//===- BitstreamReader.cpp - BitstreamReader implementation ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Bitcode/BitstreamReader.h" using namespace llvm; //===----------------------------------------------------------------------===// // BitstreamCursor implementation //===----------------------------------------------------------------------===// void BitstreamCursor::freeState() { // Free all the Abbrevs. CurAbbrevs.clear(); // Free all the Abbrevs in the block scope. BlockScope.clear(); } /// EnterSubBlock - Having read the ENTER_SUBBLOCK abbrevid, enter /// the block, and return true if the block has an error. bool BitstreamCursor::EnterSubBlock(unsigned BlockID, unsigned *NumWordsP) { // Save the current block's state on BlockScope. BlockScope.push_back(Block(CurCodeSize)); BlockScope.back().PrevAbbrevs.swap(CurAbbrevs); // Add the abbrevs specific to this block to the CurAbbrevs list. if (const BitstreamReader::BlockInfo *Info = BitStream->getBlockInfo(BlockID)) { CurAbbrevs.insert(CurAbbrevs.end(), Info->Abbrevs.begin(), Info->Abbrevs.end()); } // Get the codesize of this block. CurCodeSize = ReadVBR(bitc::CodeLenWidth); // We can't read more than MaxChunkSize at a time if (CurCodeSize > MaxChunkSize) return true; SkipToFourByteBoundary(); unsigned NumWords = Read(bitc::BlockSizeWidth); if (NumWordsP) *NumWordsP = NumWords; // Validate that this block is sane. return CurCodeSize == 0 || AtEndOfStream(); } static uint64_t readAbbreviatedField(BitstreamCursor &Cursor, const BitCodeAbbrevOp &Op) { assert(!Op.isLiteral() && "Not to be used with literals!"); // Decode the value as we are commanded. switch (Op.getEncoding()) { case BitCodeAbbrevOp::Array: case BitCodeAbbrevOp::Blob: llvm_unreachable("Should not reach here"); case BitCodeAbbrevOp::Fixed: assert((unsigned)Op.getEncodingData() <= Cursor.MaxChunkSize); return Cursor.Read((unsigned)Op.getEncodingData()); case BitCodeAbbrevOp::VBR: assert((unsigned)Op.getEncodingData() <= Cursor.MaxChunkSize); return Cursor.ReadVBR64((unsigned)Op.getEncodingData()); case BitCodeAbbrevOp::Char6: return BitCodeAbbrevOp::DecodeChar6(Cursor.Read(6)); } llvm_unreachable("invalid abbreviation encoding"); } static void skipAbbreviatedField(BitstreamCursor &Cursor, const BitCodeAbbrevOp &Op) { assert(!Op.isLiteral() && "Not to be used with literals!"); // Decode the value as we are commanded. switch (Op.getEncoding()) { case BitCodeAbbrevOp::Array: case BitCodeAbbrevOp::Blob: llvm_unreachable("Should not reach here"); case BitCodeAbbrevOp::Fixed: assert((unsigned)Op.getEncodingData() <= Cursor.MaxChunkSize); Cursor.Read((unsigned)Op.getEncodingData()); break; case BitCodeAbbrevOp::VBR: assert((unsigned)Op.getEncodingData() <= Cursor.MaxChunkSize); Cursor.ReadVBR64((unsigned)Op.getEncodingData()); break; case BitCodeAbbrevOp::Char6: Cursor.Read(6); break; } } /// skipRecord - Read the current record and discard it. void BitstreamCursor::skipRecord(unsigned AbbrevID) { // Skip unabbreviated records by reading past their entries. if (AbbrevID == bitc::UNABBREV_RECORD) { unsigned Code = ReadVBR(6); (void)Code; unsigned NumElts = ReadVBR(6); for (unsigned i = 0; i != NumElts; ++i) (void)ReadVBR64(6); return; } const BitCodeAbbrev *Abbv = getAbbrev(AbbrevID); for (unsigned i = 0, e = Abbv->getNumOperandInfos(); i != e; ++i) { const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i); if (Op.isLiteral()) continue; if (Op.getEncoding() != BitCodeAbbrevOp::Array && Op.getEncoding() != BitCodeAbbrevOp::Blob) { skipAbbreviatedField(*this, Op); continue; } if (Op.getEncoding() == BitCodeAbbrevOp::Array) { // Array case. Read the number of elements as a vbr6. unsigned NumElts = ReadVBR(6); // Get the element encoding. assert(i+2 == e && "array op not second to last?"); const BitCodeAbbrevOp &EltEnc = Abbv->getOperandInfo(++i); #if 1 // HLSL Change - Make skipping go brrrrrrrrrrr { const auto &Op = EltEnc; auto &Cursor = *this; auto CurBit = Cursor.GetCurrentBitNo(); // Decode the value as we are commanded. switch (EltEnc.getEncoding()) { case BitCodeAbbrevOp::Array: case BitCodeAbbrevOp::Blob: llvm_unreachable("Should not reach here"); case BitCodeAbbrevOp::Fixed: assert((unsigned)Op.getEncodingData() <= Cursor.MaxChunkSize); Cursor.JumpToBit(CurBit + NumElts * Op.getEncodingData()); break; case BitCodeAbbrevOp::VBR: assert((unsigned)Op.getEncodingData() <= Cursor.MaxChunkSize); for (; NumElts; --NumElts) Cursor.ReadVBR64((unsigned)Op.getEncodingData()); break; case BitCodeAbbrevOp::Char6: Cursor.JumpToBit(CurBit + NumElts * 6); break; } } #else // Read all the elements. for (; NumElts; --NumElts) skipAbbreviatedField(*this, EltEnc); #endif continue; } assert(Op.getEncoding() == BitCodeAbbrevOp::Blob); // Blob case. Read the number of bytes as a vbr6. unsigned NumElts = ReadVBR(6); SkipToFourByteBoundary(); // 32-bit alignment // Figure out where the end of this blob will be including tail padding. size_t NewEnd = GetCurrentBitNo()+((NumElts+3)&~3)*8; // If this would read off the end of the bitcode file, just set the // record to empty and return. if (!canSkipToPos(NewEnd/8)) { NextChar = BitStream->getBitcodeBytes().getExtent(); break; } // Skip over the blob. JumpToBit(NewEnd); } } // HLSL Change - Begin unsigned BitstreamCursor::peekRecord(unsigned AbbrevID) { auto last_bit_pos = GetCurrentBitNo(); if (AbbrevID == bitc::UNABBREV_RECORD) { unsigned Code = ReadVBR(6); this->JumpToBit(last_bit_pos); return Code; } const BitCodeAbbrev *Abbv = getAbbrev(AbbrevID); // Read the record code first. assert(Abbv->getNumOperandInfos() != 0 && "no record code in abbreviation?"); const BitCodeAbbrevOp &CodeOp = Abbv->getOperandInfo(0); unsigned Code; if (CodeOp.isLiteral()) Code = CodeOp.getLiteralValue(); else { if (CodeOp.getEncoding() == BitCodeAbbrevOp::Array || CodeOp.getEncoding() == BitCodeAbbrevOp::Blob) report_fatal_error("Abbreviation starts with an Array or a Blob"); Code = readAbbreviatedField(*this, CodeOp); } this->JumpToBit(last_bit_pos); return Code; } template void BitstreamCursor::AddRecordElements(BitCodeAbbrevOp::Encoding enc, uint64_t encData, unsigned NumElts, SmallVectorImpl &Vals) { const unsigned size = (unsigned)encData; if (enc == BitCodeAbbrevOp::VBR) { assert((unsigned)encData <= MaxChunkSize); for (; NumElts; --NumElts) { Vals.push_back((T)ReadVBR64(size)); } } else if (enc == BitCodeAbbrevOp::Char6) { assert((unsigned)encData <= MaxChunkSize); for (; NumElts; --NumElts) { Vals.push_back(BitCodeAbbrevOp::DecodeChar6(Read(6))); } } else { llvm_unreachable("Unknown kind of thing"); } } // HLSL Change - End unsigned BitstreamCursor::readRecord(unsigned AbbrevID, SmallVectorImpl &Vals, StringRef *Blob, SmallVectorImpl *Uint8Vals // HLSL Change ) { if (AbbrevID == bitc::UNABBREV_RECORD) { unsigned Code = ReadVBR(6); unsigned NumElts = ReadVBR(6); if (Uint8Vals) { for (unsigned i = 0; i != NumElts; ++i) Uint8Vals->push_back((uint8_t)ReadVBR64(6)); } else { for (unsigned i = 0; i != NumElts; ++i) Vals.push_back(ReadVBR64(6)); } return Code; } const BitCodeAbbrev *Abbv = getAbbrev(AbbrevID); // Read the record code first. assert(Abbv->getNumOperandInfos() != 0 && "no record code in abbreviation?"); const BitCodeAbbrevOp &CodeOp = Abbv->getOperandInfo(0); unsigned Code; if (CodeOp.isLiteral()) Code = CodeOp.getLiteralValue(); else { if (CodeOp.getEncoding() == BitCodeAbbrevOp::Array || CodeOp.getEncoding() == BitCodeAbbrevOp::Blob) report_fatal_error("Abbreviation starts with an Array or a Blob"); Code = readAbbreviatedField(*this, CodeOp); } for (unsigned i = 1, e = Abbv->getNumOperandInfos(); i != e; ++i) { const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i); if (Op.isLiteral()) { Vals.push_back(Op.getLiteralValue()); continue; } if (Op.getEncoding() != BitCodeAbbrevOp::Array && Op.getEncoding() != BitCodeAbbrevOp::Blob) { Vals.push_back(readAbbreviatedField(*this, Op)); continue; } if (Op.getEncoding() == BitCodeAbbrevOp::Array) { // Array case. Read the number of elements as a vbr6. unsigned NumElts = ReadVBR(6); // Get the element encoding. if (i + 2 != e) report_fatal_error("Array op not second to last"); const BitCodeAbbrevOp &EltEnc = Abbv->getOperandInfo(++i); if (!EltEnc.isEncoding()) report_fatal_error( "Array element type has to be an encoding of a type"); if (EltEnc.getEncoding() == BitCodeAbbrevOp::Array || EltEnc.getEncoding() == BitCodeAbbrevOp::Blob) report_fatal_error("Array element type can't be an Array or a Blob"); #if 1 // HLSL Change // Read all the elements a little faster. { BitCodeAbbrevOp::Encoding enc = EltEnc.getEncoding(); uint64_t encData = 0; if (EltEnc.hasEncodingData()) encData = EltEnc.getEncodingData(); unsigned size = (unsigned)encData; if (Uint8Vals) { if (enc == BitCodeAbbrevOp::Fixed) { assert((unsigned)encData <= MaxChunkSize); assert((unsigned)encData == 8); // Special optimization for fixed elements that are 8 bits Uint8Vals->resize(NumElts); uint8_t *ptr = Uint8Vals->data(); unsigned i = 0; constexpr unsigned BytesInWord = sizeof(size_t); // First, read word by word instead of byte by byte for (; NumElts >= BytesInWord; NumElts -= BytesInWord) { const size_t e = Read(BytesInWord * 8); memcpy(ptr + i, &e, sizeof(e)); i += BytesInWord; } for (; NumElts; --NumElts) Uint8Vals->operator[](i++) = (uint8_t)Read(8); } else { AddRecordElements(enc, encData, NumElts, *Uint8Vals); } } else { if (enc == BitCodeAbbrevOp::Fixed) { assert((unsigned)encData <= MaxChunkSize); Vals.reserve(Vals.size() + NumElts); for (; NumElts; --NumElts) Vals.push_back(Read(size)); } else { AddRecordElements(enc, encData, NumElts, Vals); } } } #else // HLSL Change // Read all the elements. for (; NumElts; --NumElts) Vals.push_back(readAbbreviatedField(*this, EltEnc)); #endif // HLSL Change continue; } assert(Op.getEncoding() == BitCodeAbbrevOp::Blob); // Blob case. Read the number of bytes as a vbr6. unsigned NumElts = ReadVBR(6); SkipToFourByteBoundary(); // 32-bit alignment // Figure out where the end of this blob will be including tail padding. size_t CurBitPos = GetCurrentBitNo(); size_t NewEnd = CurBitPos+((NumElts+3)&~3)*8; // If this would read off the end of the bitcode file, just set the // record to empty and return. if (!canSkipToPos(NewEnd/8)) { Vals.append(NumElts, 0); NextChar = BitStream->getBitcodeBytes().getExtent(); break; } // Otherwise, inform the streamer that we need these bytes in memory. const char *Ptr = (const char*) BitStream->getBitcodeBytes().getPointer(CurBitPos/8, NumElts); // If we can return a reference to the data, do so to avoid copying it. if (Blob) { *Blob = StringRef(Ptr, NumElts); } else { // Otherwise, unpack into Vals with zero extension. for (; NumElts; --NumElts) Vals.push_back((unsigned char)*Ptr++); } // Skip over tail padding. JumpToBit(NewEnd); } return Code; } void BitstreamCursor::ReadAbbrevRecord() { BitCodeAbbrev *Abbv = new BitCodeAbbrev(); unsigned NumOpInfo = ReadVBR(5); for (unsigned i = 0; i != NumOpInfo; ++i) { bool IsLiteral = Read(1); if (IsLiteral) { Abbv->Add(BitCodeAbbrevOp(ReadVBR64(8))); continue; } BitCodeAbbrevOp::Encoding E = (BitCodeAbbrevOp::Encoding)Read(3); if (BitCodeAbbrevOp::hasEncodingData(E)) { uint64_t Data = ReadVBR64(5); // As a special case, handle fixed(0) (i.e., a fixed field with zero bits) // and vbr(0) as a literal zero. This is decoded the same way, and avoids // a slow path in Read() to have to handle reading zero bits. if ((E == BitCodeAbbrevOp::Fixed || E == BitCodeAbbrevOp::VBR) && Data == 0) { Abbv->Add(BitCodeAbbrevOp(0)); continue; } if ((E == BitCodeAbbrevOp::Fixed || E == BitCodeAbbrevOp::VBR) && Data > MaxChunkSize) report_fatal_error( "Fixed or VBR abbrev record with size > MaxChunkData"); Abbv->Add(BitCodeAbbrevOp(E, Data)); } else Abbv->Add(BitCodeAbbrevOp(E)); } if (Abbv->getNumOperandInfos() == 0) report_fatal_error("Abbrev record with no operands"); CurAbbrevs.push_back(Abbv); } bool BitstreamCursor::ReadBlockInfoBlock(unsigned *pCount) { // If this is the second stream to get to the block info block, skip it. if (BitStream->hasBlockInfoRecords()) return SkipBlock(); if (EnterSubBlock(bitc::BLOCKINFO_BLOCK_ID)) return true; SmallVector Record; BitstreamReader::BlockInfo *CurBlockInfo = nullptr; // Read all the records for this module. while (1) { BitstreamEntry Entry = advanceSkippingSubblocks(AF_DontAutoprocessAbbrevs, pCount); switch (Entry.Kind) { case llvm::BitstreamEntry::SubBlock: // Handled for us already. case llvm::BitstreamEntry::Error: return true; case llvm::BitstreamEntry::EndBlock: return false; case llvm::BitstreamEntry::Record: // The interesting case. break; } // Read abbrev records, associate them with CurBID. if (Entry.ID == bitc::DEFINE_ABBREV) { if (!CurBlockInfo) return true; ReadAbbrevRecord(); // ReadAbbrevRecord installs the abbrev in CurAbbrevs. Move it to the // appropriate BlockInfo. CurBlockInfo->Abbrevs.push_back(std::move(CurAbbrevs.back())); CurAbbrevs.pop_back(); continue; } // Read a record. Record.clear(); switch (readRecord(Entry.ID, Record)) { default: break; // Default behavior, ignore unknown content. case bitc::BLOCKINFO_CODE_SETBID: if (Record.size() < 1) return true; CurBlockInfo = &BitStream->getOrCreateBlockInfo((unsigned)Record[0]); break; case bitc::BLOCKINFO_CODE_BLOCKNAME: { if (!CurBlockInfo) return true; if (BitStream->isIgnoringBlockInfoNames()) break; // Ignore name. std::string Name; for (unsigned i = 0, e = Record.size(); i != e; ++i) Name += (char)Record[i]; CurBlockInfo->Name = Name; break; } case bitc::BLOCKINFO_CODE_SETRECORDNAME: { if (!CurBlockInfo) return true; if (BitStream->isIgnoringBlockInfoNames()) break; // Ignore name. std::string Name; for (unsigned i = 1, e = Record.size(); i != e; ++i) Name += (char)Record[i]; CurBlockInfo->RecordNames.push_back(std::make_pair((unsigned)Record[0], Name)); break; } } } } // HLSL Change Starts void BitstreamUseTracker::track(BitstreamUseTracker *BT, uint64_t begin, uint64_t end) { if (BT) BT->insert(begin, end); } BitstreamUseTracker::ExtendResult BitstreamUseTracker::extendRange(UseRange &Curr, UseRange &NewRange) { // Most likely case first. if (Curr.first <= NewRange.first && Curr.second < NewRange.second) { Curr.second = NewRange.second; return ExtendedEnd; } if (Curr.first <= NewRange.first && NewRange.second <= Curr.second) { return Included; // already included. } if (NewRange.first < Curr.first && NewRange.second <= Curr.second) { return ExtendedBegin; } if (NewRange.first < Curr.first && Curr.second < NewRange.second) { return ExtendedBoth; } return Exclusive; } bool BitstreamUseTracker::isDense(uint64_t endBitoffset) const { return Ranges.size() == 1 && Ranges[0].first == 0 && Ranges[0].second == endBitoffset; } bool BitstreamUseTracker::considerMergeRight(size_t idx) { bool changed = false; while (idx < Ranges.size() - 1) { if (Ranges[idx].second >= Ranges[idx + 1].first) { Ranges[idx].second = Ranges[idx + 1].second; Ranges.erase(&Ranges[idx + 1]); changed = true; } } return changed; } void BitstreamUseTracker::insert(uint64_t begin, uint64_t end) { UseRange IR(begin, end); for (size_t i = 0, E = Ranges.size(); i < E; ++i) { ExtendResult ER = extendRange(Ranges[i], IR); switch (ER) { case Included: return; case ExtendedEnd: considerMergeRight(i); return; case ExtendedBegin: if (i > 0) considerMergeRight(i - 1); return; case ExtendedBoth: if (i > 0) { if (!considerMergeRight(i - 1)) considerMergeRight(i); } else considerMergeRight(i); return; case Exclusive: // If completely to the left, then insert there; otherwise, // keep traversing in order. if (end <= Ranges[i].first) { Ranges.insert(&Ranges[i], IR); return; } } } // This range goes at the end. Ranges.push_back(IR); } BitstreamUseTracker::ScopeTrack BitstreamUseTracker::scope_track(BitstreamCursor *BC) { ScopeTrack Result; Result.BC = BC; Result.begin = BC->GetCurrentBitNo(); return Result; } // HLSL Change Ends