//===- Reg2MemHLSL.cpp - Convert registers to allocas ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/Statistic.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Transforms/Utils/Local.h" #include using namespace llvm; #define DEBUG_TYPE "reg2mem_hlsl" STATISTIC(NumRegsDemotedHlsl, "Number of registers demoted"); STATISTIC(NumPhisDemotedHlsl, "Number of phi-nodes demoted"); namespace { struct RegToMemHlsl : public FunctionPass { static char ID; // Pass identification, replacement for typeid RegToMemHlsl() : FunctionPass(ID) { initializeRegToMemHlslPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { } bool valueEscapes(const Instruction *Inst) const { for (const User *U : Inst->users()) { const Instruction *UI = cast(U); if (isa(UI)) return true; } return false; } bool runOnFunction(Function &F) override; }; /// DemotePHIToStack - This function takes a virtual register computed by a /// PHI node and replaces it with a slot in the stack frame allocated via /// alloca. /// The PHI node is deleted. It returns the pointer to the alloca inserted. /// The difference of HLSL version is the new Alloca will be loaded for each /// use, for case a phi inside loop be used outside the loop. AllocaInst *DemotePHIToStack_HLSL(PHINode *P, Instruction *AllocaPoint) { if (P->use_empty()) { P->eraseFromParent(); return nullptr; } IRBuilder<> AllocaBuilder(P); if (!AllocaPoint) { Function *F = P->getParent()->getParent(); AllocaPoint = F->getEntryBlock().begin(); } AllocaBuilder.SetInsertPoint(AllocaPoint); // Create a stack slot to hold the value. AllocaInst *Slot = AllocaBuilder.CreateAlloca(P->getType(), nullptr, P->getName() + ".reg2mem"); // Insert a load in place of the PHI and replace all uses. BasicBlock::iterator InsertPt = P; for (; isa(InsertPt) || isa(InsertPt); ++InsertPt) /* empty */; // Don't insert before PHI nodes or landingpad instrs. std::vector WorkList; for (auto U = P->user_begin(); U != P->user_end();) { Instruction *I = cast(*(U++)); WorkList.emplace_back(I); } for (Instruction *I : WorkList) { IRBuilder<> Builder(I); Value *Load = Builder.CreateLoad(Slot); I->replaceUsesOfWith(P, Load); } // Iterate over each operand inserting a store in each predecessor. // This should be done after load inserting because store for phi must be // after all other instructions of the incoming block. for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) { if (InvokeInst *II = dyn_cast(P->getIncomingValue(i))) { assert(II->getParent() != P->getIncomingBlock(i) && "Invoke edge not supported yet"); (void)II; } Value *V = P->getIncomingValue(i); // Skip undef if (isa(V)) continue; new StoreInst(P->getIncomingValue(i), Slot, P->getIncomingBlock(i)->getTerminator()); } // Delete PHI. P->eraseFromParent(); return Slot; } /// DemoteRegToStack - This function takes a virtual register computed by an /// Instruction and replaces it with a slot in the stack frame, allocated via /// alloca. This allows the CFG to be changed around without fear of /// invalidating the SSA information for the value. It returns the pointer to /// the alloca inserted to create a stack slot for I. /// The difference of HLSL version is for I is Alloca, only replace new Alloca with /// old alloca, and HLSL don't have InvokeInst AllocaInst *DemoteRegToStack_HLSL(Instruction &I, bool VolatileLoads, Instruction *AllocaPoint) { if (I.use_empty()) { I.eraseFromParent(); return nullptr; } IRBuilder<> AllocaBuilder(&I); if (!AllocaPoint) { Function *F = I.getParent()->getParent(); AllocaPoint = F->getEntryBlock().begin(); } AllocaBuilder.SetInsertPoint(AllocaPoint); if (AllocaInst *AI = dyn_cast(&I)) { // Create a stack slot to hold the value. AllocaInst *Slot = AllocaBuilder.CreateAlloca(AI->getAllocatedType(), nullptr, I.getName() + ".reg2mem"); I.replaceAllUsesWith(Slot); I.eraseFromParent(); return Slot; } // Create a stack slot to hold the value. AllocaInst *Slot = AllocaBuilder.CreateAlloca(I.getType(), nullptr, I.getName() + ".reg2mem");; // Change all of the users of the instruction to read from the stack slot. while (!I.use_empty()) { Instruction *U = cast(I.user_back()); if (PHINode *PN = dyn_cast(U)) { // If this is a PHI node, we can't insert a load of the value before the // use. Instead insert the load in the predecessor block corresponding // to the incoming value. // // Note that if there are multiple edges from a basic block to this PHI // node that we cannot have multiple loads. The problem is that the // resulting PHI node will have multiple values (from each load) coming // in // from the same block, which is illegal SSA form. For this reason, we // keep track of and reuse loads we insert. DenseMap Loads; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == &I) { Value *&V = Loads[PN->getIncomingBlock(i)]; if (!V) { // Insert the load into the predecessor block V = new LoadInst(Slot, I.getName() + ".reload", VolatileLoads, PN->getIncomingBlock(i)->getTerminator()); } PN->setIncomingValue(i, V); } } else { // If this is a normal instruction, just insert a load. Value *V = new LoadInst(Slot, I.getName() + ".reload", VolatileLoads, U); U->replaceUsesOfWith(&I, V); } } // Insert stores of the computed value into the stack slot. We have to be // careful if I is an invoke instruction, because we can't insert the store // AFTER the terminator instruction. BasicBlock::iterator InsertPt; if (!isa(I)) { InsertPt = &I; ++InsertPt; for (; isa(InsertPt) || isa(InsertPt); ++InsertPt) /* empty */; // Don't insert before PHI nodes or landingpad instrs. } else { InvokeInst &II = cast(I); InsertPt = II.getNormalDest()->getFirstInsertionPt(); } new StoreInst(&I, Slot, InsertPt); return Slot; } } char RegToMemHlsl::ID = 0; INITIALIZE_PASS_BEGIN(RegToMemHlsl, "reg2mem_hlsl", "Demote values with phi-node usage to stack slots", false, false) INITIALIZE_PASS_END(RegToMemHlsl, "reg2mem_hlsl", "Demote values with phi-node usage to stack slots", false, false) bool RegToMemHlsl::runOnFunction(Function &F) { if (F.isDeclaration()) return false; // Insert all new allocas into entry block. BasicBlock *BBEntry = &F.getEntryBlock(); assert(pred_empty(BBEntry) && "Entry block to function must not have predecessors!"); // Find first non-alloca instruction and create insertion point. This is // safe if block is well-formed: it always have terminator, otherwise // we'll get and assertion. BasicBlock::iterator I = BBEntry->begin(); while (isa(I)) ++I; CastInst *AllocaInsertionPoint = new BitCastInst(Constant::getNullValue(Type::getInt32Ty(F.getContext())), Type::getInt32Ty(F.getContext()), "reg2mem_hlsl alloca point", I); // Find the escaped instructions. But don't create stack slots for // allocas in entry block. std::list WorkList; for (Function::iterator ibb = F.begin(), ibe = F.end(); ibb != ibe; ++ibb) for (BasicBlock::iterator iib = ibb->begin(), iie = ibb->end(); iib != iie; ++iib) { if (!(isa(iib) && iib->getParent() == BBEntry) && valueEscapes(iib)) { WorkList.push_front(&*iib); } } // Demote escaped instructions NumRegsDemotedHlsl += WorkList.size(); for (std::list::iterator ilb = WorkList.begin(), ile = WorkList.end(); ilb != ile; ++ilb) DemoteRegToStack_HLSL(**ilb, false, AllocaInsertionPoint); WorkList.clear(); // Find all phi's for (Function::iterator ibb = F.begin(), ibe = F.end(); ibb != ibe; ++ibb) for (BasicBlock::iterator iib = ibb->begin(), iie = ibb->end(); iib != iie; ++iib) if (isa(iib)) WorkList.push_front(&*iib); // Demote phi nodes NumPhisDemotedHlsl += WorkList.size(); for (std::list::iterator ilb = WorkList.begin(), ile = WorkList.end(); ilb != ile; ++ilb) DemotePHIToStack_HLSL(cast(*ilb), AllocaInsertionPoint); return true; } // createDemoteRegisterToMemoryHlsl - Provide an entry point to create this pass. char &llvm::DemoteRegisterToMemoryHlslID = RegToMemHlsl::ID; FunctionPass *llvm::createDemoteRegisterToMemoryHlslPass() { return new RegToMemHlsl(); }