO)); pCommandList->SetGraphicsRootSignature(pRootSignature); SetDescriptorHeap(pCommandList, pUavHeap); { D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {}; uavDesc.Format = DXGI_FORMAT_UNKNOWN; uavDesc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER; uavDesc.Buffer.FirstElement = 0; uavDesc.Buffer.NumElements = values.size(); uavDesc.Buffer.StructureByteStride = sizeof(PerPixelData); uavDesc.Buffer.CounterOffsetInBytes = 0; uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_NONE; CD3DX12_CPU_DESCRIPTOR_HANDLE uavHandle(pUavHeap->GetCPUDescriptorHandleForHeapStart()); CD3DX12_GPU_DESCRIPTOR_HANDLE uavHandleGpu(pUavHeap->GetGPUDescriptorHandleForHeapStart()); pDevice->CreateUnorderedAccessView(pUavResource, pUavCounterResource, &uavDesc, uavHandle); pCommandList->SetGraphicsRootDescriptorTable(0, uavHandleGpu); } RecordRenderAndReadback(pCommandList, pRtvHeap, rtvDescriptorSize, TriangleCount, &vertexBufferView, nullptr, pRenderTarget, pReadBuffer); RecordTransitionBarrier(pCommandList, pUavResource, D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COPY_SOURCE); RecordTransitionBarrier(pCommandList, pUavCounterResource, D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COPY_SOURCE); pCommandList->CopyResource(pUavReadBuffer, pUavResource); pCommandList->CopyResource(pReadCounterBuffer, pUavCounterResource); VERIFY_SUCCEEDED(pCommandList->Close()); LogCommentFmt(L"Rendering to %u by %u", RTWidth, RTHeight); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); { MappedData data(pReadBuffer, RTWidth * RTHeight * 4); const uint32_t *pPixels = (uint32_t *)data.data(); if (SaveImages()) { SavePixelsToFile(pPixels, DXGI_FORMAT_R8G8B8A8_UNORM, RTWidth, RTHeight, L"psintrin.bmp"); } } uint32_t appendCount; { MappedData mappedData(pReadCounterBuffer, sizeof(uint32_t)); appendCount = *((uint32_t *)mappedData.data()); LogCommentFmt(L"%u elements in append buffer", appendCount); } { MappedData mappedData(pUavReadBuffer, values.size()); PerPixelData *pData = (PerPixelData *)mappedData.data(); memcpy(values.data(), pData, valueSizeInBytes); // DXBC is handy to test pipeline setup, but interesting functions are // stubbed out, so there is no point in further validation. if (dxbc) return; uint32_t maxActiveLaneCount = 0; uint32_t maxLaneCount = 0; for (uint32_t i = 0; i < appendCount; ++i) { maxActiveLaneCount = std::max(maxActiveLaneCount, values[i].sum1); maxLaneCount = std::max(maxLaneCount, values[i].laneCount); } uint32_t peerOfHelperLanes = 0; for (uint32_t i = 0; i < appendCount; ++i) { if (values[i].sum1 != maxActiveLaneCount) { ++peerOfHelperLanes; } } LogCommentFmt( L"Found: %u threads. Waves reported up to %u total lanes, up " L"to %u active lanes, and %u threads had helper/inactive lanes.", appendCount, maxLaneCount, maxActiveLaneCount, peerOfHelperLanes); // Group threads into quad invocations. uint32_t singlePixelCount = 0; uint32_t multiPixelCount = 0; std::unordered_set ids; std::multimap idGroups; std::multimap firstIdGroups; for (uint32_t i = 0; i < appendCount; ++i) { ids.insert(values[i].id); idGroups.insert(std::make_pair(values[i].id, &values[i])); firstIdGroups.insert(std::make_pair(values[i].firstLaneId, &values[i])); } for (uint32_t id : ids) { if (idGroups.count(id) == 1) ++singlePixelCount; else ++multiPixelCount; } LogCommentFmt(L"%u pixels were processed by a single thread. %u invocations were for shared pixels.", singlePixelCount, multiPixelCount); // Multiple threads may have tried to shade the same pixel. (Is this true even if we have only one triangle?) // Where every pixel is distinct, it's very straightforward to validate. { auto cur = firstIdGroups.begin(), end = firstIdGroups.end(); while (cur != end) { bool simpleWave = true; uint32_t firstId = (*cur).first; auto groupEnd = cur; while (groupEnd != end && (*groupEnd).first == firstId) { if (idGroups.count((*groupEnd).second->id) > 1) simpleWave = false; ++groupEnd; } if (simpleWave) { // Break the wave into quads. struct QuadData { unsigned count; PerPixelData *data[4]; }; std::map quads; for (auto i = cur; i != groupEnd; ++i) { // assuming that it is a simple wave, idGroups has a unique id for each entry. uint32_t laneId = (*i).second->id; uint32_t laneIds[4] = {(*i).second->id0, (*i).second->id1, (*i).second->id2, (*i).second->id3}; // Since this is a simple wave, each lane has an unique id and // therefore should not have any ids in there. VERIFY_IS_TRUE(quads.find(laneId) == quads.end()); // check if QuadReadLaneAt is returning same values in a single quad. bool newQuad = true; for (unsigned quadIndex = 0; quadIndex < 4; ++quadIndex) { auto match = quads.find(laneIds[quadIndex]); if (match != quads.end()) { (*match).second.data[(*match).second.count++] = (*i).second; newQuad = false; break; } auto quadMemberData = idGroups.find(laneIds[quadIndex]); if (quadMemberData != idGroups.end()) { VERIFY_IS_TRUE((*quadMemberData).second->id0 == laneIds[0]); VERIFY_IS_TRUE((*quadMemberData).second->id1 == laneIds[1]); VERIFY_IS_TRUE((*quadMemberData).second->id2 == laneIds[2]); VERIFY_IS_TRUE((*quadMemberData).second->id3 == laneIds[3]); } } if (newQuad) { QuadData qdata; qdata.count = 1; qdata.data[0] = (*i).second; quads.insert(std::make_pair(laneId, qdata)); } } for (auto quadPair : quads) { unsigned count = quadPair.second.count; // There could be only one pixel data on the edge of the triangle if (count < 2) continue; PerPixelData **data = quadPair.second.data; bool isTop[4]; bool isLeft[4]; PerPixelData helperData; memset(&helperData, sizeof(helperData), 0); PerPixelData *layout[4]; // tl,tr,bl,br memset(layout, sizeof(layout), 0); auto fnToLayout = [&](bool top, bool left) -> PerPixelData ** { int idx = top ? 0 : 2; idx += left ? 0 : 1; return &layout[idx]; }; auto fnToLayoutData = [&](bool top, bool left) -> PerPixelData * { PerPixelData **pResult = fnToLayout(top, left); if (*pResult == nullptr) return &helperData; return *pResult; }; VERIFY_IS_TRUE(count <= 4); if (count == 2) { isTop[0] = data[0]->position.y < data[1]->position.y; isTop[1] = (data[0]->position.y == data[1]->position.y) ? isTop[0] : !isTop[0]; isLeft[0] = data[0]->position.x < data[1]->position.x; isLeft[1] = (data[0]->position.x == data[1]->position.x) ? isLeft[0] : !isLeft[0]; } else { // with at least three samples, we have distinct x and y coordinates. float left = std::min(data[0]->position.x, data[1]->position.x); left = std::min(data[2]->position.x, left); float top = std::min(data[0]->position.y, data[1]->position.y); top = std::min(data[2]->position.y, top); for (unsigned i = 0; i < count; ++i) { isTop[i] = data[i]->position.y == top; isLeft[i] = data[i]->position.x == left; } } for (unsigned i = 0; i < count; ++i) { *(fnToLayout(isTop[i], isLeft[i])) = data[i]; } // Finally, we have a proper quad reconstructed. Validate. for (unsigned i = 0; i < count; ++i) { PerPixelData *d = data[i]; VERIFY_ARE_EQUAL(d->id0, fnToLayoutData(true, true)->id); VERIFY_ARE_EQUAL(d->id1, fnToLayoutData(true, false)->id); VERIFY_ARE_EQUAL(d->id2, fnToLayoutData(false, true)->id); VERIFY_ARE_EQUAL(d->id3, fnToLayoutData(false, false)->id); VERIFY_ARE_EQUAL(d->acrossX, fnToLayoutData(isTop[i], !isLeft[i])->id); VERIFY_ARE_EQUAL(d->acrossY, fnToLayoutData(!isTop[i], isLeft[i])->id); VERIFY_ARE_EQUAL(d->acrossDiag, fnToLayoutData(!isTop[i], !isLeft[i])->id); VERIFY_ARE_EQUAL(d->quadActiveCount, count); } } } cur = groupEnd; } } // TODO: provide validation for quads where the same pixel was shaded multiple times // // Consider: for pixels that were shaded multiple times, check whether // some grouping of threads into quads satisfies all value requirements. } } struct ShaderOpTestResult { st::ShaderOp *ShaderOp; std::shared_ptr ShaderOpSet; std::shared_ptr Test; }; struct SPrimitives { float f_float; float f_float2; float f_float_o; float f_float2_o; }; std::shared_ptr RunShaderOpTestAfterParse(ID3D12Device *pDevice, dxc::DxcDllSupport &support, IStream *pStream, LPCSTR pName, st::ShaderOpTest::TInitCallbackFn pInitCallback, std::shared_ptr ShaderOpSet) { DXASSERT_NOMSG(pStream != nullptr); st::ShaderOp *pShaderOp; if (pName == nullptr) { if (ShaderOpSet->ShaderOps.size() != 1) { VERIFY_FAIL(L"Expected a single shader operation."); } pShaderOp = ShaderOpSet->ShaderOps[0].get(); } else { pShaderOp = ShaderOpSet->GetShaderOp(pName); } if (pShaderOp == nullptr) { std::string msg = "Unable to find shader op "; msg += pName; msg += "; available ops"; const char sep = ':'; for (auto &pAvailOp : ShaderOpSet->ShaderOps) { msg += sep; msg += pAvailOp->Name ? pAvailOp->Name : "[n/a]"; } CA2W msgWide(msg.c_str()); VERIFY_FAIL(msgWide.m_psz); } // This won't actually be used since we're supplying the device, // but let's make it consistent. pShaderOp->UseWarpDevice = GetTestParamUseWARP(true); std::shared_ptr test = std::make_shared(); test->SetDxcSupport(&support); test->SetInitCallback(pInitCallback); test->SetDevice(pDevice); test->RunShaderOp(pShaderOp); std::shared_ptr result = std::make_shared(); result->ShaderOpSet = ShaderOpSet; result->Test = test; result->ShaderOp = pShaderOp; return result; } std::shared_ptr RunShaderOpTest(ID3D12Device *pDevice, dxc::DxcDllSupport &support, IStream *pStream, LPCSTR pName, st::ShaderOpTest::TInitCallbackFn pInitCallback) { DXASSERT_NOMSG(pStream != nullptr); std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); return RunShaderOpTestAfterParse(pDevice, support, pStream, pName, pInitCallback, ShaderOpSet); } TEST_F(ExecutionTest, OutOfBoundsTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); // Single operation test at the moment. CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::shared_ptr test = RunShaderOpTest(pDevice, m_support, pStream, "OOB", nullptr); MappedData data; // Read back to CPU and examine contents - should get pure red. { MappedData data; test->Test->GetReadBackData("RTarget", &data); const uint32_t *pPixels = (uint32_t *)data.data(); uint32_t first = *pPixels; VERIFY_ARE_EQUAL(0xff0000ff, first); // pure red - only first component is read } } TEST_F(ExecutionTest, SaturateTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); // Single operation test at the moment. CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::shared_ptr test = RunShaderOpTest(pDevice, m_support, pStream, "Saturate", nullptr); MappedData data; test->Test->GetReadBackData("U0", &data); const float *pValues = (float *)data.data(); // Everything is zero except for 1.5f and +Inf, which saturate to 1.0f const float ExpectedCases[9] = { 0.0f, 0.0f, 0.0f, 0.0f, // -inf, -1.5, -denorm, -0 0.0f, 0.0f, 1.0f, 1.0f, // 0, denorm, 1.5f, inf 0.0f // nan }; for (size_t i = 0; i < _countof(ExpectedCases); ++i) { VERIFY_IS_TRUE(ifdenorm_flushf_eq(*pValues, ExpectedCases[i])); ++pValues; } } TEST_F(ExecutionTest, BasicTriangleOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); // Single operation test at the moment. CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::shared_ptr test = RunShaderOpTest(pDevice, m_support, pStream, "Triangle", nullptr); MappedData data; D3D12_RESOURCE_DESC &D = test->ShaderOp->GetResourceByName("RTarget")->Desc; UINT width = (UINT64)D.Width; UINT height = (UINT64)D.Height; test->Test->GetReadBackData("RTarget", &data); const uint32_t *pPixels = (uint32_t *)data.data(); if (SaveImages()) { SavePixelsToFile(pPixels, DXGI_FORMAT_R8G8B8A8_UNORM, 320, 200, L"basic.bmp"); } uint32_t top = pPixels[width / 2]; // Top center. uint32_t mid = pPixels[width / 2 + width * (height / 2)]; // Middle center. VERIFY_ARE_EQUAL(0xff663300, top); // clear color VERIFY_ARE_EQUAL(0xffffffff, mid); // white // This is the basic validation test for shader operations, so it's good to // check this here at least for this one test case. data.reset(); test.reset(); ReportLiveObjects(); } // Rendering two right triangles forming a square and assigning a texture value // for each pixel to calculate derivates. TEST_F(ExecutionTest, PartialDerivTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::shared_ptr test = RunShaderOpTest(pDevice, m_support, pStream, "DerivFine", nullptr); MappedData data; D3D12_RESOURCE_DESC &D = test->ShaderOp->GetResourceByName("RTarget")->Desc; UINT width = (UINT64)D.Width; UINT height = (UINT64)D.Height; UINT pixelSize = GetByteSizeForFormat(D.Format) / 4; test->Test->GetReadBackData("RTarget", &data); const float *pPixels = (float *)data.data(); UINT centerIndex = (UINT64)width * height / 2 - width / 2; // pixel at the center UINT offsetCenter = centerIndex * pixelSize; float CenterDDXFine = pPixels[offsetCenter]; float CenterDDYFine = pPixels[offsetCenter + 1]; float CenterDDXCoarse = pPixels[offsetCenter + 2]; float CenterDDYCoarse = pPixels[offsetCenter + 3]; LogCommentFmt( L"center ddx_fine: %8f, ddy_fine: %8f, ddx_coarse: %8f, ddy_coarse: %8f", CenterDDXFine, CenterDDYFine, CenterDDXCoarse, CenterDDYCoarse); // The texture for the 9 pixels in the center should look like the following // 256 32 64 // 2048 256 512 // 1 .125 .25 // In D3D12 there is no guarantee of how the adapter is grouping 2x2 pixels // So for fine derivatives there can be up to two possible results for the center pixel, // while for coarse derivatives there can be up to six possible results. int ulpTolerance = 1; // 512 - 256 or 2048 - 256 bool left = CompareFloatULP(CenterDDXFine, -1792.0f, ulpTolerance); VERIFY_IS_TRUE(left || CompareFloatULP(CenterDDXFine, 256.0f, ulpTolerance)); // 256 - 32 or 256 - .125 bool top = CompareFloatULP(CenterDDYFine, 224.0f, ulpTolerance); VERIFY_IS_TRUE(top || CompareFloatULP(CenterDDYFine, -255.875, ulpTolerance)); if (top && left) { VERIFY_IS_TRUE((CompareFloatULP(CenterDDXCoarse, -224.0f, ulpTolerance) || CompareFloatULP(CenterDDXCoarse, -1792.0f, ulpTolerance)) && (CompareFloatULP(CenterDDYCoarse, 224.0f, ulpTolerance) || CompareFloatULP(CenterDDYCoarse, 1792.0f, ulpTolerance))); } else if (top) { // top right quad VERIFY_IS_TRUE((CompareFloatULP(CenterDDXCoarse, 256.0f, ulpTolerance) || CompareFloatULP(CenterDDXCoarse, 32.0f, ulpTolerance)) && (CompareFloatULP(CenterDDYCoarse, 224.0f, ulpTolerance) || CompareFloatULP(CenterDDYCoarse, 448.0f, ulpTolerance))); } else if (left) { // bottom left quad VERIFY_IS_TRUE((CompareFloatULP(CenterDDXCoarse, -1792.0f, ulpTolerance) || CompareFloatULP(CenterDDXCoarse, -.875f, ulpTolerance)) && (CompareFloatULP(CenterDDYCoarse, -2047.0f, ulpTolerance) || CompareFloatULP(CenterDDYCoarse, -255.875f, ulpTolerance))); } else { // bottom right VERIFY_IS_TRUE((CompareFloatULP(CenterDDXCoarse, 256.0f, ulpTolerance) || CompareFloatULP(CenterDDXCoarse, .125f, ulpTolerance)) && (CompareFloatULP(CenterDDYCoarse, -255.875f, ulpTolerance) || CompareFloatULP(CenterDDYCoarse, -511.75f, ulpTolerance))); } } // Resource structure for data-driven tests. struct SUnaryFPOp { float input; float output; }; struct SBinaryFPOp { float input1; float input2; float output1; float output2; }; struct STertiaryFPOp { float input1; float input2; float input3; float output; }; struct SUnaryIntOp { int input; int output; }; struct SUnaryUintOp { unsigned int input; unsigned int output; }; struct SBinaryIntOp { int input1; int input2; int output1; int output2; }; struct STertiaryIntOp { int input1; int input2; int input3; int output; }; struct SBinaryUintOp { unsigned int input1; unsigned int input2; unsigned int output1; unsigned int output2; }; struct STertiaryUintOp { unsigned int input1; unsigned int input2; unsigned int input3; unsigned int output; }; // representation for HLSL float vectors struct SDotOp { XMFLOAT4 input1; XMFLOAT4 input2; float o_dot2; float o_dot3; float o_dot4; }; struct SMsad4 { unsigned int ref; XMUINT2 src; XMUINT4 accum; XMUINT4 result; }; // Parameter representation for taef data-driven tests struct TableParameter { LPCWSTR m_name; enum TableParameterType { INT, UINT, DOUBLE, STRING, BOOL, INT_TABLE, DOUBLE_TABLE, STRING_TABLE, UINT_TABLE, BOOL_TABLE }; TableParameterType m_type; bool m_required; // required parameter int m_int; unsigned int m_uint; double m_double; bool m_bool; WEX::Common::String m_str; WEX::TestExecution::TestDataArray m_intTable; WEX::TestExecution::TestDataArray m_uintTable; WEX::TestExecution::TestDataArray m_doubleTable; WEX::TestExecution::TestDataArray m_boolTable; WEX::TestExecution::TestDataArray m_StringTable; }; class TableParameterHandler { public: TableParameter* m_table; size_t m_tableSize; TableParameterHandler(TableParameter *pTable, size_t size) : m_table(pTable), m_tableSize(size) {} TableParameter* GetTableParamByName(LPCWSTR name) { for (size_t i = 0; i < m_tableSize; ++i) { if (_wcsicmp(name, m_table[i].m_name) == 0) { return &m_table[i]; } } DXASSERT(false, "Invalid Table Parameter Name %s", name); return nullptr; } void clearTableParameter() { for (size_t i = 0; i < m_tableSize; ++i) { m_table[i].m_int = 0; m_table[i].m_uint = 0; m_table[i].m_double = 0; m_table[i].m_bool = false; m_table[i].m_str = WEX::Common::String(); } } template WEX::TestExecution::TestDataArray *GetDataArray(LPCWSTR name) { return nullptr; } template <> WEX::TestExecution::TestDataArray *GetDataArray(LPCWSTR name) { for (size_t i = 0; i < m_tableSize; ++i) { if (_wcsicmp(name, m_table[i].m_name) == 0) { return &(m_table[i].m_intTable); } } DXASSERT(false, "Invalid Table Parameter Name %s", name); return nullptr; } template <> WEX::TestExecution::TestDataArray *GetDataArray(LPCWSTR name) { for (size_t i = 0; i < m_tableSize; ++i) { if (_wcsicmp(name, m_table[i].m_name) == 0) { return &(m_table[i].m_uintTable); } } DXASSERT(false, "Invalid Table Parameter Name %s", name); return nullptr; } template <> WEX::TestExecution::TestDataArray *GetDataArray(LPCWSTR name) { for (size_t i = 0; i < m_tableSize; ++i) { if (_wcsicmp(name, m_table[i].m_name) == 0) { return &(m_table[i].m_doubleTable); } } DXASSERT(false, "Invalid Table Parameter Name %s", name); return nullptr; } template <> WEX::TestExecution::TestDataArray *GetDataArray(LPCWSTR name) { for (size_t i = 0; i < m_tableSize; ++i) { if (_wcsicmp(name, m_table[i].m_name) == 0) { return &(m_table[i].m_boolTable); } } DXASSERT(false, "Invalid Table Parameter Name %s", name); return nullptr; } }; static TableParameter UnaryFPOpParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.EntryPoint", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input", TableParameter::STRING_TABLE, true }, { L"Validation.Expected", TableParameter::STRING_TABLE, true }, { L"Validation.Type", TableParameter::STRING, true }, { L"Validation.Tolerance", TableParameter::DOUBLE, true }, { L"Validation.NumInput", TableParameter::UINT, true }, { L"Warp.Version", TableParameter::UINT, false } }; static TableParameter BinaryFPOpParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.EntryPoint", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::STRING_TABLE, true }, { L"Validation.Input2", TableParameter::STRING_TABLE, true }, { L"Validation.Expected1", TableParameter::STRING_TABLE, true }, { L"Validation.Expected2", TableParameter::STRING_TABLE, true }, { L"Validation.Type", TableParameter::STRING, true }, { L"Validation.Tolerance", TableParameter::DOUBLE, true }, { L"Validation.NumInput", TableParameter::UINT, true } }; static TableParameter TertiaryFPOpParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.EntryPoint", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::STRING_TABLE, true }, { L"Validation.Input2", TableParameter::STRING_TABLE, true }, { L"Validation.Input3", TableParameter::STRING_TABLE, true }, { L"Validation.Expected", TableParameter::STRING_TABLE, true }, { L"Validation.Type", TableParameter::STRING, true }, { L"Validation.Tolerance", TableParameter::DOUBLE, true }, { L"Validation.NumInput", TableParameter::UINT, true } }; static TableParameter UnaryIntOpParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.EntryPoint", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input", TableParameter::INT_TABLE, true }, { L"Validation.Expected", TableParameter::INT_TABLE, true }, { L"Validation.Tolerance", TableParameter::INT, true }, { L"Validation.NumInput", TableParameter::UINT, true } }; static TableParameter UnaryUintOpParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.EntryPoint", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input", TableParameter::UINT_TABLE, true }, { L"Validation.Expected", TableParameter::UINT_TABLE, true }, { L"Validation.Tolerance", TableParameter::INT, true }, { L"Validation.NumInput", TableParameter::UINT, true } }; static TableParameter BinaryIntOpParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.EntryPoint", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::INT_TABLE, true }, { L"Validation.Input2", TableParameter::INT_TABLE, true }, { L"Validation.Expected1", TableParameter::INT_TABLE, true }, { L"Validation.Expected2", TableParameter::INT_TABLE, false }, { L"Validation.Tolerance", TableParameter::INT, true }, { L"Validation.NumInput", TableParameter::UINT, true }, { L"Validation.NumExpected", TableParameter::INT, true } }; static TableParameter TertiaryIntOpParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.EntryPoint", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::INT_TABLE, true }, { L"Validation.Input2", TableParameter::INT_TABLE, true }, { L"Validation.Input3", TableParameter::INT_TABLE, true }, { L"Validation.Expected", TableParameter::INT_TABLE, true }, { L"Validation.Tolerance", TableParameter::INT, true }, { L"Validation.NumInput", TableParameter::UINT, true } }; static TableParameter BinaryUintOpParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.EntryPoint", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::UINT_TABLE, true }, { L"Validation.Input2", TableParameter::UINT_TABLE, true }, { L"Validation.Expected1", TableParameter::UINT_TABLE, true }, { L"Validation.Expected2", TableParameter::UINT_TABLE, false }, { L"Validation.Tolerance", TableParameter::INT, true }, { L"Validation.NumInput", TableParameter::UINT, true }, { L"Validation.NumExpected", TableParameter::INT, true }, }; static TableParameter TertiaryUintOpParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.EntryPoint", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::UINT_TABLE, true }, { L"Validation.Input2", TableParameter::UINT_TABLE, true }, { L"Validation.Input3", TableParameter::UINT_TABLE, true }, { L"Validation.Expected", TableParameter::UINT_TABLE, true }, { L"Validation.Tolerance", TableParameter::INT, true }, { L"Validation.NumInput", TableParameter::UINT, true } }; static TableParameter DotOpParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.EntryPoint", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::STRING_TABLE, true }, { L"Validation.Input2", TableParameter::STRING_TABLE, true }, { L"Validation.dot2", TableParameter::STRING_TABLE, true }, { L"Validation.dot3", TableParameter::STRING_TABLE, true }, { L"Validation.dot4", TableParameter::STRING_TABLE, true }, { L"Validation.Type", TableParameter::STRING, true }, { L"Validation.Tolerance", TableParameter::DOUBLE, true }, { L"Validation.NumInput", TableParameter::UINT, true } }; static TableParameter Msad4OpParameters[] = { { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Tolerance", TableParameter::DOUBLE, true }, { L"Validation.NumInput", TableParameter::UINT, true }, { L"Validation.Reference", TableParameter::UINT_TABLE, true}, { L"Validation.Source", TableParameter::STRING_TABLE, true }, { L"Validation.Accum", TableParameter::STRING_TABLE, true }, { L"Validation.Expected", TableParameter::STRING_TABLE, true } }; static TableParameter WaveIntrinsicsActiveIntParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.NumInputSet", TableParameter::UINT, true }, { L"Validation.InputSet1", TableParameter::INT_TABLE, true }, { L"Validation.InputSet2", TableParameter::INT_TABLE, false }, { L"Validation.InputSet3", TableParameter::INT_TABLE, false }, { L"Validation.InputSet4", TableParameter::INT_TABLE, false } }; static TableParameter WaveIntrinsicsPrefixIntParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.NumInputSet", TableParameter::UINT, true }, { L"Validation.InputSet1", TableParameter::INT_TABLE, true }, { L"Validation.InputSet2", TableParameter::INT_TABLE, false }, { L"Validation.InputSet3", TableParameter::INT_TABLE, false }, { L"Validation.InputSet4", TableParameter::INT_TABLE, false } }; static TableParameter WaveIntrinsicsActiveUintParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.NumInputSet", TableParameter::UINT, true }, { L"Validation.InputSet1", TableParameter::UINT_TABLE, true }, { L"Validation.InputSet2", TableParameter::UINT_TABLE, false }, { L"Validation.InputSet3", TableParameter::UINT_TABLE, false }, { L"Validation.InputSet4", TableParameter::UINT_TABLE, false } }; static TableParameter WaveIntrinsicsPrefixUintParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.NumInputSet", TableParameter::UINT, true }, { L"Validation.InputSet1", TableParameter::UINT_TABLE, true }, { L"Validation.InputSet2", TableParameter::UINT_TABLE, false }, { L"Validation.InputSet3", TableParameter::UINT_TABLE, false }, { L"Validation.InputSet4", TableParameter::UINT_TABLE, false } }; static TableParameter WaveIntrinsicsActiveBoolParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.NumInputSet", TableParameter::UINT, true }, { L"Validation.InputSet1", TableParameter::BOOL_TABLE, true }, { L"Validation.InputSet2", TableParameter::BOOL_TABLE, false }, { L"Validation.InputSet3", TableParameter::BOOL_TABLE, false }, }; static HRESULT ParseDataToFloat(PCWSTR str, float &value) { std::wstring wString(str); wString.erase(std::remove(wString.begin(), wString.end(), L' '), wString.end()); PCWSTR wstr = wString.data(); if (_wcsicmp(wstr, L"NaN") == 0) { value = NAN; } else if (_wcsicmp(wstr, L"-inf") == 0) { value = -(INFINITY); } else if (_wcsicmp(wstr, L"inf") == 0) { value = INFINITY; } else if (_wcsicmp(wstr, L"-denorm") == 0) { value = -(FLT_MIN / 2); } else if (_wcsicmp(wstr, L"denorm") == 0) { value = FLT_MIN / 2; } else if (_wcsicmp(wstr, L"-0.0f") == 0 || _wcsicmp(wstr, L"-0.0") == 0 || _wcsicmp(wstr, L"-0") == 0) { value = -0.0f; } else if (_wcsicmp(wstr, L"0.0f") == 0 || _wcsicmp(wstr, L"0.0") == 0 || _wcsicmp(wstr, L"0") == 0) { value = 0.0f; } else { // evaluate the expression of wstring double val = _wtof(wstr); if (val == 0) { LogErrorFmt(L"Failed to parse parameter %s to float", wstr); return E_FAIL; } value = val; } return S_OK; } static HRESULT ParseDataToInt(PCWSTR str, int &value) { std::wstring wString(str); wString.erase(std::remove(wString.begin(), wString.end(), L' '), wString.end()); PCWSTR wstr = wString.data(); // evaluate the expression of string if (_wcsicmp(wstr, L"0.0") == 0 || _wcsicmp(wstr, L"0") == 0) { value = 0; return S_OK; } int val = _wtoi(wstr); if (val == 0) { LogErrorFmt(L"Failed to parse parameter %s to int", wstr); return E_FAIL; } value = val; return S_OK; } static HRESULT ParseDataToUint(PCWSTR str, unsigned int &value) { std::wstring wString(str); wString.erase(std::remove(wString.begin(), wString.end(), L' '), wString.end()); PCWSTR wstr = wString.data(); // evaluate the expression of string if (_wcsicmp(wstr, L"0") == 0 || _wcsicmp(wstr, L"0x00000000") == 0) { value = 0; return S_OK; } wchar_t *end; unsigned int val = std::wcstoul(wstr, &end, 0); if (val == 0) { LogErrorFmt(L"Failed to parse parameter %s to int", wstr); return E_FAIL; } value = val; return S_OK; } static HRESULT ParseDataToVectorFloat(PCWSTR str, float *ptr, size_t count) { std::wstring wstr(str); size_t curPosition = 0; // parse a string of dot product separated by commas for (size_t i = 0; i < count; ++i) { size_t nextPosition = wstr.find(L",", curPosition); if (FAILED(ParseDataToFloat( wstr.substr(curPosition, nextPosition - curPosition).data(), *(ptr + i)))) { return E_FAIL; } curPosition = nextPosition + 1; } return S_OK; } static HRESULT ParseDataToVectorUint(PCWSTR str, unsigned int *ptr, size_t count) { std::wstring wstr(str); size_t curPosition = 0; // parse a string of dot product separated by commas for (size_t i = 0; i < count; ++i) { size_t nextPosition = wstr.find(L",", curPosition); if (FAILED(ParseDataToUint( wstr.substr(curPosition, nextPosition - curPosition).data(), *(ptr + i)))) { return E_FAIL; } curPosition = nextPosition + 1; } return S_OK; } static HRESULT ParseTableRow(TableParameter *table, unsigned int size) { for (unsigned int i = 0; i < size; ++i) { switch (table[i].m_type) { case TableParameter::INT: if (FAILED(WEX::TestExecution::TestData::TryGetValue(table[i].m_name, table[i].m_int)) && table[i].m_required) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } break; case TableParameter::UINT: if (FAILED(WEX::TestExecution::TestData::TryGetValue(table[i].m_name, table[i].m_uint)) && table[i].m_required) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } break; case TableParameter::DOUBLE: if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, table[i].m_double)) && table[i].m_required) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } break; case TableParameter::STRING: if (FAILED(WEX::TestExecution::TestData::TryGetValue(table[i].m_name, table[i].m_str)) && table[i].m_required) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } break; case TableParameter::BOOL: if (FAILED(WEX::TestExecution::TestData::TryGetValue(table[i].m_name, table[i].m_str)) && table[i].m_bool) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } break; case TableParameter::INT_TABLE: if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, table[i].m_intTable)) && table[i].m_required) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } break; case TableParameter::UINT_TABLE: if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, table[i].m_uintTable)) && table[i].m_required) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } break; case TableParameter::DOUBLE_TABLE: if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, table[i].m_doubleTable)) && table[i].m_required) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } break; case TableParameter::BOOL_TABLE: if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, table[i].m_boolTable)) && table[i].m_required) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } break; case TableParameter::STRING_TABLE: if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, table[i].m_StringTable)) && table[i].m_required) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } break; default: DXASSERT_NOMSG("Invalid Parameter Type"); } } return S_OK; } static void VerifyOutputWithExpectedValueInt(int output, int ref, int tolerance) { VERIFY_IS_TRUE(output - ref <= tolerance && ref - output <= tolerance); } static void VerifyOutputWithExpectedValueFloat(float output, float ref, LPCWSTR type, double tolerance) { if (_wcsicmp(type, L"Relative") == 0) { VERIFY_IS_TRUE(CompareFloatRelativeEpsilon(output, ref, tolerance)); } else if (_wcsicmp(type, L"Epsilon") == 0) { VERIFY_IS_TRUE(CompareFloatEpsilon(output, ref, tolerance)); } else if (_wcsicmp(type, L"ULP") == 0) { VERIFY_IS_TRUE(CompareFloatULP(output, ref, (int)tolerance)); } else { LogErrorFmt(L"Failed to read comparison type %S", type); } } TEST_F(ExecutionTest, UnaryFloatOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table int tableSize = sizeof(UnaryFPOpParameters) / sizeof(TableParameter); TableParameterHandler handler(UnaryFPOpParameters, tableSize); handler.clearTableParameter(); VERIFY_SUCCEEDED(ParseTableRow(UnaryFPOpParameters, tableSize)); st::ShaderOpShader shader; CW2A Name(handler.GetTableParamByName(L"ShaderOp.Name")->m_str); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A EntryPoint(handler.GetTableParamByName(L"ShaderOp.EntryPoint")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); shader.Name = Name.m_psz; shader.Target = Target.m_psz; shader.EntryPoint = EntryPoint.m_psz; shader.Text = Text.m_psz; unsigned int WarpVersion = handler.GetTableParamByName(L"Warp.Version")->m_uint; if (GetTestParamUseWARP(true) && !IsValidWarpDllVersion(WarpVersion)) { return; } WEX::TestExecution::TestDataArray *Validation_Input = &(handler.GetTableParamByName(L"Validation.Input")->m_StringTable); WEX::TestExecution::TestDataArray *Validation_Expected = &(handler.GetTableParamByName(L"Validation.Expected")->m_StringTable); LPCWSTR Validation_Type = handler.GetTableParamByName(L"Validation.Type")->m_str; double Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_double; size_t count = handler.GetTableParamByName(L"Validation.NumInput")->m_uint; std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "UnaryFPOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SUnaryFPOp")); size_t size = sizeof(SUnaryFPOp) * count; Data.resize(size); SUnaryFPOp *pPrimitives = (SUnaryFPOp *)Data.data(); for (size_t i = 0; i < count; ++i) { SUnaryFPOp *p = &pPrimitives[i]; PCWSTR str = (*Validation_Input)[i % Validation_Input->GetSize()]; float val; VERIFY_SUCCEEDED(ParseDataToFloat(str, val)); p->input = val; } // use shader from data table pShaderOp->Shaders.at(0).Target = shader.Target; pShaderOp->Shaders.at(0).EntryPoint = shader.EntryPoint; pShaderOp->Shaders.at(0).Text = shader.Text; }); MappedData data; test->Test->GetReadBackData("SUnaryFPOp", &data); SUnaryFPOp *pPrimitives = (SUnaryFPOp*)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { SUnaryFPOp *p = &pPrimitives[i]; LPCWSTR str = (*Validation_Expected)[i % Validation_Expected->GetSize()]; float val; VERIFY_SUCCEEDED(ParseDataToFloat(str, val)); LogCommentFmt( L"element #%u, input = %10f, output = %10f, expected = %10f", i, p->input, p->output, val); VerifyOutputWithExpectedValueFloat(p->output, val, Validation_Type, Validation_Tolerance); } } TEST_F(ExecutionTest, BinaryFloatOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table int tableSize = sizeof(BinaryFPOpParameters) / sizeof(TableParameter); TableParameterHandler handler(BinaryFPOpParameters, tableSize); handler.clearTableParameter(); VERIFY_SUCCEEDED(ParseTableRow(BinaryFPOpParameters, tableSize)); st::ShaderOpShader shader; CW2A Name(handler.GetTableParamByName(L"ShaderOp.Name")->m_str); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A EntryPoint(handler.GetTableParamByName(L"ShaderOp.EntryPoint")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); shader.Name = Name.m_psz; shader.Target = Target.m_psz; shader.EntryPoint = EntryPoint.m_psz; shader.Text = Text.m_psz; WEX::TestExecution::TestDataArray *Validation_Input1 = &(handler.GetTableParamByName(L"Validation.Input1")->m_StringTable); WEX::TestExecution::TestDataArray *Validation_Input2 = &(handler.GetTableParamByName(L"Validation.Input2")->m_StringTable); WEX::TestExecution::TestDataArray *Validation_Expected1 = &(handler.GetTableParamByName(L"Validation.Expected1")->m_StringTable); WEX::TestExecution::TestDataArray *Validation_Expected2 = &(handler.GetTableParamByName(L"Validation.Expected2")->m_StringTable); LPCWSTR Validation_Type = handler.GetTableParamByName(L"Validation.Type")->m_str; double Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_double; size_t count = handler.GetTableParamByName(L"Validation.NumInput")->m_uint; std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "BinaryFPOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SBinaryFPOp")); size_t size = sizeof(SBinaryFPOp) * count; Data.resize(size); SBinaryFPOp *pPrimitives = (SBinaryFPOp *)Data.data(); for (size_t i = 0; i < count; ++i) { SBinaryFPOp *p = &pPrimitives[i]; PCWSTR str1 = (*Validation_Input1)[i % Validation_Input1->GetSize()]; PCWSTR str2 = (*Validation_Input2)[i % Validation_Input2->GetSize()]; float val1, val2; VERIFY_SUCCEEDED(ParseDataToFloat(str1, val1)); VERIFY_SUCCEEDED(ParseDataToFloat(str2, val2)); p->input1 = val1; p->input2 = val2; } // use shader from data table pShaderOp->Shaders.at(0).Target = shader.Target; pShaderOp->Shaders.at(0).EntryPoint = shader.EntryPoint; pShaderOp->Shaders.at(0).Text = shader.Text; }); MappedData data; test->Test->GetReadBackData("SBinaryFPOp", &data); SBinaryFPOp *pPrimitives = (SBinaryFPOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { SBinaryFPOp *p = &pPrimitives[i]; LPCWSTR str1 = (*Validation_Expected1)[i % Validation_Expected1->GetSize()]; LPCWSTR str2 = (*Validation_Expected2)[i % Validation_Expected2->GetSize()]; float val1, val2; VERIFY_SUCCEEDED(ParseDataToFloat(str1, val1)); VERIFY_SUCCEEDED(ParseDataToFloat(str2, val2)); LogCommentFmt(L"element #%u, input1 = %10f, input2 = %10f, output1 = " L"%10f, expected1 = %10f, output2 = %10f, expected2 = %10f", i, p->input1, p->input2, p->output1, val1, p->output2, val2); VerifyOutputWithExpectedValueFloat(p->output1, val1, Validation_Type, Validation_Tolerance); VerifyOutputWithExpectedValueFloat(p->output2, val2, Validation_Type, Validation_Tolerance); } } TEST_F(ExecutionTest, TertiaryFloatOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table int tableSize = sizeof(TertiaryFPOpParameters) / sizeof(TableParameter); TableParameterHandler handler(TertiaryFPOpParameters, tableSize); handler.clearTableParameter(); VERIFY_SUCCEEDED(ParseTableRow(TertiaryFPOpParameters, tableSize)); st::ShaderOpShader shader; CW2A Name(handler.GetTableParamByName(L"ShaderOp.Name")->m_str); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A EntryPoint(handler.GetTableParamByName(L"ShaderOp.EntryPoint")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); shader.Name = Name.m_psz; shader.Target = Target.m_psz; shader.EntryPoint = EntryPoint.m_psz; shader.Text = Text.m_psz; WEX::TestExecution::TestDataArray *Validation_Input1 = &(handler.GetTableParamByName(L"Validation.Input1")->m_StringTable); WEX::TestExecution::TestDataArray *Validation_Input2 = &(handler.GetTableParamByName(L"Validation.Input2")->m_StringTable); WEX::TestExecution::TestDataArray *Validation_Input3 = &(handler.GetTableParamByName(L"Validation.Input3")->m_StringTable); WEX::TestExecution::TestDataArray *Validation_Expected = &(handler.GetTableParamByName(L"Validation.Expected")->m_StringTable); LPCWSTR Validation_Type = handler.GetTableParamByName(L"Validation.Type")->m_str; double Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_double; size_t count = handler.GetTableParamByName(L"Validation.NumInput")->m_uint; std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "TertiaryFPOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "STertiaryFPOp")); size_t size = sizeof(STertiaryFPOp) * count; Data.resize(size); STertiaryFPOp *pPrimitives = (STertiaryFPOp *)Data.data(); for (size_t i = 0; i < count; ++i) { STertiaryFPOp *p = &pPrimitives[i]; PCWSTR str1 = (*Validation_Input1)[i % Validation_Input1->GetSize()]; PCWSTR str2 = (*Validation_Input2)[i % Validation_Input2->GetSize()]; PCWSTR str3 = (*Validation_Input3)[i % Validation_Input3->GetSize()]; float val1, val2, val3; VERIFY_SUCCEEDED(ParseDataToFloat(str1, val1)); VERIFY_SUCCEEDED(ParseDataToFloat(str2, val2)); VERIFY_SUCCEEDED(ParseDataToFloat(str3, val3)); p->input1 = val1; p->input2 = val2; p->input3 = val3; } // use shader from data table pShaderOp->Shaders.at(0).Target = shader.Target; pShaderOp->Shaders.at(0).EntryPoint = shader.EntryPoint; pShaderOp->Shaders.at(0).Text = shader.Text; }); MappedData data; test->Test->GetReadBackData("STertiaryFPOp", &data); STertiaryFPOp *pPrimitives = (STertiaryFPOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { STertiaryFPOp *p = &pPrimitives[i]; LPCWSTR str = (*Validation_Expected)[i % Validation_Expected->GetSize()]; float val; VERIFY_SUCCEEDED(ParseDataToFloat(str, val)); LogCommentFmt(L"element #%u, input1 = %10f, input2 = %10f, input3 = %10f, output1 = " L"%10f, expected = %10f", i, p->input1, p->input2, p->input3, p->output, val); VerifyOutputWithExpectedValueFloat(p->output, val, Validation_Type, Validation_Tolerance); } } TEST_F(ExecutionTest, UnaryIntOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table int tableSize = sizeof(UnaryIntOpParameters) / sizeof(TableParameter); TableParameterHandler handler(UnaryIntOpParameters, tableSize); handler.clearTableParameter(); VERIFY_SUCCEEDED(ParseTableRow(UnaryIntOpParameters, tableSize)); st::ShaderOpShader shader; CW2A Name(handler.GetTableParamByName(L"ShaderOp.Name")->m_str); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A EntryPoint(handler.GetTableParamByName(L"ShaderOp.EntryPoint")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); shader.Name = Name.m_psz; shader.Target = Target.m_psz; shader.EntryPoint = EntryPoint.m_psz; shader.Text = Text.m_psz; WEX::TestExecution::TestDataArray *Validation_Input = &handler.GetTableParamByName(L"Validation.Input")->m_intTable; WEX::TestExecution::TestDataArray *Validation_Expected = &handler.GetTableParamByName(L"Validation.Expected")->m_intTable; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int; size_t count = handler.GetTableParamByName(L"Validation.NumInput")->m_uint; std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "UnaryIntOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SUnaryIntOp")); size_t size = sizeof(SUnaryIntOp) * count; Data.resize(size); SUnaryIntOp *pPrimitives = (SUnaryIntOp *)Data.data(); for (size_t i = 0; i < count; ++i) { SUnaryIntOp *p = &pPrimitives[i]; int val = (*Validation_Input)[i % Validation_Input->GetSize()]; p->input = val; } // use shader data table pShaderOp->Shaders.at(0).Target = shader.Target; pShaderOp->Shaders.at(0).EntryPoint = shader.EntryPoint; pShaderOp->Shaders.at(0).Text = shader.Text; }); MappedData data; test->Test->GetReadBackData("SUnaryIntOp", &data); SUnaryIntOp *pPrimitives = (SUnaryIntOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { SUnaryIntOp *p = &pPrimitives[i]; int val = (*Validation_Expected)[i % Validation_Expected->GetSize()]; LogCommentFmt(L"element #%u, input = %11i(0x%08x), output = %11i(0x%08x), " L"expected = %11i(0x%08x)", i, p->input, p->input, p->output, p->output, val, val); VerifyOutputWithExpectedValueInt(p->output, val, Validation_Tolerance); } } TEST_F(ExecutionTest, UnaryUintOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table int tableSize = sizeof(UnaryUintOpParameters) / sizeof(TableParameter); TableParameterHandler handler(UnaryUintOpParameters, tableSize); handler.clearTableParameter(); VERIFY_SUCCEEDED(ParseTableRow(UnaryUintOpParameters, tableSize)); st::ShaderOpShader shader; CW2A Name(handler.GetTableParamByName(L"ShaderOp.Name")->m_str); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A EntryPoint(handler.GetTableParamByName(L"ShaderOp.EntryPoint")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); shader.Name = Name.m_psz; shader.Target = Target.m_psz; shader.EntryPoint = EntryPoint.m_psz; shader.Text = Text.m_psz; WEX::TestExecution::TestDataArray *Validation_Input = &handler.GetTableParamByName(L"Validation.Input")->m_uintTable; WEX::TestExecution::TestDataArray *Validation_Expected = &handler.GetTableParamByName(L"Validation.Expected")->m_uintTable; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int; size_t count = handler.GetTableParamByName(L"Validation.NumInput")->m_uint; std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "UnaryUintOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SUnaryUintOp")); size_t size = sizeof(SUnaryUintOp) * count; Data.resize(size); SUnaryUintOp *pPrimitives = (SUnaryUintOp *)Data.data(); for (size_t i = 0; i < count; ++i) { SUnaryUintOp *p = &pPrimitives[i]; unsigned int val = (*Validation_Input)[i % Validation_Input->GetSize()]; p->input = val; } // use shader data table pShaderOp->Shaders.at(0).Target = shader.Target; pShaderOp->Shaders.at(0).EntryPoint = shader.EntryPoint; pShaderOp->Shaders.at(0).Text = shader.Text; }); MappedData data; test->Test->GetReadBackData("SUnaryUintOp", &data); SUnaryUintOp *pPrimitives = (SUnaryUintOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { SUnaryUintOp *p = &pPrimitives[i]; unsigned int val = (*Validation_Expected)[i % Validation_Expected->GetSize()]; LogCommentFmt(L"element #%u, input = %11u(0x%08x), output = %11u(0x%08x), " L"expected = %11u(0x%08x)", i, p->input, p->input, p->output, p->output, val, val); VerifyOutputWithExpectedValueInt(p->output, val, Validation_Tolerance); } } TEST_F(ExecutionTest, BinaryIntOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table size_t tableSize = sizeof(BinaryIntOpParameters) / sizeof(TableParameter); TableParameterHandler handler(BinaryIntOpParameters, tableSize); handler.clearTableParameter(); VERIFY_SUCCEEDED(ParseTableRow(BinaryIntOpParameters,tableSize)); st::ShaderOpShader shader; CW2A Name(handler.GetTableParamByName(L"ShaderOp.Name")->m_str); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A EntryPoint(handler.GetTableParamByName(L"ShaderOp.EntryPoint")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); shader.Name = Name.m_psz; shader.Target = Target.m_psz; shader.EntryPoint = EntryPoint.m_psz; shader.Text = Text.m_psz; int numExpected = handler.GetTableParamByName(L"Validation.NumExpected")->m_int; WEX::TestExecution::TestDataArray *Validation_Input1 = &handler.GetTableParamByName(L"Validation.Input1")->m_intTable; WEX::TestExecution::TestDataArray *Validation_Input2 = &handler.GetTableParamByName(L"Validation.Input2")->m_intTable; WEX::TestExecution::TestDataArray *Validation_Expected1 = &handler.GetTableParamByName(L"Validation.Expected1")->m_intTable; WEX::TestExecution::TestDataArray *Validation_Expected2 = &handler.GetTableParamByName(L"Validation.Expected2")->m_intTable; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int; size_t count = handler.GetTableParamByName(L"Validation.NumInput")->m_uint; std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "BinaryIntOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SBinaryIntOp")); size_t size = sizeof(SBinaryIntOp) * count; Data.resize(size); SBinaryIntOp *pPrimitives = (SBinaryIntOp *)Data.data(); for (size_t i = 0; i < count; ++i) { SBinaryIntOp *p = &pPrimitives[i]; int val1 = (*Validation_Input1)[i % Validation_Input1->GetSize()]; int val2 = (*Validation_Input2)[i % Validation_Input2->GetSize()]; p->input1 = val1; p->input2 = val2; } // use shader from data table pShaderOp->Shaders.at(0).Target = shader.Target; pShaderOp->Shaders.at(0).EntryPoint = shader.EntryPoint; pShaderOp->Shaders.at(0).Text = shader.Text; }); MappedData data; test->Test->GetReadBackData("SBinaryIntOp", &data); SBinaryIntOp *pPrimitives = (SBinaryIntOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; if (numExpected == 2) { for (unsigned i = 0; i < count; ++i) { SBinaryIntOp *p = &pPrimitives[i]; int val1 = (*Validation_Expected1)[i % Validation_Expected1->GetSize()]; int val2 = (*Validation_Expected2)[i % Validation_Expected2->GetSize()]; LogCommentFmt(L"element #%u, input1 = %11i(0x%08x), input2 = " L"%11i(0x%08x), output1 = " L"%11i(0x%08x), expected1 = %11i(0x%08x), output2 = " L"%11i(0x%08x), expected2 = %11i(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->output1, p->output1, val1, val1, p->output2, p->output2, val2, val2); VerifyOutputWithExpectedValueInt(p->output1, val1, Validation_Tolerance); VerifyOutputWithExpectedValueInt(p->output2, val2, Validation_Tolerance); } } else if (numExpected == 1) { for (unsigned i = 0; i < count; ++i) { SBinaryIntOp *p = &pPrimitives[i]; int val1 = (*Validation_Expected1)[i % Validation_Expected1->GetSize()]; LogCommentFmt(L"element #%u, input1 = %11i(0x%08x), input2 = " L"%11i(0x%08x), output = " L"%11i(0x%08x), expected = %11i(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->output1, p->output1, val1, val1); VerifyOutputWithExpectedValueInt(p->output1, val1, Validation_Tolerance); } } else { LogErrorFmt(L"Unexpected number of expected values for operation %i", numExpected); } } TEST_F(ExecutionTest, TertiaryIntOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table size_t tableSize = sizeof(TertiaryIntOpParameters) / sizeof(TableParameter); TableParameterHandler handler(TertiaryIntOpParameters, tableSize); handler.clearTableParameter(); VERIFY_SUCCEEDED(ParseTableRow(TertiaryIntOpParameters, tableSize)); st::ShaderOpShader shader; CW2A Name(handler.GetTableParamByName(L"ShaderOp.Name")->m_str); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A EntryPoint(handler.GetTableParamByName(L"ShaderOp.EntryPoint")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); shader.Name = Name.m_psz; shader.Target = Target.m_psz; shader.EntryPoint = EntryPoint.m_psz; shader.Text = Text.m_psz; WEX::TestExecution::TestDataArray *Validation_Input1 = &handler.GetTableParamByName(L"Validation.Input1")->m_intTable; WEX::TestExecution::TestDataArray *Validation_Input2 = &handler.GetTableParamByName(L"Validation.Input2")->m_intTable; WEX::TestExecution::TestDataArray *Validation_Input3 = &handler.GetTableParamByName(L"Validation.Input3")->m_intTable; WEX::TestExecution::TestDataArray *Validation_Expected = &handler.GetTableParamByName(L"Validation.Expected")->m_intTable; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int; size_t count = handler.GetTableParamByName(L"Validation.NumInput")->m_uint; std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "TertiaryIntOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "STertiaryIntOp")); size_t size = sizeof(STertiaryIntOp) * count; Data.resize(size); STertiaryIntOp *pPrimitives = (STertiaryIntOp *)Data.data(); for (size_t i = 0; i < count; ++i) { STertiaryIntOp *p = &pPrimitives[i]; int val1 = (*Validation_Input1)[i % Validation_Input1->GetSize()]; int val2 = (*Validation_Input2)[i % Validation_Input2->GetSize()]; int val3 = (*Validation_Input3)[i % Validation_Input3->GetSize()]; p->input1 = val1; p->input2 = val2; p->input3 = val3; } // use shader from data table pShaderOp->Shaders.at(0).Target = shader.Target; pShaderOp->Shaders.at(0).EntryPoint = shader.EntryPoint; pShaderOp->Shaders.at(0).Text = shader.Text; }); MappedData data; test->Test->GetReadBackData("STertiaryIntOp", &data); STertiaryIntOp *pPrimitives = (STertiaryIntOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { STertiaryIntOp *p = &pPrimitives[i]; int val1 = (*Validation_Expected)[i % Validation_Expected->GetSize()]; LogCommentFmt(L"element #%u, input1 = %11i(0x%08x), input2 = " L"%11i(0x%08x), input3= %11i(0x%08x), output = " L"%11i(0x%08x), expected = %11i(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->input3, p->input3, p->output, p->output, val1, val1); VerifyOutputWithExpectedValueInt(p->output, val1, Validation_Tolerance); } } TEST_F(ExecutionTest, BinaryUintOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table size_t tableSize = sizeof(BinaryUintOpParameters) / sizeof(TableParameter); TableParameterHandler handler(BinaryUintOpParameters, tableSize); handler.clearTableParameter(); VERIFY_SUCCEEDED(ParseTableRow(BinaryUintOpParameters, tableSize)); st::ShaderOpShader shader; CW2A Name(handler.GetTableParamByName(L"ShaderOp.Name")->m_str); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A EntryPoint(handler.GetTableParamByName(L"ShaderOp.EntryPoint")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); shader.Name = Name.m_psz; shader.Target = Target.m_psz; shader.EntryPoint = EntryPoint.m_psz; shader.Text = Text.m_psz; int numExpected = handler.GetTableParamByName(L"Validation.NumExpected")->m_int; WEX::TestExecution::TestDataArray *Validation_Input1 = &handler.GetTableParamByName(L"Validation.Input1")->m_uintTable; WEX::TestExecution::TestDataArray *Validation_Input2 = &handler.GetTableParamByName(L"Validation.Input2")->m_uintTable; WEX::TestExecution::TestDataArray *Validation_Expected1 = &handler.GetTableParamByName(L"Validation.Expected1")->m_uintTable; WEX::TestExecution::TestDataArray *Validation_Expected2 = &handler.GetTableParamByName(L"Validation.Expected2")->m_uintTable; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int; size_t count = handler.GetTableParamByName(L"Validation.NumInput")->m_uint; std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "BinaryUintOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SBinaryUintOp")); size_t size = sizeof(SBinaryUintOp) * count; Data.resize(size); SBinaryUintOp *pPrimitives = (SBinaryUintOp *)Data.data(); for (size_t i = 0; i < count; ++i) { SBinaryUintOp *p = &pPrimitives[i]; unsigned int val1 = (*Validation_Input1)[i % Validation_Input1->GetSize()]; unsigned int val2 = (*Validation_Input2)[i % Validation_Input2->GetSize()]; p->input1 = val1; p->input2 = val2; } // use shader from data table pShaderOp->Shaders.at(0).Target = shader.Target; pShaderOp->Shaders.at(0).EntryPoint = shader.EntryPoint; pShaderOp->Shaders.at(0).Text = shader.Text; }); MappedData data; test->Test->GetReadBackData("SBinaryUintOp", &data); SBinaryUintOp *pPrimitives = (SBinaryUintOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; if (numExpected == 2) { for (unsigned i = 0; i < count; ++i) { SBinaryUintOp *p = &pPrimitives[i]; unsigned int val1 = (*Validation_Expected1)[i % Validation_Expected1->GetSize()]; unsigned int val2 = (*Validation_Expected2)[i % Validation_Expected2->GetSize()]; LogCommentFmt(L"element #%u, input1 = %11u(0x%08x), input2 = " L"%11u(0x%08x), output1 = " L"%11u(0x%08x), expected1 = %11u(0x%08x), output2 = " L"%11u(0x%08x), expected2 = %11u(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->output1, p->output1, val1, val1, p->output2, p->output2, val2, val2); VerifyOutputWithExpectedValueInt(p->output1, val1, Validation_Tolerance); VerifyOutputWithExpectedValueInt(p->output2, val2, Validation_Tolerance); } } else if (numExpected == 1) { for (unsigned i = 0; i < count; ++i) { SBinaryUintOp *p = &pPrimitives[i]; unsigned int val1 = (*Validation_Expected1)[i % Validation_Expected1->GetSize()]; LogCommentFmt(L"element #%u, input1 = %11u(0x%08x), input2 = " L"%11u(0x%08x), output = " L"%11u(0x%08x), expected = %11u(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->output1, p->output1, val1, val1); VerifyOutputWithExpectedValueInt(p->output1, val1, Validation_Tolerance); } } else { LogErrorFmt(L"Unexpected number of expected values for operation %i", numExpected); } } TEST_F(ExecutionTest, TertiaryUintOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table size_t tableSize = sizeof(TertiaryUintOpParameters) / sizeof(TableParameter); TableParameterHandler handler(TertiaryUintOpParameters, tableSize); handler.clearTableParameter(); VERIFY_SUCCEEDED(ParseTableRow(TertiaryUintOpParameters, tableSize)); st::ShaderOpShader shader; CW2A Name(handler.GetTableParamByName(L"ShaderOp.Name")->m_str); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A EntryPoint(handler.GetTableParamByName(L"ShaderOp.EntryPoint")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); shader.Name = Name.m_psz; shader.Target = Target.m_psz; shader.EntryPoint = EntryPoint.m_psz; shader.Text = Text.m_psz; WEX::TestExecution::TestDataArray *Validation_Input1 = &handler.GetTableParamByName(L"Validation.Input1")->m_uintTable; WEX::TestExecution::TestDataArray *Validation_Input2 = &handler.GetTableParamByName(L"Validation.Input2")->m_uintTable; WEX::TestExecution::TestDataArray *Validation_Input3 = &handler.GetTableParamByName(L"Validation.Input3")->m_uintTable; WEX::TestExecution::TestDataArray *Validation_Expected = &handler.GetTableParamByName(L"Validation.Expected")->m_uintTable; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int; size_t count = handler.GetTableParamByName(L"Validation.NumInput")->m_uint; std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "TertiaryUintOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "STertiaryUintOp")); size_t size = sizeof(STertiaryUintOp) * count; Data.resize(size); STertiaryUintOp *pPrimitives = (STertiaryUintOp *)Data.data(); for (size_t i = 0; i < count; ++i) { STertiaryUintOp *p = &pPrimitives[i]; unsigned int val1 = (*Validation_Input1)[i % Validation_Input1->GetSize()]; unsigned int val2 = (*Validation_Input2)[i % Validation_Input2->GetSize()]; unsigned int val3 = (*Validation_Input3)[i % Validation_Input3->GetSize()]; p->input1 = val1; p->input2 = val2; p->input3 = val3; } // use shader from data table pShaderOp->Shaders.at(0).Target = shader.Target; pShaderOp->Shaders.at(0).EntryPoint = shader.EntryPoint; pShaderOp->Shaders.at(0).Text = shader.Text; }); MappedData data; test->Test->GetReadBackData("STertiaryUintOp", &data); STertiaryUintOp *pPrimitives = (STertiaryUintOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { STertiaryUintOp *p = &pPrimitives[i]; unsigned int val1 = (*Validation_Expected)[i % Validation_Expected->GetSize()]; LogCommentFmt(L"element #%u, input1 = %11u(0x%08x), input2 = " L"%11u(0x%08x), input3 = %11u(0x%08x), output = " L"%11u(0x%08x), expected = %11u(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->input3, p->input3, p->output, p->output, val1, val1); VerifyOutputWithExpectedValueInt(p->output, val1, Validation_Tolerance); } } TEST_F(ExecutionTest, DotTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } int tableSize = sizeof(DotOpParameters) / sizeof(TableParameter); TableParameterHandler handler(DotOpParameters, tableSize); handler.clearTableParameter(); VERIFY_SUCCEEDED(ParseTableRow(DotOpParameters, tableSize)); st::ShaderOpShader shader; CW2A Name(handler.GetTableParamByName(L"ShaderOp.Name")->m_str); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A EntryPoint(handler.GetTableParamByName(L"ShaderOp.EntryPoint")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); shader.Name = Name.m_psz; shader.Target = Target.m_psz; shader.EntryPoint = EntryPoint.m_psz; shader.Text = Text.m_psz; WEX::TestExecution::TestDataArray *Validation_Input1 = &handler.GetTableParamByName(L"Validation.Input1")->m_StringTable; WEX::TestExecution::TestDataArray *Validation_Input2 = &handler.GetTableParamByName(L"Validation.Input2")->m_StringTable; WEX::TestExecution::TestDataArray *Validation_dot2 = &handler.GetTableParamByName(L"Validation.dot2")->m_StringTable; WEX::TestExecution::TestDataArray *Validation_dot3 = &handler.GetTableParamByName(L"Validation.dot3")->m_StringTable; WEX::TestExecution::TestDataArray *Validation_dot4 = &handler.GetTableParamByName(L"Validation.dot4")->m_StringTable; PCWSTR Validation_type = handler.GetTableParamByName(L"Validation.Type")->m_str; double tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_double; unsigned int count = handler.GetTableParamByName(L"Validation.NumInput")->m_uint; std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "DotOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SDotOp")); size_t size = sizeof(SDotOp) * count; Data.resize(size); SDotOp *pPrimitives = (SDotOp*)Data.data(); for (size_t i = 0; i < count; ++i) { SDotOp *p = &pPrimitives[i]; XMFLOAT4 val1,val2; VERIFY_SUCCEEDED(ParseDataToVectorFloat((*Validation_Input1)[i], (float *)&val1, 4)); VERIFY_SUCCEEDED(ParseDataToVectorFloat((*Validation_Input2)[i], (float *)&val2, 4)); p->input1 = val1; p->input2 = val2; } // use shader from data table pShaderOp->Shaders.at(0).Target = shader.Target; pShaderOp->Shaders.at(0).EntryPoint = shader.EntryPoint; pShaderOp->Shaders.at(0).Text = shader.Text; }); MappedData data; test->Test->GetReadBackData("SDotOp", &data); SDotOp *pPrimitives = (SDotOp*)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (size_t i = 0; i < count; ++i) { SDotOp *p = &pPrimitives[i]; float dot2, dot3, dot4; VERIFY_SUCCEEDED(ParseDataToFloat((*Validation_dot2)[i], dot2)); VERIFY_SUCCEEDED(ParseDataToFloat((*Validation_dot3)[i], dot3)); VERIFY_SUCCEEDED(ParseDataToFloat((*Validation_dot4)[i], dot4)); LogCommentFmt( L"element #%u, input1 = (%f, %f, %f, %f), input2 = (%f, %f, " L"%f, %f), \n dot2 = %f, dot2_expected = %f, dot3 = %f, " L"dot3_expected = %f, dot4 = %f, dot4_expected = %f", i, p->input1.x, p->input1.y, p->input1.z, p->input1.w, p->input2.x, p->input2.y, p->input2.z, p->input2.w, p->o_dot2, dot2, p->o_dot3, dot3, p->o_dot4, dot4); VerifyOutputWithExpectedValueFloat(p->o_dot2, dot2, Validation_type, tolerance); VerifyOutputWithExpectedValueFloat(p->o_dot3, dot3, Validation_type, tolerance); VerifyOutputWithExpectedValueFloat(p->o_dot4, dot4, Validation_type, tolerance); } } TEST_F(ExecutionTest, Msad4Test) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } size_t tableSize = sizeof(Msad4OpParameters) / sizeof(TableParameter); TableParameterHandler handler(Msad4OpParameters, tableSize); handler.clearTableParameter(); VERIFY_SUCCEEDED(ParseTableRow(Msad4OpParameters, tableSize)); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); double tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_double; unsigned int count = handler.GetTableParamByName(L"Validation.NumInput")->m_uint; WEX::TestExecution::TestDataArray *Validation_Reference = &handler.GetTableParamByName(L"Validation.Reference")->m_uintTable; WEX::TestExecution::TestDataArray *Validation_Source = &handler.GetTableParamByName(L"Validation.Source")->m_StringTable; WEX::TestExecution::TestDataArray *Validation_Accum = &handler.GetTableParamByName(L"Validation.Accum")->m_StringTable; WEX::TestExecution::TestDataArray *Validation_Expected = &handler.GetTableParamByName(L"Validation.Expected")->m_StringTable; std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "Msad4", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SMsad4")); size_t size = sizeof(SMsad4) * count; Data.resize(size); SMsad4 *pPrimitives = (SMsad4*)Data.data(); for (size_t i = 0; i < count; ++i) { SMsad4 *p = &pPrimitives[i]; XMUINT2 src; XMUINT4 accum; VERIFY_SUCCEEDED(ParseDataToVectorUint((*Validation_Source)[i], (unsigned int*)&src, 2)); VERIFY_SUCCEEDED(ParseDataToVectorUint((*Validation_Accum)[i], (unsigned int*)&accum, 4)); p->ref = (*Validation_Reference)[i]; p->src = src; p->accum = accum; } // use shader from data table pShaderOp->Shaders.at(0).Text = Text.m_psz; }); MappedData data; test->Test->GetReadBackData("SMsad4", &data); SMsad4 *pPrimitives = (SMsad4*)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (size_t i = 0; i < count; ++i) { SMsad4 *p = &pPrimitives[i]; XMUINT4 result; VERIFY_SUCCEEDED(ParseDataToVectorUint((*Validation_Expected)[i], (unsigned int *)&result, 4)); LogCommentFmt( L"element #%u, ref = %u(0x%08x), src = %u(0x%08x), %u(0x%08x), " L"accum = %u(0x%08x), %u(0x%08x), %u(0x%08x), %u(0x%08x),\n" L"result = %u(0x%08x), %u(0x%08x), %u(0x%08x), %u(0x%08x),\n" L"expected = %u(0x%08x), %u(0x%08x), %u(0x%08x), %u(0x%08x)", i, p->ref, p->ref, p->src.x, p->src.x, p->src.y, p->src.y, p->accum.x, p->accum.x, p->accum.y, p->accum.y, p->accum.z, p->accum.z, p->accum.w, p->accum.w, p->result.x, p->result.x, p->result.y, p->result.y, p->result.z, p->result.z, p->result.w, p->result.w, result.x, result.x, result.y, result.y, result.z, result.z, result.w, result.w); VerifyOutputWithExpectedValueInt(p->result.x, result.x, tolerance); VerifyOutputWithExpectedValueInt(p->result.y, result.y, tolerance); VerifyOutputWithExpectedValueInt(p->result.z, result.z, tolerance); VerifyOutputWithExpectedValueInt(p->result.w, result.w, tolerance); } } // A framework for testing individual wave intrinsics tests. // This test case is assuming that functions 1) WaveIsFirstLane and 2) WaveGetLaneIndex are correct for all lanes. template void ExecutionTest::WaveIntrinsicsActivePrefixTest( TableParameter *pParameterList, size_t numParameter, bool isPrefix) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); // Resource representation for compute shader // firstLaneId is used to group different waves // laneIndex is used to identify lane within the wave. // Lane ids are not necessarily in same order as thread ids. struct PerThreadData { unsigned firstLaneId; unsigned laneIndex; int mask; T1 input; T2 output; }; unsigned int NumThreadsX = 8; unsigned int NumThreadsY = 12; unsigned int NumThreadsZ = 1; static const unsigned int ThreadsPerGroup = NumThreadsX * NumThreadsY * NumThreadsZ; static const unsigned int DispatchGroupCount = 1; static const unsigned int ThreadCount = ThreadsPerGroup * DispatchGroupCount; CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } if (!DoesDeviceSupportWaveOps(pDevice)) { // Optional feature, so it's correct to not support it if declared as such. WEX::Logging::Log::Comment(L"Device does not support wave operations."); return; } TableParameterHandler handler(pParameterList, numParameter); handler.clearTableParameter(); VERIFY_SUCCEEDED(ParseTableRow(pParameterList, numParameter)); unsigned int numInputSet = handler.GetTableParamByName(L"Validation.NumInputSet")->m_uint; // Obtain the list of input lists typedef WEX::TestExecution::TestDataArray DataArray; std::vector InputDataList; for (unsigned int i = 0; i < numInputSet; ++i) { std::wstring inputName = L"Validation.InputSet"; inputName.append(std::to_wstring(i + 1)); InputDataList.push_back(handler.GetDataArray(inputName.data())); } CW2A Text(handler.GetTableParamByName(L"ShaderOp.text")->m_str); std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); // Running compute shader for each input set with different masks for (size_t setIndex = 0; setIndex < numInputSet; ++setIndex) { for (size_t maskIndex = 0; maskIndex < sizeof(MaskFunctionTable) / sizeof(MaskFunction); ++maskIndex) { std::shared_ptr test = RunShaderOpTestAfterParse( pDevice, m_support, pStream, "WaveIntrinsicsOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SWaveIntrinsicsOp")); size_t size = sizeof(PerThreadData) * ThreadCount; Data.resize(size); PerThreadData *pPrimitives = (PerThreadData*)Data.data(); // 4 different inputs for each operation test size_t index = 0; DataArray *IntList = InputDataList[setIndex]; while (index < ThreadCount) { PerThreadData *p = &pPrimitives[index]; p->firstLaneId = 0xFFFFBFFF; p->laneIndex = 0xFFFFBFFF; p->mask = MaskFunctionTable[maskIndex](index); p->input = (*IntList)[index % IntList->GetSize()]; p->output = 0xFFFFBFFF; index++; } // use shader from data table pShaderOp->Shaders.at(0).Text = Text.m_psz; }, ShaderOpSet); // Check the value MappedData data; test->Test->GetReadBackData("SWaveIntrinsicsOp", &data); PerThreadData *pPrimitives = (PerThreadData*)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; // Grouping data by waves std::vector firstLaneIds; for (size_t i = 0; i < ThreadCount; ++i) { PerThreadData *p = &pPrimitives[i]; int firstLaneId = p->firstLaneId; if (!contains(firstLaneIds, firstLaneId)) { firstLaneIds.push_back(firstLaneId); } } std::map>> waves; for (size_t i = 0; i < firstLaneIds.size(); ++i) { waves[firstLaneIds.at(i)] = std::make_unique>(std::vector()); } for (size_t i = 0; i < ThreadCount; ++i) { PerThreadData *p = &pPrimitives[i]; waves[p->firstLaneId].get()->push_back(p); } // validate for each wave for (size_t i = 0; i < firstLaneIds.size(); ++i) { // collect inputs and masks for a given wave std::vector *waveData = waves[firstLaneIds.at(i)].get(); std::vector inputList(waveData->size()); std::vector maskList(waveData->size(), -1); std::vector outputList(waveData->size()); // sort inputList and masklist by lane id. input for each lane can be computed for its group index for (size_t j = 0, end = waveData->size(); j < end; ++j) { unsigned laneID = waveData->at(j)->laneIndex; // ensure that each lane ID is unique and within the range VERIFY_IS_TRUE(0 <= laneID && laneID < waveData->size()); VERIFY_IS_TRUE(maskList.at(laneID) == -1); maskList.at(laneID) = waveData->at(j)->mask; inputList.at(laneID) = waveData->at(j)->input; outputList.at(laneID) = waveData->at(j)->output; } std::wstring inputStr = L"Wave Inputs: "; std::wstring maskStr = L"Wave Masks: "; std::wstring outputStr = L"Wave Outputs: "; // append input string and mask string in lane id order for (size_t j = 0, end = waveData->size(); j < end; ++j) { maskStr.append(std::to_wstring(maskList.at(j))); maskStr.append(L" "); inputStr.append(std::to_wstring(inputList.at(j))); inputStr.append(L" "); outputStr.append(std::to_wstring(outputList.at(j))); outputStr.append(L" "); } LogCommentFmt(inputStr.data()); LogCommentFmt(maskStr.data()); LogCommentFmt(outputStr.data()); LogCommentFmt(L"\n"); // Compute expected output for a given inputs, masks, and index for (size_t laneIndex = 0, laneEnd = inputList.size(); laneIndex < laneEnd; ++laneIndex) { T2 expected; // WaveActive is equivalent to WavePrefix lane # lane count unsigned index = isPrefix ? laneIndex : inputList.size(); if (maskList.at(laneIndex) == 1) { expected = computeExpectedWithShaderOp( inputList, maskList, 1, index, handler.GetTableParamByName(L"ShaderOp.Name")->m_str); } else { expected = computeExpectedWithShaderOp( inputList, maskList, 0, index, handler.GetTableParamByName(L"ShaderOp.Name")->m_str); } // TODO: use different comparison for floating point inputs bool equal = outputList.at(laneIndex) == expected; if (!equal) { LogCommentFmt(L"lane%d: %4d, Expected : %4d", laneIndex, outputList.at(laneIndex), expected); } VERIFY_IS_TRUE(equal); } } } } } static const unsigned int MinWarpVersionForWaveIntrinsics = 16202; TEST_F(ExecutionTest, WaveIntrinsicsActiveIntTest) { if (GetTestParamUseWARP(true) && !IsValidWarpDllVersion(MinWarpVersionForWaveIntrinsics)) { return; } WaveIntrinsicsActivePrefixTest( WaveIntrinsicsActiveIntParameters, sizeof(WaveIntrinsicsActiveIntParameters) / sizeof(TableParameter), /*isPrefix*/ false); } TEST_F(ExecutionTest, WaveIntrinsicsActiveUintTest) { if (GetTestParamUseWARP(true) && !IsValidWarpDllVersion(MinWarpVersionForWaveIntrinsics)) { return; } WaveIntrinsicsActivePrefixTest( WaveIntrinsicsActiveUintParameters, sizeof(WaveIntrinsicsActiveUintParameters) / sizeof(TableParameter), /*isPrefix*/ false); } TEST_F(ExecutionTest, WaveIntrinsicsPrefixIntTest) { if (GetTestParamUseWARP(true) && !IsValidWarpDllVersion(MinWarpVersionForWaveIntrinsics)) { return; } WaveIntrinsicsActivePrefixTest( WaveIntrinsicsPrefixIntParameters, sizeof(WaveIntrinsicsPrefixIntParameters) / sizeof(TableParameter), /*isPrefix*/ true); } TEST_F(ExecutionTest, WaveIntrinsicsPrefixUintTest) { if (GetTestParamUseWARP(true) && !IsValidWarpDllVersion(MinWarpVersionForWaveIntrinsics)) { return; } WaveIntrinsicsActivePrefixTest( WaveIntrinsicsPrefixUintParameters, sizeof(WaveIntrinsicsPrefixUintParameters) / sizeof(TableParameter), /*isPrefix*/ true); } static void WriteReadBackDump(st::ShaderOp *pShaderOp, st::ShaderOpTest *pTest, char **pReadBackDump) { std::stringstream str; unsigned count = 0; for (auto &R : pShaderOp->Resources) { if (!R.ReadBack) continue; ++count; str << "Resource: " << R.Name << "\r\n"; // Find a descriptor that can tell us how to dump this resource. bool found = false; for (auto &Heaps : pShaderOp->DescriptorHeaps) { for (auto &D : Heaps.Descriptors) { if (_stricmp(D.ResName, R.Name) != 0) { continue; } found = true; if (_stricmp(D.Kind, "UAV") != 0) { str << "Resource dump for kind " << D.Kind << " not implemented yet.\r\n"; break; } if (D.UavDesc.ViewDimension != D3D12_UAV_DIMENSION_BUFFER) { str << "Resource dump for this kind of view dimension not implemented yet.\r\n"; break; } // We can map back to the structure if a structured buffer via the shader, but // we'll keep this simple and simply dump out 32-bit uint/float representations. MappedData data; pTest->GetReadBackData(R.Name, &data); uint32_t *pData = (uint32_t *)data.data(); size_t u32_count = R.Desc.Width / sizeof(uint32_t); for (size_t i = 0; i < u32_count; ++i) { float f = *(float *)pData; str << i << ": 0n" << *pData << " 0x" << std::hex << *pData << std::dec << " " << f << "\r\n"; ++pData; } break; } if (found) break; } if (!found) { str << "Unable to find a view for the resource.\r\n"; } } str << "Resources read back: " << count << "\r\n"; std::string s(str.str()); CComHeapPtr pDump; if (!pDump.Allocate(s.size() + 1)) throw std::bad_alloc(); memcpy(pDump.m_pData, s.data(), s.size()); pDump.m_pData[s.size()] = '\0'; *pReadBackDump = pDump.Detach(); } // This is the exported interface by use from HLSLHost.exe. // It's exclusive with the use of the DLL as a TAEF target. extern "C" { __declspec(dllexport) HRESULT WINAPI InitializeOpTests(void *pStrCtx, st::OutputStringFn pOutputStrFn) { HRESULT hr = EnableExperimentalShaderModels(); if (FAILED(hr)) { pOutputStrFn(pStrCtx, L"Unable to enable experimental shader models.\r\n."); } return S_OK; } __declspec(dllexport) HRESULT WINAPI RunOpTest(void *pStrCtx, st::OutputStringFn pOutputStrFn, LPCSTR pText, ID3D12Device *pDevice, ID3D12CommandQueue *pCommandQueue, ID3D12Resource *pRenderTarget, char **pReadBackDump) { HRESULT hr; if (pReadBackDump) *pReadBackDump = nullptr; st::SetOutputFn(pStrCtx, pOutputStrFn); CComPtr pInfoQueue; CComHeapPtr pDump; bool FilterCreation = false; if (SUCCEEDED(pDevice->QueryInterface(&pInfoQueue))) { // Creation is largely driven by inputs, so don't log create/destroy messages. pInfoQueue->PushEmptyStorageFilter(); pInfoQueue->PushEmptyRetrievalFilter(); if (FilterCreation) { D3D12_INFO_QUEUE_FILTER filter; D3D12_MESSAGE_CATEGORY denyCategories[] = { D3D12_MESSAGE_CATEGORY_STATE_CREATION }; ZeroMemory(&filter, sizeof(filter)); filter.DenyList.NumCategories = _countof(denyCategories); filter.DenyList.pCategoryList = denyCategories; pInfoQueue->PushStorageFilter(&filter); } } else { pOutputStrFn(pStrCtx, L"Unable to enable info queue for D3D.\r\n."); } try { dxc::DxcDllSupport m_support; m_support.Initialize(); const char *pName = nullptr; CComPtr pStream = SHCreateMemStream((BYTE *)pText, strlen(pText)); std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); st::ShaderOp *pShaderOp; if (pName == nullptr) { if (ShaderOpSet->ShaderOps.size() != 1) { pOutputStrFn(pStrCtx, L"Expected a single shader operation.\r\n"); return E_FAIL; } pShaderOp = ShaderOpSet->ShaderOps[0].get(); } else { pShaderOp = ShaderOpSet->GetShaderOp(pName); } if (pShaderOp == nullptr) { std::string msg = "Unable to find shader op "; msg += pName; msg += "; available ops"; const char sep = ':'; for (auto &pAvailOp : ShaderOpSet->ShaderOps) { msg += sep; msg += pAvailOp->Name ? pAvailOp->Name : "[n/a]"; } CA2W msgWide(msg.c_str()); pOutputStrFn(pStrCtx, msgWide); return E_FAIL; } std::shared_ptr test = std::make_shared(); test->SetupRenderTarget(pShaderOp, pDevice, pCommandQueue, pRenderTarget); test->SetDxcSupport(&m_support); test->RunShaderOp(pShaderOp); test->PresentRenderTarget(pShaderOp, pCommandQueue, pRenderTarget); pOutputStrFn(pStrCtx, L"Rendering complete.\r\n"); if (!pShaderOp->IsCompute()) { D3D12_QUERY_DATA_PIPELINE_STATISTICS stats; test->GetPipelineStats(&stats); wchar_t statsText[400]; StringCchPrintfW(statsText, _countof(statsText), L"Vertices/primitives read by input assembler: %I64u/%I64u\r\n" L"Vertex shader invocations: %I64u\r\n" L"Geometry shader invocations/output primitive: %I64u/%I64u\r\n" L"Primitives sent to rasterizer/rendered: %I64u/%I64u\r\n" L"PS/HS/DS/CS invocations: %I64u/%I64u/%I64u/%I64u\r\n", stats.IAVertices, stats.IAPrimitives, stats.VSInvocations, stats.GSInvocations, stats.GSPrimitives, stats.CInvocations, stats.CPrimitives, stats.PSInvocations, stats.HSInvocations, stats.DSInvocations, stats.CSInvocations); pOutputStrFn(pStrCtx, statsText); } if (pReadBackDump) { WriteReadBackDump(pShaderOp, test.get(), &pDump); } hr = S_OK; } catch (const CAtlException &E) { hr = E.m_hr; } catch (const std::bad_alloc &) { hr = E_OUTOFMEMORY; } catch (const std::exception &) { hr = E_FAIL; } // Drain the device message queue if available. if (pInfoQueue != nullptr) { wchar_t buf[200]; StringCchPrintfW(buf, _countof(buf), L"NumStoredMessages=%u limit/discarded by limit=%u/%u " L"allowed/denied by storage filter=%u/%u " L"NumStoredMessagesAllowedByRetrievalFilter=%u\r\n", (unsigned)pInfoQueue->GetNumStoredMessages(), (unsigned)pInfoQueue->GetMessageCountLimit(), (unsigned)pInfoQueue->GetNumMessagesDiscardedByMessageCountLimit(), (unsigned)pInfoQueue->GetNumMessagesAllowedByStorageFilter(), (unsigned)pInfoQueue->GetNumMessagesDeniedByStorageFilter(), (unsigned)pInfoQueue->GetNumStoredMessagesAllowedByRetrievalFilter()); pOutputStrFn(pStrCtx, buf); WriteInfoQueueMessages(pStrCtx, pOutputStrFn, pInfoQueue); pInfoQueue->ClearStoredMessages(); pInfoQueue->PopRetrievalFilter(); pInfoQueue->PopStorageFilter(); if (FilterCreation) { pInfoQueue->PopStorageFilter(); } } if (pReadBackDump) *pReadBackDump = pDump.Detach(); return hr; } }