1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915 |
- //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// \brief This file implements a class to represent arbitrary precision
- /// integral constant values and operations on them.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_APINT_H
- #define LLVM_ADT_APINT_H
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/MathExtras.h"
- #include <cassert>
- #include <climits>
- #include <cstring>
- #include <string>
- namespace llvm {
- class FoldingSetNodeID;
- class StringRef;
- class hash_code;
- class raw_ostream;
- template <typename T> class SmallVectorImpl;
- // An unsigned host type used as a single part of a multi-part
- // bignum.
- typedef uint64_t integerPart;
- const unsigned int host_char_bit = 8;
- const unsigned int integerPartWidth =
- host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
- //===----------------------------------------------------------------------===//
- // APInt Class
- // //
- ///////////////////////////////////////////////////////////////////////////////
- /// \brief Class for arbitrary precision integers.
- ///
- /// APInt is a functional replacement for common case unsigned integer type like
- /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
- /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
- /// than 64-bits of precision. APInt provides a variety of arithmetic operators
- /// and methods to manipulate integer values of any bit-width. It supports both
- /// the typical integer arithmetic and comparison operations as well as bitwise
- /// manipulation.
- ///
- /// The class has several invariants worth noting:
- /// * All bit, byte, and word positions are zero-based.
- /// * Once the bit width is set, it doesn't change except by the Truncate,
- /// SignExtend, or ZeroExtend operations.
- /// * All binary operators must be on APInt instances of the same bit width.
- /// Attempting to use these operators on instances with different bit
- /// widths will yield an assertion.
- /// * The value is stored canonically as an unsigned value. For operations
- /// where it makes a difference, there are both signed and unsigned variants
- /// of the operation. For example, sdiv and udiv. However, because the bit
- /// widths must be the same, operations such as Mul and Add produce the same
- /// results regardless of whether the values are interpreted as signed or
- /// not.
- /// * In general, the class tries to follow the style of computation that LLVM
- /// uses in its IR. This simplifies its use for LLVM.
- ///
- class APInt {
- unsigned BitWidth; ///< The number of bits in this APInt.
- /// This union is used to store the integer value. When the
- /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
- union {
- uint64_t VAL; ///< Used to store the <= 64 bits integer value.
- uint64_t *pVal; ///< Used to store the >64 bits integer value.
- };
- /// This enum is used to hold the constants we needed for APInt.
- enum {
- /// Bits in a word
- APINT_BITS_PER_WORD =
- static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
- /// Byte size of a word
- APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
- };
- friend struct DenseMapAPIntKeyInfo;
- /// \brief Fast internal constructor
- ///
- /// This constructor is used only internally for speed of construction of
- /// temporaries. It is unsafe for general use so it is not public.
- APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
- /// \brief Determine if this APInt just has one word to store value.
- ///
- /// \returns true if the number of bits <= 64, false otherwise.
- bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
- /// \brief Determine which word a bit is in.
- ///
- /// \returns the word position for the specified bit position.
- static unsigned whichWord(unsigned bitPosition) {
- return bitPosition / APINT_BITS_PER_WORD;
- }
- /// \brief Determine which bit in a word a bit is in.
- ///
- /// \returns the bit position in a word for the specified bit position
- /// in the APInt.
- static unsigned whichBit(unsigned bitPosition) {
- return bitPosition % APINT_BITS_PER_WORD;
- }
- /// \brief Get a single bit mask.
- ///
- /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
- /// This method generates and returns a uint64_t (word) mask for a single
- /// bit at a specific bit position. This is used to mask the bit in the
- /// corresponding word.
- static uint64_t maskBit(unsigned bitPosition) {
- return 1ULL << whichBit(bitPosition);
- }
- /// \brief Clear unused high order bits
- ///
- /// This method is used internally to clear the top "N" bits in the high order
- /// word that are not used by the APInt. This is needed after the most
- /// significant word is assigned a value to ensure that those bits are
- /// zero'd out.
- APInt &clearUnusedBits() {
- // Compute how many bits are used in the final word
- unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
- if (wordBits == 0)
- // If all bits are used, we want to leave the value alone. This also
- // avoids the undefined behavior of >> when the shift is the same size as
- // the word size (64).
- return *this;
- // Mask out the high bits.
- uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
- if (isSingleWord())
- VAL &= mask;
- else
- pVal[getNumWords() - 1] &= mask;
- return *this;
- }
- /// \brief Get the word corresponding to a bit position
- /// \returns the corresponding word for the specified bit position.
- uint64_t getWord(unsigned bitPosition) const {
- return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
- }
- /// \brief Convert a char array into an APInt
- ///
- /// \param radix 2, 8, 10, 16, or 36
- /// Converts a string into a number. The string must be non-empty
- /// and well-formed as a number of the given base. The bit-width
- /// must be sufficient to hold the result.
- ///
- /// This is used by the constructors that take string arguments.
- ///
- /// StringRef::getAsInteger is superficially similar but (1) does
- /// not assume that the string is well-formed and (2) grows the
- /// result to hold the input.
- void fromString(unsigned numBits, StringRef str, uint8_t radix);
- /// \brief An internal division function for dividing APInts.
- ///
- /// This is used by the toString method to divide by the radix. It simply
- /// provides a more convenient form of divide for internal use since KnuthDiv
- /// has specific constraints on its inputs. If those constraints are not met
- /// then it provides a simpler form of divide.
- static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS,
- unsigned rhsWords, APInt *Quotient, APInt *Remainder);
- /// out-of-line slow case for inline constructor
- void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
- /// shared code between two array constructors
- void initFromArray(ArrayRef<uint64_t> array);
- /// out-of-line slow case for inline copy constructor
- void initSlowCase(const APInt &that);
- /// out-of-line slow case for shl
- APInt shlSlowCase(unsigned shiftAmt) const;
- /// out-of-line slow case for operator&
- APInt AndSlowCase(const APInt &RHS) const;
- /// out-of-line slow case for operator|
- APInt OrSlowCase(const APInt &RHS) const;
- /// out-of-line slow case for operator^
- APInt XorSlowCase(const APInt &RHS) const;
- /// out-of-line slow case for operator=
- APInt &AssignSlowCase(const APInt &RHS);
- /// out-of-line slow case for operator==
- bool EqualSlowCase(const APInt &RHS) const;
- /// out-of-line slow case for operator==
- bool EqualSlowCase(uint64_t Val) const;
- /// out-of-line slow case for countLeadingZeros
- unsigned countLeadingZerosSlowCase() const;
- /// out-of-line slow case for countTrailingOnes
- unsigned countTrailingOnesSlowCase() const;
- /// out-of-line slow case for countPopulation
- unsigned countPopulationSlowCase() const;
- public:
- /// \name Constructors
- /// @{
- /// \brief Create a new APInt of numBits width, initialized as val.
- ///
- /// If isSigned is true then val is treated as if it were a signed value
- /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
- /// will be done. Otherwise, no sign extension occurs (high order bits beyond
- /// the range of val are zero filled).
- ///
- /// \param numBits the bit width of the constructed APInt
- /// \param val the initial value of the APInt
- /// \param isSigned how to treat signedness of val
- APInt(unsigned numBits, uint64_t val, bool isSigned = false)
- : BitWidth(numBits), VAL(0) {
- assert(BitWidth && "bitwidth too small");
- if (isSingleWord())
- VAL = val;
- else
- initSlowCase(numBits, val, isSigned);
- clearUnusedBits();
- }
- /// \brief Construct an APInt of numBits width, initialized as bigVal[].
- ///
- /// Note that bigVal.size() can be smaller or larger than the corresponding
- /// bit width but any extraneous bits will be dropped.
- ///
- /// \param numBits the bit width of the constructed APInt
- /// \param bigVal a sequence of words to form the initial value of the APInt
- APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
- /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
- /// deprecated because this constructor is prone to ambiguity with the
- /// APInt(unsigned, uint64_t, bool) constructor.
- ///
- /// If this overload is ever deleted, care should be taken to prevent calls
- /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
- /// constructor.
- APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
- /// \brief Construct an APInt from a string representation.
- ///
- /// This constructor interprets the string \p str in the given radix. The
- /// interpretation stops when the first character that is not suitable for the
- /// radix is encountered, or the end of the string. Acceptable radix values
- /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
- /// string to require more bits than numBits.
- ///
- /// \param numBits the bit width of the constructed APInt
- /// \param str the string to be interpreted
- /// \param radix the radix to use for the conversion
- APInt(unsigned numBits, StringRef str, uint8_t radix);
- /// Simply makes *this a copy of that.
- /// @brief Copy Constructor.
- APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
- if (isSingleWord())
- VAL = that.VAL;
- else
- initSlowCase(that);
- }
- /// \brief Move Constructor.
- APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
- that.BitWidth = 0;
- }
- /// \brief Destructor.
- ~APInt() {
- if (needsCleanup())
- delete[] pVal;
- }
- /// \brief Default constructor that creates an uninitialized APInt.
- ///
- /// This is useful for object deserialization (pair this with the static
- /// method Read).
- explicit APInt() : BitWidth(1) {}
- /// \brief Returns whether this instance allocated memory.
- bool needsCleanup() const { return !isSingleWord(); }
- /// Used to insert APInt objects, or objects that contain APInt objects, into
- /// FoldingSets.
- void Profile(FoldingSetNodeID &id) const;
- /// @}
- /// \name Value Tests
- /// @{
- /// \brief Determine sign of this APInt.
- ///
- /// This tests the high bit of this APInt to determine if it is set.
- ///
- /// \returns true if this APInt is negative, false otherwise
- bool isNegative() const { return (*this)[BitWidth - 1]; }
- /// \brief Determine if this APInt Value is non-negative (>= 0)
- ///
- /// This tests the high bit of the APInt to determine if it is unset.
- bool isNonNegative() const { return !isNegative(); }
- /// \brief Determine if this APInt Value is positive.
- ///
- /// This tests if the value of this APInt is positive (> 0). Note
- /// that 0 is not a positive value.
- ///
- /// \returns true if this APInt is positive.
- bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
- /// \brief Determine if all bits are set
- ///
- /// This checks to see if the value has all bits of the APInt are set or not.
- bool isAllOnesValue() const {
- if (isSingleWord())
- return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
- return countPopulationSlowCase() == BitWidth;
- }
- /// \brief Determine if this is the largest unsigned value.
- ///
- /// This checks to see if the value of this APInt is the maximum unsigned
- /// value for the APInt's bit width.
- bool isMaxValue() const { return isAllOnesValue(); }
- /// \brief Determine if this is the largest signed value.
- ///
- /// This checks to see if the value of this APInt is the maximum signed
- /// value for the APInt's bit width.
- bool isMaxSignedValue() const {
- return !isNegative() && countPopulation() == BitWidth - 1;
- }
- /// \brief Determine if this is the smallest unsigned value.
- ///
- /// This checks to see if the value of this APInt is the minimum unsigned
- /// value for the APInt's bit width.
- bool isMinValue() const { return !*this; }
- /// \brief Determine if this is the smallest signed value.
- ///
- /// This checks to see if the value of this APInt is the minimum signed
- /// value for the APInt's bit width.
- bool isMinSignedValue() const {
- return isNegative() && isPowerOf2();
- }
- /// \brief Check if this APInt has an N-bits unsigned integer value.
- bool isIntN(unsigned N) const {
- assert(N && "N == 0 ???");
- return getActiveBits() <= N;
- }
- /// \brief Check if this APInt has an N-bits signed integer value.
- bool isSignedIntN(unsigned N) const {
- assert(N && "N == 0 ???");
- return getMinSignedBits() <= N;
- }
- /// \brief Check if this APInt's value is a power of two greater than zero.
- ///
- /// \returns true if the argument APInt value is a power of two > 0.
- bool isPowerOf2() const {
- if (isSingleWord())
- return isPowerOf2_64(VAL);
- return countPopulationSlowCase() == 1;
- }
- /// \brief Check if the APInt's value is returned by getSignBit.
- ///
- /// \returns true if this is the value returned by getSignBit.
- bool isSignBit() const { return isMinSignedValue(); }
- /// \brief Convert APInt to a boolean value.
- ///
- /// This converts the APInt to a boolean value as a test against zero.
- bool getBoolValue() const { return !!*this; }
- /// If this value is smaller than the specified limit, return it, otherwise
- /// return the limit value. This causes the value to saturate to the limit.
- uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
- return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
- : getZExtValue();
- }
- /// \brief Check if the APInt consists of a repeated bit pattern.
- ///
- /// e.g. 0x01010101 satisfies isSplat(8).
- /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
- /// width without remainder.
- bool isSplat(unsigned SplatSizeInBits) const;
- /// @}
- /// \name Value Generators
- /// @{
- /// \brief Gets maximum unsigned value of APInt for specific bit width.
- static APInt getMaxValue(unsigned numBits) {
- return getAllOnesValue(numBits);
- }
- /// \brief Gets maximum signed value of APInt for a specific bit width.
- static APInt getSignedMaxValue(unsigned numBits) {
- APInt API = getAllOnesValue(numBits);
- API.clearBit(numBits - 1);
- return API;
- }
- /// \brief Gets minimum unsigned value of APInt for a specific bit width.
- static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
- /// \brief Gets minimum signed value of APInt for a specific bit width.
- static APInt getSignedMinValue(unsigned numBits) {
- APInt API(numBits, 0);
- API.setBit(numBits - 1);
- return API;
- }
- /// \brief Get the SignBit for a specific bit width.
- ///
- /// This is just a wrapper function of getSignedMinValue(), and it helps code
- /// readability when we want to get a SignBit.
- static APInt getSignBit(unsigned BitWidth) {
- return getSignedMinValue(BitWidth);
- }
- /// \brief Get the all-ones value.
- ///
- /// \returns the all-ones value for an APInt of the specified bit-width.
- static APInt getAllOnesValue(unsigned numBits) {
- return APInt(numBits, UINT64_MAX, true);
- }
- /// \brief Get the '0' value.
- ///
- /// \returns the '0' value for an APInt of the specified bit-width.
- static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
- /// \brief Compute an APInt containing numBits highbits from this APInt.
- ///
- /// Get an APInt with the same BitWidth as this APInt, just zero mask
- /// the low bits and right shift to the least significant bit.
- ///
- /// \returns the high "numBits" bits of this APInt.
- APInt getHiBits(unsigned numBits) const;
- /// \brief Compute an APInt containing numBits lowbits from this APInt.
- ///
- /// Get an APInt with the same BitWidth as this APInt, just zero mask
- /// the high bits.
- ///
- /// \returns the low "numBits" bits of this APInt.
- APInt getLoBits(unsigned numBits) const;
- /// \brief Return an APInt with exactly one bit set in the result.
- static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
- APInt Res(numBits, 0);
- Res.setBit(BitNo);
- return Res;
- }
- /// \brief Get a value with a block of bits set.
- ///
- /// Constructs an APInt value that has a contiguous range of bits set. The
- /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
- /// bits will be zero. For example, with parameters(32, 0, 16) you would get
- /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
- /// example, with parameters (32, 28, 4), you would get 0xF000000F.
- ///
- /// \param numBits the intended bit width of the result
- /// \param loBit the index of the lowest bit set.
- /// \param hiBit the index of the highest bit set.
- ///
- /// \returns An APInt value with the requested bits set.
- static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
- assert(hiBit <= numBits && "hiBit out of range");
- assert(loBit < numBits && "loBit out of range");
- if (hiBit < loBit)
- return getLowBitsSet(numBits, hiBit) |
- getHighBitsSet(numBits, numBits - loBit);
- return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
- }
- /// \brief Get a value with high bits set
- ///
- /// Constructs an APInt value that has the top hiBitsSet bits set.
- ///
- /// \param numBits the bitwidth of the result
- /// \param hiBitsSet the number of high-order bits set in the result.
- static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
- assert(hiBitsSet <= numBits && "Too many bits to set!");
- // Handle a degenerate case, to avoid shifting by word size
- if (hiBitsSet == 0)
- return APInt(numBits, 0);
- unsigned shiftAmt = numBits - hiBitsSet;
- // For small values, return quickly
- if (numBits <= APINT_BITS_PER_WORD)
- return APInt(numBits, ~0ULL << shiftAmt);
- return getAllOnesValue(numBits).shl(shiftAmt);
- }
- /// \brief Get a value with low bits set
- ///
- /// Constructs an APInt value that has the bottom loBitsSet bits set.
- ///
- /// \param numBits the bitwidth of the result
- /// \param loBitsSet the number of low-order bits set in the result.
- static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
- assert(loBitsSet <= numBits && "Too many bits to set!");
- // Handle a degenerate case, to avoid shifting by word size
- if (loBitsSet == 0)
- return APInt(numBits, 0);
- if (loBitsSet == APINT_BITS_PER_WORD)
- return APInt(numBits, UINT64_MAX);
- // For small values, return quickly.
- if (loBitsSet <= APINT_BITS_PER_WORD)
- return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
- return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
- }
- /// \brief Return a value containing V broadcasted over NewLen bits.
- static APInt getSplat(unsigned NewLen, const APInt &V) {
- assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
- APInt Val = V.zextOrSelf(NewLen);
- for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
- Val |= Val << I;
- return Val;
- }
- /// \brief Determine if two APInts have the same value, after zero-extending
- /// one of them (if needed!) to ensure that the bit-widths match.
- static bool isSameValue(const APInt &I1, const APInt &I2) {
- if (I1.getBitWidth() == I2.getBitWidth())
- return I1 == I2;
- if (I1.getBitWidth() > I2.getBitWidth())
- return I1 == I2.zext(I1.getBitWidth());
- return I1.zext(I2.getBitWidth()) == I2;
- }
- /// \brief Overload to compute a hash_code for an APInt value.
- friend hash_code hash_value(const APInt &Arg);
- /// This function returns a pointer to the internal storage of the APInt.
- /// This is useful for writing out the APInt in binary form without any
- /// conversions.
- const uint64_t *getRawData() const {
- if (isSingleWord())
- return &VAL;
- return &pVal[0];
- }
- /// @}
- /// \name Unary Operators
- /// @{
- /// \brief Postfix increment operator.
- ///
- /// \returns a new APInt value representing *this incremented by one
- const APInt operator++(int) {
- APInt API(*this);
- ++(*this);
- return API;
- }
- /// \brief Prefix increment operator.
- ///
- /// \returns *this incremented by one
- APInt &operator++();
- /// \brief Postfix decrement operator.
- ///
- /// \returns a new APInt representing *this decremented by one.
- const APInt operator--(int) {
- APInt API(*this);
- --(*this);
- return API;
- }
- /// \brief Prefix decrement operator.
- ///
- /// \returns *this decremented by one.
- APInt &operator--();
- /// \brief Unary bitwise complement operator.
- ///
- /// Performs a bitwise complement operation on this APInt.
- ///
- /// \returns an APInt that is the bitwise complement of *this
- APInt operator~() const {
- APInt Result(*this);
- Result.flipAllBits();
- return Result;
- }
- /// \brief Unary negation operator
- ///
- /// Negates *this using two's complement logic.
- ///
- /// \returns An APInt value representing the negation of *this.
- APInt operator-() const { return APInt(BitWidth, 0) - (*this); }
- /// \brief Logical negation operator.
- ///
- /// Performs logical negation operation on this APInt.
- ///
- /// \returns true if *this is zero, false otherwise.
- bool operator!() const {
- if (isSingleWord())
- return !VAL;
- for (unsigned i = 0; i != getNumWords(); ++i)
- if (pVal[i])
- return false;
- return true;
- }
- /// @}
- /// \name Assignment Operators
- /// @{
- /// \brief Copy assignment operator.
- ///
- /// \returns *this after assignment of RHS.
- APInt &operator=(const APInt &RHS) {
- // If the bitwidths are the same, we can avoid mucking with memory
- if (isSingleWord() && RHS.isSingleWord()) {
- VAL = RHS.VAL;
- BitWidth = RHS.BitWidth;
- return clearUnusedBits();
- }
- return AssignSlowCase(RHS);
- }
- /// @brief Move assignment operator.
- APInt &operator=(APInt &&that) {
- if (!isSingleWord()) {
- // The MSVC STL shipped in 2013 requires that self move assignment be a
- // no-op. Otherwise algorithms like stable_sort will produce answers
- // where half of the output is left in a moved-from state.
- if (this == &that)
- return *this;
- delete[] pVal;
- }
- // Use memcpy so that type based alias analysis sees both VAL and pVal
- // as modified.
- memcpy(&VAL, &that.VAL, sizeof(uint64_t));
- // If 'this == &that', avoid zeroing our own bitwidth by storing to 'that'
- // first.
- unsigned ThatBitWidth = that.BitWidth;
- that.BitWidth = 0;
- BitWidth = ThatBitWidth;
- return *this;
- }
- /// \brief Assignment operator.
- ///
- /// The RHS value is assigned to *this. If the significant bits in RHS exceed
- /// the bit width, the excess bits are truncated. If the bit width is larger
- /// than 64, the value is zero filled in the unspecified high order bits.
- ///
- /// \returns *this after assignment of RHS value.
- APInt &operator=(uint64_t RHS);
- /// \brief Bitwise AND assignment operator.
- ///
- /// Performs a bitwise AND operation on this APInt and RHS. The result is
- /// assigned to *this.
- ///
- /// \returns *this after ANDing with RHS.
- APInt &operator&=(const APInt &RHS);
- /// \brief Bitwise OR assignment operator.
- ///
- /// Performs a bitwise OR operation on this APInt and RHS. The result is
- /// assigned *this;
- ///
- /// \returns *this after ORing with RHS.
- APInt &operator|=(const APInt &RHS);
- /// \brief Bitwise OR assignment operator.
- ///
- /// Performs a bitwise OR operation on this APInt and RHS. RHS is
- /// logically zero-extended or truncated to match the bit-width of
- /// the LHS.
- APInt &operator|=(uint64_t RHS) {
- if (isSingleWord()) {
- VAL |= RHS;
- clearUnusedBits();
- } else {
- pVal[0] |= RHS;
- }
- return *this;
- }
- /// \brief Bitwise XOR assignment operator.
- ///
- /// Performs a bitwise XOR operation on this APInt and RHS. The result is
- /// assigned to *this.
- ///
- /// \returns *this after XORing with RHS.
- APInt &operator^=(const APInt &RHS);
- /// \brief Multiplication assignment operator.
- ///
- /// Multiplies this APInt by RHS and assigns the result to *this.
- ///
- /// \returns *this
- APInt &operator*=(const APInt &RHS);
- /// \brief Addition assignment operator.
- ///
- /// Adds RHS to *this and assigns the result to *this.
- ///
- /// \returns *this
- APInt &operator+=(const APInt &RHS);
- /// \brief Subtraction assignment operator.
- ///
- /// Subtracts RHS from *this and assigns the result to *this.
- ///
- /// \returns *this
- APInt &operator-=(const APInt &RHS);
- /// \brief Left-shift assignment function.
- ///
- /// Shifts *this left by shiftAmt and assigns the result to *this.
- ///
- /// \returns *this after shifting left by shiftAmt
- APInt &operator<<=(unsigned shiftAmt) {
- *this = shl(shiftAmt);
- return *this;
- }
- /// @}
- /// \name Binary Operators
- /// @{
- /// \brief Bitwise AND operator.
- ///
- /// Performs a bitwise AND operation on *this and RHS.
- ///
- /// \returns An APInt value representing the bitwise AND of *this and RHS.
- APInt operator&(const APInt &RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- return APInt(getBitWidth(), VAL & RHS.VAL);
- return AndSlowCase(RHS);
- }
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APInt &RHS) const {
- return this->operator&(RHS);
- }
- /// \brief Bitwise OR operator.
- ///
- /// Performs a bitwise OR operation on *this and RHS.
- ///
- /// \returns An APInt value representing the bitwise OR of *this and RHS.
- APInt operator|(const APInt &RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- return APInt(getBitWidth(), VAL | RHS.VAL);
- return OrSlowCase(RHS);
- }
- /// \brief Bitwise OR function.
- ///
- /// Performs a bitwise or on *this and RHS. This is implemented by simply
- /// calling operator|.
- ///
- /// \returns An APInt value representing the bitwise OR of *this and RHS.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APInt &RHS) const {
- return this->operator|(RHS);
- }
- /// \brief Bitwise XOR operator.
- ///
- /// Performs a bitwise XOR operation on *this and RHS.
- ///
- /// \returns An APInt value representing the bitwise XOR of *this and RHS.
- APInt operator^(const APInt &RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- return APInt(BitWidth, VAL ^ RHS.VAL);
- return XorSlowCase(RHS);
- }
- /// \brief Bitwise XOR function.
- ///
- /// Performs a bitwise XOR operation on *this and RHS. This is implemented
- /// through the usage of operator^.
- ///
- /// \returns An APInt value representing the bitwise XOR of *this and RHS.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APInt &RHS) const {
- return this->operator^(RHS);
- }
- /// \brief Multiplication operator.
- ///
- /// Multiplies this APInt by RHS and returns the result.
- APInt operator*(const APInt &RHS) const;
- /// \brief Addition operator.
- ///
- /// Adds RHS to this APInt and returns the result.
- APInt operator+(const APInt &RHS) const;
- APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); }
- /// \brief Subtraction operator.
- ///
- /// Subtracts RHS from this APInt and returns the result.
- APInt operator-(const APInt &RHS) const;
- APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); }
- /// \brief Left logical shift operator.
- ///
- /// Shifts this APInt left by \p Bits and returns the result.
- APInt operator<<(unsigned Bits) const { return shl(Bits); }
- /// \brief Left logical shift operator.
- ///
- /// Shifts this APInt left by \p Bits and returns the result.
- APInt operator<<(const APInt &Bits) const { return shl(Bits); }
- /// \brief Arithmetic right-shift function.
- ///
- /// Arithmetic right-shift this APInt by shiftAmt.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(unsigned shiftAmt) const;
- /// \brief Logical right-shift function.
- ///
- /// Logical right-shift this APInt by shiftAmt.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const;
- /// \brief Left-shift function.
- ///
- /// Left-shift this APInt by shiftAmt.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(unsigned shiftAmt) const {
- assert(shiftAmt <= BitWidth && "Invalid shift amount");
- if (isSingleWord()) {
- if (shiftAmt >= BitWidth)
- return APInt(BitWidth, 0); // avoid undefined shift results
- return APInt(BitWidth, VAL << shiftAmt);
- }
- return shlSlowCase(shiftAmt);
- }
- /// \brief Rotate left by rotateAmt.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(unsigned rotateAmt) const;
- /// \brief Rotate right by rotateAmt.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(unsigned rotateAmt) const;
- /// \brief Arithmetic right-shift function.
- ///
- /// Arithmetic right-shift this APInt by shiftAmt.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(const APInt &shiftAmt) const;
- /// \brief Logical right-shift function.
- ///
- /// Logical right-shift this APInt by shiftAmt.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(const APInt &shiftAmt) const;
- /// \brief Left-shift function.
- ///
- /// Left-shift this APInt by shiftAmt.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(const APInt &shiftAmt) const;
- /// \brief Rotate left by rotateAmt.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(const APInt &rotateAmt) const;
- /// \brief Rotate right by rotateAmt.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(const APInt &rotateAmt) const;
- /// \brief Unsigned division operation.
- ///
- /// Perform an unsigned divide operation on this APInt by RHS. Both this and
- /// RHS are treated as unsigned quantities for purposes of this division.
- ///
- /// \returns a new APInt value containing the division result
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT udiv(const APInt &RHS) const;
- /// \brief Signed division function for APInt.
- ///
- /// Signed divide this APInt by APInt RHS.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const;
- /// \brief Unsigned remainder operation.
- ///
- /// Perform an unsigned remainder operation on this APInt with RHS being the
- /// divisor. Both this and RHS are treated as unsigned quantities for purposes
- /// of this operation. Note that this is a true remainder operation and not a
- /// modulo operation because the sign follows the sign of the dividend which
- /// is *this.
- ///
- /// \returns a new APInt value containing the remainder result
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT urem(const APInt &RHS) const;
- /// \brief Function for signed remainder operation.
- ///
- /// Signed remainder operation on APInt.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const;
- /// \brief Dual division/remainder interface.
- ///
- /// Sometimes it is convenient to divide two APInt values and obtain both the
- /// quotient and remainder. This function does both operations in the same
- /// computation making it a little more efficient. The pair of input arguments
- /// may overlap with the pair of output arguments. It is safe to call
- /// udivrem(X, Y, X, Y), for example.
- static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
- APInt &Remainder);
- static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
- APInt &Remainder);
- // Operations that return overflow indicators.
- APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
- APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
- APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
- APInt usub_ov(const APInt &RHS, bool &Overflow) const;
- APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
- APInt smul_ov(const APInt &RHS, bool &Overflow) const;
- APInt umul_ov(const APInt &RHS, bool &Overflow) const;
- APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
- APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
- /// \brief Array-indexing support.
- ///
- /// \returns the bit value at bitPosition
- bool operator[](unsigned bitPosition) const {
- assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
- return (maskBit(bitPosition) &
- (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
- 0;
- }
- /// @}
- /// \name Comparison Operators
- /// @{
- /// \brief Equality operator.
- ///
- /// Compares this APInt with RHS for the validity of the equality
- /// relationship.
- bool operator==(const APInt &RHS) const {
- assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
- if (isSingleWord())
- return VAL == RHS.VAL;
- return EqualSlowCase(RHS);
- }
- /// \brief Equality operator.
- ///
- /// Compares this APInt with a uint64_t for the validity of the equality
- /// relationship.
- ///
- /// \returns true if *this == Val
- bool operator==(uint64_t Val) const {
- if (isSingleWord())
- return VAL == Val;
- return EqualSlowCase(Val);
- }
- /// \brief Equality comparison.
- ///
- /// Compares this APInt with RHS for the validity of the equality
- /// relationship.
- ///
- /// \returns true if *this == Val
- bool eq(const APInt &RHS) const { return (*this) == RHS; }
- /// \brief Inequality operator.
- ///
- /// Compares this APInt with RHS for the validity of the inequality
- /// relationship.
- ///
- /// \returns true if *this != Val
- bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
- /// \brief Inequality operator.
- ///
- /// Compares this APInt with a uint64_t for the validity of the inequality
- /// relationship.
- ///
- /// \returns true if *this != Val
- bool operator!=(uint64_t Val) const { return !((*this) == Val); }
- /// \brief Inequality comparison
- ///
- /// Compares this APInt with RHS for the validity of the inequality
- /// relationship.
- ///
- /// \returns true if *this != Val
- bool ne(const APInt &RHS) const { return !((*this) == RHS); }
- /// \brief Unsigned less than comparison
- ///
- /// Regards both *this and RHS as unsigned quantities and compares them for
- /// the validity of the less-than relationship.
- ///
- /// \returns true if *this < RHS when both are considered unsigned.
- bool ult(const APInt &RHS) const;
- /// \brief Unsigned less than comparison
- ///
- /// Regards both *this as an unsigned quantity and compares it with RHS for
- /// the validity of the less-than relationship.
- ///
- /// \returns true if *this < RHS when considered unsigned.
- bool ult(uint64_t RHS) const {
- return getActiveBits() > 64 ? false : getZExtValue() < RHS;
- }
- /// \brief Signed less than comparison
- ///
- /// Regards both *this and RHS as signed quantities and compares them for
- /// validity of the less-than relationship.
- ///
- /// \returns true if *this < RHS when both are considered signed.
- bool slt(const APInt &RHS) const;
- /// \brief Signed less than comparison
- ///
- /// Regards both *this as a signed quantity and compares it with RHS for
- /// the validity of the less-than relationship.
- ///
- /// \returns true if *this < RHS when considered signed.
- bool slt(int64_t RHS) const {
- return getMinSignedBits() > 64 ? isNegative() : getSExtValue() < RHS;
- }
- /// \brief Unsigned less or equal comparison
- ///
- /// Regards both *this and RHS as unsigned quantities and compares them for
- /// validity of the less-or-equal relationship.
- ///
- /// \returns true if *this <= RHS when both are considered unsigned.
- bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
- /// \brief Unsigned less or equal comparison
- ///
- /// Regards both *this as an unsigned quantity and compares it with RHS for
- /// the validity of the less-or-equal relationship.
- ///
- /// \returns true if *this <= RHS when considered unsigned.
- bool ule(uint64_t RHS) const { return !ugt(RHS); }
- /// \brief Signed less or equal comparison
- ///
- /// Regards both *this and RHS as signed quantities and compares them for
- /// validity of the less-or-equal relationship.
- ///
- /// \returns true if *this <= RHS when both are considered signed.
- bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
- /// \brief Signed less or equal comparison
- ///
- /// Regards both *this as a signed quantity and compares it with RHS for the
- /// validity of the less-or-equal relationship.
- ///
- /// \returns true if *this <= RHS when considered signed.
- bool sle(uint64_t RHS) const { return !sgt(RHS); }
- /// \brief Unsigned greather than comparison
- ///
- /// Regards both *this and RHS as unsigned quantities and compares them for
- /// the validity of the greater-than relationship.
- ///
- /// \returns true if *this > RHS when both are considered unsigned.
- bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
- /// \brief Unsigned greater than comparison
- ///
- /// Regards both *this as an unsigned quantity and compares it with RHS for
- /// the validity of the greater-than relationship.
- ///
- /// \returns true if *this > RHS when considered unsigned.
- bool ugt(uint64_t RHS) const {
- return getActiveBits() > 64 ? true : getZExtValue() > RHS;
- }
- /// \brief Signed greather than comparison
- ///
- /// Regards both *this and RHS as signed quantities and compares them for the
- /// validity of the greater-than relationship.
- ///
- /// \returns true if *this > RHS when both are considered signed.
- bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
- /// \brief Signed greater than comparison
- ///
- /// Regards both *this as a signed quantity and compares it with RHS for
- /// the validity of the greater-than relationship.
- ///
- /// \returns true if *this > RHS when considered signed.
- bool sgt(int64_t RHS) const {
- return getMinSignedBits() > 64 ? !isNegative() : getSExtValue() > RHS;
- }
- /// \brief Unsigned greater or equal comparison
- ///
- /// Regards both *this and RHS as unsigned quantities and compares them for
- /// validity of the greater-or-equal relationship.
- ///
- /// \returns true if *this >= RHS when both are considered unsigned.
- bool uge(const APInt &RHS) const { return !ult(RHS); }
- /// \brief Unsigned greater or equal comparison
- ///
- /// Regards both *this as an unsigned quantity and compares it with RHS for
- /// the validity of the greater-or-equal relationship.
- ///
- /// \returns true if *this >= RHS when considered unsigned.
- bool uge(uint64_t RHS) const { return !ult(RHS); }
- /// \brief Signed greather or equal comparison
- ///
- /// Regards both *this and RHS as signed quantities and compares them for
- /// validity of the greater-or-equal relationship.
- ///
- /// \returns true if *this >= RHS when both are considered signed.
- bool sge(const APInt &RHS) const { return !slt(RHS); }
- /// \brief Signed greater or equal comparison
- ///
- /// Regards both *this as a signed quantity and compares it with RHS for
- /// the validity of the greater-or-equal relationship.
- ///
- /// \returns true if *this >= RHS when considered signed.
- bool sge(int64_t RHS) const { return !slt(RHS); }
- /// This operation tests if there are any pairs of corresponding bits
- /// between this APInt and RHS that are both set.
- bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
- /// @}
- /// \name Resizing Operators
- /// @{
- /// \brief Truncate to new width.
- ///
- /// Truncate the APInt to a specified width. It is an error to specify a width
- /// that is greater than or equal to the current width.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const;
- /// \brief Sign extend to a new width.
- ///
- /// This operation sign extends the APInt to a new width. If the high order
- /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
- /// It is an error to specify a width that is less than or equal to the
- /// current width.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT sext(unsigned width) const;
- /// \brief Zero extend to a new width.
- ///
- /// This operation zero extends the APInt to a new width. The high order bits
- /// are filled with 0 bits. It is an error to specify a width that is less
- /// than or equal to the current width.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const;
- /// \brief Sign extend or truncate to width
- ///
- /// Make this APInt have the bit width given by \p width. The value is sign
- /// extended, truncated, or left alone to make it that width.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrTrunc(unsigned width) const;
- /// \brief Zero extend or truncate to width
- ///
- /// Make this APInt have the bit width given by \p width. The value is zero
- /// extended, truncated, or left alone to make it that width.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrTrunc(unsigned width) const;
- /// \brief Sign extend or truncate to width
- ///
- /// Make this APInt have the bit width given by \p width. The value is sign
- /// extended, or left alone to make it that width.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrSelf(unsigned width) const;
- /// \brief Zero extend or truncate to width
- ///
- /// Make this APInt have the bit width given by \p width. The value is zero
- /// extended, or left alone to make it that width.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrSelf(unsigned width) const;
- /// @}
- /// \name Bit Manipulation Operators
- /// @{
- /// \brief Set every bit to 1.
- void setAllBits() {
- if (isSingleWord())
- VAL = UINT64_MAX;
- else {
- // Set all the bits in all the words.
- for (unsigned i = 0; i < getNumWords(); ++i)
- pVal[i] = UINT64_MAX;
- }
- // Clear the unused ones
- clearUnusedBits();
- }
- /// \brief Set a given bit to 1.
- ///
- /// Set the given bit to 1 whose position is given as "bitPosition".
- void setBit(unsigned bitPosition);
- /// \brief Set every bit to 0.
- void clearAllBits() {
- if (isSingleWord())
- VAL = 0;
- else
- memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
- }
- /// \brief Set a given bit to 0.
- ///
- /// Set the given bit to 0 whose position is given as "bitPosition".
- void clearBit(unsigned bitPosition);
- /// \brief Toggle every bit to its opposite value.
- void flipAllBits() {
- if (isSingleWord())
- VAL ^= UINT64_MAX;
- else {
- for (unsigned i = 0; i < getNumWords(); ++i)
- pVal[i] ^= UINT64_MAX;
- }
- clearUnusedBits();
- }
- /// \brief Toggles a given bit to its opposite value.
- ///
- /// Toggle a given bit to its opposite value whose position is given
- /// as "bitPosition".
- void flipBit(unsigned bitPosition);
- /// @}
- /// \name Value Characterization Functions
- /// @{
- /// \brief Return the number of bits in the APInt.
- unsigned getBitWidth() const { return BitWidth; }
- /// \brief Get the number of words.
- ///
- /// Here one word's bitwidth equals to that of uint64_t.
- ///
- /// \returns the number of words to hold the integer value of this APInt.
- unsigned getNumWords() const { return getNumWords(BitWidth); }
- /// \brief Get the number of words.
- ///
- /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
- ///
- /// \returns the number of words to hold the integer value with a given bit
- /// width.
- static unsigned getNumWords(unsigned BitWidth) {
- return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
- }
- /// \brief Compute the number of active bits in the value
- ///
- /// This function returns the number of active bits which is defined as the
- /// bit width minus the number of leading zeros. This is used in several
- /// computations to see how "wide" the value is.
- unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
- /// \brief Compute the number of active words in the value of this APInt.
- ///
- /// This is used in conjunction with getActiveData to extract the raw value of
- /// the APInt.
- unsigned getActiveWords() const {
- unsigned numActiveBits = getActiveBits();
- return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
- }
- /// \brief Get the minimum bit size for this signed APInt
- ///
- /// Computes the minimum bit width for this APInt while considering it to be a
- /// signed (and probably negative) value. If the value is not negative, this
- /// function returns the same value as getActiveBits()+1. Otherwise, it
- /// returns the smallest bit width that will retain the negative value. For
- /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
- /// for -1, this function will always return 1.
- unsigned getMinSignedBits() const {
- if (isNegative())
- return BitWidth - countLeadingOnes() + 1;
- return getActiveBits() + 1;
- }
- /// \brief Get zero extended value
- ///
- /// This method attempts to return the value of this APInt as a zero extended
- /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
- /// uint64_t. Otherwise an assertion will result.
- uint64_t getZExtValue() const {
- if (isSingleWord())
- return VAL;
- assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
- return pVal[0];
- }
- /// \brief Get sign extended value
- ///
- /// This method attempts to return the value of this APInt as a sign extended
- /// int64_t. The bit width must be <= 64 or the value must fit within an
- /// int64_t. Otherwise an assertion will result.
- int64_t getSExtValue() const {
- if (isSingleWord())
- return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
- (APINT_BITS_PER_WORD - BitWidth);
- assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
- return int64_t(pVal[0]);
- }
- /// \brief Get bits required for string value.
- ///
- /// This method determines how many bits are required to hold the APInt
- /// equivalent of the string given by \p str.
- static unsigned getBitsNeeded(StringRef str, uint8_t radix);
- /// \brief The APInt version of the countLeadingZeros functions in
- /// MathExtras.h.
- ///
- /// It counts the number of zeros from the most significant bit to the first
- /// one bit.
- ///
- /// \returns BitWidth if the value is zero, otherwise returns the number of
- /// zeros from the most significant bit to the first one bits.
- unsigned countLeadingZeros() const {
- if (isSingleWord()) {
- unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
- return llvm::countLeadingZeros(VAL) - unusedBits;
- }
- return countLeadingZerosSlowCase();
- }
- /// \brief Count the number of leading one bits.
- ///
- /// This function is an APInt version of the countLeadingOnes
- /// functions in MathExtras.h. It counts the number of ones from the most
- /// significant bit to the first zero bit.
- ///
- /// \returns 0 if the high order bit is not set, otherwise returns the number
- /// of 1 bits from the most significant to the least
- unsigned countLeadingOnes() const;
- /// Computes the number of leading bits of this APInt that are equal to its
- /// sign bit.
- unsigned getNumSignBits() const {
- return isNegative() ? countLeadingOnes() : countLeadingZeros();
- }
- /// \brief Count the number of trailing zero bits.
- ///
- /// This function is an APInt version of the countTrailingZeros
- /// functions in MathExtras.h. It counts the number of zeros from the least
- /// significant bit to the first set bit.
- ///
- /// \returns BitWidth if the value is zero, otherwise returns the number of
- /// zeros from the least significant bit to the first one bit.
- unsigned countTrailingZeros() const;
- /// \brief Count the number of trailing one bits.
- ///
- /// This function is an APInt version of the countTrailingOnes
- /// functions in MathExtras.h. It counts the number of ones from the least
- /// significant bit to the first zero bit.
- ///
- /// \returns BitWidth if the value is all ones, otherwise returns the number
- /// of ones from the least significant bit to the first zero bit.
- unsigned countTrailingOnes() const {
- if (isSingleWord())
- return llvm::countTrailingOnes(VAL);
- return countTrailingOnesSlowCase();
- }
- /// \brief Count the number of bits set.
- ///
- /// This function is an APInt version of the countPopulation functions
- /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
- ///
- /// \returns 0 if the value is zero, otherwise returns the number of set bits.
- unsigned countPopulation() const {
- if (isSingleWord())
- return llvm::countPopulation(VAL);
- return countPopulationSlowCase();
- }
- /// @}
- /// \name Conversion Functions
- /// @{
- void print(raw_ostream &OS, bool isSigned) const;
- /// Converts an APInt to a string and append it to Str. Str is commonly a
- /// SmallString.
- void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
- bool formatAsCLiteral = false) const;
- /// Considers the APInt to be unsigned and converts it into a string in the
- /// radix given. The radix can be 2, 8, 10 16, or 36.
- void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
- toString(Str, Radix, false, false);
- }
- /// Considers the APInt to be signed and converts it into a string in the
- /// radix given. The radix can be 2, 8, 10, 16, or 36.
- void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
- toString(Str, Radix, true, false);
- }
- /// \brief Return the APInt as a std::string.
- ///
- /// Note that this is an inefficient method. It is better to pass in a
- /// SmallVector/SmallString to the methods above to avoid thrashing the heap
- /// for the string.
- std::string toString(unsigned Radix, bool Signed) const;
- /// \returns a byte-swapped representation of this APInt Value.
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT byteSwap() const;
- /// \brief Converts this APInt to a double value.
- double roundToDouble(bool isSigned) const;
- /// \brief Converts this unsigned APInt to a double value.
- double roundToDouble() const { return roundToDouble(false); }
- /// \brief Converts this signed APInt to a double value.
- double signedRoundToDouble() const { return roundToDouble(true); }
- /// \brief Converts APInt bits to a double
- ///
- /// The conversion does not do a translation from integer to double, it just
- /// re-interprets the bits as a double. Note that it is valid to do this on
- /// any bit width. Exactly 64 bits will be translated.
- double bitsToDouble() const {
- union {
- uint64_t I;
- double D;
- } T;
- T.I = (isSingleWord() ? VAL : pVal[0]);
- return T.D;
- }
- /// \brief Converts APInt bits to a double
- ///
- /// The conversion does not do a translation from integer to float, it just
- /// re-interprets the bits as a float. Note that it is valid to do this on
- /// any bit width. Exactly 32 bits will be translated.
- float bitsToFloat() const {
- union {
- unsigned I;
- float F;
- } T;
- T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
- return T.F;
- }
- /// \brief Converts a double to APInt bits.
- ///
- /// The conversion does not do a translation from double to integer, it just
- /// re-interprets the bits of the double.
- static APInt LLVM_ATTRIBUTE_UNUSED_RESULT doubleToBits(double V) {
- union {
- uint64_t I;
- double D;
- } T;
- T.D = V;
- return APInt(sizeof T * CHAR_BIT, T.I);
- }
- /// \brief Converts a float to APInt bits.
- ///
- /// The conversion does not do a translation from float to integer, it just
- /// re-interprets the bits of the float.
- static APInt LLVM_ATTRIBUTE_UNUSED_RESULT floatToBits(float V) {
- union {
- unsigned I;
- float F;
- } T;
- T.F = V;
- return APInt(sizeof T * CHAR_BIT, T.I);
- }
- /// @}
- /// \name Mathematics Operations
- /// @{
- /// \returns the floor log base 2 of this APInt.
- unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
- /// \returns the ceil log base 2 of this APInt.
- unsigned ceilLogBase2() const {
- return BitWidth - (*this - 1).countLeadingZeros();
- }
- /// \returns the nearest log base 2 of this APInt. Ties round up.
- ///
- /// NOTE: When we have a BitWidth of 1, we define:
- ///
- /// log2(0) = UINT32_MAX
- /// log2(1) = 0
- ///
- /// to get around any mathematical concerns resulting from
- /// referencing 2 in a space where 2 does no exist.
- unsigned nearestLogBase2() const {
- // Special case when we have a bitwidth of 1. If VAL is 1, then we
- // get 0. If VAL is 0, we get UINT64_MAX which gets truncated to
- // UINT32_MAX.
- if (BitWidth == 1)
- return VAL - 1;
- // Handle the zero case.
- if (!getBoolValue())
- return UINT32_MAX;
- // The non-zero case is handled by computing:
- //
- // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
- //
- // where x[i] is referring to the value of the ith bit of x.
- unsigned lg = logBase2();
- return lg + unsigned((*this)[lg - 1]);
- }
- /// \returns the log base 2 of this APInt if its an exact power of two, -1
- /// otherwise
- int32_t exactLogBase2() const {
- if (!isPowerOf2())
- return -1;
- return logBase2();
- }
- /// \brief Compute the square root
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT sqrt() const;
- /// \brief Get the absolute value;
- ///
- /// If *this is < 0 then return -(*this), otherwise *this;
- APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const {
- if (isNegative())
- return -(*this);
- return *this;
- }
- /// \returns the multiplicative inverse for a given modulo.
- APInt multiplicativeInverse(const APInt &modulo) const;
- /// @}
- /// \name Support for division by constant
- /// @{
- /// Calculate the magic number for signed division by a constant.
- struct ms;
- ms magic() const;
- /// Calculate the magic number for unsigned division by a constant.
- struct mu;
- mu magicu(unsigned LeadingZeros = 0) const;
- /// @}
- /// \name Building-block Operations for APInt and APFloat
- /// @{
- // These building block operations operate on a representation of arbitrary
- // precision, two's-complement, bignum integer values. They should be
- // sufficient to implement APInt and APFloat bignum requirements. Inputs are
- // generally a pointer to the base of an array of integer parts, representing
- // an unsigned bignum, and a count of how many parts there are.
- /// Sets the least significant part of a bignum to the input value, and zeroes
- /// out higher parts.
- static void tcSet(integerPart *, integerPart, unsigned int);
- /// Assign one bignum to another.
- static void tcAssign(integerPart *, const integerPart *, unsigned int);
- /// Returns true if a bignum is zero, false otherwise.
- static bool tcIsZero(const integerPart *, unsigned int);
- /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
- static int tcExtractBit(const integerPart *, unsigned int bit);
- /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
- /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
- /// significant bit of DST. All high bits above srcBITS in DST are
- /// zero-filled.
- static void tcExtract(integerPart *, unsigned int dstCount,
- const integerPart *, unsigned int srcBits,
- unsigned int srcLSB);
- /// Set the given bit of a bignum. Zero-based.
- static void tcSetBit(integerPart *, unsigned int bit);
- /// Clear the given bit of a bignum. Zero-based.
- static void tcClearBit(integerPart *, unsigned int bit);
- /// Returns the bit number of the least or most significant set bit of a
- /// number. If the input number has no bits set -1U is returned.
- static unsigned int tcLSB(const integerPart *, unsigned int);
- static unsigned int tcMSB(const integerPart *parts, unsigned int n);
- /// Negate a bignum in-place.
- static void tcNegate(integerPart *, unsigned int);
- /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
- static integerPart tcAdd(integerPart *, const integerPart *,
- integerPart carry, unsigned);
- /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
- static integerPart tcSubtract(integerPart *, const integerPart *,
- integerPart carry, unsigned);
- /// DST += SRC * MULTIPLIER + PART if add is true
- /// DST = SRC * MULTIPLIER + PART if add is false
- ///
- /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
- /// start at the same point, i.e. DST == SRC.
- ///
- /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
- /// Otherwise DST is filled with the least significant DSTPARTS parts of the
- /// result, and if all of the omitted higher parts were zero return zero,
- /// otherwise overflow occurred and return one.
- static int tcMultiplyPart(integerPart *dst, const integerPart *src,
- integerPart multiplier, integerPart carry,
- unsigned int srcParts, unsigned int dstParts,
- bool add);
- /// DST = LHS * RHS, where DST has the same width as the operands and is
- /// filled with the least significant parts of the result. Returns one if
- /// overflow occurred, otherwise zero. DST must be disjoint from both
- /// operands.
- static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
- unsigned);
- /// DST = LHS * RHS, where DST has width the sum of the widths of the
- /// operands. No overflow occurs. DST must be disjoint from both
- /// operands. Returns the number of parts required to hold the result.
- static unsigned int tcFullMultiply(integerPart *, const integerPart *,
- const integerPart *, unsigned, unsigned);
- /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
- /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
- /// REMAINDER to the remainder, return zero. i.e.
- ///
- /// OLD_LHS = RHS * LHS + REMAINDER
- ///
- /// SCRATCH is a bignum of the same size as the operands and result for use by
- /// the routine; its contents need not be initialized and are destroyed. LHS,
- /// REMAINDER and SCRATCH must be distinct.
- static int tcDivide(integerPart *lhs, const integerPart *rhs,
- integerPart *remainder, integerPart *scratch,
- unsigned int parts);
- /// Shift a bignum left COUNT bits. Shifted in bits are zero. There are no
- /// restrictions on COUNT.
- static void tcShiftLeft(integerPart *, unsigned int parts,
- unsigned int count);
- /// Shift a bignum right COUNT bits. Shifted in bits are zero. There are no
- /// restrictions on COUNT.
- static void tcShiftRight(integerPart *, unsigned int parts,
- unsigned int count);
- /// The obvious AND, OR and XOR and complement operations.
- static void tcAnd(integerPart *, const integerPart *, unsigned int);
- static void tcOr(integerPart *, const integerPart *, unsigned int);
- static void tcXor(integerPart *, const integerPart *, unsigned int);
- static void tcComplement(integerPart *, unsigned int);
- /// Comparison (unsigned) of two bignums.
- static int tcCompare(const integerPart *, const integerPart *, unsigned int);
- /// Increment a bignum in-place. Return the carry flag.
- static integerPart tcIncrement(integerPart *, unsigned int);
- /// Decrement a bignum in-place. Return the borrow flag.
- static integerPart tcDecrement(integerPart *, unsigned int);
- /// Set the least significant BITS and clear the rest.
- static void tcSetLeastSignificantBits(integerPart *, unsigned int,
- unsigned int bits);
- /// \brief debug method
- void dump() const;
- /// @}
- };
- /// Magic data for optimising signed division by a constant.
- struct APInt::ms {
- APInt m; ///< magic number
- unsigned s; ///< shift amount
- };
- /// Magic data for optimising unsigned division by a constant.
- struct APInt::mu {
- APInt m; ///< magic number
- bool a; ///< add indicator
- unsigned s; ///< shift amount
- };
- inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
- inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
- inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
- I.print(OS, true);
- return OS;
- }
- namespace APIntOps {
- /// \brief Determine the smaller of two APInts considered to be signed.
- inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; }
- /// \brief Determine the larger of two APInts considered to be signed.
- inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; }
- /// \brief Determine the smaller of two APInts considered to be signed.
- inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; }
- /// \brief Determine the larger of two APInts considered to be unsigned.
- inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; }
- /// \brief Check if the specified APInt has a N-bits unsigned integer value.
- inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
- /// \brief Check if the specified APInt has a N-bits signed integer value.
- inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
- return APIVal.isSignedIntN(N);
- }
- /// \returns true if the argument APInt value is a sequence of ones starting at
- /// the least significant bit with the remainder zero.
- inline bool isMask(unsigned numBits, const APInt &APIVal) {
- return numBits <= APIVal.getBitWidth() &&
- APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
- }
- /// \brief Return true if the argument APInt value contains a sequence of ones
- /// with the remainder zero.
- inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
- return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
- }
- /// \brief Returns a byte-swapped representation of the specified APInt Value.
- inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
- /// \brief Returns the floor log base 2 of the specified APInt value.
- inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
- /// \brief Compute GCD of two APInt values.
- ///
- /// This function returns the greatest common divisor of the two APInt values
- /// using Euclid's algorithm.
- ///
- /// \returns the greatest common divisor of Val1 and Val2
- APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
- /// \brief Converts the given APInt to a double value.
- ///
- /// Treats the APInt as an unsigned value for conversion purposes.
- inline double RoundAPIntToDouble(const APInt &APIVal) {
- return APIVal.roundToDouble();
- }
- /// \brief Converts the given APInt to a double value.
- ///
- /// Treats the APInt as a signed value for conversion purposes.
- inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
- return APIVal.signedRoundToDouble();
- }
- /// \brief Converts the given APInt to a float vlalue.
- inline float RoundAPIntToFloat(const APInt &APIVal) {
- return float(RoundAPIntToDouble(APIVal));
- }
- /// \brief Converts the given APInt to a float value.
- ///
- /// Treast the APInt as a signed value for conversion purposes.
- inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
- return float(APIVal.signedRoundToDouble());
- }
- /// \brief Converts the given double value into a APInt.
- ///
- /// This function convert a double value to an APInt value.
- APInt RoundDoubleToAPInt(double Double, unsigned width);
- /// \brief Converts a float value into a APInt.
- ///
- /// Converts a float value into an APInt value.
- inline APInt RoundFloatToAPInt(float Float, unsigned width) {
- return RoundDoubleToAPInt(double(Float), width);
- }
- /// \brief Arithmetic right-shift function.
- ///
- /// Arithmetic right-shift the APInt by shiftAmt.
- inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
- return LHS.ashr(shiftAmt);
- }
- /// \brief Logical right-shift function.
- ///
- /// Logical right-shift the APInt by shiftAmt.
- inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
- return LHS.lshr(shiftAmt);
- }
- /// \brief Left-shift function.
- ///
- /// Left-shift the APInt by shiftAmt.
- inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
- return LHS.shl(shiftAmt);
- }
- /// \brief Signed division function for APInt.
- ///
- /// Signed divide APInt LHS by APInt RHS.
- inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
- /// \brief Unsigned division function for APInt.
- ///
- /// Unsigned divide APInt LHS by APInt RHS.
- inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
- /// \brief Function for signed remainder operation.
- ///
- /// Signed remainder operation on APInt.
- inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
- /// \brief Function for unsigned remainder operation.
- ///
- /// Unsigned remainder operation on APInt.
- inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
- /// \brief Function for multiplication operation.
- ///
- /// Performs multiplication on APInt values.
- inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
- /// \brief Function for addition operation.
- ///
- /// Performs addition on APInt values.
- inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
- /// \brief Function for subtraction operation.
- ///
- /// Performs subtraction on APInt values.
- inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
- /// \brief Bitwise AND function for APInt.
- ///
- /// Performs bitwise AND operation on APInt LHS and
- /// APInt RHS.
- inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
- /// \brief Bitwise OR function for APInt.
- ///
- /// Performs bitwise OR operation on APInt LHS and APInt RHS.
- inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
- /// \brief Bitwise XOR function for APInt.
- ///
- /// Performs bitwise XOR operation on APInt.
- inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
- /// \brief Bitwise complement function.
- ///
- /// Performs a bitwise complement operation on APInt.
- inline APInt Not(const APInt &APIVal) { return ~APIVal; }
- } // End of APIntOps namespace
- // See friend declaration above. This additional declaration is required in
- // order to compile LLVM with IBM xlC compiler.
- hash_code hash_value(const APInt &Arg);
- } // End of llvm namespace
- #endif
|