123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371 |
- //===--- ArrayRef.h - Array Reference Wrapper -------------------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_ARRAYREF_H
- #define LLVM_ADT_ARRAYREF_H
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/SmallVector.h"
- #include <vector>
- namespace llvm {
- /// ArrayRef - Represent a constant reference to an array (0 or more elements
- /// consecutively in memory), i.e. a start pointer and a length. It allows
- /// various APIs to take consecutive elements easily and conveniently.
- ///
- /// This class does not own the underlying data, it is expected to be used in
- /// situations where the data resides in some other buffer, whose lifetime
- /// extends past that of the ArrayRef. For this reason, it is not in general
- /// safe to store an ArrayRef.
- ///
- /// This is intended to be trivially copyable, so it should be passed by
- /// value.
- template<typename T>
- class ArrayRef {
- public:
- typedef const T *iterator;
- typedef const T *const_iterator;
- typedef size_t size_type;
- typedef std::reverse_iterator<iterator> reverse_iterator;
- private:
- /// The start of the array, in an external buffer.
- const T *Data;
- /// The number of elements.
- size_type Length;
- public:
- /// @name Constructors
- /// @{
- /// Construct an empty ArrayRef.
- /*implicit*/ ArrayRef() : Data(nullptr), Length(0) {}
- /// Construct an empty ArrayRef from None.
- /*implicit*/ ArrayRef(NoneType) : Data(nullptr), Length(0) {}
- /// Construct an ArrayRef from a single element.
- /*implicit*/ ArrayRef(const T &OneElt)
- : Data(&OneElt), Length(1) {}
- /// Construct an ArrayRef from a pointer and length.
- /*implicit*/ ArrayRef(const T *data, size_t length)
- : Data(data), Length(length) {}
- /// Construct an ArrayRef from a range.
- ArrayRef(const T *begin, const T *end)
- : Data(begin), Length(end - begin) {}
- /// Construct an ArrayRef from a SmallVector. This is templated in order to
- /// avoid instantiating SmallVectorTemplateCommon<T> whenever we
- /// copy-construct an ArrayRef.
- template<typename U>
- /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
- : Data(Vec.data()), Length(Vec.size()) {
- }
- /// Construct an ArrayRef from a std::vector.
- template<typename A>
- /*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
- : Data(Vec.data()), Length(Vec.size()) {}
- /// Construct an ArrayRef from a C array.
- template <size_t N>
- /*implicit*/ LLVM_CONSTEXPR ArrayRef(const T (&Arr)[N])
- : Data(Arr), Length(N) {}
- /// Construct an ArrayRef from a std::initializer_list.
- /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
- : Data(Vec.begin() == Vec.end() ? (T*)0 : Vec.begin()),
- Length(Vec.size()) {}
- /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
- /// ensure that only ArrayRefs of pointers can be converted.
- template <typename U>
- ArrayRef(const ArrayRef<U *> &A,
- typename std::enable_if<
- std::is_convertible<U *const *, T const *>::value>::type* = 0)
- : Data(A.data()), Length(A.size()) {}
- /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is
- /// templated in order to avoid instantiating SmallVectorTemplateCommon<T>
- /// whenever we copy-construct an ArrayRef.
- template<typename U, typename DummyT>
- /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<U*, DummyT> &Vec,
- typename std::enable_if<
- std::is_convertible<U *const *,
- T const *>::value>::type* = 0)
- : Data(Vec.data()), Length(Vec.size()) {
- }
- /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE
- /// to ensure that only vectors of pointers can be converted.
- template<typename U, typename A>
- ArrayRef(const std::vector<U *, A> &Vec,
- typename std::enable_if<
- std::is_convertible<U *const *, T const *>::value>::type* = 0)
- : Data(Vec.data()), Length(Vec.size()) {}
- /// @}
- /// @name Simple Operations
- /// @{
- iterator begin() const { return Data; }
- iterator end() const { return Data + Length; }
- reverse_iterator rbegin() const { return reverse_iterator(end()); }
- reverse_iterator rend() const { return reverse_iterator(begin()); }
- /// empty - Check if the array is empty.
- bool empty() const { return Length == 0; }
- const T *data() const { return Data; }
- /// size - Get the array size.
- size_t size() const { return Length; }
- /// front - Get the first element.
- const T &front() const {
- assert(!empty());
- return Data[0];
- }
- /// back - Get the last element.
- const T &back() const {
- assert(!empty());
- return Data[Length-1];
- }
- // copy - Allocate copy in Allocator and return ArrayRef<T> to it.
- template <typename Allocator> ArrayRef<T> copy(Allocator &A) {
- T *Buff = A.template Allocate<T>(Length);
- std::copy(begin(), end(), Buff);
- return ArrayRef<T>(Buff, Length);
- }
- /// equals - Check for element-wise equality.
- bool equals(ArrayRef RHS) const {
- if (Length != RHS.Length)
- return false;
- if (Length == 0)
- return true;
- return std::equal(begin(), end(), RHS.begin());
- }
- /// slice(n) - Chop off the first N elements of the array.
- ArrayRef<T> slice(unsigned N) const {
- assert(N <= size() && "Invalid specifier");
- return ArrayRef<T>(data()+N, size()-N);
- }
- /// slice(n, m) - Chop off the first N elements of the array, and keep M
- /// elements in the array.
- ArrayRef<T> slice(unsigned N, unsigned M) const {
- assert(N+M <= size() && "Invalid specifier");
- return ArrayRef<T>(data()+N, M);
- }
- // \brief Drop the last \p N elements of the array.
- ArrayRef<T> drop_back(unsigned N = 1) const {
- assert(size() >= N && "Dropping more elements than exist");
- return slice(0, size() - N);
- }
- /// @}
- /// @name Operator Overloads
- /// @{
- const T &operator[](size_t Index) const {
- assert(Index < Length && "Invalid index!");
- return Data[Index];
- }
- /// @}
- /// @name Expensive Operations
- /// @{
- std::vector<T> vec() const {
- return std::vector<T>(Data, Data+Length);
- }
- /// @}
- /// @name Conversion operators
- /// @{
- operator std::vector<T>() const {
- return std::vector<T>(Data, Data+Length);
- }
- /// @}
- };
- /// MutableArrayRef - Represent a mutable reference to an array (0 or more
- /// elements consecutively in memory), i.e. a start pointer and a length. It
- /// allows various APIs to take and modify consecutive elements easily and
- /// conveniently.
- ///
- /// This class does not own the underlying data, it is expected to be used in
- /// situations where the data resides in some other buffer, whose lifetime
- /// extends past that of the MutableArrayRef. For this reason, it is not in
- /// general safe to store a MutableArrayRef.
- ///
- /// This is intended to be trivially copyable, so it should be passed by
- /// value.
- template<typename T>
- class MutableArrayRef : public ArrayRef<T> {
- public:
- typedef T *iterator;
- typedef std::reverse_iterator<iterator> reverse_iterator;
- /// Construct an empty MutableArrayRef.
- /*implicit*/ MutableArrayRef() : ArrayRef<T>() {}
- /// Construct an empty MutableArrayRef from None.
- /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {}
- /// Construct an MutableArrayRef from a single element.
- /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}
- /// Construct an MutableArrayRef from a pointer and length.
- /*implicit*/ MutableArrayRef(T *data, size_t length)
- : ArrayRef<T>(data, length) {}
- /// Construct an MutableArrayRef from a range.
- MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}
- /// Construct an MutableArrayRef from a SmallVector.
- /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec)
- : ArrayRef<T>(Vec) {}
- /// Construct a MutableArrayRef from a std::vector.
- /*implicit*/ MutableArrayRef(std::vector<T> &Vec)
- : ArrayRef<T>(Vec) {}
- /// Construct an MutableArrayRef from a C array.
- template <size_t N>
- /*implicit*/ LLVM_CONSTEXPR MutableArrayRef(T (&Arr)[N])
- : ArrayRef<T>(Arr) {}
- T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }
- iterator begin() const { return data(); }
- iterator end() const { return data() + this->size(); }
- reverse_iterator rbegin() const { return reverse_iterator(end()); }
- reverse_iterator rend() const { return reverse_iterator(begin()); }
- /// front - Get the first element.
- T &front() const {
- assert(!this->empty());
- return data()[0];
- }
- /// back - Get the last element.
- T &back() const {
- assert(!this->empty());
- return data()[this->size()-1];
- }
- /// slice(n) - Chop off the first N elements of the array.
- MutableArrayRef<T> slice(unsigned N) const {
- assert(N <= this->size() && "Invalid specifier");
- return MutableArrayRef<T>(data()+N, this->size()-N);
- }
- /// slice(n, m) - Chop off the first N elements of the array, and keep M
- /// elements in the array.
- MutableArrayRef<T> slice(unsigned N, unsigned M) const {
- assert(N+M <= this->size() && "Invalid specifier");
- return MutableArrayRef<T>(data()+N, M);
- }
- MutableArrayRef<T> drop_back(unsigned N) const {
- assert(this->size() >= N && "Dropping more elements than exist");
- return slice(0, this->size() - N);
- }
- /// @}
- /// @name Operator Overloads
- /// @{
- T &operator[](size_t Index) const {
- assert(Index < this->size() && "Invalid index!");
- return data()[Index];
- }
- };
- /// @name ArrayRef Convenience constructors
- /// @{
- /// Construct an ArrayRef from a single element.
- template<typename T>
- ArrayRef<T> makeArrayRef(const T &OneElt) {
- return OneElt;
- }
- /// Construct an ArrayRef from a pointer and length.
- template<typename T>
- ArrayRef<T> makeArrayRef(const T *data, size_t length) {
- return ArrayRef<T>(data, length);
- }
- /// Construct an ArrayRef from a range.
- template<typename T>
- ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
- return ArrayRef<T>(begin, end);
- }
- /// Construct an ArrayRef from a SmallVector.
- template <typename T>
- ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
- return Vec;
- }
- /// Construct an ArrayRef from a SmallVector.
- template <typename T, unsigned N>
- ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
- return Vec;
- }
- /// Construct an ArrayRef from a std::vector.
- template<typename T>
- ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
- return Vec;
- }
- /// Construct an ArrayRef from a C array.
- template<typename T, size_t N>
- ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
- return ArrayRef<T>(Arr);
- }
- /// @}
- /// @name ArrayRef Comparison Operators
- /// @{
- template<typename T>
- inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
- return LHS.equals(RHS);
- }
- template<typename T>
- inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
- return !(LHS == RHS);
- }
- /// @}
- // ArrayRefs can be treated like a POD type.
- template <typename T> struct isPodLike;
- template <typename T> struct isPodLike<ArrayRef<T> > {
- static const bool value = true;
- };
- }
- #endif
|