1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207 |
- //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation -*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // Shared implementation of BlockFrequency for IR and Machine Instructions.
- // See the documentation below for BlockFrequencyInfoImpl for details.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
- #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/Support/BlockFrequency.h"
- #include "llvm/Support/BranchProbability.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ScaledNumber.h"
- #include "llvm/Support/raw_ostream.h"
- #include <deque>
- #include <list>
- #include <string>
- #include <vector>
- #define DEBUG_TYPE "block-freq"
- namespace llvm {
- class BasicBlock;
- class BranchProbabilityInfo;
- class Function;
- class Loop;
- class LoopInfo;
- class MachineBasicBlock;
- class MachineBranchProbabilityInfo;
- class MachineFunction;
- class MachineLoop;
- class MachineLoopInfo;
- namespace bfi_detail {
- struct IrreducibleGraph;
- // This is part of a workaround for a GCC 4.7 crash on lambdas.
- template <class BT> struct BlockEdgesAdder;
- /// \brief Mass of a block.
- ///
- /// This class implements a sort of fixed-point fraction always between 0.0 and
- /// 1.0. getMass() == UINT64_MAX indicates a value of 1.0.
- ///
- /// Masses can be added and subtracted. Simple saturation arithmetic is used,
- /// so arithmetic operations never overflow or underflow.
- ///
- /// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses
- /// an inexpensive floating-point algorithm that's off-by-one (almost, but not
- /// quite, maximum precision).
- ///
- /// Masses can be scaled by \a BranchProbability at maximum precision.
- class BlockMass {
- uint64_t Mass;
- public:
- BlockMass() : Mass(0) {}
- explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
- static BlockMass getEmpty() { return BlockMass(); }
- static BlockMass getFull() { return BlockMass(UINT64_MAX); }
- uint64_t getMass() const { return Mass; }
- bool isFull() const { return Mass == UINT64_MAX; }
- bool isEmpty() const { return !Mass; }
- bool operator!() const { return isEmpty(); }
- /// \brief Add another mass.
- ///
- /// Adds another mass, saturating at \a isFull() rather than overflowing.
- BlockMass &operator+=(const BlockMass &X) {
- uint64_t Sum = Mass + X.Mass;
- Mass = Sum < Mass ? UINT64_MAX : Sum;
- return *this;
- }
- /// \brief Subtract another mass.
- ///
- /// Subtracts another mass, saturating at \a isEmpty() rather than
- /// undeflowing.
- BlockMass &operator-=(const BlockMass &X) {
- uint64_t Diff = Mass - X.Mass;
- Mass = Diff > Mass ? 0 : Diff;
- return *this;
- }
- BlockMass &operator*=(const BranchProbability &P) {
- Mass = P.scale(Mass);
- return *this;
- }
- bool operator==(const BlockMass &X) const { return Mass == X.Mass; }
- bool operator!=(const BlockMass &X) const { return Mass != X.Mass; }
- bool operator<=(const BlockMass &X) const { return Mass <= X.Mass; }
- bool operator>=(const BlockMass &X) const { return Mass >= X.Mass; }
- bool operator<(const BlockMass &X) const { return Mass < X.Mass; }
- bool operator>(const BlockMass &X) const { return Mass > X.Mass; }
- /// \brief Convert to scaled number.
- ///
- /// Convert to \a ScaledNumber. \a isFull() gives 1.0, while \a isEmpty()
- /// gives slightly above 0.0.
- ScaledNumber<uint64_t> toScaled() const;
- void dump() const;
- raw_ostream &print(raw_ostream &OS) const;
- };
- inline BlockMass operator+(const BlockMass &L, const BlockMass &R) {
- return BlockMass(L) += R;
- }
- inline BlockMass operator-(const BlockMass &L, const BlockMass &R) {
- return BlockMass(L) -= R;
- }
- inline BlockMass operator*(const BlockMass &L, const BranchProbability &R) {
- return BlockMass(L) *= R;
- }
- inline BlockMass operator*(const BranchProbability &L, const BlockMass &R) {
- return BlockMass(R) *= L;
- }
- inline raw_ostream &operator<<(raw_ostream &OS, const BlockMass &X) {
- return X.print(OS);
- }
- } // end namespace bfi_detail
- template <> struct isPodLike<bfi_detail::BlockMass> {
- static const bool value = true;
- };
- /// \brief Base class for BlockFrequencyInfoImpl
- ///
- /// BlockFrequencyInfoImplBase has supporting data structures and some
- /// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on
- /// the block type (or that call such algorithms) are skipped here.
- ///
- /// Nevertheless, the majority of the overall algorithm documention lives with
- /// BlockFrequencyInfoImpl. See there for details.
- class BlockFrequencyInfoImplBase {
- public:
- typedef ScaledNumber<uint64_t> Scaled64;
- typedef bfi_detail::BlockMass BlockMass;
- /// \brief Representative of a block.
- ///
- /// This is a simple wrapper around an index into the reverse-post-order
- /// traversal of the blocks.
- ///
- /// Unlike a block pointer, its order has meaning (location in the
- /// topological sort) and it's class is the same regardless of block type.
- struct BlockNode {
- typedef uint32_t IndexType;
- IndexType Index;
- bool operator==(const BlockNode &X) const { return Index == X.Index; }
- bool operator!=(const BlockNode &X) const { return Index != X.Index; }
- bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
- bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
- bool operator<(const BlockNode &X) const { return Index < X.Index; }
- bool operator>(const BlockNode &X) const { return Index > X.Index; }
- BlockNode() : Index(UINT32_MAX) {}
- BlockNode(IndexType Index) : Index(Index) {}
- bool isValid() const { return Index <= getMaxIndex(); }
- static size_t getMaxIndex() { return UINT32_MAX - 1; }
- };
- /// \brief Stats about a block itself.
- struct FrequencyData {
- Scaled64 Scaled;
- uint64_t Integer;
- };
- /// \brief Data about a loop.
- ///
- /// Contains the data necessary to represent a loop as a pseudo-node once it's
- /// packaged.
- struct LoopData {
- typedef SmallVector<std::pair<BlockNode, BlockMass>, 4> ExitMap;
- typedef SmallVector<BlockNode, 4> NodeList;
- typedef SmallVector<BlockMass, 1> HeaderMassList;
- LoopData *Parent; ///< The parent loop.
- bool IsPackaged; ///< Whether this has been packaged.
- uint32_t NumHeaders; ///< Number of headers.
- ExitMap Exits; ///< Successor edges (and weights).
- NodeList Nodes; ///< Header and the members of the loop.
- HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
- BlockMass Mass;
- Scaled64 Scale;
- LoopData(LoopData *Parent, const BlockNode &Header)
- : Parent(Parent), IsPackaged(false), NumHeaders(1), Nodes(1, Header),
- BackedgeMass(1) {}
- template <class It1, class It2>
- LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
- It2 LastOther)
- : Parent(Parent), IsPackaged(false), Nodes(FirstHeader, LastHeader) {
- NumHeaders = Nodes.size();
- Nodes.insert(Nodes.end(), FirstOther, LastOther);
- BackedgeMass.resize(NumHeaders);
- }
- bool isHeader(const BlockNode &Node) const {
- if (isIrreducible())
- return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
- Node);
- return Node == Nodes[0];
- }
- BlockNode getHeader() const { return Nodes[0]; }
- bool isIrreducible() const { return NumHeaders > 1; }
- HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) {
- assert(isHeader(B) && "this is only valid on loop header blocks");
- if (isIrreducible())
- return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
- Nodes.begin();
- return 0;
- }
- NodeList::const_iterator members_begin() const {
- return Nodes.begin() + NumHeaders;
- }
- NodeList::const_iterator members_end() const { return Nodes.end(); }
- iterator_range<NodeList::const_iterator> members() const {
- return make_range(members_begin(), members_end());
- }
- };
- /// \brief Index of loop information.
- struct WorkingData {
- BlockNode Node; ///< This node.
- LoopData *Loop; ///< The loop this block is inside.
- BlockMass Mass; ///< Mass distribution from the entry block.
- WorkingData(const BlockNode &Node) : Node(Node), Loop(nullptr) {}
- bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
- bool isDoubleLoopHeader() const {
- return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
- Loop->Parent->isHeader(Node);
- }
- LoopData *getContainingLoop() const {
- if (!isLoopHeader())
- return Loop;
- if (!isDoubleLoopHeader())
- return Loop->Parent;
- return Loop->Parent->Parent;
- }
- /// \brief Resolve a node to its representative.
- ///
- /// Get the node currently representing Node, which could be a containing
- /// loop.
- ///
- /// This function should only be called when distributing mass. As long as
- /// there are no irreducible edges to Node, then it will have complexity
- /// O(1) in this context.
- ///
- /// In general, the complexity is O(L), where L is the number of loop
- /// headers Node has been packaged into. Since this method is called in
- /// the context of distributing mass, L will be the number of loop headers
- /// an early exit edge jumps out of.
- BlockNode getResolvedNode() const {
- auto L = getPackagedLoop();
- return L ? L->getHeader() : Node;
- }
- LoopData *getPackagedLoop() const {
- if (!Loop || !Loop->IsPackaged)
- return nullptr;
- auto L = Loop;
- while (L->Parent && L->Parent->IsPackaged)
- L = L->Parent;
- return L;
- }
- /// \brief Get the appropriate mass for a node.
- ///
- /// Get appropriate mass for Node. If Node is a loop-header (whose loop
- /// has been packaged), returns the mass of its pseudo-node. If it's a
- /// node inside a packaged loop, it returns the loop's mass.
- BlockMass &getMass() {
- if (!isAPackage())
- return Mass;
- if (!isADoublePackage())
- return Loop->Mass;
- return Loop->Parent->Mass;
- }
- /// \brief Has ContainingLoop been packaged up?
- bool isPackaged() const { return getResolvedNode() != Node; }
- /// \brief Has Loop been packaged up?
- bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
- /// \brief Has Loop been packaged up twice?
- bool isADoublePackage() const {
- return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
- }
- };
- /// \brief Unscaled probability weight.
- ///
- /// Probability weight for an edge in the graph (including the
- /// successor/target node).
- ///
- /// All edges in the original function are 32-bit. However, exit edges from
- /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
- /// space in general.
- ///
- /// In addition to the raw weight amount, Weight stores the type of the edge
- /// in the current context (i.e., the context of the loop being processed).
- /// Is this a local edge within the loop, an exit from the loop, or a
- /// backedge to the loop header?
- struct Weight {
- enum DistType { Local, Exit, Backedge };
- DistType Type;
- BlockNode TargetNode;
- uint64_t Amount;
- Weight() : Type(Local), Amount(0) {}
- Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
- : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
- };
- /// \brief Distribution of unscaled probability weight.
- ///
- /// Distribution of unscaled probability weight to a set of successors.
- ///
- /// This class collates the successor edge weights for later processing.
- ///
- /// \a DidOverflow indicates whether \a Total did overflow while adding to
- /// the distribution. It should never overflow twice.
- struct Distribution {
- typedef SmallVector<Weight, 4> WeightList;
- WeightList Weights; ///< Individual successor weights.
- uint64_t Total; ///< Sum of all weights.
- bool DidOverflow; ///< Whether \a Total did overflow.
- Distribution() : Total(0), DidOverflow(false) {}
- void addLocal(const BlockNode &Node, uint64_t Amount) {
- add(Node, Amount, Weight::Local);
- }
- void addExit(const BlockNode &Node, uint64_t Amount) {
- add(Node, Amount, Weight::Exit);
- }
- void addBackedge(const BlockNode &Node, uint64_t Amount) {
- add(Node, Amount, Weight::Backedge);
- }
- /// \brief Normalize the distribution.
- ///
- /// Combines multiple edges to the same \a Weight::TargetNode and scales
- /// down so that \a Total fits into 32-bits.
- ///
- /// This is linear in the size of \a Weights. For the vast majority of
- /// cases, adjacent edge weights are combined by sorting WeightList and
- /// combining adjacent weights. However, for very large edge lists an
- /// auxiliary hash table is used.
- void normalize();
- private:
- void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
- };
- /// \brief Data about each block. This is used downstream.
- std::vector<FrequencyData> Freqs;
- /// \brief Loop data: see initializeLoops().
- std::vector<WorkingData> Working;
- /// \brief Indexed information about loops.
- std::list<LoopData> Loops;
- /// \brief Add all edges out of a packaged loop to the distribution.
- ///
- /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each
- /// successor edge.
- ///
- /// \return \c true unless there's an irreducible backedge.
- bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
- Distribution &Dist);
- /// \brief Add an edge to the distribution.
- ///
- /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the
- /// edge is local/exit/backedge is in the context of LoopHead. Otherwise,
- /// every edge should be a local edge (since all the loops are packaged up).
- ///
- /// \return \c true unless aborted due to an irreducible backedge.
- bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
- const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
- LoopData &getLoopPackage(const BlockNode &Head) {
- assert(Head.Index < Working.size());
- assert(Working[Head.Index].isLoopHeader());
- return *Working[Head.Index].Loop;
- }
- /// \brief Analyze irreducible SCCs.
- ///
- /// Separate irreducible SCCs from \c G, which is an explict graph of \c
- /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
- /// Insert them into \a Loops before \c Insert.
- ///
- /// \return the \c LoopData nodes representing the irreducible SCCs.
- iterator_range<std::list<LoopData>::iterator>
- analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
- std::list<LoopData>::iterator Insert);
- /// \brief Update a loop after packaging irreducible SCCs inside of it.
- ///
- /// Update \c OuterLoop. Before finding irreducible control flow, it was
- /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
- /// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged
- /// up need to be removed from \a OuterLoop::Nodes.
- void updateLoopWithIrreducible(LoopData &OuterLoop);
- /// \brief Distribute mass according to a distribution.
- ///
- /// Distributes the mass in Source according to Dist. If LoopHead.isValid(),
- /// backedges and exits are stored in its entry in Loops.
- ///
- /// Mass is distributed in parallel from two copies of the source mass.
- void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
- Distribution &Dist);
- /// \brief Compute the loop scale for a loop.
- void computeLoopScale(LoopData &Loop);
- /// Adjust the mass of all headers in an irreducible loop.
- ///
- /// Initially, irreducible loops are assumed to distribute their mass
- /// equally among its headers. This can lead to wrong frequency estimates
- /// since some headers may be executed more frequently than others.
- ///
- /// This adjusts header mass distribution so it matches the weights of
- /// the backedges going into each of the loop headers.
- void adjustLoopHeaderMass(LoopData &Loop);
- /// \brief Package up a loop.
- void packageLoop(LoopData &Loop);
- /// \brief Unwrap loops.
- void unwrapLoops();
- /// \brief Finalize frequency metrics.
- ///
- /// Calculates final frequencies and cleans up no-longer-needed data
- /// structures.
- void finalizeMetrics();
- /// \brief Clear all memory.
- void clear();
- virtual std::string getBlockName(const BlockNode &Node) const;
- std::string getLoopName(const LoopData &Loop) const;
- virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
- void dump() const { print(dbgs()); }
- Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
- BlockFrequency getBlockFreq(const BlockNode &Node) const;
- raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
- raw_ostream &printBlockFreq(raw_ostream &OS,
- const BlockFrequency &Freq) const;
- uint64_t getEntryFreq() const {
- assert(!Freqs.empty());
- return Freqs[0].Integer;
- }
- /// \brief Virtual destructor.
- ///
- /// Need a virtual destructor to mask the compiler warning about
- /// getBlockName().
- virtual ~BlockFrequencyInfoImplBase() {}
- };
- namespace bfi_detail {
- template <class BlockT> struct TypeMap {};
- template <> struct TypeMap<BasicBlock> {
- typedef BasicBlock BlockT;
- typedef Function FunctionT;
- typedef BranchProbabilityInfo BranchProbabilityInfoT;
- typedef Loop LoopT;
- typedef LoopInfo LoopInfoT;
- };
- template <> struct TypeMap<MachineBasicBlock> {
- typedef MachineBasicBlock BlockT;
- typedef MachineFunction FunctionT;
- typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
- typedef MachineLoop LoopT;
- typedef MachineLoopInfo LoopInfoT;
- };
- /// \brief Get the name of a MachineBasicBlock.
- ///
- /// Get the name of a MachineBasicBlock. It's templated so that including from
- /// CodeGen is unnecessary (that would be a layering issue).
- ///
- /// This is used mainly for debug output. The name is similar to
- /// MachineBasicBlock::getFullName(), but skips the name of the function.
- template <class BlockT> std::string getBlockName(const BlockT *BB) {
- assert(BB && "Unexpected nullptr");
- auto MachineName = "BB" + Twine(BB->getNumber());
- if (BB->getBasicBlock())
- return (MachineName + "[" + BB->getName() + "]").str();
- return MachineName.str();
- }
- /// \brief Get the name of a BasicBlock.
- template <> inline std::string getBlockName(const BasicBlock *BB) {
- assert(BB && "Unexpected nullptr");
- return BB->getName().str();
- }
- /// \brief Graph of irreducible control flow.
- ///
- /// This graph is used for determining the SCCs in a loop (or top-level
- /// function) that has irreducible control flow.
- ///
- /// During the block frequency algorithm, the local graphs are defined in a
- /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
- /// graphs for most edges, but getting others from \a LoopData::ExitMap. The
- /// latter only has successor information.
- ///
- /// \a IrreducibleGraph makes this graph explicit. It's in a form that can use
- /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
- /// and it explicitly lists predecessors and successors. The initialization
- /// that relies on \c MachineBasicBlock is defined in the header.
- struct IrreducibleGraph {
- typedef BlockFrequencyInfoImplBase BFIBase;
- BFIBase &BFI;
- typedef BFIBase::BlockNode BlockNode;
- struct IrrNode {
- BlockNode Node;
- unsigned NumIn;
- std::deque<const IrrNode *> Edges;
- IrrNode(const BlockNode &Node) : Node(Node), NumIn(0) {}
- typedef std::deque<const IrrNode *>::const_iterator iterator;
- iterator pred_begin() const { return Edges.begin(); }
- iterator succ_begin() const { return Edges.begin() + NumIn; }
- iterator pred_end() const { return succ_begin(); }
- iterator succ_end() const { return Edges.end(); }
- };
- BlockNode Start;
- const IrrNode *StartIrr;
- std::vector<IrrNode> Nodes;
- SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
- /// \brief Construct an explicit graph containing irreducible control flow.
- ///
- /// Construct an explicit graph of the control flow in \c OuterLoop (or the
- /// top-level function, if \c OuterLoop is \c nullptr). Uses \c
- /// addBlockEdges to add block successors that have not been packaged into
- /// loops.
- ///
- /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
- /// user of this.
- template <class BlockEdgesAdder>
- IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
- BlockEdgesAdder addBlockEdges)
- : BFI(BFI), StartIrr(nullptr) {
- initialize(OuterLoop, addBlockEdges);
- }
- template <class BlockEdgesAdder>
- void initialize(const BFIBase::LoopData *OuterLoop,
- BlockEdgesAdder addBlockEdges);
- void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
- void addNodesInFunction();
- void addNode(const BlockNode &Node) {
- Nodes.emplace_back(Node);
- BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
- }
- void indexNodes();
- template <class BlockEdgesAdder>
- void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
- BlockEdgesAdder addBlockEdges);
- void addEdge(IrrNode &Irr, const BlockNode &Succ,
- const BFIBase::LoopData *OuterLoop);
- };
- template <class BlockEdgesAdder>
- void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
- BlockEdgesAdder addBlockEdges) {
- if (OuterLoop) {
- addNodesInLoop(*OuterLoop);
- for (auto N : OuterLoop->Nodes)
- addEdges(N, OuterLoop, addBlockEdges);
- } else {
- addNodesInFunction();
- for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
- addEdges(Index, OuterLoop, addBlockEdges);
- }
- StartIrr = Lookup[Start.Index];
- }
- template <class BlockEdgesAdder>
- void IrreducibleGraph::addEdges(const BlockNode &Node,
- const BFIBase::LoopData *OuterLoop,
- BlockEdgesAdder addBlockEdges) {
- auto L = Lookup.find(Node.Index);
- if (L == Lookup.end())
- return;
- IrrNode &Irr = *L->second;
- const auto &Working = BFI.Working[Node.Index];
- if (Working.isAPackage())
- for (const auto &I : Working.Loop->Exits)
- addEdge(Irr, I.first, OuterLoop);
- else
- addBlockEdges(*this, Irr, OuterLoop);
- }
- }
- /// \brief Shared implementation for block frequency analysis.
- ///
- /// This is a shared implementation of BlockFrequencyInfo and
- /// MachineBlockFrequencyInfo, and calculates the relative frequencies of
- /// blocks.
- ///
- /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
- /// which is called the header. A given loop, L, can have sub-loops, which are
- /// loops within the subgraph of L that exclude its header. (A "trivial" SCC
- /// consists of a single block that does not have a self-edge.)
- ///
- /// In addition to loops, this algorithm has limited support for irreducible
- /// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are
- /// discovered on they fly, and modelled as loops with multiple headers.
- ///
- /// The headers of irreducible sub-SCCs consist of its entry blocks and all
- /// nodes that are targets of a backedge within it (excluding backedges within
- /// true sub-loops). Block frequency calculations act as if a block is
- /// inserted that intercepts all the edges to the headers. All backedges and
- /// entries point to this block. Its successors are the headers, which split
- /// the frequency evenly.
- ///
- /// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
- /// separates mass distribution from loop scaling, and dithers to eliminate
- /// probability mass loss.
- ///
- /// The implementation is split between BlockFrequencyInfoImpl, which knows the
- /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
- /// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a
- /// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in
- /// reverse-post order. This gives two advantages: it's easy to compare the
- /// relative ordering of two nodes, and maps keyed on BlockT can be represented
- /// by vectors.
- ///
- /// This algorithm is O(V+E), unless there is irreducible control flow, in
- /// which case it's O(V*E) in the worst case.
- ///
- /// These are the main stages:
- ///
- /// 0. Reverse post-order traversal (\a initializeRPOT()).
- ///
- /// Run a single post-order traversal and save it (in reverse) in RPOT.
- /// All other stages make use of this ordering. Save a lookup from BlockT
- /// to BlockNode (the index into RPOT) in Nodes.
- ///
- /// 1. Loop initialization (\a initializeLoops()).
- ///
- /// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
- /// the algorithm. In particular, store the immediate members of each loop
- /// in reverse post-order.
- ///
- /// 2. Calculate mass and scale in loops (\a computeMassInLoops()).
- ///
- /// For each loop (bottom-up), distribute mass through the DAG resulting
- /// from ignoring backedges and treating sub-loops as a single pseudo-node.
- /// Track the backedge mass distributed to the loop header, and use it to
- /// calculate the loop scale (number of loop iterations). Immediate
- /// members that represent sub-loops will already have been visited and
- /// packaged into a pseudo-node.
- ///
- /// Distributing mass in a loop is a reverse-post-order traversal through
- /// the loop. Start by assigning full mass to the Loop header. For each
- /// node in the loop:
- ///
- /// - Fetch and categorize the weight distribution for its successors.
- /// If this is a packaged-subloop, the weight distribution is stored
- /// in \a LoopData::Exits. Otherwise, fetch it from
- /// BranchProbabilityInfo.
- ///
- /// - Each successor is categorized as \a Weight::Local, a local edge
- /// within the current loop, \a Weight::Backedge, a backedge to the
- /// loop header, or \a Weight::Exit, any successor outside the loop.
- /// The weight, the successor, and its category are stored in \a
- /// Distribution. There can be multiple edges to each successor.
- ///
- /// - If there's a backedge to a non-header, there's an irreducible SCC.
- /// The usual flow is temporarily aborted. \a
- /// computeIrreducibleMass() finds the irreducible SCCs within the
- /// loop, packages them up, and restarts the flow.
- ///
- /// - Normalize the distribution: scale weights down so that their sum
- /// is 32-bits, and coalesce multiple edges to the same node.
- ///
- /// - Distribute the mass accordingly, dithering to minimize mass loss,
- /// as described in \a distributeMass().
- ///
- /// In the case of irreducible loops, instead of a single loop header,
- /// there will be several. The computation of backedge masses is similar
- /// but instead of having a single backedge mass, there will be one
- /// backedge per loop header. In these cases, each backedge will carry
- /// a mass proportional to the edge weights along the corresponding
- /// path.
- ///
- /// At the end of propagation, the full mass assigned to the loop will be
- /// distributed among the loop headers proportionally according to the
- /// mass flowing through their backedges.
- ///
- /// Finally, calculate the loop scale from the accumulated backedge mass.
- ///
- /// 3. Distribute mass in the function (\a computeMassInFunction()).
- ///
- /// Finally, distribute mass through the DAG resulting from packaging all
- /// loops in the function. This uses the same algorithm as distributing
- /// mass in a loop, except that there are no exit or backedge edges.
- ///
- /// 4. Unpackage loops (\a unwrapLoops()).
- ///
- /// Initialize each block's frequency to a floating point representation of
- /// its mass.
- ///
- /// Visit loops top-down, scaling the frequencies of its immediate members
- /// by the loop's pseudo-node's frequency.
- ///
- /// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
- ///
- /// Using the min and max frequencies as a guide, translate floating point
- /// frequencies to an appropriate range in uint64_t.
- ///
- /// It has some known flaws.
- ///
- /// - The model of irreducible control flow is a rough approximation.
- ///
- /// Modelling irreducible control flow exactly involves setting up and
- /// solving a group of infinite geometric series. Such precision is
- /// unlikely to be worthwhile, since most of our algorithms give up on
- /// irreducible control flow anyway.
- ///
- /// Nevertheless, we might find that we need to get closer. Here's a sort
- /// of TODO list for the model with diminishing returns, to be completed as
- /// necessary.
- ///
- /// - The headers for the \a LoopData representing an irreducible SCC
- /// include non-entry blocks. When these extra blocks exist, they
- /// indicate a self-contained irreducible sub-SCC. We could treat them
- /// as sub-loops, rather than arbitrarily shoving the problematic
- /// blocks into the headers of the main irreducible SCC.
- ///
- /// - Entry frequencies are assumed to be evenly split between the
- /// headers of a given irreducible SCC, which is the only option if we
- /// need to compute mass in the SCC before its parent loop. Instead,
- /// we could partially compute mass in the parent loop, and stop when
- /// we get to the SCC. Here, we have the correct ratio of entry
- /// masses, which we can use to adjust their relative frequencies.
- /// Compute mass in the SCC, and then continue propagation in the
- /// parent.
- ///
- /// - We can propagate mass iteratively through the SCC, for some fixed
- /// number of iterations. Each iteration starts by assigning the entry
- /// blocks their backedge mass from the prior iteration. The final
- /// mass for each block (and each exit, and the total backedge mass
- /// used for computing loop scale) is the sum of all iterations.
- /// (Running this until fixed point would "solve" the geometric
- /// series by simulation.)
- template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
- typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
- typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
- typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
- BranchProbabilityInfoT;
- typedef typename bfi_detail::TypeMap<BT>::LoopT LoopT;
- typedef typename bfi_detail::TypeMap<BT>::LoopInfoT LoopInfoT;
- // This is part of a workaround for a GCC 4.7 crash on lambdas.
- friend struct bfi_detail::BlockEdgesAdder<BT>;
- typedef GraphTraits<const BlockT *> Successor;
- typedef GraphTraits<Inverse<const BlockT *>> Predecessor;
- const BranchProbabilityInfoT *BPI;
- const LoopInfoT *LI;
- const FunctionT *F;
- // All blocks in reverse postorder.
- std::vector<const BlockT *> RPOT;
- DenseMap<const BlockT *, BlockNode> Nodes;
- typedef typename std::vector<const BlockT *>::const_iterator rpot_iterator;
- rpot_iterator rpot_begin() const { return RPOT.begin(); }
- rpot_iterator rpot_end() const { return RPOT.end(); }
- size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
- BlockNode getNode(const rpot_iterator &I) const {
- return BlockNode(getIndex(I));
- }
- BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
- const BlockT *getBlock(const BlockNode &Node) const {
- assert(Node.Index < RPOT.size());
- return RPOT[Node.Index];
- }
- /// \brief Run (and save) a post-order traversal.
- ///
- /// Saves a reverse post-order traversal of all the nodes in \a F.
- void initializeRPOT();
- /// \brief Initialize loop data.
- ///
- /// Build up \a Loops using \a LoopInfo. \a LoopInfo gives us a mapping from
- /// each block to the deepest loop it's in, but we need the inverse. For each
- /// loop, we store in reverse post-order its "immediate" members, defined as
- /// the header, the headers of immediate sub-loops, and all other blocks in
- /// the loop that are not in sub-loops.
- void initializeLoops();
- /// \brief Propagate to a block's successors.
- ///
- /// In the context of distributing mass through \c OuterLoop, divide the mass
- /// currently assigned to \c Node between its successors.
- ///
- /// \return \c true unless there's an irreducible backedge.
- bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
- /// \brief Compute mass in a particular loop.
- ///
- /// Assign mass to \c Loop's header, and then for each block in \c Loop in
- /// reverse post-order, distribute mass to its successors. Only visits nodes
- /// that have not been packaged into sub-loops.
- ///
- /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
- /// \return \c true unless there's an irreducible backedge.
- bool computeMassInLoop(LoopData &Loop);
- /// \brief Try to compute mass in the top-level function.
- ///
- /// Assign mass to the entry block, and then for each block in reverse
- /// post-order, distribute mass to its successors. Skips nodes that have
- /// been packaged into loops.
- ///
- /// \pre \a computeMassInLoops() has been called.
- /// \return \c true unless there's an irreducible backedge.
- bool tryToComputeMassInFunction();
- /// \brief Compute mass in (and package up) irreducible SCCs.
- ///
- /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
- /// of \c Insert), and call \a computeMassInLoop() on each of them.
- ///
- /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
- ///
- /// \pre \a computeMassInLoop() has been called for each subloop of \c
- /// OuterLoop.
- /// \pre \c Insert points at the last loop successfully processed by \a
- /// computeMassInLoop().
- /// \pre \c OuterLoop has irreducible SCCs.
- void computeIrreducibleMass(LoopData *OuterLoop,
- std::list<LoopData>::iterator Insert);
- /// \brief Compute mass in all loops.
- ///
- /// For each loop bottom-up, call \a computeMassInLoop().
- ///
- /// \a computeMassInLoop() aborts (and returns \c false) on loops that
- /// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then
- /// re-enter \a computeMassInLoop().
- ///
- /// \post \a computeMassInLoop() has returned \c true for every loop.
- void computeMassInLoops();
- /// \brief Compute mass in the top-level function.
- ///
- /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
- /// compute mass in the top-level function.
- ///
- /// \post \a tryToComputeMassInFunction() has returned \c true.
- void computeMassInFunction();
- std::string getBlockName(const BlockNode &Node) const override {
- return bfi_detail::getBlockName(getBlock(Node));
- }
- public:
- const FunctionT *getFunction() const { return F; }
- void doFunction(const FunctionT *F, const BranchProbabilityInfoT *BPI,
- const LoopInfoT *LI);
- BlockFrequencyInfoImpl() : BPI(nullptr), LI(nullptr), F(nullptr) {}
- using BlockFrequencyInfoImplBase::getEntryFreq;
- BlockFrequency getBlockFreq(const BlockT *BB) const {
- return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
- }
- Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
- return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
- }
- /// \brief Print the frequencies for the current function.
- ///
- /// Prints the frequencies for the blocks in the current function.
- ///
- /// Blocks are printed in the natural iteration order of the function, rather
- /// than reverse post-order. This provides two advantages: writing -analyze
- /// tests is easier (since blocks come out in source order), and even
- /// unreachable blocks are printed.
- ///
- /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
- /// we need to override it here.
- raw_ostream &print(raw_ostream &OS) const override;
- using BlockFrequencyInfoImplBase::dump;
- using BlockFrequencyInfoImplBase::printBlockFreq;
- raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
- return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
- }
- };
- template <class BT>
- void BlockFrequencyInfoImpl<BT>::doFunction(const FunctionT *F,
- const BranchProbabilityInfoT *BPI,
- const LoopInfoT *LI) {
- // Save the parameters.
- this->BPI = BPI;
- this->LI = LI;
- this->F = F;
- // Clean up left-over data structures.
- BlockFrequencyInfoImplBase::clear();
- RPOT.clear();
- Nodes.clear();
- // Initialize.
- DEBUG(dbgs() << "\nblock-frequency: " << F->getName() << "\n================="
- << std::string(F->getName().size(), '=') << "\n");
- initializeRPOT();
- initializeLoops();
- // Visit loops in post-order to find the local mass distribution, and then do
- // the full function.
- computeMassInLoops();
- computeMassInFunction();
- unwrapLoops();
- finalizeMetrics();
- }
- template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
- const BlockT *Entry = F->begin();
- RPOT.reserve(F->size());
- std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
- std::reverse(RPOT.begin(), RPOT.end());
- assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
- "More nodes in function than Block Frequency Info supports");
- DEBUG(dbgs() << "reverse-post-order-traversal\n");
- for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
- BlockNode Node = getNode(I);
- DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n");
- Nodes[*I] = Node;
- }
- Working.reserve(RPOT.size());
- for (size_t Index = 0; Index < RPOT.size(); ++Index)
- Working.emplace_back(Index);
- Freqs.resize(RPOT.size());
- }
- template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
- DEBUG(dbgs() << "loop-detection\n");
- if (LI->empty())
- return;
- // Visit loops top down and assign them an index.
- std::deque<std::pair<const LoopT *, LoopData *>> Q;
- for (const LoopT *L : *LI)
- Q.emplace_back(L, nullptr);
- while (!Q.empty()) {
- const LoopT *Loop = Q.front().first;
- LoopData *Parent = Q.front().second;
- Q.pop_front();
- BlockNode Header = getNode(Loop->getHeader());
- assert(Header.isValid());
- Loops.emplace_back(Parent, Header);
- Working[Header.Index].Loop = &Loops.back();
- DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
- for (const LoopT *L : *Loop)
- Q.emplace_back(L, &Loops.back());
- }
- // Visit nodes in reverse post-order and add them to their deepest containing
- // loop.
- for (size_t Index = 0; Index < RPOT.size(); ++Index) {
- // Loop headers have already been mostly mapped.
- if (Working[Index].isLoopHeader()) {
- LoopData *ContainingLoop = Working[Index].getContainingLoop();
- if (ContainingLoop)
- ContainingLoop->Nodes.push_back(Index);
- continue;
- }
- const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
- if (!Loop)
- continue;
- // Add this node to its containing loop's member list.
- BlockNode Header = getNode(Loop->getHeader());
- assert(Header.isValid());
- const auto &HeaderData = Working[Header.Index];
- assert(HeaderData.isLoopHeader());
- Working[Index].Loop = HeaderData.Loop;
- HeaderData.Loop->Nodes.push_back(Index);
- DEBUG(dbgs() << " - loop = " << getBlockName(Header)
- << ": member = " << getBlockName(Index) << "\n");
- }
- }
- template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
- // Visit loops with the deepest first, and the top-level loops last.
- for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
- if (computeMassInLoop(*L))
- continue;
- auto Next = std::next(L);
- computeIrreducibleMass(&*L, L.base());
- L = std::prev(Next);
- if (computeMassInLoop(*L))
- continue;
- llvm_unreachable("unhandled irreducible control flow");
- }
- }
- template <class BT>
- bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
- // Compute mass in loop.
- DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
- if (Loop.isIrreducible()) {
- BlockMass Remaining = BlockMass::getFull();
- for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
- auto &Mass = Working[Loop.Nodes[H].Index].getMass();
- Mass = Remaining * BranchProbability(1, Loop.NumHeaders - H);
- Remaining -= Mass;
- }
- for (const BlockNode &M : Loop.Nodes)
- if (!propagateMassToSuccessors(&Loop, M))
- llvm_unreachable("unhandled irreducible control flow");
- adjustLoopHeaderMass(Loop);
- } else {
- Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
- if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
- llvm_unreachable("irreducible control flow to loop header!?");
- for (const BlockNode &M : Loop.members())
- if (!propagateMassToSuccessors(&Loop, M))
- // Irreducible backedge.
- return false;
- }
- computeLoopScale(Loop);
- packageLoop(Loop);
- return true;
- }
- template <class BT>
- bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
- // Compute mass in function.
- DEBUG(dbgs() << "compute-mass-in-function\n");
- assert(!Working.empty() && "no blocks in function");
- assert(!Working[0].isLoopHeader() && "entry block is a loop header");
- Working[0].getMass() = BlockMass::getFull();
- for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
- // Check for nodes that have been packaged.
- BlockNode Node = getNode(I);
- if (Working[Node.Index].isPackaged())
- continue;
- if (!propagateMassToSuccessors(nullptr, Node))
- return false;
- }
- return true;
- }
- template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
- if (tryToComputeMassInFunction())
- return;
- computeIrreducibleMass(nullptr, Loops.begin());
- if (tryToComputeMassInFunction())
- return;
- llvm_unreachable("unhandled irreducible control flow");
- }
- /// \note This should be a lambda, but that crashes GCC 4.7.
- namespace bfi_detail {
- template <class BT> struct BlockEdgesAdder {
- typedef BT BlockT;
- typedef BlockFrequencyInfoImplBase::LoopData LoopData;
- typedef GraphTraits<const BlockT *> Successor;
- const BlockFrequencyInfoImpl<BT> &BFI;
- explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
- : BFI(BFI) {}
- void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
- const LoopData *OuterLoop) {
- const BlockT *BB = BFI.RPOT[Irr.Node.Index];
- for (auto I = Successor::child_begin(BB), E = Successor::child_end(BB);
- I != E; ++I)
- G.addEdge(Irr, BFI.getNode(*I), OuterLoop);
- }
- };
- }
- template <class BT>
- void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
- LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
- DEBUG(dbgs() << "analyze-irreducible-in-";
- if (OuterLoop) dbgs() << "loop: " << getLoopName(*OuterLoop) << "\n";
- else dbgs() << "function\n");
- using namespace bfi_detail;
- // Ideally, addBlockEdges() would be declared here as a lambda, but that
- // crashes GCC 4.7.
- BlockEdgesAdder<BT> addBlockEdges(*this);
- IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
- for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
- computeMassInLoop(L);
- if (!OuterLoop)
- return;
- updateLoopWithIrreducible(*OuterLoop);
- }
- template <class BT>
- bool
- BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
- const BlockNode &Node) {
- DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
- // Calculate probability for successors.
- Distribution Dist;
- if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
- assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
- if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
- // Irreducible backedge.
- return false;
- } else {
- const BlockT *BB = getBlock(Node);
- for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB);
- SI != SE; ++SI)
- // Do not dereference SI, or getEdgeWeight() is linear in the number of
- // successors.
- if (!addToDist(Dist, OuterLoop, Node, getNode(*SI),
- BPI->getEdgeWeight(BB, SI)))
- // Irreducible backedge.
- return false;
- }
- // Distribute mass to successors, saving exit and backedge data in the
- // loop header.
- distributeMass(Node, OuterLoop, Dist);
- return true;
- }
- template <class BT>
- raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
- if (!F)
- return OS;
- OS << "block-frequency-info: " << F->getName() << "\n";
- for (const BlockT &BB : *F)
- OS << " - " << bfi_detail::getBlockName(&BB)
- << ": float = " << getFloatingBlockFreq(&BB)
- << ", int = " << getBlockFreq(&BB).getFrequency() << "\n";
- // Add an extra newline for readability.
- OS << "\n";
- return OS;
- }
- } // end namespace llvm
- #undef DEBUG_TYPE
- #endif
|