/////////////////////////////////////////////////////////////////////////////// // // // ExecutionTest.cpp // // Copyright (C) Microsoft Corporation. All rights reserved. // // This file is distributed under the University of Illinois Open Source // // License. See LICENSE.TXT for details. // // // // These tests run by executing compiled programs, and thus involve more // // moving parts, like the runtime and drivers. // // // /////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include "CompilationResult.h" #include "HLSLTestData.h" #include #include #undef _read #include "WexTestClass.h" #include "HlslTestUtils.h" #include "DxcTestUtils.h" #include "dxc/Support/Global.h" #include "dxc/Support/WinIncludes.h" #include "dxc/Support/FileIOHelper.h" #include "dxc/Support/Unicode.h" // // d3d12.h and dxgi1_4.h are included in the Windows 10 SDK // https://msdn.microsoft.com/en-us/library/windows/desktop/dn899120(v=vs.85).aspx // https://developer.microsoft.com/en-US/windows/downloads/windows-10-sdk // #include #include #include #include #include #include #include #include #include "ShaderOpTest.h" #pragma comment(lib, "d3dcompiler.lib") #pragma comment(lib, "windowscodecs.lib") #pragma comment(lib, "dxguid.lib") // A more recent Windows SDK than currently required is needed for these. typedef HRESULT(WINAPI *D3D12EnableExperimentalFeaturesFn)( UINT NumFeatures, __in_ecount(NumFeatures) const IID* pIIDs, __in_ecount_opt(NumFeatures) void* pConfigurationStructs, __in_ecount_opt(NumFeatures) UINT* pConfigurationStructSizes); static const GUID D3D12ExperimentalShaderModelsID = { /* 76f5573e-f13a-40f5-b297-81ce9e18933f */ 0x76f5573e, 0xf13a, 0x40f5, { 0xb2, 0x97, 0x81, 0xce, 0x9e, 0x18, 0x93, 0x3f } }; using namespace DirectX; using namespace hlsl_test; template static bool contains(TSequence s, const T &val) { return std::cend(s) != std::find(std::cbegin(s), std::cend(s), val); } template static bool contains(InputIterator b, InputIterator e, const T &val) { return e != std::find(b, e, val); } static HRESULT EnableExperimentalShaderModels() { HMODULE hRuntime = LoadLibraryW(L"d3d12.dll"); if (hRuntime == NULL) { return HRESULT_FROM_WIN32(GetLastError()); } D3D12EnableExperimentalFeaturesFn pD3D12EnableExperimentalFeatures = (D3D12EnableExperimentalFeaturesFn)GetProcAddress(hRuntime, "D3D12EnableExperimentalFeatures"); if (pD3D12EnableExperimentalFeatures == nullptr) { FreeLibrary(hRuntime); return HRESULT_FROM_WIN32(GetLastError()); } HRESULT hr = pD3D12EnableExperimentalFeatures(1, &D3D12ExperimentalShaderModelsID, nullptr, nullptr); FreeLibrary(hRuntime); return hr; } static HRESULT ReportLiveObjects() { CComPtr pDebug; IFR(DXGIGetDebugInterface1(0, IID_PPV_ARGS(&pDebug))); IFR(pDebug->ReportLiveObjects(DXGI_DEBUG_ALL, DXGI_DEBUG_RLO_ALL)); return S_OK; } static void WriteInfoQueueMessages(void *pStrCtx, st::OutputStringFn pOutputStrFn, ID3D12InfoQueue *pInfoQueue) { bool allMessagesOK = true; UINT64 count = pInfoQueue->GetNumStoredMessages(); CAtlArray message; for (UINT64 i = 0; i < count; ++i) { // 'GetMessageA' rather than 'GetMessage' is an artifact of user32 headers. SIZE_T msgLen = 0; if (FAILED(pInfoQueue->GetMessageA(i, nullptr, &msgLen))) { allMessagesOK = false; continue; } if (message.GetCount() < msgLen) { if (!message.SetCount(msgLen)) { allMessagesOK = false; continue; } } D3D12_MESSAGE *pMessage = (D3D12_MESSAGE *)message.GetData(); if (FAILED(pInfoQueue->GetMessageA(i, pMessage, &msgLen))) { allMessagesOK = false; continue; } CA2W msgW(pMessage->pDescription, CP_ACP); pOutputStrFn(pStrCtx, msgW.m_psz); pOutputStrFn(pStrCtx, L"\r\n"); } if (!allMessagesOK) { pOutputStrFn(pStrCtx, L"Failed to retrieve some messages.\r\n"); } } class CComContext { private: bool m_init; public: CComContext() : m_init(false) {} ~CComContext() { Dispose(); } void Dispose() { if (!m_init) return; m_init = false; CoUninitialize(); } HRESULT Init() { HRESULT hr = CoInitializeEx(0, COINIT_MULTITHREADED); if (SUCCEEDED(hr)) { m_init = true; } return hr; } }; static void SavePixelsToFile(LPCVOID pPixels, DXGI_FORMAT format, UINT32 m_width, UINT32 m_height, LPCWSTR pFileName) { CComContext ctx; CComPtr pFactory; CComPtr pBitmap; CComPtr pEncoder; CComPtr pFrameEncode; CComPtr pStream; CComPtr pMalloc; struct PF { DXGI_FORMAT Format; GUID PixelFormat; UINT32 PixelSize; bool operator==(DXGI_FORMAT F) const { return F == Format; } } Vals[] = { // Add more pixel format mappings as needed. { DXGI_FORMAT_R8G8B8A8_UNORM, GUID_WICPixelFormat32bppRGBA, 4 } }; PF *pFormat = std::find(Vals, Vals + _countof(Vals), format); VERIFY_SUCCEEDED(ctx.Init()); VERIFY_SUCCEEDED(CoCreateInstance(CLSID_WICImagingFactory, NULL, CLSCTX_INPROC_SERVER, IID_IWICImagingFactory, (LPVOID*)&pFactory)); VERIFY_SUCCEEDED(CoGetMalloc(1, &pMalloc)); VERIFY_SUCCEEDED(hlsl::CreateMemoryStream(pMalloc, &pStream)); VERIFY_ARE_NOT_EQUAL(pFormat, Vals + _countof(Vals)); VERIFY_SUCCEEDED(pFactory->CreateBitmapFromMemory(m_width, m_height, pFormat->PixelFormat, m_width * pFormat->PixelSize, m_width * m_height * pFormat->PixelSize, (BYTE *)pPixels, &pBitmap)); VERIFY_SUCCEEDED(pFactory->CreateEncoder(GUID_ContainerFormatBmp, nullptr, &pEncoder)); VERIFY_SUCCEEDED(pEncoder->Initialize(pStream, WICBitmapEncoderNoCache)); VERIFY_SUCCEEDED(pEncoder->CreateNewFrame(&pFrameEncode, nullptr)); VERIFY_SUCCEEDED(pFrameEncode->Initialize(nullptr)); VERIFY_SUCCEEDED(pFrameEncode->WriteSource(pBitmap, nullptr)); VERIFY_SUCCEEDED(pFrameEncode->Commit()); VERIFY_SUCCEEDED(pEncoder->Commit()); hlsl::WriteBinaryFile(pFileName, pStream->GetPtr(), pStream->GetPtrSize()); } class ExecutionTest { public: // By default, ignore these tests, which require a recent build to run properly. BEGIN_TEST_CLASS(ExecutionTest) TEST_CLASS_PROPERTY(L"Ignore", L"true") TEST_METHOD_PROPERTY(L"Priority", L"0") END_TEST_CLASS() TEST_CLASS_SETUP(ExecutionTestClassSetup) TEST_METHOD(BasicComputeTest); TEST_METHOD(BasicTriangleTest); TEST_METHOD(BasicTriangleOpTest); TEST_METHOD(MinMaxTest); TEST_METHOD(OutOfBoundsTest); TEST_METHOD(SaturateTest); TEST_METHOD(SignTest); TEST_METHOD(Int64Test); TEST_METHOD(WaveIntrinsicsTest); TEST_METHOD(WaveIntrinsicsInPSTest); TEST_METHOD(DoShaderOpArithTest); dxc::DxcDllSupport m_support; bool m_ExperimentalModeEnabled = false; static const float ClearColor[4]; bool UseDxbc() { return GetTestParamBool(L"DXBC"); } bool UseDebugIfaces() { return true; } bool SaveImages() { return GetTestParamBool(L"SaveImages"); } void CompileFromText(LPCSTR pText, LPCWSTR pEntryPoint, LPCWSTR pTargetProfile, ID3DBlob **ppBlob) { VERIFY_SUCCEEDED(m_support.Initialize()); CComPtr pCompiler; CComPtr pLibrary; CComPtr pTextBlob; CComPtr pResult; HRESULT resultCode; VERIFY_SUCCEEDED(m_support.CreateInstance(CLSID_DxcCompiler, &pCompiler)); VERIFY_SUCCEEDED(m_support.CreateInstance(CLSID_DxcLibrary, &pLibrary)); VERIFY_SUCCEEDED(pLibrary->CreateBlobWithEncodingFromPinned((LPBYTE)pText, strlen(pText), CP_UTF8, &pTextBlob)); VERIFY_SUCCEEDED(pCompiler->Compile(pTextBlob, L"hlsl.hlsl", pEntryPoint, pTargetProfile, nullptr, 0, nullptr, 0, nullptr, &pResult)); VERIFY_SUCCEEDED(pResult->GetStatus(&resultCode)); if (FAILED(resultCode)) { CComPtr errors; VERIFY_SUCCEEDED(pResult->GetErrorBuffer(&errors)); LogCommentFmt(L"Failed to compile shader: %s", BlobToUtf16(errors).data()); } VERIFY_SUCCEEDED(resultCode); VERIFY_SUCCEEDED(pResult->GetResult((IDxcBlob **)ppBlob)); } void CreateComputeCommandQueue(ID3D12Device *pDevice, LPCWSTR pName, ID3D12CommandQueue **ppCommandQueue) { D3D12_COMMAND_QUEUE_DESC queueDesc = {}; queueDesc.Flags = D3D12_COMMAND_QUEUE_FLAG_NONE; queueDesc.Type = D3D12_COMMAND_LIST_TYPE_COMPUTE; VERIFY_SUCCEEDED(pDevice->CreateCommandQueue(&queueDesc, IID_PPV_ARGS(ppCommandQueue))); VERIFY_SUCCEEDED((*ppCommandQueue)->SetName(pName)); } void CreateComputePSO(ID3D12Device *pDevice, ID3D12RootSignature *pRootSignature, LPCSTR pShader, ID3D12PipelineState **ppComputeState) { CComPtr pComputeShader; // Load and compile shaders. if (UseDxbc()) { DXBCFromText(pShader, L"main", L"cs_6_0", &pComputeShader); } else { CompileFromText(pShader, L"main", L"cs_6_0", &pComputeShader); } // Describe and create the compute pipeline state object (PSO). D3D12_COMPUTE_PIPELINE_STATE_DESC computePsoDesc = {}; computePsoDesc.pRootSignature = pRootSignature; computePsoDesc.CS = CD3DX12_SHADER_BYTECODE(pComputeShader); VERIFY_SUCCEEDED(pDevice->CreateComputePipelineState(&computePsoDesc, IID_PPV_ARGS(ppComputeState))); } bool CreateDevice(_COM_Outptr_ ID3D12Device **ppDevice) { const D3D_FEATURE_LEVEL FeatureLevelRequired = D3D_FEATURE_LEVEL_11_0; CComPtr factory; CComPtr pDevice; *ppDevice = nullptr; VERIFY_SUCCEEDED(CreateDXGIFactory1(IID_PPV_ARGS(&factory))); if (GetTestParamUseWARP(true)) { CComPtr warpAdapter; VERIFY_SUCCEEDED(factory->EnumWarpAdapter(IID_PPV_ARGS(&warpAdapter))); HRESULT createHR = D3D12CreateDevice(warpAdapter, FeatureLevelRequired, IID_PPV_ARGS(&pDevice)); if (FAILED(createHR)) { LogCommentFmt(L"The available version of WARP does not support d3d12."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Blocked); return false; } } else { CComPtr hardwareAdapter; WEX::Common::String AdapterValue; IFT(WEX::TestExecution::RuntimeParameters::TryGetValue(L"Adapter", AdapterValue)); GetHardwareAdapter(factory, AdapterValue, &hardwareAdapter); if (hardwareAdapter == nullptr) { WEX::Logging::Log::Error( L"Unable to find hardware adapter with D3D12 support."); return false; } VERIFY_SUCCEEDED(D3D12CreateDevice(hardwareAdapter, FeatureLevelRequired, IID_PPV_ARGS(&pDevice))); } if (pDevice == nullptr) return false; if (!UseDxbc()) { // Check for DXIL support. // This is defined in d3d.h for Windows 10 Anniversary Edition SDK, but we only // require the Windows 10 SDK. typedef enum D3D_SHADER_MODEL { D3D_SHADER_MODEL_5_1 = 0x51, D3D_SHADER_MODEL_6_0 = 0x60 } D3D_SHADER_MODEL; typedef struct D3D12_FEATURE_DATA_SHADER_MODEL { _Inout_ D3D_SHADER_MODEL HighestShaderModel; } D3D12_FEATURE_DATA_SHADER_MODEL; const UINT D3D12_FEATURE_SHADER_MODEL = 7; D3D12_FEATURE_DATA_SHADER_MODEL SMData; SMData.HighestShaderModel = D3D_SHADER_MODEL_6_0; VERIFY_SUCCEEDED(pDevice->CheckFeatureSupport( (D3D12_FEATURE)D3D12_FEATURE_SHADER_MODEL, &SMData, sizeof(SMData))); if (SMData.HighestShaderModel != D3D_SHADER_MODEL_6_0) { LogCommentFmt(L"The selected device does not support " L"shader model 6 (required for DXIL)."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Blocked); return false; } } if (UseDebugIfaces()) { CComPtr pInfoQueue; if (SUCCEEDED(pDevice->QueryInterface(&pInfoQueue))) { pInfoQueue->SetMuteDebugOutput(FALSE); } } *ppDevice = pDevice.Detach(); return true; } void CreateGraphicsCommandQueue(ID3D12Device *pDevice, ID3D12CommandQueue **ppCommandQueue) { D3D12_COMMAND_QUEUE_DESC queueDesc = {}; queueDesc.Flags = D3D12_COMMAND_QUEUE_FLAG_NONE; queueDesc.Type = D3D12_COMMAND_LIST_TYPE_DIRECT;; VERIFY_SUCCEEDED(pDevice->CreateCommandQueue(&queueDesc, IID_PPV_ARGS(ppCommandQueue))); } void CreateGraphicsCommandQueueAndList( ID3D12Device *pDevice, ID3D12CommandQueue **ppCommandQueue, ID3D12CommandAllocator **ppAllocator, ID3D12GraphicsCommandList **ppCommandList, ID3D12PipelineState *pPSO) { CreateGraphicsCommandQueue(pDevice, ppCommandQueue); VERIFY_SUCCEEDED(pDevice->CreateCommandAllocator( D3D12_COMMAND_LIST_TYPE_DIRECT, IID_PPV_ARGS(ppAllocator))); VERIFY_SUCCEEDED(pDevice->CreateCommandList( 0, D3D12_COMMAND_LIST_TYPE_DIRECT, *ppAllocator, pPSO, IID_PPV_ARGS(ppCommandList))); } void CreateGraphicsPSO(ID3D12Device *pDevice, D3D12_INPUT_LAYOUT_DESC *pInputLayout, ID3D12RootSignature *pRootSignature, LPCSTR pShaders, ID3D12PipelineState **ppPSO) { CComPtr vertexShader; CComPtr pixelShader; if (UseDxbc()) { DXBCFromText(pShaders, L"VSMain", L"vs_6_0", &vertexShader); DXBCFromText(pShaders, L"PSMain", L"ps_6_0", &pixelShader); } else { CompileFromText(pShaders, L"VSMain", L"vs_6_0", &vertexShader); CompileFromText(pShaders, L"PSMain", L"ps_6_0", &pixelShader); } // Describe and create the graphics pipeline state object (PSO). D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {}; psoDesc.InputLayout = *pInputLayout; psoDesc.pRootSignature = pRootSignature; psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader); psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader); psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT); psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT); psoDesc.DepthStencilState.DepthEnable = FALSE; psoDesc.DepthStencilState.StencilEnable = FALSE; psoDesc.SampleMask = UINT_MAX; psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE; psoDesc.NumRenderTargets = 1; psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM; psoDesc.SampleDesc.Count = 1; VERIFY_SUCCEEDED( pDevice->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(ppPSO))); } void CreateRenderTargetAndReadback(ID3D12Device *pDevice, ID3D12DescriptorHeap *pHeap, UINT width, UINT height, ID3D12Resource **ppRenderTarget, ID3D12Resource **ppBuffer) { const DXGI_FORMAT format = DXGI_FORMAT_R8G8B8A8_UNORM; const size_t formatElementSize = 4; CComPtr pRenderTarget; CComPtr pBuffer; CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHandle( pHeap->GetCPUDescriptorHandleForHeapStart()); CD3DX12_HEAP_PROPERTIES rtHeap(D3D12_HEAP_TYPE_DEFAULT); CD3DX12_RESOURCE_DESC rtDesc( CD3DX12_RESOURCE_DESC::Tex2D(format, width, height)); CD3DX12_CLEAR_VALUE rtClearVal(format, ClearColor); rtDesc.Flags = D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET; VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &rtHeap, D3D12_HEAP_FLAG_NONE, &rtDesc, D3D12_RESOURCE_STATE_COPY_DEST, &rtClearVal, IID_PPV_ARGS(&pRenderTarget))); pDevice->CreateRenderTargetView(pRenderTarget, nullptr, rtvHandle); // rtvHandle.Offset(1, rtvDescriptorSize); // Not needed for a single // resource. CD3DX12_HEAP_PROPERTIES readHeap(D3D12_HEAP_TYPE_READBACK); CD3DX12_RESOURCE_DESC readDesc( CD3DX12_RESOURCE_DESC::Buffer(width * height * formatElementSize)); VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &readHeap, D3D12_HEAP_FLAG_NONE, &readDesc, D3D12_RESOURCE_STATE_COPY_DEST, nullptr, IID_PPV_ARGS(&pBuffer))); *ppRenderTarget = pRenderTarget.Detach(); *ppBuffer = pBuffer.Detach(); } void CreateRootSignatureFromDesc(ID3D12Device *pDevice, const D3D12_ROOT_SIGNATURE_DESC *pDesc, ID3D12RootSignature **pRootSig) { CComPtr signature; CComPtr error; VERIFY_SUCCEEDED(D3D12SerializeRootSignature(pDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error)); VERIFY_SUCCEEDED(pDevice->CreateRootSignature( 0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(pRootSig))); } void CreateRtvDescriptorHeap(ID3D12Device *pDevice, UINT numDescriptors, ID3D12DescriptorHeap **pRtvHeap, UINT *rtvDescriptorSize) { D3D12_DESCRIPTOR_HEAP_DESC rtvHeapDesc = {}; rtvHeapDesc.NumDescriptors = numDescriptors; rtvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_RTV; rtvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE; VERIFY_SUCCEEDED( pDevice->CreateDescriptorHeap(&rtvHeapDesc, IID_PPV_ARGS(pRtvHeap))); if (rtvDescriptorSize != nullptr) { *rtvDescriptorSize = pDevice->GetDescriptorHandleIncrementSize( D3D12_DESCRIPTOR_HEAP_TYPE_RTV); } } void CreateTestUavs(ID3D12Device *pDevice, ID3D12GraphicsCommandList *pCommandList, LPCVOID values, UINT32 valueSizeInBytes, ID3D12Resource **ppUavResource, ID3D12Resource **ppReadBuffer, ID3D12Resource **ppUploadResource) { CComPtr pUavResource; CComPtr pReadBuffer; CComPtr pUploadResource; D3D12_SUBRESOURCE_DATA transferData; D3D12_HEAP_PROPERTIES defaultHeapProperties = CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT); D3D12_HEAP_PROPERTIES uploadHeapProperties = CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD); D3D12_RESOURCE_DESC bufferDesc = CD3DX12_RESOURCE_DESC::Buffer(valueSizeInBytes, D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS); D3D12_RESOURCE_DESC uploadBufferDesc = CD3DX12_RESOURCE_DESC::Buffer(valueSizeInBytes); CD3DX12_HEAP_PROPERTIES readHeap(D3D12_HEAP_TYPE_READBACK); CD3DX12_RESOURCE_DESC readDesc(CD3DX12_RESOURCE_DESC::Buffer(valueSizeInBytes)); VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &defaultHeapProperties, D3D12_HEAP_FLAG_NONE, &bufferDesc, D3D12_RESOURCE_STATE_COPY_DEST, nullptr, IID_PPV_ARGS(&pUavResource))); VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &uploadHeapProperties, D3D12_HEAP_FLAG_NONE, &uploadBufferDesc, D3D12_RESOURCE_STATE_GENERIC_READ, nullptr, IID_PPV_ARGS(&pUploadResource))); VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &readHeap, D3D12_HEAP_FLAG_NONE, &readDesc, D3D12_RESOURCE_STATE_COPY_DEST, nullptr, IID_PPV_ARGS(&pReadBuffer))); transferData.pData = values; transferData.RowPitch = valueSizeInBytes; transferData.SlicePitch = transferData.RowPitch; UpdateSubresources<1>(pCommandList, pUavResource.p, pUploadResource.p, 0, 0, 1, &transferData); RecordTransitionBarrier(pCommandList, pUavResource, D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_UNORDERED_ACCESS); *ppUavResource = pUavResource.Detach(); *ppReadBuffer = pReadBuffer.Detach(); *ppUploadResource = pUploadResource.Detach(); } template void CreateVertexBuffer(ID3D12Device *pDevice, TVertex(&vertices)[len], ID3D12Resource **ppVertexBuffer, D3D12_VERTEX_BUFFER_VIEW *pVertexBufferView) { size_t vertexBufferSize = sizeof(vertices); CComPtr pVertexBuffer; CD3DX12_HEAP_PROPERTIES heapProps(D3D12_HEAP_TYPE_UPLOAD); CD3DX12_RESOURCE_DESC bufferDesc( CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize)); VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &heapProps, D3D12_HEAP_FLAG_NONE, &bufferDesc, D3D12_RESOURCE_STATE_GENERIC_READ, nullptr, IID_PPV_ARGS(&pVertexBuffer))); UINT8 *pVertexDataBegin; CD3DX12_RANGE readRange(0, 0); VERIFY_SUCCEEDED(pVertexBuffer->Map( 0, &readRange, reinterpret_cast(&pVertexDataBegin))); memcpy(pVertexDataBegin, vertices, vertexBufferSize); pVertexBuffer->Unmap(0, nullptr); // Initialize the vertex buffer view. pVertexBufferView->BufferLocation = pVertexBuffer->GetGPUVirtualAddress(); pVertexBufferView->StrideInBytes = sizeof(TVertex); pVertexBufferView->SizeInBytes = vertexBufferSize; *ppVertexBuffer = pVertexBuffer.Detach(); } // Requires Anniversary Edition headers, so simplifying things for current setup. const UINT D3D12_FEATURE_D3D12_OPTIONS1 = 8; struct D3D12_FEATURE_DATA_D3D12_OPTIONS1 { BOOL WaveOps; UINT WaveLaneCountMin; UINT WaveLaneCountMax; UINT TotalLaneCount; BOOL ExpandedComputeResourceStates; BOOL Int64ShaderOps; }; bool DoesDeviceSupportInt64(ID3D12Device *pDevice) { D3D12_FEATURE_DATA_D3D12_OPTIONS1 O; if (FAILED(pDevice->CheckFeatureSupport((D3D12_FEATURE)D3D12_FEATURE_D3D12_OPTIONS1, &O, sizeof(O)))) return false; return O.Int64ShaderOps != FALSE; } bool DoesDeviceSupportWaveOps(ID3D12Device *pDevice) { D3D12_FEATURE_DATA_D3D12_OPTIONS1 O; if (FAILED(pDevice->CheckFeatureSupport((D3D12_FEATURE)D3D12_FEATURE_D3D12_OPTIONS1, &O, sizeof(O)))) return false; return O.WaveOps != FALSE; } void DXBCFromText(LPCSTR pText, LPCWSTR pEntryPoint, LPCWSTR pTargetProfile, ID3DBlob **ppBlob) { CW2A pEntryPointA(pEntryPoint, CP_UTF8); CW2A pTargetProfileA(pTargetProfile, CP_UTF8); CComPtr pErrors; D3D_SHADER_MACRO d3dMacro[2]; ZeroMemory(d3dMacro, sizeof(d3dMacro)); d3dMacro[0].Definition = "1"; d3dMacro[0].Name = "USING_DXBC"; HRESULT hr = D3DCompile(pText, strlen(pText), "hlsl.hlsl", d3dMacro, nullptr, pEntryPointA, pTargetProfileA, 0, 0, ppBlob, &pErrors); if (pErrors != nullptr) { CA2W errors((char *)pErrors->GetBufferPointer(), CP_ACP); LogCommentFmt(L"Compilation failure: %s", errors.m_szBuffer); } VERIFY_SUCCEEDED(hr); } HRESULT EnableDebugLayer() { // The debug layer does net yet validate DXIL programs that require rewriting, // but basic logging should work properly. HRESULT hr = S_FALSE; if (UseDebugIfaces()) { CComPtr debugController; hr = D3D12GetDebugInterface(IID_PPV_ARGS(&debugController)); if (SUCCEEDED(hr)) { debugController->EnableDebugLayer(); hr = S_OK; } } return hr; } HRESULT EnableExperimentalMode() { if (m_ExperimentalModeEnabled) { return S_OK; } if (!GetTestParamBool(L"ExperimentalShaders")) { return S_OK; } HRESULT hr = EnableExperimentalShaderModels(); if (SUCCEEDED(hr)) { m_ExperimentalModeEnabled = true; } return hr; } struct FenceObj { HANDLE m_fenceEvent = NULL; CComPtr m_fence; UINT64 m_fenceValue; ~FenceObj() { if (m_fenceEvent) CloseHandle(m_fenceEvent); } }; void InitFenceObj(ID3D12Device *pDevice, FenceObj *pObj) { pObj->m_fenceValue = 1; VERIFY_SUCCEEDED(pDevice->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&pObj->m_fence))); // Create an event handle to use for frame synchronization. pObj->m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr); if (pObj->m_fenceEvent == nullptr) { VERIFY_SUCCEEDED(HRESULT_FROM_WIN32(GetLastError())); } } void ReadHlslDataIntoNewStream(LPCWSTR relativePath, IStream **ppStream) { VERIFY_SUCCEEDED(m_support.Initialize()); CComPtr pLibrary; CComPtr pBlob; CComPtr pStream; std::wstring path = GetPathToHlslDataFile(relativePath); VERIFY_SUCCEEDED(m_support.CreateInstance(CLSID_DxcLibrary, &pLibrary)); VERIFY_SUCCEEDED(pLibrary->CreateBlobFromFile(path.c_str(), nullptr, &pBlob)); VERIFY_SUCCEEDED(pLibrary->CreateStreamFromBlobReadOnly(pBlob, &pStream)); *ppStream = pStream.Detach(); } void RecordRenderAndReadback(ID3D12GraphicsCommandList *pList, ID3D12DescriptorHeap *pRtvHeap, UINT rtvDescriptorSize, UINT instanceCount, D3D12_VERTEX_BUFFER_VIEW *pVertexBufferView, ID3D12RootSignature *pRootSig, ID3D12Resource *pRenderTarget, ID3D12Resource *pReadBuffer) { D3D12_RESOURCE_DESC rtDesc = pRenderTarget->GetDesc(); D3D12_VIEWPORT viewport; D3D12_RECT scissorRect; memset(&viewport, 0, sizeof(viewport)); viewport.Height = rtDesc.Height; viewport.Width = rtDesc.Width; viewport.MaxDepth = 1.0f; memset(&scissorRect, 0, sizeof(scissorRect)); scissorRect.right = rtDesc.Width; scissorRect.bottom = rtDesc.Height; if (pRootSig != nullptr) { pList->SetGraphicsRootSignature(pRootSig); } pList->RSSetViewports(1, &viewport); pList->RSSetScissorRects(1, &scissorRect); // Indicate that the buffer will be used as a render target. RecordTransitionBarrier(pList, pRenderTarget, D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_RENDER_TARGET); CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHandle(pRtvHeap->GetCPUDescriptorHandleForHeapStart(), 0, rtvDescriptorSize); pList->OMSetRenderTargets(1, &rtvHandle, FALSE, nullptr); pList->ClearRenderTargetView(rtvHandle, ClearColor, 0, nullptr); pList->IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST); pList->IASetVertexBuffers(0, 1, pVertexBufferView); pList->DrawInstanced(3, instanceCount, 0, 0); // Transition to copy source and copy into read-back buffer. RecordTransitionBarrier(pList, pRenderTarget, D3D12_RESOURCE_STATE_RENDER_TARGET, D3D12_RESOURCE_STATE_COPY_SOURCE); // Copy into read-back buffer. UINT rowPitch = rtDesc.Width * 4; if (rowPitch % D3D12_TEXTURE_DATA_PITCH_ALIGNMENT) rowPitch += D3D12_TEXTURE_DATA_PITCH_ALIGNMENT - (rowPitch % D3D12_TEXTURE_DATA_PITCH_ALIGNMENT); D3D12_PLACED_SUBRESOURCE_FOOTPRINT Footprint; Footprint.Offset = 0; Footprint.Footprint = CD3DX12_SUBRESOURCE_FOOTPRINT(DXGI_FORMAT_R8G8B8A8_UNORM, rtDesc.Width, rtDesc.Height, 1, rowPitch); CD3DX12_TEXTURE_COPY_LOCATION DstLoc(pReadBuffer, Footprint); CD3DX12_TEXTURE_COPY_LOCATION SrcLoc(pRenderTarget, 0); pList->CopyTextureRegion(&DstLoc, 0, 0, 0, &SrcLoc, nullptr); } void RunRWByteBufferComputeTest(ID3D12Device *pDevice, LPCSTR shader, std::vector &values); void SetDescriptorHeap(ID3D12GraphicsCommandList *pCommandList, ID3D12DescriptorHeap *pHeap) { ID3D12DescriptorHeap *const pHeaps[1] = { pHeap }; pCommandList->SetDescriptorHeaps(1, pHeaps); } void WaitForSignal(ID3D12CommandQueue *pCQ, FenceObj &FO) { ::WaitForSignal(pCQ, FO.m_fence, FO.m_fenceEvent, FO.m_fenceValue++); } }; const float ExecutionTest::ClearColor[4] = { 0.0f, 0.2f, 0.4f, 1.0f }; #define WAVE_INTRINSIC_DXBC_GUARD \ "#ifdef USING_DXBC\r\n" \ "uint WaveGetLaneIndex() { return 1; }\r\n" \ "uint WaveReadLaneFirst(uint u) { return u; }\r\n" \ "bool WaveIsFirstLane() { return true; }\r\n" \ "uint WaveGetLaneCount() { return 1; }\r\n" \ "uint WaveReadLaneAt(uint n, uint u) { return u; }\r\n" \ "bool WaveActiveAnyTrue(bool b) { return b; }\r\n" \ "bool WaveActiveAllTrue(bool b) { return false; }\r\n" \ "uint WaveActiveAllEqual(uint u) { return u; }\r\n" \ "uint4 WaveActiveBallot(bool b) { return 1; }\r\n" \ "uint WaveActiveCountBits(uint u) { return 1; }\r\n" \ "uint WaveActiveSum(uint u) { return 1; }\r\n" \ "uint WaveActiveProduct(uint u) { return 1; }\r\n" \ "uint WaveActiveBitAnd(uint u) { return 1; }\r\n" \ "uint WaveActiveBitOr(uint u) { return 1; }\r\n" \ "uint WaveActiveBitXor(uint u) { return 1; }\r\n" \ "uint WaveActiveMin(uint u) { return 1; }\r\n" \ "uint WaveActiveMax(uint u) { return 1; }\r\n" \ "uint WavePrefixCountBits(uint u) { return 1; }\r\n" \ "uint WavePrefixSum(uint u) { return 1; }\r\n" \ "uint WavePrefixProduct(uint u) { return 1; }\r\n" \ "uint QuadReadLaneAt(uint a, uint u) { return 1; }\r\n" \ "uint QuadReadAcrossX(uint u) { return 1; }\r\n" \ "uint QuadReadAcrossY(uint u) { return 1; }\r\n" \ "uint QuadReadAcrossDiagonal(uint u) { return 1; }\r\n" \ "#endif\r\n" static void SetupComputeValuePattern(std::vector &values, size_t count) { values.resize(count); // one element per dispatch group, in bytes for (size_t i = 0; i < count; ++i) { values[i] = i; } } bool ExecutionTest::ExecutionTestClassSetup() { HRESULT hr = EnableExperimentalMode(); if (FAILED(hr)) { LogCommentFmt(L"Unable to enable shader experimental mode - 0x%08x.", hr); } else { LogCommentFmt(L"Experimental mode enabled."); } hr = EnableDebugLayer(); if (FAILED(hr)) { LogCommentFmt(L"Unable to enable debug layer - 0x%08x.", hr); } else { LogCommentFmt(L"Debug layer enabled."); } return true; } void ExecutionTest::RunRWByteBufferComputeTest(ID3D12Device *pDevice, LPCSTR pShader, std::vector &values) { static const int DispatchGroupX = 1; static const int DispatchGroupY = 1; static const int DispatchGroupZ = 1; CComPtr pCommandList; CComPtr pCommandQueue; CComPtr pUavHeap; CComPtr pCommandAllocator; UINT uavDescriptorSize; FenceObj FO; const size_t valueSizeInBytes = values.size() * sizeof(uint32_t); CreateComputeCommandQueue(pDevice, L"RunRWByteBufferComputeTest Command Queue", &pCommandQueue); InitFenceObj(pDevice, &FO); // Describe and create a UAV descriptor heap. D3D12_DESCRIPTOR_HEAP_DESC heapDesc = {}; heapDesc.NumDescriptors = 1; heapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV; heapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE; VERIFY_SUCCEEDED(pDevice->CreateDescriptorHeap(&heapDesc, IID_PPV_ARGS(&pUavHeap))); uavDescriptorSize = pDevice->GetDescriptorHandleIncrementSize(heapDesc.Type); // Create root signature. CComPtr pRootSignature; { CD3DX12_DESCRIPTOR_RANGE ranges[1]; ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 0, 0, 0); CD3DX12_ROOT_PARAMETER rootParameters[1]; rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_ALL); CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_NONE); CreateRootSignatureFromDesc(pDevice, &rootSignatureDesc, &pRootSignature); } // Create pipeline state object. CComPtr pComputeState; CreateComputePSO(pDevice, pRootSignature, pShader, &pComputeState); // Create a command allocator and list for compute. VERIFY_SUCCEEDED(pDevice->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_COMPUTE, IID_PPV_ARGS(&pCommandAllocator))); VERIFY_SUCCEEDED(pDevice->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COMPUTE, pCommandAllocator, pComputeState, IID_PPV_ARGS(&pCommandList))); pCommandList->SetName(L"ExecutionTest::RunRWByteButterComputeTest Command List"); // Set up UAV resource. CComPtr pUavResource; CComPtr pReadBuffer; CComPtr pUploadResource; CreateTestUavs(pDevice, pCommandList, values.data(), valueSizeInBytes, &pUavResource, &pReadBuffer, &pUploadResource); VERIFY_SUCCEEDED(pUavResource->SetName(L"RunRWByteBufferComputeText UAV")); VERIFY_SUCCEEDED(pReadBuffer->SetName(L"RunRWByteBufferComputeText UAV Read Buffer")); VERIFY_SUCCEEDED(pUploadResource->SetName(L"RunRWByteBufferComputeText UAV Upload Buffer")); // Close the command list and execute it to perform the GPU setup. pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); VERIFY_SUCCEEDED(pCommandAllocator->Reset()); VERIFY_SUCCEEDED(pCommandList->Reset(pCommandAllocator, pComputeState)); // Run the compute shader and copy the results back to readable memory. { D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {}; uavDesc.Format = DXGI_FORMAT_R32_TYPELESS; uavDesc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER; uavDesc.Buffer.FirstElement = 0; uavDesc.Buffer.NumElements = values.size(); uavDesc.Buffer.StructureByteStride = 0; uavDesc.Buffer.CounterOffsetInBytes = 0; uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_RAW; CD3DX12_CPU_DESCRIPTOR_HANDLE uavHandle(pUavHeap->GetCPUDescriptorHandleForHeapStart()); CD3DX12_GPU_DESCRIPTOR_HANDLE uavHandleGpu(pUavHeap->GetGPUDescriptorHandleForHeapStart()); pDevice->CreateUnorderedAccessView(pUavResource, nullptr, &uavDesc, uavHandle); SetDescriptorHeap(pCommandList, pUavHeap); pCommandList->SetComputeRootSignature(pRootSignature); pCommandList->SetComputeRootDescriptorTable(0, uavHandleGpu); } pCommandList->Dispatch(DispatchGroupX, DispatchGroupY, DispatchGroupZ); RecordTransitionBarrier(pCommandList, pUavResource, D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COPY_SOURCE); pCommandList->CopyResource(pReadBuffer, pUavResource); pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); { MappedData mappedData(pReadBuffer, valueSizeInBytes); uint32_t *pData = (uint32_t *)mappedData.data(); memcpy(values.data(), pData, valueSizeInBytes); } WaitForSignal(pCommandQueue, FO); } TEST_F(ExecutionTest, BasicComputeTest) { // // BasicComputeTest is a simple compute shader that can be used as the basis // for more interesting compute execution tests. // The HLSL is compatible with shader models <=5.1 to allow using the DXBC // rendering code paths for comparison. // static const char pShader[] = "RWByteAddressBuffer g_bab : register(u0);\r\n" "[numthreads(8,8,1)]\r\n" "void main(uint GI : SV_GroupIndex) {" " uint addr = GI * 4;\r\n" " uint val = g_bab.Load(addr);\r\n" " DeviceMemoryBarrierWithGroupSync();\r\n" " g_bab.Store(addr, val + 1);\r\n" "}"; static const int NumtheadsX = 8; static const int NumtheadsY = 8; static const int NumtheadsZ = 1; static const int ThreadsPerGroup = NumtheadsX * NumtheadsY * NumtheadsZ; static const int DispatchGroupCount = 1; CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::vector values; SetupComputeValuePattern(values, ThreadsPerGroup * DispatchGroupCount); VERIFY_ARE_EQUAL(values[0], 0); RunRWByteBufferComputeTest(pDevice, pShader, values); VERIFY_ARE_EQUAL(values[0], 1); } TEST_F(ExecutionTest, BasicTriangleTest) { static const UINT FrameCount = 2; static const UINT m_width = 320; static const UINT m_height = 200; static const float m_aspectRatio = static_cast(m_width) / static_cast(m_height); struct Vertex { XMFLOAT3 position; XMFLOAT4 color; }; // Pipeline objects. CComPtr pDevice; CComPtr pRenderTarget; CComPtr pCommandAllocator; CComPtr pCommandQueue; CComPtr pRootSig; CComPtr pRtvHeap; CComPtr pPipelineState; CComPtr pCommandList; CComPtr pReadBuffer; UINT rtvDescriptorSize; CComPtr pVertexBuffer; D3D12_VERTEX_BUFFER_VIEW vertexBufferView; // Synchronization objects. FenceObj FO; // Shaders. static const char pShaders[] = "struct PSInput {\r\n" " float4 position : SV_POSITION;\r\n" " float4 color : COLOR;\r\n" "};\r\n\r\n" "PSInput VSMain(float4 position : POSITION, float4 color : COLOR) {\r\n" " PSInput result;\r\n" "\r\n" " result.position = position;\r\n" " result.color = color;\r\n" " return result;\r\n" "}\r\n\r\n" "float4 PSMain(PSInput input) : SV_TARGET {\r\n" " return 1; //input.color;\r\n" "};\r\n"; if (!CreateDevice(&pDevice)) return; struct BasicTestChecker { CComPtr m_pDevice; CComPtr m_pInfoQueue; bool m_OK = false; void SetOK(bool value) { m_OK = value; } BasicTestChecker(ID3D12Device *pDevice) : m_pDevice(pDevice) { if (FAILED(m_pDevice.QueryInterface(&m_pInfoQueue))) return; m_pInfoQueue->PushEmptyStorageFilter(); m_pInfoQueue->PushEmptyRetrievalFilter(); } ~BasicTestChecker() { if (!m_OK && m_pInfoQueue != nullptr) { UINT64 count = m_pInfoQueue->GetNumStoredMessages(); bool invalidBytecodeFound = false; CAtlArray m_pBytes; for (UINT64 i = 0; i < count; ++i) { SIZE_T len = 0; if (FAILED(m_pInfoQueue->GetMessageA(i, nullptr, &len))) continue; if (m_pBytes.GetCount() < len && !m_pBytes.SetCount(len)) continue; D3D12_MESSAGE *pMsg = (D3D12_MESSAGE *)m_pBytes.GetData(); if (FAILED(m_pInfoQueue->GetMessageA(i, pMsg, &len))) continue; if (pMsg->ID == D3D12_MESSAGE_ID_CREATEVERTEXSHADER_INVALIDSHADERBYTECODE || pMsg->ID == D3D12_MESSAGE_ID_CREATEPIXELSHADER_INVALIDSHADERBYTECODE) { invalidBytecodeFound = true; break; } } if (invalidBytecodeFound) { LogCommentFmt(L"%s", L"Found an invalid bytecode message. This " L"typically indicates that experimental mode " L"is not set up properly."); if (!GetTestParamBool(L"ExperimentalShaders")) { LogCommentFmt(L"Note that the ExperimentalShaders test parameter isn't set."); } } else { LogCommentFmt(L"Did not find corrupt pixel or vertex shaders in " L"queue - dumping complete queue."); WriteInfoQueueMessages(nullptr, OutputFn, m_pInfoQueue); } } } static void __stdcall OutputFn(void *pCtx, const wchar_t *pMsg) { LogCommentFmt(L"%s", pMsg); } }; BasicTestChecker BTC(pDevice); { InitFenceObj(pDevice, &FO); CreateRtvDescriptorHeap(pDevice, FrameCount, &pRtvHeap, &rtvDescriptorSize); CreateRenderTargetAndReadback(pDevice, pRtvHeap, m_width, m_height, &pRenderTarget, &pReadBuffer); // Create an empty root signature. CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init( 0, nullptr, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT); CreateRootSignatureFromDesc(pDevice, &rootSignatureDesc, &pRootSig); // Create the pipeline state, which includes compiling and loading shaders. // Define the vertex input layout. D3D12_INPUT_ELEMENT_DESC inputElementDescs[] = { {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0}, {"COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0}}; D3D12_INPUT_LAYOUT_DESC InputLayout = { inputElementDescs, _countof(inputElementDescs) }; CreateGraphicsPSO(pDevice, &InputLayout, pRootSig, pShaders, &pPipelineState); CreateGraphicsCommandQueueAndList(pDevice, &pCommandQueue, &pCommandAllocator, &pCommandList, pPipelineState); // Define the geometry for a triangle. Vertex triangleVertices[] = { { { 0.0f, 0.25f * m_aspectRatio, 0.0f },{ 1.0f, 0.0f, 0.0f, 1.0f } }, { { 0.25f, -0.25f * m_aspectRatio, 0.0f },{ 0.0f, 1.0f, 0.0f, 1.0f } }, { { -0.25f, -0.25f * m_aspectRatio, 0.0f },{ 0.0f, 0.0f, 1.0f, 1.0f } } }; CreateVertexBuffer(pDevice, triangleVertices, &pVertexBuffer, &vertexBufferView); WaitForSignal(pCommandQueue, FO); } // Render and execute the command list. RecordRenderAndReadback(pCommandList, pRtvHeap, rtvDescriptorSize, 1, &vertexBufferView, pRootSig, pRenderTarget, pReadBuffer); VERIFY_SUCCEEDED(pCommandList->Close()); ExecuteCommandList(pCommandQueue, pCommandList); // Wait for previous frame. WaitForSignal(pCommandQueue, FO); // At this point, we've verified that execution succeeded with DXIL. BTC.SetOK(true); // Read back to CPU and examine contents. { MappedData data(pReadBuffer, m_width * m_height * 4); const uint32_t *pPixels = (uint32_t *)data.data(); if (SaveImages()) { SavePixelsToFile(pPixels, DXGI_FORMAT_R8G8B8A8_UNORM, m_width, m_height, L"basic.bmp"); } uint32_t top = pPixels[m_width / 2]; // Top center. uint32_t mid = pPixels[m_width / 2 + m_width * (m_height / 2)]; // Middle center. VERIFY_ARE_EQUAL(0xff663300, top); // clear color VERIFY_ARE_EQUAL(0xffffffff, mid); // white } } TEST_F(ExecutionTest, Int64Test) { static const char pShader[] = "RWByteAddressBuffer g_bab : register(u0);\r\n" "[numthreads(8,8,1)]\r\n" "void main(uint GI : SV_GroupIndex) {" " uint addr = GI * 4;\r\n" " uint val = g_bab.Load(addr);\r\n" " uint64_t u64 = val;\r\n" " u64 *= val;\r\n" " g_bab.Store(addr, (uint)(u64 >> 32));\r\n" "}"; static const int NumtheadsX = 8; static const int NumtheadsY = 8; static const int NumtheadsZ = 1; static const int ThreadsPerGroup = NumtheadsX * NumtheadsY * NumtheadsZ; static const int DispatchGroupCount = 1; CComPtr pDevice; if (!CreateDevice(&pDevice)) return; if (!DoesDeviceSupportInt64(pDevice)) { // Optional feature, so it's correct to not support it if declared as such. WEX::Logging::Log::Comment(L"Device does not support int64 operations."); return; } std::vector values; SetupComputeValuePattern(values, ThreadsPerGroup * DispatchGroupCount); VERIFY_ARE_EQUAL(values[0], 0); RunRWByteBufferComputeTest(pDevice, pShader, values); VERIFY_ARE_EQUAL(values[0], 0); } TEST_F(ExecutionTest, SignTest) { static const char pShader[] = "RWByteAddressBuffer g_bab : register(u0);\r\n" "[numthreads(8,1,1)]\r\n" "void main(uint GI : SV_GroupIndex) {" " uint addr = GI * 4;\r\n" " int val = g_bab.Load(addr);\r\n" " g_bab.Store(addr, (uint)(sign(val)));\r\n" "}"; static const int NumtheadsX = 8; static const int NumtheadsY = 1; static const int NumtheadsZ = 1; static const int ThreadsPerGroup = NumtheadsX * NumtheadsY * NumtheadsZ; static const int DispatchGroupCount = 1; CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::vector values = { (uint32_t)-3, (uint32_t)-2, (uint32_t)-1, 0, 1, 2, 3, 4}; RunRWByteBufferComputeTest(pDevice, pShader, values); VERIFY_ARE_EQUAL(values[0], -1); VERIFY_ARE_EQUAL(values[1], -1); VERIFY_ARE_EQUAL(values[2], -1); VERIFY_ARE_EQUAL(values[3], 0); VERIFY_ARE_EQUAL(values[4], 1); VERIFY_ARE_EQUAL(values[5], 1); VERIFY_ARE_EQUAL(values[6], 1); VERIFY_ARE_EQUAL(values[7], 1); } TEST_F(ExecutionTest, WaveIntrinsicsTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); struct PerThreadData { uint32_t id, flags, laneIndex, laneCount, firstLaneId, preds, firstlaneX, lane1X; uint32_t allBC, allSum, allProd, allAND, allOR, allXOR, allMin, allMax; uint32_t pfBC, pfSum, pfProd; uint32_t ballot[4]; uint32_t diver; // divergent value, used in calculation int32_t i_diver; // divergent value, used in calculation int32_t i_allMax, i_allMin, i_allSum, i_allProd; int32_t i_pfSum, i_pfProd; }; static const char pShader[] = WAVE_INTRINSIC_DXBC_GUARD "struct PerThreadData {\r\n" " uint id, flags, laneIndex, laneCount, firstLaneId, preds, firstlaneX, lane1X;\r\n" " uint allBC, allSum, allProd, allAND, allOR, allXOR, allMin, allMax;\r\n" " uint pfBC, pfSum, pfProd;\r\n" " uint4 ballot;\r\n" " uint diver;\r\n" " int i_diver;\r\n" " int i_allMax, i_allMin, i_allSum, i_allProd;\r\n" " int i_pfSum, i_pfProd;\r\n" "};\r\n" "RWStructuredBuffer g_sb : register(u0);\r\n" "[numthreads(8,8,1)]\r\n" "void main(uint GI : SV_GroupIndex, uint3 GTID : SV_GroupThreadID) {" " PerThreadData pts = g_sb[GI];\r\n" " uint diver = GTID.x + 2;\r\n" " pts.diver = diver;\r\n" " pts.flags = 0;\r\n" " pts.preds = 0;\r\n" " if (WaveIsFirstLane()) pts.flags |= 1;\r\n" " pts.laneIndex = WaveGetLaneIndex();\r\n" " pts.laneCount = WaveGetLaneCount();\r\n" " pts.firstLaneId = WaveReadLaneFirst(pts.id);\r\n" " pts.preds |= ((WaveActiveAnyTrue(diver == 1) ? 1 : 0) << 0);\r\n" " pts.preds |= ((WaveActiveAllTrue(diver == 1) ? 1 : 0) << 1);\r\n" " pts.preds |= ((WaveActiveAllEqual(diver) ? 1 : 0) << 2);\r\n" " pts.preds |= ((WaveActiveAllEqual(GTID.z) ? 1 : 0) << 3);\r\n" " pts.preds |= ((WaveActiveAllEqual(WaveReadLaneFirst(diver)) ? 1 : 0) << 4);\r\n" " pts.ballot = WaveActiveBallot(diver > 3);\r\n" " pts.firstlaneX = WaveReadLaneFirst(GTID.x);\r\n" " pts.lane1X = WaveReadLaneAt(GTID.x, 1);\r\n" "\r\n" " pts.allBC = WaveActiveCountBits(diver > 3);\r\n" " pts.allSum = WaveActiveSum(diver);\r\n" " pts.allProd = WaveActiveProduct(diver);\r\n" " pts.allAND = WaveActiveBitAnd(diver);\r\n" " pts.allOR = WaveActiveBitOr(diver);\r\n" " pts.allXOR = WaveActiveBitXor(diver);\r\n" " pts.allMin = WaveActiveMin(diver);\r\n" " pts.allMax = WaveActiveMax(diver);\r\n" "\r\n" " pts.pfBC = WavePrefixCountBits(diver > 3);\r\n" " pts.pfSum = WavePrefixSum(diver);\r\n" " pts.pfProd = WavePrefixProduct(diver);\r\n" "\r\n" " int i_diver = pts.i_diver;\r\n" " pts.i_allMax = WaveActiveMax(i_diver);\r\n" " pts.i_allMin = WaveActiveMin(i_diver);\r\n" " pts.i_allSum = WaveActiveSum(i_diver);\r\n" " pts.i_allProd = WaveActiveProduct(i_diver);\r\n" " pts.i_pfSum = WavePrefixSum(i_diver);\r\n" " pts.i_pfProd = WavePrefixProduct(i_diver);\r\n" "\r\n" " g_sb[GI] = pts;\r\n" "}"; static const int NumtheadsX = 8; static const int NumtheadsY = 8; static const int NumtheadsZ = 1; static const int ThreadsPerGroup = NumtheadsX * NumtheadsY * NumtheadsZ; static const int DispatchGroupCount = 1; CComPtr pDevice; if (!CreateDevice(&pDevice)) return; if (!DoesDeviceSupportWaveOps(pDevice)) { // Optional feature, so it's correct to not support it if declared as such. WEX::Logging::Log::Comment(L"Device does not support wave operations."); return; } std::vector values; values.resize(ThreadsPerGroup * DispatchGroupCount); for (size_t i = 0; i < values.size(); ++i) { memset(&values[i], 0, sizeof(PerThreadData)); values[i].id = i; values[i].i_diver = (int)i; values[i].i_diver *= (i % 2) ? 1 : -1; } static const int DispatchGroupX = 1; static const int DispatchGroupY = 1; static const int DispatchGroupZ = 1; CComPtr pCommandList; CComPtr pCommandQueue; CComPtr pUavHeap; CComPtr pCommandAllocator; UINT uavDescriptorSize; FenceObj FO; bool dxbc = UseDxbc(); const size_t valueSizeInBytes = values.size() * sizeof(PerThreadData); CreateComputeCommandQueue(pDevice, L"WaveIntrinsicsTest Command Queue", &pCommandQueue); InitFenceObj(pDevice, &FO); // Describe and create a UAV descriptor heap. D3D12_DESCRIPTOR_HEAP_DESC heapDesc = {}; heapDesc.NumDescriptors = 1; heapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV; heapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE; VERIFY_SUCCEEDED(pDevice->CreateDescriptorHeap(&heapDesc, IID_PPV_ARGS(&pUavHeap))); uavDescriptorSize = pDevice->GetDescriptorHandleIncrementSize(heapDesc.Type); // Create root signature. CComPtr pRootSignature; { CD3DX12_DESCRIPTOR_RANGE ranges[1]; ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 0, 0, 0); CD3DX12_ROOT_PARAMETER rootParameters[1]; rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_ALL); CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_NONE); CComPtr signature; CComPtr error; VERIFY_SUCCEEDED(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error)); VERIFY_SUCCEEDED(pDevice->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&pRootSignature))); } // Create pipeline state object. CComPtr pComputeState; CreateComputePSO(pDevice, pRootSignature, pShader, &pComputeState); // Create a command allocator and list for compute. VERIFY_SUCCEEDED(pDevice->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_COMPUTE, IID_PPV_ARGS(&pCommandAllocator))); VERIFY_SUCCEEDED(pDevice->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COMPUTE, pCommandAllocator, pComputeState, IID_PPV_ARGS(&pCommandList))); // Set up UAV resource. CComPtr pUavResource; CComPtr pReadBuffer; CComPtr pUploadResource; CreateTestUavs(pDevice, pCommandList, values.data(), valueSizeInBytes, &pUavResource, &pReadBuffer, &pUploadResource); // Close the command list and execute it to perform the GPU setup. pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); VERIFY_SUCCEEDED(pCommandAllocator->Reset()); VERIFY_SUCCEEDED(pCommandList->Reset(pCommandAllocator, pComputeState)); // Run the compute shader and copy the results back to readable memory. { D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {}; uavDesc.Format = DXGI_FORMAT_UNKNOWN; uavDesc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER; uavDesc.Buffer.FirstElement = 0; uavDesc.Buffer.NumElements = values.size(); uavDesc.Buffer.StructureByteStride = sizeof(PerThreadData); uavDesc.Buffer.CounterOffsetInBytes = 0; uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_NONE; CD3DX12_CPU_DESCRIPTOR_HANDLE uavHandle(pUavHeap->GetCPUDescriptorHandleForHeapStart()); CD3DX12_GPU_DESCRIPTOR_HANDLE uavHandleGpu(pUavHeap->GetGPUDescriptorHandleForHeapStart()); pDevice->CreateUnorderedAccessView(pUavResource, nullptr, &uavDesc, uavHandle); SetDescriptorHeap(pCommandList, pUavHeap); pCommandList->SetComputeRootSignature(pRootSignature); pCommandList->SetComputeRootDescriptorTable(0, uavHandleGpu); } pCommandList->Dispatch(DispatchGroupX, DispatchGroupY, DispatchGroupZ); RecordTransitionBarrier(pCommandList, pUavResource, D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COPY_SOURCE); pCommandList->CopyResource(pReadBuffer, pUavResource); pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); { MappedData mappedData(pReadBuffer, valueSizeInBytes); PerThreadData *pData = (PerThreadData *)mappedData.data(); memcpy(values.data(), pData, valueSizeInBytes); // Gather some general data. // The 'firstLaneId' captures a unique number per first-lane per wave. // Counting the number distinct firstLaneIds gives us the number of waves. std::vector firstLaneIds; for (size_t i = 0; i < values.size(); ++i) { PerThreadData &pts = values[i]; uint32_t firstLaneId = pts.firstLaneId; if (!contains(firstLaneIds, firstLaneId)) { firstLaneIds.push_back(firstLaneId); } } // Waves should cover 4 threads or more. LogCommentFmt(L"Found %u distinct lane ids: %u", firstLaneIds.size()); if (!dxbc) { VERIFY_IS_GREATER_THAN_OR_EQUAL(values.size() / 4, firstLaneIds.size()); } // Now, group threads into waves. std::map > > waves; for (size_t i = 0; i < firstLaneIds.size(); ++i) { waves[firstLaneIds[i]] = std::make_unique >(); } for (size_t i = 0; i < values.size(); ++i) { PerThreadData &pts = values[i]; std::unique_ptr > &wave = waves[pts.firstLaneId]; wave->push_back(&pts); } // Verify that all the wave values are coherent across the wave. for (size_t i = 0; i < values.size(); ++i) { PerThreadData &pts = values[i]; std::unique_ptr > &wave = waves[pts.firstLaneId]; // Sort the lanes by increasing lane ID. struct LaneIdOrderPred { bool operator()(PerThreadData *a, PerThreadData *b) { return a->laneIndex < b->laneIndex; } }; std::sort(wave.get()->begin(), wave.get()->end(), LaneIdOrderPred()); // Verify some interesting properties of the first lane. uint32_t pfBC, pfSum, pfProd; int32_t i_pfSum, i_pfProd; int32_t i_allMax, i_allMin; { PerThreadData *ptdFirst = wave->front(); VERIFY_IS_TRUE(0 != (ptdFirst->flags & 1)); // FirstLane sets this bit. VERIFY_IS_TRUE(0 == ptdFirst->pfBC); VERIFY_IS_TRUE(0 == ptdFirst->pfSum); VERIFY_IS_TRUE(1 == ptdFirst->pfProd); VERIFY_IS_TRUE(0 == ptdFirst->i_pfSum); VERIFY_IS_TRUE(1 == ptdFirst->i_pfProd); pfBC = (ptdFirst->diver > 3) ? 1 : 0; pfSum = ptdFirst->diver; pfProd = ptdFirst->diver; i_pfSum = ptdFirst->i_diver; i_pfProd = ptdFirst->i_diver; i_allMax = i_allMin = ptdFirst->i_diver; } // Calculate values which take into consideration all lanes. uint32_t preds = 0; preds |= 1 << 1; // AllTrue starts true, switches to false if needed. preds |= 1 << 2; // AllEqual starts true, switches to false if needed. preds |= 1 << 3; // WaveActiveAllEqual(GTID.z) is always true preds |= 1 << 4; // (WaveActiveAllEqual(WaveReadLaneFirst(diver)) is always true uint32_t ballot[4] = { 0, 0, 0, 0 }; int32_t i_allSum = 0, i_allProd = 1; for (size_t n = 0; n < wave->size(); ++n) { std::vector &lanes = *wave.get(); // pts.preds |= ((WaveActiveAnyTrue(diver == 1) ? 1 : 0) << 0); if (lanes[n]->diver == 1) preds |= (1 << 0); // pts.preds |= ((WaveActiveAllTrue(diver == 1) ? 1 : 0) << 1); if (lanes[n]->diver != 1) preds &= ~(1 << 1); // pts.preds |= ((WaveActiveAllEqual(diver) ? 1 : 0) << 2); if (lanes[0]->diver != lanes[n]->diver) preds &= ~(1 << 2); // pts.ballot = WaveActiveBallot(diver > 3);\r\n" if (lanes[n]->diver > 3) { // This is the uint4 result layout: // .x -> bits 0 .. 31 // .y -> bits 32 .. 63 // .z -> bits 64 .. 95 // .w -> bits 96 ..127 uint32_t component = lanes[n]->laneIndex / 32; uint32_t bit = lanes[n]->laneIndex % 32; ballot[component] |= 1 << bit; } i_allMax = std::max(lanes[n]->i_diver, i_allMax); i_allMin = std::min(lanes[n]->i_diver, i_allMin); i_allProd *= lanes[n]->i_diver; i_allSum += lanes[n]->i_diver; } for (size_t n = 1; n < wave->size(); ++n) { // 'All' operations are uniform across the wave. std::vector &lanes = *wave.get(); VERIFY_IS_TRUE(0 == (lanes[n]->flags & 1)); // non-firstlanes do not set this bit VERIFY_ARE_EQUAL(lanes[0]->allBC, lanes[n]->allBC); VERIFY_ARE_EQUAL(lanes[0]->allSum, lanes[n]->allSum); VERIFY_ARE_EQUAL(lanes[0]->allProd, lanes[n]->allProd); VERIFY_ARE_EQUAL(lanes[0]->allAND, lanes[n]->allAND); VERIFY_ARE_EQUAL(lanes[0]->allOR, lanes[n]->allOR); VERIFY_ARE_EQUAL(lanes[0]->allXOR, lanes[n]->allXOR); VERIFY_ARE_EQUAL(lanes[0]->allMin, lanes[n]->allMin); VERIFY_ARE_EQUAL(lanes[0]->allMax, lanes[n]->allMax); VERIFY_ARE_EQUAL(i_allMax, lanes[n]->i_allMax); VERIFY_ARE_EQUAL(i_allMin, lanes[n]->i_allMin); VERIFY_ARE_EQUAL(i_allProd, lanes[n]->i_allProd); VERIFY_ARE_EQUAL(i_allSum, lanes[n]->i_allSum); // first-lane reads and uniform reads are uniform across the wave. VERIFY_ARE_EQUAL(lanes[0]->firstlaneX, lanes[n]->firstlaneX); VERIFY_ARE_EQUAL(lanes[0]->lane1X, lanes[n]->lane1X); // the lane count is uniform across the wave. VERIFY_ARE_EQUAL(lanes[0]->laneCount, lanes[n]->laneCount); // The predicates are uniform across the wave. VERIFY_ARE_EQUAL(lanes[n]->preds, preds); // the lane index is distinct per thread. for (size_t prior = 0; prior < n; ++prior) { VERIFY_ARE_NOT_EQUAL(lanes[prior]->laneIndex, lanes[n]->laneIndex); } // Ballot results are uniform across the wave. VERIFY_ARE_EQUAL(0, memcmp(ballot, lanes[n]->ballot, sizeof(ballot))); // Keep running total of prefix calculation. Prefix values are exclusive to // the executing lane. VERIFY_ARE_EQUAL(pfBC, lanes[n]->pfBC); VERIFY_ARE_EQUAL(pfSum, lanes[n]->pfSum); VERIFY_ARE_EQUAL(pfProd, lanes[n]->pfProd); VERIFY_ARE_EQUAL(i_pfSum, lanes[n]->i_pfSum); VERIFY_ARE_EQUAL(i_pfProd, lanes[n]->i_pfProd); pfBC += (lanes[n]->diver > 3) ? 1 : 0; pfSum += lanes[n]->diver; pfProd *= lanes[n]->diver; i_pfSum += lanes[n]->i_diver; i_pfProd *= lanes[n]->i_diver; } // TODO: add divergent branching and verify that the otherwise uniform values properly diverge } // Compare each value of each per-thread element. for (size_t i = 0; i < values.size(); ++i) { PerThreadData &pts = values[i]; VERIFY_ARE_EQUAL(i, pts.id); // ID is unchanged. } } } TEST_F(ExecutionTest, WaveIntrinsicsInPSTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); struct Vertex { XMFLOAT3 position; }; struct PerPixelData { XMFLOAT4 position; uint32_t id, flags, laneIndex, laneCount, firstLaneId, sum1; uint32_t id0, id1, id2, id3; uint32_t acrossX, acrossY, acrossDiag, quadActiveCount; }; const UINT RTWidth = 128; const UINT RTHeight = 128; // Shaders. static const char pShaders[] = WAVE_INTRINSIC_DXBC_GUARD "struct PSInput {\r\n" " float4 position : SV_POSITION;\r\n" "};\r\n\r\n" "PSInput VSMain(float4 position : POSITION) {\r\n" " PSInput result;\r\n" "\r\n" " result.position = position;\r\n" " return result;\r\n" "}\r\n\r\n" "typedef uint uint32_t;\r\n" "uint pos_to_id(float4 pos) { return pos.x * 128 + pos.y; }\r\n" "struct PerPixelData {\r\n" " float4 position;\r\n" " uint32_t id, flags, laneIndex, laneCount, firstLaneId, sum1;\r\n" " uint32_t id0, id1, id2, id3;\r\n" " uint32_t acrossX, acrossY, acrossDiag, quadActiveCount;\r\n" "};\r\n" "AppendStructuredBuffer g_sb : register(u1);\r\n" "float4 PSMain(PSInput input) : SV_TARGET {\r\n" " uint one = 1;\r\n" " PerPixelData d;\r\n" " d.position = input.position;\r\n" " d.id = pos_to_id(input.position);\r\n" " d.flags = 0;\r\n" " if (WaveIsFirstLane()) d.flags |= 1;\r\n" " d.laneIndex = WaveGetLaneIndex();\r\n" " d.laneCount = WaveGetLaneCount();\r\n" " d.firstLaneId = WaveReadLaneFirst(d.id);\r\n" " d.sum1 = WaveActiveSum(one);\r\n" " d.id0 = QuadReadLaneAt(d.id, 0);\r\n" " d.id1 = QuadReadLaneAt(d.id, 1);\r\n" " d.id2 = QuadReadLaneAt(d.id, 2);\r\n" " d.id3 = QuadReadLaneAt(d.id, 3);\r\n" " d.acrossX = QuadReadAcrossX(d.id);\r\n" " d.acrossY = QuadReadAcrossY(d.id);\r\n" " d.acrossDiag = QuadReadAcrossDiagonal(d.id);\r\n" " d.quadActiveCount = one + QuadReadAcrossX(one) + QuadReadAcrossY(one) + QuadReadAcrossDiagonal(one);\r\n" " g_sb.Append(d);\r\n" " return 1;\r\n" "};\r\n"; CComPtr pDevice; CComPtr pCommandQueue; CComPtr pUavHeap, pRtvHeap; CComPtr pCommandAllocator; CComPtr pCommandList; CComPtr pPSO; CComPtr pRenderTarget, pReadBuffer; UINT uavDescriptorSize, rtvDescriptorSize; CComPtr pVertexBuffer; D3D12_VERTEX_BUFFER_VIEW vertexBufferView; if (!CreateDevice(&pDevice)) return; if (!DoesDeviceSupportWaveOps(pDevice)) { // Optional feature, so it's correct to not support it if declared as such. WEX::Logging::Log::Comment(L"Device does not support wave operations."); return; } FenceObj FO; InitFenceObj(pDevice, &FO); // Describe and create a UAV descriptor heap. D3D12_DESCRIPTOR_HEAP_DESC heapDesc = {}; heapDesc.NumDescriptors = 1; heapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV; heapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE; VERIFY_SUCCEEDED(pDevice->CreateDescriptorHeap(&heapDesc, IID_PPV_ARGS(&pUavHeap))); uavDescriptorSize = pDevice->GetDescriptorHandleIncrementSize(heapDesc.Type); CreateRtvDescriptorHeap(pDevice, 1, &pRtvHeap, &rtvDescriptorSize); CreateRenderTargetAndReadback(pDevice, pRtvHeap, RTHeight, RTWidth, &pRenderTarget, &pReadBuffer); // Create root signature: one UAV. CComPtr pRootSignature; { CD3DX12_DESCRIPTOR_RANGE ranges[1]; ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 1, 0, 0); CD3DX12_ROOT_PARAMETER rootParameters[1]; rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_ALL); CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT); CreateRootSignatureFromDesc(pDevice, &rootSignatureDesc, &pRootSignature); } D3D12_INPUT_ELEMENT_DESC elementDesc[] = { {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0}}; D3D12_INPUT_LAYOUT_DESC InputLayout = {elementDesc, _countof(elementDesc)}; CreateGraphicsPSO(pDevice, &InputLayout, pRootSignature, pShaders, &pPSO); CreateGraphicsCommandQueueAndList(pDevice, &pCommandQueue, &pCommandAllocator, &pCommandList, pPSO); // Single triangle covering half the target. Vertex vertices[] = { { { -1.0f, 1.0f, 0.0f } }, { { 1.0f, 1.0f, 0.0f } }, { { -1.0f, -1.0f, 0.0f } } }; const UINT TriangleCount = _countof(vertices) / 3; CreateVertexBuffer(pDevice, vertices, &pVertexBuffer, &vertexBufferView); bool dxbc = UseDxbc(); // Set up UAV resource. std::vector values; values.resize(RTWidth * RTHeight * 2); UINT valueSizeInBytes = values.size() * sizeof(PerPixelData); memset(values.data(), 0, valueSizeInBytes); CComPtr pUavResource; CComPtr pUavReadBuffer; CComPtr pUploadResource; CreateTestUavs(pDevice, pCommandList, values.data(), valueSizeInBytes, &pUavResource, &pUavReadBuffer, &pUploadResource); // Set up the append counter resource. CComPtr pUavCounterResource; CComPtr pReadCounterBuffer; CComPtr pUploadCounterResource; BYTE zero[sizeof(UINT)] = { 0 }; CreateTestUavs(pDevice, pCommandList, zero, sizeof(zero), &pUavCounterResource, &pReadCounterBuffer, &pUploadCounterResource); // Close the command list and execute it to perform the GPU setup. pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); VERIFY_SUCCEEDED(pCommandAllocator->Reset()); VERIFY_SUCCEEDED(pCommandList->Reset(pCommandAllocator, pPSO)); pCommandList->SetGraphicsRootSignature(pRootSignature); SetDescriptorHeap(pCommandList, pUavHeap); { D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {}; uavDesc.Format = DXGI_FORMAT_UNKNOWN; uavDesc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER; uavDesc.Buffer.FirstElement = 0; uavDesc.Buffer.NumElements = values.size(); uavDesc.Buffer.StructureByteStride = sizeof(PerPixelData); uavDesc.Buffer.CounterOffsetInBytes = 0; uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_NONE; CD3DX12_CPU_DESCRIPTOR_HANDLE uavHandle(pUavHeap->GetCPUDescriptorHandleForHeapStart()); CD3DX12_GPU_DESCRIPTOR_HANDLE uavHandleGpu(pUavHeap->GetGPUDescriptorHandleForHeapStart()); pDevice->CreateUnorderedAccessView(pUavResource, pUavCounterResource, &uavDesc, uavHandle); pCommandList->SetGraphicsRootDescriptorTable(0, uavHandleGpu); } RecordRenderAndReadback(pCommandList, pRtvHeap, rtvDescriptorSize, TriangleCount, &vertexBufferView, nullptr, pRenderTarget, pReadBuffer); RecordTransitionBarrier(pCommandList, pUavResource, D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COPY_SOURCE); RecordTransitionBarrier(pCommandList, pUavCounterResource, D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COPY_SOURCE); pCommandList->CopyResource(pUavReadBuffer, pUavResource); pCommandList->CopyResource(pReadCounterBuffer, pUavCounterResource); VERIFY_SUCCEEDED(pCommandList->Close()); LogCommentFmt(L"Rendering to %u by %u", RTWidth, RTHeight); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); { MappedData data(pReadBuffer, RTWidth * RTHeight * 4); const uint32_t *pPixels = (uint32_t *)data.data(); if (SaveImages()) { SavePixelsToFile(pPixels, DXGI_FORMAT_R8G8B8A8_UNORM, RTWidth, RTHeight, L"psintrin.bmp"); } } uint32_t appendCount; { MappedData mappedData(pReadCounterBuffer, sizeof(uint32_t)); appendCount = *((uint32_t *)mappedData.data()); LogCommentFmt(L"%u elements in append buffer"); } { MappedData mappedData(pUavReadBuffer, values.size()); PerPixelData *pData = (PerPixelData *)mappedData.data(); memcpy(values.data(), pData, valueSizeInBytes); // DXBC is handy to test pipeline setup, but interesting functions are // stubbed out, so there is no point in further validation. if (dxbc) return; uint32_t maxActiveLaneCount = 0; uint32_t maxLaneCount = 0; for (uint32_t i = 0; i < appendCount; ++i) { maxActiveLaneCount = std::max(maxActiveLaneCount, values[i].sum1); maxLaneCount = std::max(maxLaneCount, values[i].laneCount); } uint32_t peerOfHelperLanes = 0; for (uint32_t i = 0; i < appendCount; ++i) { if (values[i].sum1 != maxActiveLaneCount) { ++peerOfHelperLanes; } } LogCommentFmt( L"Found: %u threads. Waves reported up to %u total lanes, up " L"to %u active lanes, and %u threads had helper/inactive lanes.", appendCount, maxLaneCount, maxActiveLaneCount, peerOfHelperLanes); // Group threads into quad invocations. uint32_t singlePixelCount = 0; uint32_t multiPixelCount = 0; std::unordered_set ids; std::multimap idGroups; std::multimap firstIdGroups; for (uint32_t i = 0; i < appendCount; ++i) { ids.insert(values[i].id); idGroups.insert(std::make_pair(values[i].id, &values[i])); firstIdGroups.insert(std::make_pair(values[i].firstLaneId, &values[i])); } for (uint32_t id : ids) { if (idGroups.count(id) == 1) ++singlePixelCount; else ++multiPixelCount; } LogCommentFmt(L"%u pixels were processed by a single thread. %u invocations were for shared pixels.", singlePixelCount, multiPixelCount); // Multiple threads may have tried to shade the same pixel. // Where every pixel is distinct, it's very straightforward to validate. { auto cur = firstIdGroups.begin(), end = firstIdGroups.end(); while (cur != end) { bool simpleWave = true; uint32_t firstId = (*cur).first; auto groupEnd = cur; while (groupEnd != end && (*groupEnd).first == firstId) { if (idGroups.count((*groupEnd).second->id) > 1) simpleWave = false; ++groupEnd; } if (simpleWave) { // Break the wave into quads. struct QuadData { unsigned count; PerPixelData *data[4]; }; std::map quads; for (auto i = cur; i != groupEnd; ++i) { uint32_t quadId = (*i).second->id0; auto match = quads.find(quadId); if (match == quads.end()) { QuadData qdata; qdata.count = 1; qdata.data[0] = (*i).second; quads.insert(std::make_pair(quadId, qdata)); } else { VERIFY_IS_TRUE((*match).second.count < 4); (*match).second.data[(*match).second.count++] = (*i).second; } } for (auto quadPair : quads) { unsigned count = quadPair.second.count; if (count < 2) continue; PerPixelData **data = quadPair.second.data; bool isTop[4]; bool isLeft[4]; PerPixelData helperData; memset(&helperData, sizeof(helperData), 0); PerPixelData *layout[4]; // tl,tr,bl,br memset(layout, sizeof(layout), 0); auto fnToLayout = [&](bool top, bool left) -> PerPixelData ** { int idx = top ? 0 : 2; idx += left ? 0 : 1; return &layout[idx]; }; auto fnToLayoutData = [&](bool top, bool left) -> PerPixelData * { PerPixelData **pResult = fnToLayout(top, left); if (*pResult == nullptr) return &helperData; return *pResult; }; VERIFY_IS_TRUE(count <= 4); if (count == 2) { isTop[0] = data[0]->position.y < data[1]->position.y; isTop[1] = (data[0]->position.y == data[1]->position.y) ? isTop[0] : !isTop[0]; isLeft[0] = data[0]->position.x < data[1]->position.x; isLeft[1] = (data[0]->position.x == data[1]->position.x) ? isLeft[0] : !isLeft[0]; } else { // with at least three samples, we have distinct x and y coordinates. float left = std::min(data[0]->position.x, data[1]->position.x); left = std::min(data[2]->position.x, left); float top = std::min(data[0]->position.y, data[1]->position.y); top = std::min(data[2]->position.y, top); for (unsigned i = 0; i < count; ++i) { isTop[i] = data[i]->position.y == top; isLeft[i] = data[i]->position.x == left; } } for (unsigned i = 0; i < count; ++i) { *(fnToLayout(isTop[i], isLeft[i])) = data[i]; } // Finally, we have a proper quad reconstructed. Validate. for (unsigned i = 0; i < count; ++i) { PerPixelData *d = data[i]; VERIFY_ARE_EQUAL(d->id0, fnToLayoutData(true, true)->id); VERIFY_ARE_EQUAL(d->id1, fnToLayoutData(true, false)->id); VERIFY_ARE_EQUAL(d->id2, fnToLayoutData(false, true)->id); VERIFY_ARE_EQUAL(d->id3, fnToLayoutData(false, false)->id); VERIFY_ARE_EQUAL(d->acrossX, fnToLayoutData(isTop[i], !isLeft[i])->id); VERIFY_ARE_EQUAL(d->acrossY, fnToLayoutData(!isTop[i], isLeft[i])->id); VERIFY_ARE_EQUAL(d->acrossDiag, fnToLayoutData(!isTop[i], !isLeft[i])->id); VERIFY_ARE_EQUAL(d->quadActiveCount, count); } } } cur = groupEnd; } } // TODO: provide validation for quads where the same pixel was shaded multiple times // // Consider: for pixels that were shaded multiple times, check whether // some grouping of threads into quads satisfies all value requirements. } } struct ShaderOpTestResult { st::ShaderOp *ShaderOp; std::shared_ptr ShaderOpSet; std::shared_ptr Test; }; struct SPrimitives { float f_float; float f_float2; float f_float_o; float f_float2_o; }; static float g_SinCosFloats[] = { -(INFINITY), -1.0f, -(FLT_MIN/2), -0.0f, 0.0f, FLT_MIN / 2, 1.0f, INFINITY, NAN }; std::shared_ptr RunShaderOpTest(ID3D12Device *pDevice, dxc::DxcDllSupport &support, IStream *pStream, LPCSTR pName, st::ShaderOpTest::TInitCallbackFn pInitCallback) { DXASSERT_NOMSG(pStream != nullptr); std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); st::ShaderOp *pShaderOp; if (pName == nullptr) { if (ShaderOpSet->ShaderOps.size() != 1) { VERIFY_FAIL(L"Expected a single shader operation."); } pShaderOp = ShaderOpSet->ShaderOps[0].get(); } else { pShaderOp = ShaderOpSet->GetShaderOp(pName); } if (pShaderOp == nullptr) { std::string msg = "Unable to find shader op "; msg += pName; msg += "; available ops"; const char sep = ':'; for (auto &pAvailOp : ShaderOpSet->ShaderOps) { msg += sep; msg += pAvailOp->Name ? pAvailOp->Name : "[n/a]"; } CA2W msgWide(msg.c_str()); VERIFY_FAIL(msgWide.m_psz); } std::shared_ptr test = std::make_shared(); test->SetDxcSupport(&support); test->SetInitCallback(pInitCallback); test->RunShaderOp(pShaderOp); std::shared_ptr result = std::make_shared(); result->ShaderOpSet = ShaderOpSet; result->Test = test; result->ShaderOp = pShaderOp; return result; } static bool isdenorm(float f) { return FP_SUBNORMAL == fpclassify(f); } static bool isdenorm(double d) { return FP_SUBNORMAL == fpclassify(d); } TEST_F(ExecutionTest, DoShaderOpArithTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) return; // Single operation test at the moment. std::shared_ptr test = RunShaderOpTest(pDevice, m_support, pStream, "SinCos", [](LPCSTR Name, std::vector &Data) { // Initialize the SPrimitives buffer. VERIFY_IS_TRUE(0 == _stricmp(Name, "SPrimitives")); size_t count = 8 * 8; size_t size = sizeof(SPrimitives) * count; Data.resize(size); SPrimitives *pPrimitives = (SPrimitives *)Data.data(); for (size_t i = 0; i < count; ++i) { SPrimitives *p = &pPrimitives[i]; p->f_float = g_SinCosFloats[i % _countof(g_SinCosFloats)]; p->f_float2 = p->f_float; } }); MappedData data; test->Test->GetReadBackData("SPrimitives", &data); // data.dump(); // Uncomment to dump raw bytes from buffer. unsigned count = 8 * 8; SPrimitives *pPrimitives = (SPrimitives *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; static const float Error = 0.0008f; for (unsigned i = 0; i < count; ++i) { SPrimitives *p = &pPrimitives[i]; float input = p->f_float; float sin_o = p->f_float_o; float cos_o = p->f_float2_o; LogCommentFmt(L"Element #%u, input %f, sin=%f, cos=%f", i, input, sin_o, cos_o); if (isinf(input)) { VERIFY_IS_TRUE(isnan(sin_o)); VERIFY_IS_TRUE(isnan(cos_o)); } else if (isnan(input)) { VERIFY_IS_TRUE(isnan(sin_o)); VERIFY_IS_TRUE(isnan(cos_o)); } else if (isdenorm(input)) { VERIFY_IS_TRUE(1.0f == cos_o); if (signbit(input)) { VERIFY_IS_TRUE(-0.0f == sin_o); } else { VERIFY_IS_TRUE(0.0f == sin_o); } } else if (input == 0.0f) { VERIFY_IS_TRUE(0.0f == sin_o); VERIFY_IS_TRUE(1.0f == cos_o); } else if (input == -0.0f) { VERIFY_IS_TRUE(-0.0f == sin_o); VERIFY_IS_TRUE(1.0f == cos_o); } else { float f_sin = sin(input); float f_cos = cos(input); VERIFY_IS_TRUE((f_sin - Error) <= sin_o && sin_o <= (f_sin + Error)); VERIFY_IS_TRUE((f_cos - Error) <= cos_o && cos_o <= (f_cos + Error)); } } } static float ifdenorm_flushf(float a) { return isdenorm(a) ? copysign(0.0f, a) : a; } static bool ifdenorm_flushf_eq(float a, float b) { return ifdenorm_flushf(a) == ifdenorm_flushf(b); } static bool ifdenorm_flushf_eq_or_nans(float a, float b) { if (isnan(a) && isnan(b)) return true; return ifdenorm_flushf(a) == ifdenorm_flushf(b); } TEST_F(ExecutionTest, MinMaxTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); struct SMinMaxElem { float f_fa; float f_fb; float f_fmin_o; float f_fmax_o; }; float TestValues[] = { -(INFINITY), -1.0f, -(FLT_MIN/2), -0.0f, 0.0f, FLT_MIN / 2, 1.0f, INFINITY, NAN }; // Single operation test at the moment. CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::shared_ptr test = RunShaderOpTest(pDevice, m_support, pStream, "MinMax", [&TestValues](LPCSTR Name, std::vector &Data) { // Initialize the SPrimitives buffer. VERIFY_IS_TRUE(0 == _stricmp(Name, "SPrimitives")); size_t count = 10 * 10; size_t size = sizeof(SMinMaxElem) * count; Data.resize(size); SMinMaxElem *pElems = (SMinMaxElem *)Data.data(); for (size_t a = 0; a < 10; ++a) { float fa = TestValues[a % _countof(TestValues)]; for (size_t b = 0; b < 10; ++b) { SMinMaxElem *p = &pElems[a * 10 + b]; ZeroMemory(p, sizeof(*p)); p->f_fa = fa; p->f_fb = TestValues[b % _countof(TestValues)]; } } }); MappedData data; test->Test->GetReadBackData("SPrimitives", &data); // data.dump(); // Uncomment to dump raw bytes from buffer. unsigned count = 10 * 10; SMinMaxElem *pPrimitives = (SMinMaxElem *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; static const float Error = 0.0008f; for (unsigned i = 0; i < count; ++i) { SMinMaxElem *p = &pPrimitives[i]; float fa = p->f_fa; float fb = p->f_fb; float fmin = p->f_fmin_o; float fmax = p->f_fmax_o; LogCommentFmt(L"Element #%u, a %f, b %f, min=%f, max=%f", i, fa, fb, fmin, fmax); if (isnan(fa)) { VERIFY_IS_TRUE(ifdenorm_flushf_eq_or_nans(fmin, fb)); VERIFY_IS_TRUE(ifdenorm_flushf_eq_or_nans(fmax, fb)); } else if (isnan(fb)) { VERIFY_IS_TRUE(ifdenorm_flushf_eq_or_nans(fmin, fa)); VERIFY_IS_TRUE(ifdenorm_flushf_eq_or_nans(fmax, fa)); } else { // Flushing is allowed - check both cases. float fmax_0 = fa >= fb ? fa : fb; float fmax_1 = ifdenorm_flushf(fmax_0); VERIFY_IS_TRUE(fmax == fmax_0 || fmax == fmax_1); float fmin_0 = fa < fb ? fa : fb; float fmin_1 = ifdenorm_flushf(fmin_0); VERIFY_IS_TRUE(fmin == fmin_0 || fmin == fmin_1); } } } TEST_F(ExecutionTest, OutOfBoundsTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); // Single operation test at the moment. CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::shared_ptr test = RunShaderOpTest(pDevice, m_support, pStream, "OOB", nullptr); MappedData data; // Read back to CPU and examine contents - should get pure red. { MappedData data; test->Test->GetReadBackData("RTarget", &data); const uint32_t *pPixels = (uint32_t *)data.data(); uint32_t first = *pPixels; VERIFY_ARE_EQUAL(0xff0000ff, first); // pure red - only first component is read } } TEST_F(ExecutionTest, SaturateTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); // Single operation test at the moment. CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::shared_ptr test = RunShaderOpTest(pDevice, m_support, pStream, "Saturate", nullptr); MappedData data; test->Test->GetReadBackData("U0", &data); const float *pValues = (float *)data.data(); // Everything is zero except for 1.5f and +Inf, which saturate to 1.0f const float ExpectedCases[9] = { 0.0f, 0.0f, 0.0f, 0.0f, // -inf, -1.5, -denorm, -0 0.0f, 0.0f, 1.0f, 1.0f, // 0, denorm, 1.5f, inf 0.0f // nan }; for (size_t i = 0; i < _countof(ExpectedCases); ++i) { VERIFY_ARE_EQUAL(*pValues, ExpectedCases[i]); ++pValues; } } TEST_F(ExecutionTest, BasicTriangleOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); // Single operation test at the moment. CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::shared_ptr test = RunShaderOpTest(pDevice, m_support, pStream, "Triangle", nullptr); MappedData data; D3D12_RESOURCE_DESC &D = test->ShaderOp->GetResourceByName("RTarget")->Desc; UINT width = (UINT64)D.Width; UINT height = (UINT64)D.Height; test->Test->GetReadBackData("RTarget", &data); const uint32_t *pPixels = (uint32_t *)data.data(); if (SaveImages()) { SavePixelsToFile(pPixels, DXGI_FORMAT_R8G8B8A8_UNORM, 320, 200, L"basic.bmp"); } uint32_t top = pPixels[width / 2]; // Top center. uint32_t mid = pPixels[width / 2 + width * (height / 2)]; // Middle center. VERIFY_ARE_EQUAL(0xff663300, top); // clear color VERIFY_ARE_EQUAL(0xffffffff, mid); // white // This is the basic validation test for shader operations, so it's good to // check this here at least for this one test case. data.reset(); test.reset(); ReportLiveObjects(); } static void WriteReadBackDump(st::ShaderOp *pShaderOp, st::ShaderOpTest *pTest, char **pReadBackDump) { std::stringstream str; unsigned count = 0; for (auto &R : pShaderOp->Resources) { if (!R.ReadBack) continue; ++count; str << "Resource: " << R.Name << "\r\n"; // Find a descriptor that can tell us how to dump this resource. bool found = false; for (auto &Heaps : pShaderOp->DescriptorHeaps) { for (auto &D : Heaps.Descriptors) { if (_stricmp(D.ResName, R.Name) != 0) { continue; } found = true; if (_stricmp(D.Kind, "UAV") != 0) { str << "Resource dump for kind " << D.Kind << " not implemented yet.\r\n"; break; } if (D.UavDesc.ViewDimension != D3D12_UAV_DIMENSION_BUFFER) { str << "Resource dump for this kind of view dimension not implemented yet.\r\n"; break; } // We can map back to the structure if a structured buffer via the shader, but // we'll keep this simple and simply dump out 32-bit uint/float representations. MappedData data; pTest->GetReadBackData(R.Name, &data); uint32_t *pData = (uint32_t *)data.data(); size_t u32_count = R.Desc.Width / sizeof(uint32_t); for (size_t i = 0; i < u32_count; ++i) { float f = *(float *)pData; str << i << ": 0n" << *pData << " 0x" << std::hex << *pData << std::dec << " " << f << "\r\n"; ++pData; } break; } if (found) break; } if (!found) { str << "Unable to find a view for the resource.\r\n"; } } str << "Resources read back: " << count << "\r\n"; std::string s(str.str()); CComHeapPtr pDump; if (!pDump.Allocate(s.size() + 1)) throw std::bad_alloc(); memcpy(pDump.m_pData, s.data(), s.size()); pDump.m_pData[s.size()] = '\0'; *pReadBackDump = pDump.Detach(); } // This is the exported interface by use from HLSLHost.exe. // It's exclusive with the use of the DLL as a TAEF target. extern "C" { __declspec(dllexport) HRESULT WINAPI InitializeOpTests(void *pStrCtx, st::OutputStringFn pOutputStrFn) { HRESULT hr = EnableExperimentalShaderModels(); if (FAILED(hr)) { pOutputStrFn(pStrCtx, L"Unable to enable experimental shader models.\r\n."); } return S_OK; } __declspec(dllexport) HRESULT WINAPI RunOpTest(void *pStrCtx, st::OutputStringFn pOutputStrFn, LPCSTR pText, ID3D12Device *pDevice, ID3D12CommandQueue *pCommandQueue, ID3D12Resource *pRenderTarget, char **pReadBackDump) { HRESULT hr; if (pReadBackDump) *pReadBackDump = nullptr; st::SetOutputFn(pStrCtx, pOutputStrFn); CComPtr pInfoQueue; CComHeapPtr pDump; bool FilterCreation = false; if (SUCCEEDED(pDevice->QueryInterface(&pInfoQueue))) { // Creation is largely driven by inputs, so don't log create/destroy messages. pInfoQueue->PushEmptyStorageFilter(); pInfoQueue->PushEmptyRetrievalFilter(); if (FilterCreation) { D3D12_INFO_QUEUE_FILTER filter; D3D12_MESSAGE_CATEGORY denyCategories[] = { D3D12_MESSAGE_CATEGORY_STATE_CREATION }; ZeroMemory(&filter, sizeof(filter)); filter.DenyList.NumCategories = _countof(denyCategories); filter.DenyList.pCategoryList = denyCategories; pInfoQueue->PushStorageFilter(&filter); } } else { pOutputStrFn(pStrCtx, L"Unable to enable info queue for D3D.\r\n."); } try { dxc::DxcDllSupport m_support; m_support.Initialize(); const char *pName = nullptr; CComPtr pStream = SHCreateMemStream((BYTE *)pText, strlen(pText)); std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); st::ShaderOp *pShaderOp; if (pName == nullptr) { if (ShaderOpSet->ShaderOps.size() != 1) { pOutputStrFn(pStrCtx, L"Expected a single shader operation.\r\n"); return E_FAIL; } pShaderOp = ShaderOpSet->ShaderOps[0].get(); } else { pShaderOp = ShaderOpSet->GetShaderOp(pName); } if (pShaderOp == nullptr) { std::string msg = "Unable to find shader op "; msg += pName; msg += "; available ops"; const char sep = ':'; for (auto &pAvailOp : ShaderOpSet->ShaderOps) { msg += sep; msg += pAvailOp->Name ? pAvailOp->Name : "[n/a]"; } CA2W msgWide(msg.c_str()); pOutputStrFn(pStrCtx, msgWide); return E_FAIL; } std::shared_ptr test = std::make_shared(); test->SetupRenderTarget(pShaderOp, pDevice, pCommandQueue, pRenderTarget); test->SetDxcSupport(&m_support); test->RunShaderOp(pShaderOp); test->PresentRenderTarget(pShaderOp, pCommandQueue, pRenderTarget); pOutputStrFn(pStrCtx, L"Rendering complete.\r\n"); if (!pShaderOp->IsCompute()) { D3D12_QUERY_DATA_PIPELINE_STATISTICS stats; test->GetPipelineStats(&stats); wchar_t statsText[400]; StringCchPrintfW(statsText, _countof(statsText), L"Vertices/primitives read by input assembler: %I64u/%I64u\r\n" L"Vertex shader invocations: %I64u\r\n" L"Geometry shader invocations/output primitive: %I64u/%I64u\r\n" L"Primitives sent to rasterizer/rendered: %I64u/%I64u\r\n" L"PS/HS/DS/CS invocations: %I64u/%I64u/%I64u/%I64u\r\n", stats.IAVertices, stats.IAPrimitives, stats.VSInvocations, stats.GSInvocations, stats.GSPrimitives, stats.CInvocations, stats.CPrimitives, stats.PSInvocations, stats.HSInvocations, stats.DSInvocations, stats.CSInvocations); pOutputStrFn(pStrCtx, statsText); } if (pReadBackDump) { WriteReadBackDump(pShaderOp, test.get(), &pDump); } hr = S_OK; } catch (const CAtlException &E) { hr = E.m_hr; } catch (const std::bad_alloc &) { hr = E_OUTOFMEMORY; } catch (const std::exception &) { hr = E_FAIL; } // Drain the device message queue if available. if (pInfoQueue != nullptr) { wchar_t buf[200]; StringCchPrintfW(buf, _countof(buf), L"NumStoredMessages=%u limit/discarded by limit=%u/%u " L"allowed/denied by storage filter=%u/%u " L"NumStoredMessagesAllowedByRetrievalFilter=%u\r\n", (unsigned)pInfoQueue->GetNumStoredMessages(), (unsigned)pInfoQueue->GetMessageCountLimit(), (unsigned)pInfoQueue->GetNumMessagesDiscardedByMessageCountLimit(), (unsigned)pInfoQueue->GetNumMessagesAllowedByStorageFilter(), (unsigned)pInfoQueue->GetNumMessagesDeniedByStorageFilter(), (unsigned)pInfoQueue->GetNumStoredMessagesAllowedByRetrievalFilter()); pOutputStrFn(pStrCtx, buf); WriteInfoQueueMessages(pStrCtx, pOutputStrFn, pInfoQueue); pInfoQueue->ClearStoredMessages(); pInfoQueue->PopRetrievalFilter(); pInfoQueue->PopStorageFilter(); if (FilterCreation) { pInfoQueue->PopStorageFilter(); } } if (pReadBackDump) *pReadBackDump = pDump.Detach(); return hr; } }