123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589 |
- //===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the BitVector class.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_BITVECTOR_H
- #define LLVM_ADT_BITVECTOR_H
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include <algorithm>
- #include <cassert>
- #include <climits>
- #include <cstdlib>
- namespace llvm {
- class BitVector {
- typedef unsigned long BitWord;
- enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
- static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
- "Unsupported word size");
- BitWord *Bits; // Actual bits.
- unsigned Size; // Size of bitvector in bits.
- unsigned Capacity; // Size of allocated memory in BitWord.
- public:
- typedef unsigned size_type;
- // Encapsulation of a single bit.
- class reference {
- friend class BitVector;
- BitWord *WordRef;
- unsigned BitPos;
- reference(); // Undefined
- public:
- reference(BitVector &b, unsigned Idx) {
- WordRef = &b.Bits[Idx / BITWORD_SIZE];
- BitPos = Idx % BITWORD_SIZE;
- }
- reference(const reference&) = default;
- reference &operator=(reference t) {
- *this = bool(t);
- return *this;
- }
- reference& operator=(bool t) {
- if (t)
- *WordRef |= BitWord(1) << BitPos;
- else
- *WordRef &= ~(BitWord(1) << BitPos);
- return *this;
- }
- operator bool() const {
- return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false;
- }
- };
- /// BitVector default ctor - Creates an empty bitvector.
- BitVector() : Size(0), Capacity(0) {
- Bits = nullptr;
- }
- /// BitVector ctor - Creates a bitvector of specified number of bits. All
- /// bits are initialized to the specified value.
- explicit BitVector(unsigned s, bool t = false) : Size(s) {
- Capacity = NumBitWords(s);
- Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
- init_words(Bits, Capacity, t);
- if (t)
- clear_unused_bits();
- }
- /// BitVector copy ctor.
- BitVector(const BitVector &RHS) : Size(RHS.size()) {
- if (Size == 0) {
- Bits = nullptr;
- Capacity = 0;
- return;
- }
- Capacity = NumBitWords(RHS.size());
- Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
- if (Bits == nullptr) throw std::bad_alloc(); // HLSL Change
- std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
- }
- BitVector(BitVector &&RHS)
- : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
- RHS.Bits = nullptr;
- }
- ~BitVector() {
- std::free(Bits);
- }
- /// empty - Tests whether there are no bits in this bitvector.
- bool empty() const { return Size == 0; }
- /// size - Returns the number of bits in this bitvector.
- size_type size() const { return Size; }
- /// count - Returns the number of bits which are set.
- size_type count() const {
- unsigned NumBits = 0;
- for (unsigned i = 0; i < NumBitWords(size()); ++i)
- NumBits += countPopulation(Bits[i]);
- return NumBits;
- }
- /// any - Returns true if any bit is set.
- bool any() const {
- for (unsigned i = 0; i < NumBitWords(size()); ++i)
- if (Bits[i] != 0)
- return true;
- return false;
- }
- /// all - Returns true if all bits are set.
- bool all() const {
- for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
- if (Bits[i] != ~0UL)
- return false;
- // If bits remain check that they are ones. The unused bits are always zero.
- if (unsigned Remainder = Size % BITWORD_SIZE)
- return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
- return true;
- }
- /// none - Returns true if none of the bits are set.
- bool none() const {
- return !any();
- }
- /// find_first - Returns the index of the first set bit, -1 if none
- /// of the bits are set.
- int find_first() const {
- for (unsigned i = 0; i < NumBitWords(size()); ++i)
- if (Bits[i] != 0)
- return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
- return -1;
- }
- /// find_next - Returns the index of the next set bit following the
- /// "Prev" bit. Returns -1 if the next set bit is not found.
- int find_next(unsigned Prev) const {
- ++Prev;
- if (Prev >= Size)
- return -1;
- unsigned WordPos = Prev / BITWORD_SIZE;
- unsigned BitPos = Prev % BITWORD_SIZE;
- BitWord Copy = Bits[WordPos];
- // Mask off previous bits.
- Copy &= ~0UL << BitPos;
- if (Copy != 0)
- return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
- // Check subsequent words.
- for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
- if (Bits[i] != 0)
- return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
- return -1;
- }
- /// clear - Clear all bits.
- void clear() {
- Size = 0;
- }
- /// resize - Grow or shrink the bitvector.
- void resize(unsigned N, bool t = false) {
- if (N > Capacity * BITWORD_SIZE) {
- unsigned OldCapacity = Capacity;
- grow(N);
- init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
- }
- // Set any old unused bits that are now included in the BitVector. This
- // may set bits that are not included in the new vector, but we will clear
- // them back out below.
- if (N > Size)
- set_unused_bits(t);
- // Update the size, and clear out any bits that are now unused
- unsigned OldSize = Size;
- Size = N;
- if (t || N < OldSize)
- clear_unused_bits();
- }
- void reserve(unsigned N) {
- if (N > Capacity * BITWORD_SIZE)
- grow(N);
- }
- // Set, reset, flip
- BitVector &set() {
- init_words(Bits, Capacity, true);
- clear_unused_bits();
- return *this;
- }
- BitVector &set(unsigned Idx) {
- assert(Bits && "Bits never allocated");
- Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
- return *this;
- }
- /// set - Efficiently set a range of bits in [I, E)
- BitVector &set(unsigned I, unsigned E) {
- assert(I <= E && "Attempted to set backwards range!");
- assert(E <= size() && "Attempted to set out-of-bounds range!");
- if (I == E) return *this;
- if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
- BitWord EMask = 1UL << (E % BITWORD_SIZE);
- BitWord IMask = 1UL << (I % BITWORD_SIZE);
- BitWord Mask = EMask - IMask;
- Bits[I / BITWORD_SIZE] |= Mask;
- return *this;
- }
- BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
- Bits[I / BITWORD_SIZE] |= PrefixMask;
- I = RoundUpToAlignment(I, BITWORD_SIZE);
- for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
- Bits[I / BITWORD_SIZE] = ~0UL;
- BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
- if (I < E)
- Bits[I / BITWORD_SIZE] |= PostfixMask;
- return *this;
- }
- BitVector &reset() {
- init_words(Bits, Capacity, false);
- return *this;
- }
- BitVector &reset(unsigned Idx) {
- Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
- return *this;
- }
- /// reset - Efficiently reset a range of bits in [I, E)
- BitVector &reset(unsigned I, unsigned E) {
- assert(I <= E && "Attempted to reset backwards range!");
- assert(E <= size() && "Attempted to reset out-of-bounds range!");
- if (I == E) return *this;
- if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
- BitWord EMask = 1UL << (E % BITWORD_SIZE);
- BitWord IMask = 1UL << (I % BITWORD_SIZE);
- BitWord Mask = EMask - IMask;
- Bits[I / BITWORD_SIZE] &= ~Mask;
- return *this;
- }
- BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
- Bits[I / BITWORD_SIZE] &= ~PrefixMask;
- I = RoundUpToAlignment(I, BITWORD_SIZE);
- for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
- Bits[I / BITWORD_SIZE] = 0UL;
- BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
- if (I < E)
- Bits[I / BITWORD_SIZE] &= ~PostfixMask;
- return *this;
- }
- BitVector &flip() {
- for (unsigned i = 0; i < NumBitWords(size()); ++i)
- Bits[i] = ~Bits[i];
- clear_unused_bits();
- return *this;
- }
- BitVector &flip(unsigned Idx) {
- Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
- return *this;
- }
- // Indexing.
- reference operator[](unsigned Idx) {
- assert (Idx < Size && "Out-of-bounds Bit access.");
- return reference(*this, Idx);
- }
- bool operator[](unsigned Idx) const {
- assert (Idx < Size && "Out-of-bounds Bit access.");
- BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
- return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
- }
- bool test(unsigned Idx) const {
- return (*this)[Idx];
- }
- /// Test if any common bits are set.
- bool anyCommon(const BitVector &RHS) const {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
- if (Bits[i] & RHS.Bits[i])
- return true;
- return false;
- }
- // Comparison operators.
- bool operator==(const BitVector &RHS) const {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- unsigned i;
- for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
- if (Bits[i] != RHS.Bits[i])
- return false;
- // Verify that any extra words are all zeros.
- if (i != ThisWords) {
- for (; i != ThisWords; ++i)
- if (Bits[i])
- return false;
- } else if (i != RHSWords) {
- for (; i != RHSWords; ++i)
- if (RHS.Bits[i])
- return false;
- }
- return true;
- }
- bool operator!=(const BitVector &RHS) const {
- return !(*this == RHS);
- }
- /// Intersection, union, disjoint union.
- BitVector &operator&=(const BitVector &RHS) {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- unsigned i;
- for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
- Bits[i] &= RHS.Bits[i];
- // Any bits that are just in this bitvector become zero, because they aren't
- // in the RHS bit vector. Any words only in RHS are ignored because they
- // are already zero in the LHS.
- for (; i != ThisWords; ++i)
- Bits[i] = 0;
- return *this;
- }
- /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
- BitVector &reset(const BitVector &RHS) {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- unsigned i;
- for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
- Bits[i] &= ~RHS.Bits[i];
- return *this;
- }
- /// test - Check if (This - RHS) is zero.
- /// This is the same as reset(RHS) and any().
- bool test(const BitVector &RHS) const {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- unsigned i;
- for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
- if ((Bits[i] & ~RHS.Bits[i]) != 0)
- return true;
- for (; i != ThisWords ; ++i)
- if (Bits[i] != 0)
- return true;
- return false;
- }
- BitVector &operator|=(const BitVector &RHS) {
- if (size() < RHS.size())
- resize(RHS.size());
- for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
- Bits[i] |= RHS.Bits[i];
- return *this;
- }
- BitVector &operator^=(const BitVector &RHS) {
- if (size() < RHS.size())
- resize(RHS.size());
- for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
- Bits[i] ^= RHS.Bits[i];
- return *this;
- }
- // Assignment operator.
- const BitVector &operator=(const BitVector &RHS) {
- if (this == &RHS) return *this;
- Size = RHS.size();
- unsigned RHSWords = NumBitWords(Size);
- if (Size <= Capacity * BITWORD_SIZE) {
- if (Size)
- std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
- clear_unused_bits();
- return *this;
- }
- // Grow the bitvector to have enough elements.
- Capacity = RHSWords;
- assert(Capacity > 0 && "negative capacity?");
- BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
- if (NewBits == nullptr) throw std::bad_alloc(); // HLSL Change
- std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
- // Destroy the old bits.
- std::free(Bits);
- Bits = NewBits;
- return *this;
- }
- const BitVector &operator=(BitVector &&RHS) {
- if (this == &RHS) return *this;
- std::free(Bits);
- Bits = RHS.Bits;
- Size = RHS.Size;
- Capacity = RHS.Capacity;
- RHS.Bits = nullptr;
- return *this;
- }
- void swap(BitVector &RHS) {
- std::swap(Bits, RHS.Bits);
- std::swap(Size, RHS.Size);
- std::swap(Capacity, RHS.Capacity);
- }
- //===--------------------------------------------------------------------===//
- // Portable bit mask operations.
- //===--------------------------------------------------------------------===//
- //
- // These methods all operate on arrays of uint32_t, each holding 32 bits. The
- // fixed word size makes it easier to work with literal bit vector constants
- // in portable code.
- //
- // The LSB in each word is the lowest numbered bit. The size of a portable
- // bit mask is always a whole multiple of 32 bits. If no bit mask size is
- // given, the bit mask is assumed to cover the entire BitVector.
- /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
- /// This computes "*this |= Mask".
- void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
- applyMask<true, false>(Mask, MaskWords);
- }
- /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
- /// Don't resize. This computes "*this &= ~Mask".
- void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
- applyMask<false, false>(Mask, MaskWords);
- }
- /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
- /// Don't resize. This computes "*this |= ~Mask".
- void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
- applyMask<true, true>(Mask, MaskWords);
- }
- /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
- /// Don't resize. This computes "*this &= Mask".
- void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
- applyMask<false, true>(Mask, MaskWords);
- }
- private:
- unsigned NumBitWords(unsigned S) const {
- return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
- }
- // Set the unused bits in the high words.
- void set_unused_bits(bool t = true) {
- // Set high words first.
- unsigned UsedWords = NumBitWords(Size);
- if (Capacity > UsedWords)
- init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
- // Then set any stray high bits of the last used word.
- unsigned ExtraBits = Size % BITWORD_SIZE;
- if (ExtraBits) {
- BitWord ExtraBitMask = ~0UL << ExtraBits;
- if (t)
- Bits[UsedWords-1] |= ExtraBitMask;
- else
- Bits[UsedWords-1] &= ~ExtraBitMask;
- }
- }
- // Clear the unused bits in the high words.
- void clear_unused_bits() {
- set_unused_bits(false);
- }
- void grow(unsigned NewSize) {
- Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
- assert(Capacity > 0 && "realloc-ing zero space");
- // HLSL Change Starts: don't lose old buffer while reallocating
- // Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
- BitWord *newBits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
- if (newBits == nullptr)
- throw std::bad_alloc();
- Bits = newBits;
- // HLSL Change Ends
- clear_unused_bits();
- }
- void init_words(BitWord *B, unsigned NumWords, bool t) {
- memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
- }
- template<bool AddBits, bool InvertMask>
- void applyMask(const uint32_t *Mask, unsigned MaskWords) {
- static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
- MaskWords = std::min(MaskWords, (size() + 31) / 32);
- const unsigned Scale = BITWORD_SIZE / 32;
- unsigned i;
- for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
- BitWord BW = Bits[i];
- // This inner loop should unroll completely when BITWORD_SIZE > 32.
- for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
- uint32_t M = *Mask++;
- if (InvertMask) M = ~M;
- if (AddBits) BW |= BitWord(M) << b;
- else BW &= ~(BitWord(M) << b);
- }
- Bits[i] = BW;
- }
- for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
- uint32_t M = *Mask++;
- if (InvertMask) M = ~M;
- if (AddBits) Bits[i] |= BitWord(M) << b;
- else Bits[i] &= ~(BitWord(M) << b);
- }
- if (AddBits)
- clear_unused_bits();
- }
- };
- } // End llvm namespace
- namespace std {
- /// Implement std::swap in terms of BitVector swap.
- inline void
- swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
- LHS.swap(RHS);
- }
- }
- #endif
|