123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540 |
- //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This is the generic implementation of LoopInfo used for both Loops and
- // MachineLoops.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
- #define LLVM_ANALYSIS_LOOPINFOIMPL_H
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/IR/Dominators.h"
- namespace llvm {
- //===----------------------------------------------------------------------===//
- // APIs for simple analysis of the loop. See header notes.
- /// getExitingBlocks - Return all blocks inside the loop that have successors
- /// outside of the loop. These are the blocks _inside of the current loop_
- /// which branch out. The returned list is always unique.
- ///
- template<class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::
- getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
- typedef GraphTraits<BlockT*> BlockTraits;
- for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
- for (typename BlockTraits::ChildIteratorType I =
- BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
- I != E; ++I)
- if (!contains(*I)) {
- // Not in current loop? It must be an exit block.
- ExitingBlocks.push_back(*BI);
- break;
- }
- }
- /// getExitingBlock - If getExitingBlocks would return exactly one block,
- /// return that block. Otherwise return null.
- template<class BlockT, class LoopT>
- BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
- SmallVector<BlockT*, 8> ExitingBlocks;
- getExitingBlocks(ExitingBlocks);
- if (ExitingBlocks.size() == 1)
- return ExitingBlocks[0];
- return nullptr;
- }
- /// getExitBlocks - Return all of the successor blocks of this loop. These
- /// are the blocks _outside of the current loop_ which are branched to.
- ///
- template<class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::
- getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
- typedef GraphTraits<BlockT*> BlockTraits;
- for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
- for (typename BlockTraits::ChildIteratorType I =
- BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
- I != E; ++I)
- if (!contains(*I))
- // Not in current loop? It must be an exit block.
- ExitBlocks.push_back(*I);
- }
- /// getExitBlock - If getExitBlocks would return exactly one block,
- /// return that block. Otherwise return null.
- template<class BlockT, class LoopT>
- BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
- SmallVector<BlockT*, 8> ExitBlocks;
- getExitBlocks(ExitBlocks);
- if (ExitBlocks.size() == 1)
- return ExitBlocks[0];
- return nullptr;
- }
- /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
- template<class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::
- getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
- typedef GraphTraits<BlockT*> BlockTraits;
- for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
- for (typename BlockTraits::ChildIteratorType I =
- BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
- I != E; ++I)
- if (!contains(*I))
- // Not in current loop? It must be an exit block.
- ExitEdges.push_back(Edge(*BI, *I));
- }
- /// getLoopPreheader - If there is a preheader for this loop, return it. A
- /// loop has a preheader if there is only one edge to the header of the loop
- /// from outside of the loop. If this is the case, the block branching to the
- /// header of the loop is the preheader node.
- ///
- /// This method returns null if there is no preheader for the loop.
- ///
- template<class BlockT, class LoopT>
- BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
- // Keep track of nodes outside the loop branching to the header...
- BlockT *Out = getLoopPredecessor();
- if (!Out) return nullptr;
- // Make sure there is only one exit out of the preheader.
- typedef GraphTraits<BlockT*> BlockTraits;
- typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
- ++SI;
- if (SI != BlockTraits::child_end(Out))
- return nullptr; // Multiple exits from the block, must not be a preheader.
- // The predecessor has exactly one successor, so it is a preheader.
- return Out;
- }
- /// getLoopPredecessor - If the given loop's header has exactly one unique
- /// predecessor outside the loop, return it. Otherwise return null.
- /// This is less strict that the loop "preheader" concept, which requires
- /// the predecessor to have exactly one successor.
- ///
- template<class BlockT, class LoopT>
- BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
- // Keep track of nodes outside the loop branching to the header...
- BlockT *Out = nullptr;
- // Loop over the predecessors of the header node...
- BlockT *Header = getHeader();
- typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
- for (typename InvBlockTraits::ChildIteratorType PI =
- InvBlockTraits::child_begin(Header),
- PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
- typename InvBlockTraits::NodeType *N = *PI;
- if (!contains(N)) { // If the block is not in the loop...
- if (Out && Out != N)
- return nullptr; // Multiple predecessors outside the loop
- Out = N;
- }
- }
- // Make sure there is only one exit out of the preheader.
- assert(Out && "Header of loop has no predecessors from outside loop?");
- return Out;
- }
- /// getLoopLatch - If there is a single latch block for this loop, return it.
- /// A latch block is a block that contains a branch back to the header.
- template<class BlockT, class LoopT>
- BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
- BlockT *Header = getHeader();
- typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
- typename InvBlockTraits::ChildIteratorType PI =
- InvBlockTraits::child_begin(Header);
- typename InvBlockTraits::ChildIteratorType PE =
- InvBlockTraits::child_end(Header);
- BlockT *Latch = nullptr;
- for (; PI != PE; ++PI) {
- typename InvBlockTraits::NodeType *N = *PI;
- if (contains(N)) {
- if (Latch) return nullptr;
- Latch = N;
- }
- }
- return Latch;
- }
- //===----------------------------------------------------------------------===//
- // APIs for updating loop information after changing the CFG
- //
- /// addBasicBlockToLoop - This method is used by other analyses to update loop
- /// information. NewBB is set to be a new member of the current loop.
- /// Because of this, it is added as a member of all parent loops, and is added
- /// to the specified LoopInfo object as being in the current basic block. It
- /// is not valid to replace the loop header with this method.
- ///
- template<class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::
- addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
- assert((Blocks.empty() || LIB[getHeader()] == this) &&
- "Incorrect LI specified for this loop!");
- assert(NewBB && "Cannot add a null basic block to the loop!");
- assert(!LIB[NewBB] && "BasicBlock already in the loop!");
- LoopT *L = static_cast<LoopT *>(this);
- // Add the loop mapping to the LoopInfo object...
- LIB.BBMap[NewBB] = L;
- // Add the basic block to this loop and all parent loops...
- while (L) {
- L->addBlockEntry(NewBB);
- L = L->getParentLoop();
- }
- }
- /// replaceChildLoopWith - This is used when splitting loops up. It replaces
- /// the OldChild entry in our children list with NewChild, and updates the
- /// parent pointer of OldChild to be null and the NewChild to be this loop.
- /// This updates the loop depth of the new child.
- template<class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::
- replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) {
- assert(OldChild->ParentLoop == this && "This loop is already broken!");
- assert(!NewChild->ParentLoop && "NewChild already has a parent!");
- typename std::vector<LoopT *>::iterator I =
- std::find(SubLoops.begin(), SubLoops.end(), OldChild);
- assert(I != SubLoops.end() && "OldChild not in loop!");
- *I = NewChild;
- OldChild->ParentLoop = nullptr;
- NewChild->ParentLoop = static_cast<LoopT *>(this);
- }
- /// verifyLoop - Verify loop structure
- template<class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::verifyLoop() const {
- #ifndef NDEBUG
- assert(!Blocks.empty() && "Loop header is missing");
- // Setup for using a depth-first iterator to visit every block in the loop.
- SmallVector<BlockT*, 8> ExitBBs;
- getExitBlocks(ExitBBs);
- llvm::SmallPtrSet<BlockT*, 8> VisitSet;
- VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
- df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
- BI = df_ext_begin(getHeader(), VisitSet),
- BE = df_ext_end(getHeader(), VisitSet);
- // Keep track of the number of BBs visited.
- unsigned NumVisited = 0;
- // Check the individual blocks.
- for ( ; BI != BE; ++BI) {
- BlockT *BB = *BI;
- bool HasInsideLoopSuccs = false;
- bool HasInsideLoopPreds = false;
- SmallVector<BlockT *, 2> OutsideLoopPreds;
- typedef GraphTraits<BlockT*> BlockTraits;
- for (typename BlockTraits::ChildIteratorType SI =
- BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
- SI != SE; ++SI)
- if (contains(*SI)) {
- HasInsideLoopSuccs = true;
- break;
- }
- typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
- for (typename InvBlockTraits::ChildIteratorType PI =
- InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
- PI != PE; ++PI) {
- BlockT *N = *PI;
- if (contains(N))
- HasInsideLoopPreds = true;
- else
- OutsideLoopPreds.push_back(N);
- }
- if (BB == getHeader()) {
- assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
- } else if (!OutsideLoopPreds.empty()) {
- // A non-header loop shouldn't be reachable from outside the loop,
- // though it is permitted if the predecessor is not itself actually
- // reachable.
- BlockT *EntryBB = BB->getParent()->begin();
- for (BlockT *CB : depth_first(EntryBB))
- for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
- assert(CB != OutsideLoopPreds[i] &&
- "Loop has multiple entry points!");
- }
- assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
- assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
- assert(BB != getHeader()->getParent()->begin() &&
- "Loop contains function entry block!");
- NumVisited++;
- }
- assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
- // Check the subloops.
- for (iterator I = begin(), E = end(); I != E; ++I)
- // Each block in each subloop should be contained within this loop.
- for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
- BI != BE; ++BI) {
- assert(contains(*BI) &&
- "Loop does not contain all the blocks of a subloop!");
- }
- // Check the parent loop pointer.
- if (ParentLoop) {
- assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
- ParentLoop->end() &&
- "Loop is not a subloop of its parent!");
- }
- #endif
- }
- /// verifyLoop - Verify loop structure of this loop and all nested loops.
- template<class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::verifyLoopNest(
- DenseSet<const LoopT*> *Loops) const {
- Loops->insert(static_cast<const LoopT *>(this));
- // Verify this loop.
- verifyLoop();
- // Verify the subloops.
- for (iterator I = begin(), E = end(); I != E; ++I)
- (*I)->verifyLoopNest(Loops);
- }
- template<class BlockT, class LoopT>
- void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth) const {
- OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
- << " containing: ";
- for (unsigned i = 0; i < getBlocks().size(); ++i) {
- if (i) OS << ",";
- BlockT *BB = getBlocks()[i];
- BB->printAsOperand(OS, false);
- if (BB == getHeader()) OS << "<header>";
- if (BB == getLoopLatch()) OS << "<latch>";
- if (isLoopExiting(BB)) OS << "<exiting>";
- }
- OS << "\n";
- for (iterator I = begin(), E = end(); I != E; ++I)
- (*I)->print(OS, Depth+2);
- }
- // //
- ///////////////////////////////////////////////////////////////////////////////
- /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
- /// result does / not depend on use list (block predecessor) order.
- ///
- /// Discover a subloop with the specified backedges such that: All blocks within
- /// this loop are mapped to this loop or a subloop. And all subloops within this
- /// loop have their parent loop set to this loop or a subloop.
- template<class BlockT, class LoopT>
- static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT*> Backedges,
- LoopInfoBase<BlockT, LoopT> *LI,
- DominatorTreeBase<BlockT> &DomTree) {
- typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
- unsigned NumBlocks = 0;
- unsigned NumSubloops = 0;
- // Perform a backward CFG traversal using a worklist.
- std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
- while (!ReverseCFGWorklist.empty()) {
- BlockT *PredBB = ReverseCFGWorklist.back();
- ReverseCFGWorklist.pop_back();
- LoopT *Subloop = LI->getLoopFor(PredBB);
- if (!Subloop) {
- if (!DomTree.isReachableFromEntry(PredBB))
- continue;
- // This is an undiscovered block. Map it to the current loop.
- LI->changeLoopFor(PredBB, L);
- ++NumBlocks;
- if (PredBB == L->getHeader())
- continue;
- // Push all block predecessors on the worklist.
- ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
- InvBlockTraits::child_begin(PredBB),
- InvBlockTraits::child_end(PredBB));
- }
- else {
- // This is a discovered block. Find its outermost discovered loop.
- while (LoopT *Parent = Subloop->getParentLoop())
- Subloop = Parent;
- // If it is already discovered to be a subloop of this loop, continue.
- if (Subloop == L)
- continue;
- // Discover a subloop of this loop.
- Subloop->setParentLoop(L);
- ++NumSubloops;
- NumBlocks += Subloop->getBlocks().capacity();
- PredBB = Subloop->getHeader();
- // Continue traversal along predecessors that are not loop-back edges from
- // within this subloop tree itself. Note that a predecessor may directly
- // reach another subloop that is not yet discovered to be a subloop of
- // this loop, which we must traverse.
- for (typename InvBlockTraits::ChildIteratorType PI =
- InvBlockTraits::child_begin(PredBB),
- PE = InvBlockTraits::child_end(PredBB); PI != PE; ++PI) {
- if (LI->getLoopFor(*PI) != Subloop)
- ReverseCFGWorklist.push_back(*PI);
- }
- }
- }
- L->getSubLoopsVector().reserve(NumSubloops);
- L->reserveBlocks(NumBlocks);
- }
- /// Populate all loop data in a stable order during a single forward DFS.
- template<class BlockT, class LoopT>
- class PopulateLoopsDFS {
- typedef GraphTraits<BlockT*> BlockTraits;
- typedef typename BlockTraits::ChildIteratorType SuccIterTy;
- LoopInfoBase<BlockT, LoopT> *LI;
- public:
- PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li):
- LI(li) {}
- void traverse(BlockT *EntryBlock);
- protected:
- void insertIntoLoop(BlockT *Block);
- };
- /// Top-level driver for the forward DFS within the loop.
- template<class BlockT, class LoopT>
- void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
- for (BlockT *BB : post_order(EntryBlock))
- insertIntoLoop(BB);
- }
- /// Add a single Block to its ancestor loops in PostOrder. If the block is a
- /// subloop header, add the subloop to its parent in PostOrder, then reverse the
- /// Block and Subloop vectors of the now complete subloop to achieve RPO.
- template<class BlockT, class LoopT>
- void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
- LoopT *Subloop = LI->getLoopFor(Block);
- if (Subloop && Block == Subloop->getHeader()) {
- // We reach this point once per subloop after processing all the blocks in
- // the subloop.
- if (Subloop->getParentLoop())
- Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
- else
- LI->addTopLevelLoop(Subloop);
- // For convenience, Blocks and Subloops are inserted in postorder. Reverse
- // the lists, except for the loop header, which is always at the beginning.
- Subloop->reverseBlock(1);
- std::reverse(Subloop->getSubLoopsVector().begin(),
- Subloop->getSubLoopsVector().end());
- Subloop = Subloop->getParentLoop();
- }
- for (; Subloop; Subloop = Subloop->getParentLoop())
- Subloop->addBlockEntry(Block);
- }
- /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
- /// interleaved with backward CFG traversals within each subloop
- /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
- /// this part of the algorithm is linear in the number of CFG edges. Subloop and
- /// Block vectors are then populated during a single forward CFG traversal
- /// (PopulateLoopDFS).
- ///
- /// During the two CFG traversals each block is seen three times:
- /// 1) Discovered and mapped by a reverse CFG traversal.
- /// 2) Visited during a forward DFS CFG traversal.
- /// 3) Reverse-inserted in the loop in postorder following forward DFS.
- ///
- /// The Block vectors are inclusive, so step 3 requires loop-depth number of
- /// insertions per block.
- template<class BlockT, class LoopT>
- void LoopInfoBase<BlockT, LoopT>::
- Analyze(DominatorTreeBase<BlockT> &DomTree) {
- // Postorder traversal of the dominator tree.
- DomTreeNodeBase<BlockT>* DomRoot = DomTree.getRootNode();
- for (auto DomNode : post_order(DomRoot)) {
- BlockT *Header = DomNode->getBlock();
- SmallVector<BlockT *, 4> Backedges;
- // Check each predecessor of the potential loop header.
- typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
- for (typename InvBlockTraits::ChildIteratorType PI =
- InvBlockTraits::child_begin(Header),
- PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
- BlockT *Backedge = *PI;
- // If Header dominates predBB, this is a new loop. Collect the backedges.
- if (DomTree.dominates(Header, Backedge)
- && DomTree.isReachableFromEntry(Backedge)) {
- Backedges.push_back(Backedge);
- }
- }
- // Perform a backward CFG traversal to discover and map blocks in this loop.
- if (!Backedges.empty()) {
- LoopT *L = new LoopT(Header);
- discoverAndMapSubloop(L, ArrayRef<BlockT*>(Backedges), this, DomTree);
- }
- }
- // Perform a single forward CFG traversal to populate block and subloop
- // vectors for all loops.
- PopulateLoopsDFS<BlockT, LoopT> DFS(this);
- DFS.traverse(DomRoot->getBlock());
- }
- // Debugging
- template<class BlockT, class LoopT>
- void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
- for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
- TopLevelLoops[i]->print(OS);
- #if 0
- for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
- E = BBMap.end(); I != E; ++I)
- OS << "BB '" << I->first->getName() << "' level = "
- << I->second->getLoopDepth() << "\n";
- #endif
- }
- template<class BlockT, class LoopT>
- void LoopInfoBase<BlockT, LoopT>::verify() const {
- DenseSet<const LoopT*> Loops;
- for (iterator I = begin(), E = end(); I != E; ++I) {
- assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
- (*I)->verifyLoopNest(&Loops);
- }
- // Verify that blocks are mapped to valid loops.
- #ifndef NDEBUG
- for (auto &Entry : BBMap) {
- const BlockT *BB = Entry.first;
- LoopT *L = Entry.second;
- assert(Loops.count(L) && "orphaned loop");
- assert(L->contains(BB) && "orphaned block");
- }
- #endif
- }
- } // End llvm namespace
- #endif
|