123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621 |
- //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the interface for the loop memory dependence framework that
- // was originally developed for the Loop Vectorizer.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
- #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
- #include "llvm/ADT/EquivalenceClasses.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AliasSetTracker.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/raw_ostream.h"
- namespace llvm {
- class Value;
- class DataLayout;
- class AliasAnalysis;
- class ScalarEvolution;
- class Loop;
- class SCEV;
- /// Optimization analysis message produced during vectorization. Messages inform
- /// the user why vectorization did not occur.
- class LoopAccessReport {
- std::string Message;
- const Instruction *Instr;
- protected:
- LoopAccessReport(const Twine &Message, const Instruction *I)
- : Message(Message.str()), Instr(I) {}
- public:
- LoopAccessReport(const Instruction *I = nullptr) : Instr(I) {}
- template <typename A> LoopAccessReport &operator<<(const A &Value) {
- raw_string_ostream Out(Message);
- Out << Value;
- return *this;
- }
- const Instruction *getInstr() const { return Instr; }
- std::string &str() { return Message; }
- const std::string &str() const { return Message; }
- operator Twine() { return Message; }
- /// \brief Emit an analysis note for \p PassName with the debug location from
- /// the instruction in \p Message if available. Otherwise use the location of
- /// \p TheLoop.
- static void emitAnalysis(const LoopAccessReport &Message,
- const Function *TheFunction,
- const Loop *TheLoop,
- const char *PassName);
- };
- /// \brief Collection of parameters shared beetween the Loop Vectorizer and the
- /// Loop Access Analysis.
- struct VectorizerParams {
- /// \brief Maximum SIMD width.
- static const unsigned MaxVectorWidth;
- /// \brief VF as overridden by the user.
- static unsigned VectorizationFactor;
- /// \brief Interleave factor as overridden by the user.
- static unsigned VectorizationInterleave;
- /// \brief True if force-vector-interleave was specified by the user.
- static bool isInterleaveForced();
- /// \\brief When performing memory disambiguation checks at runtime do not
- /// make more than this number of comparisons.
- static unsigned RuntimeMemoryCheckThreshold;
- };
- /// \brief Checks memory dependences among accesses to the same underlying
- /// object to determine whether there vectorization is legal or not (and at
- /// which vectorization factor).
- ///
- /// Note: This class will compute a conservative dependence for access to
- /// different underlying pointers. Clients, such as the loop vectorizer, will
- /// sometimes deal these potential dependencies by emitting runtime checks.
- ///
- /// We use the ScalarEvolution framework to symbolically evalutate access
- /// functions pairs. Since we currently don't restructure the loop we can rely
- /// on the program order of memory accesses to determine their safety.
- /// At the moment we will only deem accesses as safe for:
- /// * A negative constant distance assuming program order.
- ///
- /// Safe: tmp = a[i + 1]; OR a[i + 1] = x;
- /// a[i] = tmp; y = a[i];
- ///
- /// The latter case is safe because later checks guarantuee that there can't
- /// be a cycle through a phi node (that is, we check that "x" and "y" is not
- /// the same variable: a header phi can only be an induction or a reduction, a
- /// reduction can't have a memory sink, an induction can't have a memory
- /// source). This is important and must not be violated (or we have to
- /// resort to checking for cycles through memory).
- ///
- /// * A positive constant distance assuming program order that is bigger
- /// than the biggest memory access.
- ///
- /// tmp = a[i] OR b[i] = x
- /// a[i+2] = tmp y = b[i+2];
- ///
- /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
- ///
- /// * Zero distances and all accesses have the same size.
- ///
- class MemoryDepChecker {
- public:
- typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
- typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
- /// \brief Set of potential dependent memory accesses.
- typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
- /// \brief Dependece between memory access instructions.
- struct Dependence {
- /// \brief The type of the dependence.
- enum DepType {
- // No dependence.
- NoDep,
- // We couldn't determine the direction or the distance.
- Unknown,
- // Lexically forward.
- Forward,
- // Forward, but if vectorized, is likely to prevent store-to-load
- // forwarding.
- ForwardButPreventsForwarding,
- // Lexically backward.
- Backward,
- // Backward, but the distance allows a vectorization factor of
- // MaxSafeDepDistBytes.
- BackwardVectorizable,
- // Same, but may prevent store-to-load forwarding.
- BackwardVectorizableButPreventsForwarding
- };
- /// \brief String version of the types.
- static const char *DepName[];
- /// \brief Index of the source of the dependence in the InstMap vector.
- unsigned Source;
- /// \brief Index of the destination of the dependence in the InstMap vector.
- unsigned Destination;
- /// \brief The type of the dependence.
- DepType Type;
- Dependence(unsigned Source, unsigned Destination, DepType Type)
- : Source(Source), Destination(Destination), Type(Type) {}
- /// \brief Dependence types that don't prevent vectorization.
- static bool isSafeForVectorization(DepType Type);
- /// \brief Dependence types that can be queried from the analysis.
- static bool isInterestingDependence(DepType Type);
- /// \brief Lexically backward dependence types.
- bool isPossiblyBackward() const;
- /// \brief Print the dependence. \p Instr is used to map the instruction
- /// indices to instructions.
- void print(raw_ostream &OS, unsigned Depth,
- const SmallVectorImpl<Instruction *> &Instrs) const;
- };
- MemoryDepChecker(ScalarEvolution *Se, const Loop *L)
- : SE(Se), InnermostLoop(L), AccessIdx(0),
- ShouldRetryWithRuntimeCheck(false), SafeForVectorization(true),
- RecordInterestingDependences(true) {}
- /// \brief Register the location (instructions are given increasing numbers)
- /// of a write access.
- void addAccess(StoreInst *SI) {
- Value *Ptr = SI->getPointerOperand();
- Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
- InstMap.push_back(SI);
- ++AccessIdx;
- }
- /// \brief Register the location (instructions are given increasing numbers)
- /// of a write access.
- void addAccess(LoadInst *LI) {
- Value *Ptr = LI->getPointerOperand();
- Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
- InstMap.push_back(LI);
- ++AccessIdx;
- }
- /// \brief Check whether the dependencies between the accesses are safe.
- ///
- /// Only checks sets with elements in \p CheckDeps.
- bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoSet &CheckDeps,
- const ValueToValueMap &Strides);
- /// \brief No memory dependence was encountered that would inhibit
- /// vectorization.
- bool isSafeForVectorization() const { return SafeForVectorization; }
- /// \brief The maximum number of bytes of a vector register we can vectorize
- /// the accesses safely with.
- unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
- /// \brief In same cases when the dependency check fails we can still
- /// vectorize the loop with a dynamic array access check.
- bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
- /// \brief Returns the interesting dependences. If null is returned we
- /// exceeded the MaxInterestingDependence threshold and this information is
- /// not available.
- const SmallVectorImpl<Dependence> *getInterestingDependences() const {
- return RecordInterestingDependences ? &InterestingDependences : nullptr;
- }
- void clearInterestingDependences() { InterestingDependences.clear(); }
- /// \brief The vector of memory access instructions. The indices are used as
- /// instruction identifiers in the Dependence class.
- const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
- return InstMap;
- }
- /// \brief Find the set of instructions that read or write via \p Ptr.
- SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
- bool isWrite) const;
- private:
- ScalarEvolution *SE;
- const Loop *InnermostLoop;
- /// \brief Maps access locations (ptr, read/write) to program order.
- DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
- /// \brief Memory access instructions in program order.
- SmallVector<Instruction *, 16> InstMap;
- /// \brief The program order index to be used for the next instruction.
- unsigned AccessIdx;
- // We can access this many bytes in parallel safely.
- unsigned MaxSafeDepDistBytes;
- /// \brief If we see a non-constant dependence distance we can still try to
- /// vectorize this loop with runtime checks.
- bool ShouldRetryWithRuntimeCheck;
- /// \brief No memory dependence was encountered that would inhibit
- /// vectorization.
- bool SafeForVectorization;
- //// \brief True if InterestingDependences reflects the dependences in the
- //// loop. If false we exceeded MaxInterestingDependence and
- //// InterestingDependences is invalid.
- bool RecordInterestingDependences;
- /// \brief Interesting memory dependences collected during the analysis as
- /// defined by isInterestingDependence. Only valid if
- /// RecordInterestingDependences is true.
- SmallVector<Dependence, 8> InterestingDependences;
- /// \brief Check whether there is a plausible dependence between the two
- /// accesses.
- ///
- /// Access \p A must happen before \p B in program order. The two indices
- /// identify the index into the program order map.
- ///
- /// This function checks whether there is a plausible dependence (or the
- /// absence of such can't be proved) between the two accesses. If there is a
- /// plausible dependence but the dependence distance is bigger than one
- /// element access it records this distance in \p MaxSafeDepDistBytes (if this
- /// distance is smaller than any other distance encountered so far).
- /// Otherwise, this function returns true signaling a possible dependence.
- Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
- const MemAccessInfo &B, unsigned BIdx,
- const ValueToValueMap &Strides);
- /// \brief Check whether the data dependence could prevent store-load
- /// forwarding.
- bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
- };
- /// \brief Holds information about the memory runtime legality checks to verify
- /// that a group of pointers do not overlap.
- class RuntimePointerChecking {
- public:
- struct PointerInfo {
- /// Holds the pointer value that we need to check.
- TrackingVH<Value> PointerValue;
- /// Holds the pointer value at the beginning of the loop.
- const SCEV *Start;
- /// Holds the pointer value at the end of the loop.
- const SCEV *End;
- /// Holds the information if this pointer is used for writing to memory.
- bool IsWritePtr;
- /// Holds the id of the set of pointers that could be dependent because of a
- /// shared underlying object.
- unsigned DependencySetId;
- /// Holds the id of the disjoint alias set to which this pointer belongs.
- unsigned AliasSetId;
- /// SCEV for the access.
- const SCEV *Expr;
- PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
- bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
- const SCEV *Expr)
- : PointerValue(PointerValue), Start(Start), End(End),
- IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
- AliasSetId(AliasSetId), Expr(Expr) {}
- };
- RuntimePointerChecking(ScalarEvolution *SE) : Need(false), SE(SE) {}
- /// Reset the state of the pointer runtime information.
- void reset() {
- Need = false;
- Pointers.clear();
- }
- /// Insert a pointer and calculate the start and end SCEVs.
- void insert(Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
- unsigned ASId, const ValueToValueMap &Strides);
- /// \brief No run-time memory checking is necessary.
- bool empty() const { return Pointers.empty(); }
- /// A grouping of pointers. A single memcheck is required between
- /// two groups.
- struct CheckingPtrGroup {
- /// \brief Create a new pointer checking group containing a single
- /// pointer, with index \p Index in RtCheck.
- CheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck)
- : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End),
- Low(RtCheck.Pointers[Index].Start) {
- Members.push_back(Index);
- }
- /// \brief Tries to add the pointer recorded in RtCheck at index
- /// \p Index to this pointer checking group. We can only add a pointer
- /// to a checking group if we will still be able to get
- /// the upper and lower bounds of the check. Returns true in case
- /// of success, false otherwise.
- bool addPointer(unsigned Index);
- /// Constitutes the context of this pointer checking group. For each
- /// pointer that is a member of this group we will retain the index
- /// at which it appears in RtCheck.
- RuntimePointerChecking &RtCheck;
- /// The SCEV expression which represents the upper bound of all the
- /// pointers in this group.
- const SCEV *High;
- /// The SCEV expression which represents the lower bound of all the
- /// pointers in this group.
- const SCEV *Low;
- /// Indices of all the pointers that constitute this grouping.
- SmallVector<unsigned, 2> Members;
- };
- /// \brief Groups pointers such that a single memcheck is required
- /// between two different groups. This will clear the CheckingGroups vector
- /// and re-compute it. We will only group dependecies if \p UseDependencies
- /// is true, otherwise we will create a separate group for each pointer.
- void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
- bool UseDependencies);
- /// \brief Decide if we need to add a check between two groups of pointers,
- /// according to needsChecking.
- bool needsChecking(const CheckingPtrGroup &M, const CheckingPtrGroup &N,
- const SmallVectorImpl<int> *PtrPartition) const;
- /// \brief Return true if any pointer requires run-time checking according
- /// to needsChecking.
- bool needsAnyChecking(const SmallVectorImpl<int> *PtrPartition) const;
- /// \brief Returns the number of run-time checks required according to
- /// needsChecking.
- unsigned getNumberOfChecks(const SmallVectorImpl<int> *PtrPartition) const;
- /// \brief Print the list run-time memory checks necessary.
- ///
- /// If \p PtrPartition is set, it contains the partition number for
- /// pointers (-1 if the pointer belongs to multiple partitions). In this
- /// case omit checks between pointers belonging to the same partition.
- void print(raw_ostream &OS, unsigned Depth = 0,
- const SmallVectorImpl<int> *PtrPartition = nullptr) const;
- /// This flag indicates if we need to add the runtime check.
- bool Need;
- /// Information about the pointers that may require checking.
- SmallVector<PointerInfo, 2> Pointers;
- /// Holds a partitioning of pointers into "check groups".
- SmallVector<CheckingPtrGroup, 2> CheckingGroups;
- private:
- /// \brief Decide whether we need to issue a run-time check for pointer at
- /// index \p I and \p J to prove their independence.
- ///
- /// If \p PtrPartition is set, it contains the partition number for
- /// pointers (-1 if the pointer belongs to multiple partitions). In this
- /// case omit checks between pointers belonging to the same partition.
- bool needsChecking(unsigned I, unsigned J,
- const SmallVectorImpl<int> *PtrPartition) const;
- /// Holds a pointer to the ScalarEvolution analysis.
- ScalarEvolution *SE;
- };
- /// \brief Drive the analysis of memory accesses in the loop
- ///
- /// This class is responsible for analyzing the memory accesses of a loop. It
- /// collects the accesses and then its main helper the AccessAnalysis class
- /// finds and categorizes the dependences in buildDependenceSets.
- ///
- /// For memory dependences that can be analyzed at compile time, it determines
- /// whether the dependence is part of cycle inhibiting vectorization. This work
- /// is delegated to the MemoryDepChecker class.
- ///
- /// For memory dependences that cannot be determined at compile time, it
- /// generates run-time checks to prove independence. This is done by
- /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
- /// RuntimePointerCheck class.
- class LoopAccessInfo {
- public:
- LoopAccessInfo(Loop *L, ScalarEvolution *SE, const DataLayout &DL,
- const TargetLibraryInfo *TLI, AliasAnalysis *AA,
- DominatorTree *DT, LoopInfo *LI,
- const ValueToValueMap &Strides);
- /// Return true we can analyze the memory accesses in the loop and there are
- /// no memory dependence cycles.
- bool canVectorizeMemory() const { return CanVecMem; }
- const RuntimePointerChecking *getRuntimePointerChecking() const {
- return &PtrRtChecking;
- }
- /// \brief Number of memchecks required to prove independence of otherwise
- /// may-alias pointers.
- unsigned getNumRuntimePointerChecks(
- const SmallVectorImpl<int> *PtrPartition = nullptr) const {
- return PtrRtChecking.getNumberOfChecks(PtrPartition);
- }
- /// Return true if the block BB needs to be predicated in order for the loop
- /// to be vectorized.
- static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
- DominatorTree *DT);
- /// Returns true if the value V is uniform within the loop.
- bool isUniform(Value *V) const;
- unsigned getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
- unsigned getNumStores() const { return NumStores; }
- unsigned getNumLoads() const { return NumLoads;}
- /// \brief Add code that checks at runtime if the accessed arrays overlap.
- ///
- /// Returns a pair of instructions where the first element is the first
- /// instruction generated in possibly a sequence of instructions and the
- /// second value is the final comparator value or NULL if no check is needed.
- ///
- /// If \p PtrPartition is set, it contains the partition number for pointers
- /// (-1 if the pointer belongs to multiple partitions). In this case omit
- /// checks between pointers belonging to the same partition.
- std::pair<Instruction *, Instruction *>
- addRuntimeCheck(Instruction *Loc,
- const SmallVectorImpl<int> *PtrPartition = nullptr) const;
- /// \brief The diagnostics report generated for the analysis. E.g. why we
- /// couldn't analyze the loop.
- const Optional<LoopAccessReport> &getReport() const { return Report; }
- /// \brief the Memory Dependence Checker which can determine the
- /// loop-independent and loop-carried dependences between memory accesses.
- const MemoryDepChecker &getDepChecker() const { return DepChecker; }
- /// \brief Return the list of instructions that use \p Ptr to read or write
- /// memory.
- SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
- bool isWrite) const {
- return DepChecker.getInstructionsForAccess(Ptr, isWrite);
- }
- /// \brief Print the information about the memory accesses in the loop.
- void print(raw_ostream &OS, unsigned Depth = 0) const;
- /// \brief Used to ensure that if the analysis was run with speculating the
- /// value of symbolic strides, the client queries it with the same assumption.
- /// Only used in DEBUG build but we don't want NDEBUG-dependent ABI.
- unsigned NumSymbolicStrides;
- /// \brief Checks existence of store to invariant address inside loop.
- /// If the loop has any store to invariant address, then it returns true,
- /// else returns false.
- bool hasStoreToLoopInvariantAddress() const {
- return StoreToLoopInvariantAddress;
- }
- private:
- /// \brief Analyze the loop. Substitute symbolic strides using Strides.
- void analyzeLoop(const ValueToValueMap &Strides);
- /// \brief Check if the structure of the loop allows it to be analyzed by this
- /// pass.
- bool canAnalyzeLoop();
- void emitAnalysis(LoopAccessReport &Message);
- /// We need to check that all of the pointers in this list are disjoint
- /// at runtime.
- RuntimePointerChecking PtrRtChecking;
- /// \brief the Memory Dependence Checker which can determine the
- /// loop-independent and loop-carried dependences between memory accesses.
- MemoryDepChecker DepChecker;
- Loop *TheLoop;
- ScalarEvolution *SE;
- const DataLayout &DL;
- const TargetLibraryInfo *TLI;
- AliasAnalysis *AA;
- DominatorTree *DT;
- LoopInfo *LI;
- unsigned NumLoads;
- unsigned NumStores;
- unsigned MaxSafeDepDistBytes;
- /// \brief Cache the result of analyzeLoop.
- bool CanVecMem;
- /// \brief Indicator for storing to uniform addresses.
- /// If a loop has write to a loop invariant address then it should be true.
- bool StoreToLoopInvariantAddress;
- /// \brief The diagnostics report generated for the analysis. E.g. why we
- /// couldn't analyze the loop.
- Optional<LoopAccessReport> Report;
- };
- Value *stripIntegerCast(Value *V);
- ///\brief Return the SCEV corresponding to a pointer with the symbolic stride
- ///replaced with constant one.
- ///
- /// If \p OrigPtr is not null, use it to look up the stride value instead of \p
- /// Ptr. \p PtrToStride provides the mapping between the pointer value and its
- /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
- const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
- const ValueToValueMap &PtrToStride,
- Value *Ptr, Value *OrigPtr = nullptr);
- /// \brief Check the stride of the pointer and ensure that it does not wrap in
- /// the address space.
- int isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp,
- const ValueToValueMap &StridesMap);
- /// \brief This analysis provides dependence information for the memory accesses
- /// of a loop.
- ///
- /// It runs the analysis for a loop on demand. This can be initiated by
- /// querying the loop access info via LAA::getInfo. getInfo return a
- /// LoopAccessInfo object. See this class for the specifics of what information
- /// is provided.
- class LoopAccessAnalysis : public FunctionPass {
- public:
- static char ID;
- LoopAccessAnalysis() : FunctionPass(ID) {
- initializeLoopAccessAnalysisPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override;
- /// \brief Query the result of the loop access information for the loop \p L.
- ///
- /// If the client speculates (and then issues run-time checks) for the values
- /// of symbolic strides, \p Strides provides the mapping (see
- /// replaceSymbolicStrideSCEV). If there is no cached result available run
- /// the analysis.
- const LoopAccessInfo &getInfo(Loop *L, const ValueToValueMap &Strides);
- void releaseMemory() override {
- // Invalidate the cache when the pass is freed.
- LoopAccessInfoMap.clear();
- }
- /// \brief Print the result of the analysis when invoked with -analyze.
- void print(raw_ostream &OS, const Module *M = nullptr) const override;
- private:
- /// \brief The cache.
- DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
- // The used analysis passes.
- ScalarEvolution *SE;
- const TargetLibraryInfo *TLI;
- AliasAnalysis *AA;
- DominatorTree *DT;
- LoopInfo *LI;
- };
- } // End llvm namespace
- #endif
|