123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- //===---- ADT/SCCIterator.h - Strongly Connected Comp. Iter. ----*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- /// \file
- ///
- /// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
- /// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
- /// algorithm.
- ///
- /// The SCC iterator has the important property that if a node in SCC S1 has an
- /// edge to a node in SCC S2, then it visits S1 *after* S2.
- ///
- /// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
- /// This requires some simple wrappers and is not supported yet.)
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_SCCITERATOR_H
- #define LLVM_ADT_SCCITERATOR_H
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/GraphTraits.h"
- #include "llvm/ADT/iterator.h"
- #include <vector>
- namespace llvm {
- /// \brief Enumerate the SCCs of a directed graph in reverse topological order
- /// of the SCC DAG.
- ///
- /// This is implemented using Tarjan's DFS algorithm using an internal stack to
- /// build up a vector of nodes in a particular SCC. Note that it is a forward
- /// iterator and thus you cannot backtrack or re-visit nodes.
- template <class GraphT, class GT = GraphTraits<GraphT>>
- class scc_iterator
- : public iterator_facade_base<
- scc_iterator<GraphT, GT>, std::forward_iterator_tag,
- const std::vector<typename GT::NodeType *>, ptrdiff_t> {
- typedef typename GT::NodeType NodeType;
- typedef typename GT::ChildIteratorType ChildItTy;
- typedef std::vector<NodeType *> SccTy;
- typedef typename scc_iterator::reference reference;
- /// Element of VisitStack during DFS.
- struct StackElement {
- NodeType *Node; ///< The current node pointer.
- ChildItTy NextChild; ///< The next child, modified inplace during DFS.
- unsigned MinVisited; ///< Minimum uplink value of all children of Node.
- StackElement(NodeType *Node, const ChildItTy &Child, unsigned Min)
- : Node(Node), NextChild(Child), MinVisited(Min) {}
- bool operator==(const StackElement &Other) const {
- return Node == Other.Node &&
- NextChild == Other.NextChild &&
- MinVisited == Other.MinVisited;
- }
- };
- /// The visit counters used to detect when a complete SCC is on the stack.
- /// visitNum is the global counter.
- ///
- /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
- unsigned visitNum;
- DenseMap<NodeType *, unsigned> nodeVisitNumbers;
- /// Stack holding nodes of the SCC.
- std::vector<NodeType *> SCCNodeStack;
- /// The current SCC, retrieved using operator*().
- SccTy CurrentSCC;
- /// DFS stack, Used to maintain the ordering. The top contains the current
- /// node, the next child to visit, and the minimum uplink value of all child
- std::vector<StackElement> VisitStack;
- /// A single "visit" within the non-recursive DFS traversal.
- void DFSVisitOne(NodeType *N);
- /// The stack-based DFS traversal; defined below.
- void DFSVisitChildren();
- /// Compute the next SCC using the DFS traversal.
- void GetNextSCC();
- scc_iterator(NodeType *entryN) : visitNum(0) {
- DFSVisitOne(entryN);
- GetNextSCC();
- }
- /// End is when the DFS stack is empty.
- scc_iterator() {}
- public:
- static scc_iterator begin(const GraphT &G) {
- return scc_iterator(GT::getEntryNode(G));
- }
- static scc_iterator end(const GraphT &) { return scc_iterator(); }
- /// \brief Direct loop termination test which is more efficient than
- /// comparison with \c end().
- bool isAtEnd() const {
- assert(!CurrentSCC.empty() || VisitStack.empty());
- return CurrentSCC.empty();
- }
- bool operator==(const scc_iterator &x) const {
- return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
- }
- scc_iterator &operator++() {
- GetNextSCC();
- return *this;
- }
- reference operator*() const {
- assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
- return CurrentSCC;
- }
- /// \brief Test if the current SCC has a loop.
- ///
- /// If the SCC has more than one node, this is trivially true. If not, it may
- /// still contain a loop if the node has an edge back to itself.
- bool hasLoop() const;
- /// This informs the \c scc_iterator that the specified \c Old node
- /// has been deleted, and \c New is to be used in its place.
- void ReplaceNode(NodeType *Old, NodeType *New) {
- assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
- nodeVisitNumbers[New] = nodeVisitNumbers[Old];
- nodeVisitNumbers.erase(Old);
- }
- };
- template <class GraphT, class GT>
- void scc_iterator<GraphT, GT>::DFSVisitOne(NodeType *N) {
- ++visitNum;
- nodeVisitNumbers[N] = visitNum;
- SCCNodeStack.push_back(N);
- VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
- #if 0 // Enable if needed when debugging.
- dbgs() << "TarjanSCC: Node " << N <<
- " : visitNum = " << visitNum << "\n";
- #endif
- }
- template <class GraphT, class GT>
- void scc_iterator<GraphT, GT>::DFSVisitChildren() {
- assert(!VisitStack.empty());
- while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
- // TOS has at least one more child so continue DFS
- NodeType *childN = *VisitStack.back().NextChild++;
- typename DenseMap<NodeType *, unsigned>::iterator Visited =
- nodeVisitNumbers.find(childN);
- if (Visited == nodeVisitNumbers.end()) {
- // this node has never been seen.
- DFSVisitOne(childN);
- continue;
- }
- unsigned childNum = Visited->second;
- if (VisitStack.back().MinVisited > childNum)
- VisitStack.back().MinVisited = childNum;
- }
- }
- template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
- CurrentSCC.clear(); // Prepare to compute the next SCC
- while (!VisitStack.empty()) {
- DFSVisitChildren();
- // Pop the leaf on top of the VisitStack.
- NodeType *visitingN = VisitStack.back().Node;
- unsigned minVisitNum = VisitStack.back().MinVisited;
- assert(VisitStack.back().NextChild == GT::child_end(visitingN));
- VisitStack.pop_back();
- // Propagate MinVisitNum to parent so we can detect the SCC starting node.
- if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
- VisitStack.back().MinVisited = minVisitNum;
- #if 0 // Enable if needed when debugging.
- dbgs() << "TarjanSCC: Popped node " << visitingN <<
- " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
- nodeVisitNumbers[visitingN] << "\n";
- #endif
- if (minVisitNum != nodeVisitNumbers[visitingN])
- continue;
- // A full SCC is on the SCCNodeStack! It includes all nodes below
- // visitingN on the stack. Copy those nodes to CurrentSCC,
- // reset their minVisit values, and return (this suspends
- // the DFS traversal till the next ++).
- do {
- CurrentSCC.push_back(SCCNodeStack.back());
- SCCNodeStack.pop_back();
- nodeVisitNumbers[CurrentSCC.back()] = ~0U;
- } while (CurrentSCC.back() != visitingN);
- return;
- }
- }
- template <class GraphT, class GT>
- bool scc_iterator<GraphT, GT>::hasLoop() const {
- assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
- if (CurrentSCC.size() > 1)
- return true;
- NodeType *N = CurrentSCC.front();
- for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
- ++CI)
- if (*CI == N)
- return true;
- return false;
- }
- /// \brief Construct the begin iterator for a deduced graph type T.
- template <class T> scc_iterator<T> scc_begin(const T &G) {
- return scc_iterator<T>::begin(G);
- }
- /// \brief Construct the end iterator for a deduced graph type T.
- template <class T> scc_iterator<T> scc_end(const T &G) {
- return scc_iterator<T>::end(G);
- }
- /// \brief Construct the begin iterator for a deduced graph type T's Inverse<T>.
- template <class T> scc_iterator<Inverse<T> > scc_begin(const Inverse<T> &G) {
- return scc_iterator<Inverse<T> >::begin(G);
- }
- /// \brief Construct the end iterator for a deduced graph type T's Inverse<T>.
- template <class T> scc_iterator<Inverse<T> > scc_end(const Inverse<T> &G) {
- return scc_iterator<Inverse<T> >::end(G);
- }
- } // End llvm namespace
- #endif
|