123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928 |
- //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- /// \file
- /// This pass exposes codegen information to IR-level passes. Every
- /// transformation that uses codegen information is broken into three parts:
- /// 1. The IR-level analysis pass.
- /// 2. The IR-level transformation interface which provides the needed
- /// information.
- /// 3. Codegen-level implementation which uses target-specific hooks.
- ///
- /// This file defines #2, which is the interface that IR-level transformations
- /// use for querying the codegen.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
- #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
- #include "llvm/ADT/Optional.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/DataTypes.h"
- #include <functional>
- namespace llvm {
- class Function;
- class GlobalValue;
- class Loop;
- class PreservedAnalyses;
- class Type;
- class User;
- class Value;
- /// \brief Information about a load/store intrinsic defined by the target.
- struct MemIntrinsicInfo {
- MemIntrinsicInfo()
- : ReadMem(false), WriteMem(false), Vol(false), MatchingId(0),
- NumMemRefs(0), PtrVal(nullptr) {}
- bool ReadMem;
- bool WriteMem;
- bool Vol;
- // Same Id is set by the target for corresponding load/store intrinsics.
- unsigned short MatchingId;
- int NumMemRefs;
- Value *PtrVal;
- };
- /// \brief This pass provides access to the codegen interfaces that are needed
- /// for IR-level transformations.
- class TargetTransformInfo {
- public:
- /// \brief Construct a TTI object using a type implementing the \c Concept
- /// API below.
- ///
- /// This is used by targets to construct a TTI wrapping their target-specific
- /// implementaion that encodes appropriate costs for their target.
- template <typename T> TargetTransformInfo(T Impl);
- /// \brief Construct a baseline TTI object using a minimal implementation of
- /// the \c Concept API below.
- ///
- /// The TTI implementation will reflect the information in the DataLayout
- /// provided if non-null.
- explicit TargetTransformInfo(const DataLayout &DL);
- // Provide move semantics.
- TargetTransformInfo(TargetTransformInfo &&Arg);
- TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
- // We need to define the destructor out-of-line to define our sub-classes
- // out-of-line.
- ~TargetTransformInfo();
- /// \brief Handle the invalidation of this information.
- ///
- /// When used as a result of \c TargetIRAnalysis this method will be called
- /// when the function this was computed for changes. When it returns false,
- /// the information is preserved across those changes.
- bool invalidate(Function &, const PreservedAnalyses &) {
- // FIXME: We should probably in some way ensure that the subtarget
- // information for a function hasn't changed.
- return false;
- }
- /// \name Generic Target Information
- /// @{
- /// \brief Underlying constants for 'cost' values in this interface.
- ///
- /// Many APIs in this interface return a cost. This enum defines the
- /// fundamental values that should be used to interpret (and produce) those
- /// costs. The costs are returned as an unsigned rather than a member of this
- /// enumeration because it is expected that the cost of one IR instruction
- /// may have a multiplicative factor to it or otherwise won't fit directly
- /// into the enum. Moreover, it is common to sum or average costs which works
- /// better as simple integral values. Thus this enum only provides constants.
- ///
- /// Note that these costs should usually reflect the intersection of code-size
- /// cost and execution cost. A free instruction is typically one that folds
- /// into another instruction. For example, reg-to-reg moves can often be
- /// skipped by renaming the registers in the CPU, but they still are encoded
- /// and thus wouldn't be considered 'free' here.
- enum TargetCostConstants {
- TCC_Free = 0, ///< Expected to fold away in lowering.
- TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
- TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
- };
- /// \brief Estimate the cost of a specific operation when lowered.
- ///
- /// Note that this is designed to work on an arbitrary synthetic opcode, and
- /// thus work for hypothetical queries before an instruction has even been
- /// formed. However, this does *not* work for GEPs, and must not be called
- /// for a GEP instruction. Instead, use the dedicated getGEPCost interface as
- /// analyzing a GEP's cost required more information.
- ///
- /// Typically only the result type is required, and the operand type can be
- /// omitted. However, if the opcode is one of the cast instructions, the
- /// operand type is required.
- ///
- /// The returned cost is defined in terms of \c TargetCostConstants, see its
- /// comments for a detailed explanation of the cost values.
- unsigned getOperationCost(unsigned Opcode, Type *Ty,
- Type *OpTy = nullptr) const;
- /// \brief Estimate the cost of a GEP operation when lowered.
- ///
- /// The contract for this function is the same as \c getOperationCost except
- /// that it supports an interface that provides extra information specific to
- /// the GEP operation.
- unsigned getGEPCost(const Value *Ptr, ArrayRef<const Value *> Operands) const;
- /// \brief Estimate the cost of a function call when lowered.
- ///
- /// The contract for this is the same as \c getOperationCost except that it
- /// supports an interface that provides extra information specific to call
- /// instructions.
- ///
- /// This is the most basic query for estimating call cost: it only knows the
- /// function type and (potentially) the number of arguments at the call site.
- /// The latter is only interesting for varargs function types.
- unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const;
- /// \brief Estimate the cost of calling a specific function when lowered.
- ///
- /// This overload adds the ability to reason about the particular function
- /// being called in the event it is a library call with special lowering.
- unsigned getCallCost(const Function *F, int NumArgs = -1) const;
- /// \brief Estimate the cost of calling a specific function when lowered.
- ///
- /// This overload allows specifying a set of candidate argument values.
- unsigned getCallCost(const Function *F,
- ArrayRef<const Value *> Arguments) const;
- /// \brief Estimate the cost of an intrinsic when lowered.
- ///
- /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
- unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
- ArrayRef<Type *> ParamTys) const;
- /// \brief Estimate the cost of an intrinsic when lowered.
- ///
- /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
- unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
- ArrayRef<const Value *> Arguments) const;
- /// \brief Estimate the cost of a given IR user when lowered.
- ///
- /// This can estimate the cost of either a ConstantExpr or Instruction when
- /// lowered. It has two primary advantages over the \c getOperationCost and
- /// \c getGEPCost above, and one significant disadvantage: it can only be
- /// used when the IR construct has already been formed.
- ///
- /// The advantages are that it can inspect the SSA use graph to reason more
- /// accurately about the cost. For example, all-constant-GEPs can often be
- /// folded into a load or other instruction, but if they are used in some
- /// other context they may not be folded. This routine can distinguish such
- /// cases.
- ///
- /// The returned cost is defined in terms of \c TargetCostConstants, see its
- /// comments for a detailed explanation of the cost values.
- unsigned getUserCost(const User *U) const;
- /// \brief Return true if branch divergence exists.
- ///
- /// Branch divergence has a significantly negative impact on GPU performance
- /// when threads in the same wavefront take different paths due to conditional
- /// branches.
- bool hasBranchDivergence() const;
- /// \brief Returns whether V is a source of divergence.
- ///
- /// This function provides the target-dependent information for
- /// the target-independent DivergenceAnalysis. DivergenceAnalysis first
- /// builds the dependency graph, and then runs the reachability algorithm
- /// starting with the sources of divergence.
- bool isSourceOfDivergence(const Value *V) const;
- /// \brief Test whether calls to a function lower to actual program function
- /// calls.
- ///
- /// The idea is to test whether the program is likely to require a 'call'
- /// instruction or equivalent in order to call the given function.
- ///
- /// FIXME: It's not clear that this is a good or useful query API. Client's
- /// should probably move to simpler cost metrics using the above.
- /// Alternatively, we could split the cost interface into distinct code-size
- /// and execution-speed costs. This would allow modelling the core of this
- /// query more accurately as a call is a single small instruction, but
- /// incurs significant execution cost.
- bool isLoweredToCall(const Function *F) const;
- /// Parameters that control the generic loop unrolling transformation.
- struct UnrollingPreferences {
- /// The cost threshold for the unrolled loop. Should be relative to the
- /// getUserCost values returned by this API, and the expectation is that
- /// the unrolled loop's instructions when run through that interface should
- /// not exceed this cost. However, this is only an estimate. Also, specific
- /// loops may be unrolled even with a cost above this threshold if deemed
- /// profitable. Set this to UINT_MAX to disable the loop body cost
- /// restriction.
- unsigned Threshold;
- /// If complete unrolling will reduce the cost of the loop below its
- /// expected dynamic cost while rolled by this percentage, apply a discount
- /// (below) to its unrolled cost.
- unsigned PercentDynamicCostSavedThreshold;
- /// The discount applied to the unrolled cost when the *dynamic* cost
- /// savings of unrolling exceed the \c PercentDynamicCostSavedThreshold.
- unsigned DynamicCostSavingsDiscount;
- /// The cost threshold for the unrolled loop when optimizing for size (set
- /// to UINT_MAX to disable).
- unsigned OptSizeThreshold;
- /// The cost threshold for the unrolled loop, like Threshold, but used
- /// for partial/runtime unrolling (set to UINT_MAX to disable).
- unsigned PartialThreshold;
- /// The cost threshold for the unrolled loop when optimizing for size, like
- /// OptSizeThreshold, but used for partial/runtime unrolling (set to
- /// UINT_MAX to disable).
- unsigned PartialOptSizeThreshold;
- /// A forced unrolling factor (the number of concatenated bodies of the
- /// original loop in the unrolled loop body). When set to 0, the unrolling
- /// transformation will select an unrolling factor based on the current cost
- /// threshold and other factors.
- unsigned Count;
- // Set the maximum unrolling factor. The unrolling factor may be selected
- // using the appropriate cost threshold, but may not exceed this number
- // (set to UINT_MAX to disable). This does not apply in cases where the
- // loop is being fully unrolled.
- unsigned MaxCount;
- /// Allow partial unrolling (unrolling of loops to expand the size of the
- /// loop body, not only to eliminate small constant-trip-count loops).
- bool Partial;
- /// Allow runtime unrolling (unrolling of loops to expand the size of the
- /// loop body even when the number of loop iterations is not known at
- /// compile time).
- bool Runtime;
- /// Allow emitting expensive instructions (such as divisions) when computing
- /// the trip count of a loop for runtime unrolling.
- bool AllowExpensiveTripCount;
- };
- /// \brief Get target-customized preferences for the generic loop unrolling
- /// transformation. The caller will initialize UP with the current
- /// target-independent defaults.
- void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) const;
- /// @}
- /// \name Scalar Target Information
- /// @{
- /// \brief Flags indicating the kind of support for population count.
- ///
- /// Compared to the SW implementation, HW support is supposed to
- /// significantly boost the performance when the population is dense, and it
- /// may or may not degrade performance if the population is sparse. A HW
- /// support is considered as "Fast" if it can outperform, or is on a par
- /// with, SW implementation when the population is sparse; otherwise, it is
- /// considered as "Slow".
- enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
- /// \brief Return true if the specified immediate is legal add immediate, that
- /// is the target has add instructions which can add a register with the
- /// immediate without having to materialize the immediate into a register.
- bool isLegalAddImmediate(int64_t Imm) const;
- /// \brief Return true if the specified immediate is legal icmp immediate,
- /// that is the target has icmp instructions which can compare a register
- /// against the immediate without having to materialize the immediate into a
- /// register.
- bool isLegalICmpImmediate(int64_t Imm) const;
- /// \brief Return true if the addressing mode represented by AM is legal for
- /// this target, for a load/store of the specified type.
- /// The type may be VoidTy, in which case only return true if the addressing
- /// mode is legal for a load/store of any legal type.
- /// TODO: Handle pre/postinc as well.
- bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale,
- unsigned AddrSpace = 0) const;
- /// \brief Return true if the target works with masked instruction
- /// AVX2 allows masks for consecutive load and store for i32 and i64 elements.
- /// AVX-512 architecture will also allow masks for non-consecutive memory
- /// accesses.
- bool isLegalMaskedStore(Type *DataType, int Consecutive) const;
- bool isLegalMaskedLoad(Type *DataType, int Consecutive) const;
- /// \brief Return the cost of the scaling factor used in the addressing
- /// mode represented by AM for this target, for a load/store
- /// of the specified type.
- /// If the AM is supported, the return value must be >= 0.
- /// If the AM is not supported, it returns a negative value.
- /// TODO: Handle pre/postinc as well.
- int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale,
- unsigned AddrSpace = 0) const;
- /// \brief Return true if it's free to truncate a value of type Ty1 to type
- /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
- /// by referencing its sub-register AX.
- bool isTruncateFree(Type *Ty1, Type *Ty2) const;
- /// \brief Return true if it is profitable to hoist instruction in the
- /// then/else to before if.
- bool isProfitableToHoist(Instruction *I) const;
- /// \brief Return true if this type is legal.
- bool isTypeLegal(Type *Ty) const;
- /// \brief Returns the target's jmp_buf alignment in bytes.
- unsigned getJumpBufAlignment() const;
- /// \brief Returns the target's jmp_buf size in bytes.
- unsigned getJumpBufSize() const;
- /// \brief Return true if switches should be turned into lookup tables for the
- /// target.
- bool shouldBuildLookupTables() const;
- /// \brief Don't restrict interleaved unrolling to small loops.
- bool enableAggressiveInterleaving(bool LoopHasReductions) const;
- /// \brief Return hardware support for population count.
- PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
- /// \brief Return true if the hardware has a fast square-root instruction.
- bool haveFastSqrt(Type *Ty) const;
- /// \brief Return the expected cost of supporting the floating point operation
- /// of the specified type.
- unsigned getFPOpCost(Type *Ty) const;
- /// \brief Return the expected cost of materializing for the given integer
- /// immediate of the specified type.
- unsigned getIntImmCost(const APInt &Imm, Type *Ty) const;
- /// \brief Return the expected cost of materialization for the given integer
- /// immediate of the specified type for a given instruction. The cost can be
- /// zero if the immediate can be folded into the specified instruction.
- unsigned getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
- Type *Ty) const;
- unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
- Type *Ty) const;
- /// @}
- /// \name Vector Target Information
- /// @{
- /// \brief The various kinds of shuffle patterns for vector queries.
- enum ShuffleKind {
- SK_Broadcast, ///< Broadcast element 0 to all other elements.
- SK_Reverse, ///< Reverse the order of the vector.
- SK_Alternate, ///< Choose alternate elements from vector.
- SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
- SK_ExtractSubvector ///< ExtractSubvector Index indicates start offset.
- };
- /// \brief Additional information about an operand's possible values.
- enum OperandValueKind {
- OK_AnyValue, // Operand can have any value.
- OK_UniformValue, // Operand is uniform (splat of a value).
- OK_UniformConstantValue, // Operand is uniform constant.
- OK_NonUniformConstantValue // Operand is a non uniform constant value.
- };
- /// \brief Additional properties of an operand's values.
- enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };
- /// \return The number of scalar or vector registers that the target has.
- /// If 'Vectors' is true, it returns the number of vector registers. If it is
- /// set to false, it returns the number of scalar registers.
- unsigned getNumberOfRegisters(bool Vector) const;
- /// \return The width of the largest scalar or vector register type.
- unsigned getRegisterBitWidth(bool Vector) const;
- /// \return The maximum interleave factor that any transform should try to
- /// perform for this target. This number depends on the level of parallelism
- /// and the number of execution units in the CPU.
- unsigned getMaxInterleaveFactor(unsigned VF) const;
- /// \return The expected cost of arithmetic ops, such as mul, xor, fsub, etc.
- unsigned
- getArithmeticInstrCost(unsigned Opcode, Type *Ty,
- OperandValueKind Opd1Info = OK_AnyValue,
- OperandValueKind Opd2Info = OK_AnyValue,
- OperandValueProperties Opd1PropInfo = OP_None,
- OperandValueProperties Opd2PropInfo = OP_None) const;
- /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
- /// The index and subtype parameters are used by the subvector insertion and
- /// extraction shuffle kinds.
- unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0,
- Type *SubTp = nullptr) const;
- /// \return The expected cost of cast instructions, such as bitcast, trunc,
- /// zext, etc.
- unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const;
- /// \return The expected cost of control-flow related instructions such as
- /// Phi, Ret, Br.
- unsigned getCFInstrCost(unsigned Opcode) const;
- /// \returns The expected cost of compare and select instructions.
- unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
- Type *CondTy = nullptr) const;
- /// \return The expected cost of vector Insert and Extract.
- /// Use -1 to indicate that there is no information on the index value.
- unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
- unsigned Index = -1) const;
- /// \return The cost of Load and Store instructions.
- unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
- unsigned AddressSpace) const;
- /// \return The cost of masked Load and Store instructions.
- unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
- unsigned AddressSpace) const;
- /// \return The cost of the interleaved memory operation.
- /// \p Opcode is the memory operation code
- /// \p VecTy is the vector type of the interleaved access.
- /// \p Factor is the interleave factor
- /// \p Indices is the indices for interleaved load members (as interleaved
- /// load allows gaps)
- /// \p Alignment is the alignment of the memory operation
- /// \p AddressSpace is address space of the pointer.
- unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
- unsigned Factor,
- ArrayRef<unsigned> Indices,
- unsigned Alignment,
- unsigned AddressSpace) const;
- /// \brief Calculate the cost of performing a vector reduction.
- ///
- /// This is the cost of reducing the vector value of type \p Ty to a scalar
- /// value using the operation denoted by \p Opcode. The form of the reduction
- /// can either be a pairwise reduction or a reduction that splits the vector
- /// at every reduction level.
- ///
- /// Pairwise:
- /// (v0, v1, v2, v3)
- /// ((v0+v1), (v2, v3), undef, undef)
- /// Split:
- /// (v0, v1, v2, v3)
- /// ((v0+v2), (v1+v3), undef, undef)
- unsigned getReductionCost(unsigned Opcode, Type *Ty,
- bool IsPairwiseForm) const;
- /// \returns The cost of Intrinsic instructions.
- unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
- ArrayRef<Type *> Tys) const;
- /// \returns The cost of Call instructions.
- unsigned getCallInstrCost(Function *F, Type *RetTy,
- ArrayRef<Type *> Tys) const;
- /// \returns The number of pieces into which the provided type must be
- /// split during legalization. Zero is returned when the answer is unknown.
- unsigned getNumberOfParts(Type *Tp) const;
- /// \returns The cost of the address computation. For most targets this can be
- /// merged into the instruction indexing mode. Some targets might want to
- /// distinguish between address computation for memory operations on vector
- /// types and scalar types. Such targets should override this function.
- /// The 'IsComplex' parameter is a hint that the address computation is likely
- /// to involve multiple instructions and as such unlikely to be merged into
- /// the address indexing mode.
- unsigned getAddressComputationCost(Type *Ty, bool IsComplex = false) const;
- /// \returns The cost, if any, of keeping values of the given types alive
- /// over a callsite.
- ///
- /// Some types may require the use of register classes that do not have
- /// any callee-saved registers, so would require a spill and fill.
- unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
- /// \returns True if the intrinsic is a supported memory intrinsic. Info
- /// will contain additional information - whether the intrinsic may write
- /// or read to memory, volatility and the pointer. Info is undefined
- /// if false is returned.
- bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
- /// \returns A value which is the result of the given memory intrinsic. New
- /// instructions may be created to extract the result from the given intrinsic
- /// memory operation. Returns nullptr if the target cannot create a result
- /// from the given intrinsic.
- Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
- Type *ExpectedType) const;
- /// \returns True if the two functions have compatible attributes for inlining
- /// purposes.
- bool hasCompatibleFunctionAttributes(const Function *Caller,
- const Function *Callee) const;
- /// @}
- private:
- /// \brief The abstract base class used to type erase specific TTI
- /// implementations.
- class Concept;
- /// \brief The template model for the base class which wraps a concrete
- /// implementation in a type erased interface.
- template <typename T> class Model;
- std::unique_ptr<Concept> TTIImpl;
- };
- class TargetTransformInfo::Concept {
- public:
- virtual ~Concept() = 0;
- virtual const DataLayout &getDataLayout() const = 0;
- virtual unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0;
- virtual unsigned getGEPCost(const Value *Ptr,
- ArrayRef<const Value *> Operands) = 0;
- virtual unsigned getCallCost(FunctionType *FTy, int NumArgs) = 0;
- virtual unsigned getCallCost(const Function *F, int NumArgs) = 0;
- virtual unsigned getCallCost(const Function *F,
- ArrayRef<const Value *> Arguments) = 0;
- virtual unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
- ArrayRef<Type *> ParamTys) = 0;
- virtual unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
- ArrayRef<const Value *> Arguments) = 0;
- virtual unsigned getUserCost(const User *U) = 0;
- virtual bool hasBranchDivergence() = 0;
- virtual bool isSourceOfDivergence(const Value *V) = 0;
- virtual bool isLoweredToCall(const Function *F) = 0;
- virtual void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) = 0;
- virtual bool isLegalAddImmediate(int64_t Imm) = 0;
- virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
- virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale,
- unsigned AddrSpace) = 0;
- virtual bool isLegalMaskedStore(Type *DataType, int Consecutive) = 0;
- virtual bool isLegalMaskedLoad(Type *DataType, int Consecutive) = 0;
- virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale, unsigned AddrSpace) = 0;
- virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
- virtual bool isProfitableToHoist(Instruction *I) = 0;
- virtual bool isTypeLegal(Type *Ty) = 0;
- virtual unsigned getJumpBufAlignment() = 0;
- virtual unsigned getJumpBufSize() = 0;
- virtual bool shouldBuildLookupTables() = 0;
- virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
- virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
- virtual bool haveFastSqrt(Type *Ty) = 0;
- virtual unsigned getFPOpCost(Type *Ty) = 0;
- virtual unsigned getIntImmCost(const APInt &Imm, Type *Ty) = 0;
- virtual unsigned getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
- Type *Ty) = 0;
- virtual unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx,
- const APInt &Imm, Type *Ty) = 0;
- virtual unsigned getNumberOfRegisters(bool Vector) = 0;
- virtual unsigned getRegisterBitWidth(bool Vector) = 0;
- virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
- virtual unsigned
- getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
- OperandValueKind Opd2Info,
- OperandValueProperties Opd1PropInfo,
- OperandValueProperties Opd2PropInfo) = 0;
- virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
- Type *SubTp) = 0;
- virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) = 0;
- virtual unsigned getCFInstrCost(unsigned Opcode) = 0;
- virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
- Type *CondTy) = 0;
- virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
- unsigned Index) = 0;
- virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
- unsigned Alignment,
- unsigned AddressSpace) = 0;
- virtual unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
- unsigned Alignment,
- unsigned AddressSpace) = 0;
- virtual unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
- unsigned Factor,
- ArrayRef<unsigned> Indices,
- unsigned Alignment,
- unsigned AddressSpace) = 0;
- virtual unsigned getReductionCost(unsigned Opcode, Type *Ty,
- bool IsPairwiseForm) = 0;
- virtual unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
- ArrayRef<Type *> Tys) = 0;
- virtual unsigned getCallInstrCost(Function *F, Type *RetTy,
- ArrayRef<Type *> Tys) = 0;
- virtual unsigned getNumberOfParts(Type *Tp) = 0;
- virtual unsigned getAddressComputationCost(Type *Ty, bool IsComplex) = 0;
- virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
- virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
- MemIntrinsicInfo &Info) = 0;
- virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
- Type *ExpectedType) = 0;
- virtual bool hasCompatibleFunctionAttributes(const Function *Caller,
- const Function *Callee) const = 0;
- };
- template <typename T>
- class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
- T Impl;
- public:
- Model(T Impl) : Impl(std::move(Impl)) {}
- ~Model() override {}
- const DataLayout &getDataLayout() const override {
- return Impl.getDataLayout();
- }
- unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) override {
- return Impl.getOperationCost(Opcode, Ty, OpTy);
- }
- unsigned getGEPCost(const Value *Ptr,
- ArrayRef<const Value *> Operands) override {
- return Impl.getGEPCost(Ptr, Operands);
- }
- unsigned getCallCost(FunctionType *FTy, int NumArgs) override {
- return Impl.getCallCost(FTy, NumArgs);
- }
- unsigned getCallCost(const Function *F, int NumArgs) override {
- return Impl.getCallCost(F, NumArgs);
- }
- unsigned getCallCost(const Function *F,
- ArrayRef<const Value *> Arguments) override {
- return Impl.getCallCost(F, Arguments);
- }
- unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
- ArrayRef<Type *> ParamTys) override {
- return Impl.getIntrinsicCost(IID, RetTy, ParamTys);
- }
- unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
- ArrayRef<const Value *> Arguments) override {
- return Impl.getIntrinsicCost(IID, RetTy, Arguments);
- }
- unsigned getUserCost(const User *U) override { return Impl.getUserCost(U); }
- bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
- bool isSourceOfDivergence(const Value *V) override {
- return Impl.isSourceOfDivergence(V);
- }
- bool isLoweredToCall(const Function *F) override {
- return Impl.isLoweredToCall(F);
- }
- void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) override {
- return Impl.getUnrollingPreferences(L, UP);
- }
- bool isLegalAddImmediate(int64_t Imm) override {
- return Impl.isLegalAddImmediate(Imm);
- }
- bool isLegalICmpImmediate(int64_t Imm) override {
- return Impl.isLegalICmpImmediate(Imm);
- }
- bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale,
- unsigned AddrSpace) override {
- return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
- Scale, AddrSpace);
- }
- bool isLegalMaskedStore(Type *DataType, int Consecutive) override {
- return Impl.isLegalMaskedStore(DataType, Consecutive);
- }
- bool isLegalMaskedLoad(Type *DataType, int Consecutive) override {
- return Impl.isLegalMaskedLoad(DataType, Consecutive);
- }
- int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale,
- unsigned AddrSpace) override {
- return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
- Scale, AddrSpace);
- }
- bool isTruncateFree(Type *Ty1, Type *Ty2) override {
- return Impl.isTruncateFree(Ty1, Ty2);
- }
- bool isProfitableToHoist(Instruction *I) override {
- return Impl.isProfitableToHoist(I);
- }
- bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
- unsigned getJumpBufAlignment() override { return Impl.getJumpBufAlignment(); }
- unsigned getJumpBufSize() override { return Impl.getJumpBufSize(); }
- bool shouldBuildLookupTables() override {
- return Impl.shouldBuildLookupTables();
- }
- bool enableAggressiveInterleaving(bool LoopHasReductions) override {
- return Impl.enableAggressiveInterleaving(LoopHasReductions);
- }
- PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
- return Impl.getPopcntSupport(IntTyWidthInBit);
- }
- bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
- unsigned getFPOpCost(Type *Ty) override {
- return Impl.getFPOpCost(Ty);
- }
- unsigned getIntImmCost(const APInt &Imm, Type *Ty) override {
- return Impl.getIntImmCost(Imm, Ty);
- }
- unsigned getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
- Type *Ty) override {
- return Impl.getIntImmCost(Opc, Idx, Imm, Ty);
- }
- unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
- Type *Ty) override {
- return Impl.getIntImmCost(IID, Idx, Imm, Ty);
- }
- unsigned getNumberOfRegisters(bool Vector) override {
- return Impl.getNumberOfRegisters(Vector);
- }
- unsigned getRegisterBitWidth(bool Vector) override {
- return Impl.getRegisterBitWidth(Vector);
- }
- unsigned getMaxInterleaveFactor(unsigned VF) override {
- return Impl.getMaxInterleaveFactor(VF);
- }
- unsigned
- getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
- OperandValueKind Opd2Info,
- OperandValueProperties Opd1PropInfo,
- OperandValueProperties Opd2PropInfo) override {
- return Impl.getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
- Opd1PropInfo, Opd2PropInfo);
- }
- unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
- Type *SubTp) override {
- return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
- }
- unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) override {
- return Impl.getCastInstrCost(Opcode, Dst, Src);
- }
- unsigned getCFInstrCost(unsigned Opcode) override {
- return Impl.getCFInstrCost(Opcode);
- }
- unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
- Type *CondTy) override {
- return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy);
- }
- unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
- unsigned Index) override {
- return Impl.getVectorInstrCost(Opcode, Val, Index);
- }
- unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
- unsigned AddressSpace) override {
- return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
- }
- unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
- unsigned AddressSpace) override {
- return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
- }
- unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
- unsigned Factor,
- ArrayRef<unsigned> Indices,
- unsigned Alignment,
- unsigned AddressSpace) override {
- return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
- Alignment, AddressSpace);
- }
- unsigned getReductionCost(unsigned Opcode, Type *Ty,
- bool IsPairwiseForm) override {
- return Impl.getReductionCost(Opcode, Ty, IsPairwiseForm);
- }
- unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
- ArrayRef<Type *> Tys) override {
- return Impl.getIntrinsicInstrCost(ID, RetTy, Tys);
- }
- unsigned getCallInstrCost(Function *F, Type *RetTy,
- ArrayRef<Type *> Tys) override {
- return Impl.getCallInstrCost(F, RetTy, Tys);
- }
- unsigned getNumberOfParts(Type *Tp) override {
- return Impl.getNumberOfParts(Tp);
- }
- unsigned getAddressComputationCost(Type *Ty, bool IsComplex) override {
- return Impl.getAddressComputationCost(Ty, IsComplex);
- }
- unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
- return Impl.getCostOfKeepingLiveOverCall(Tys);
- }
- bool getTgtMemIntrinsic(IntrinsicInst *Inst,
- MemIntrinsicInfo &Info) override {
- return Impl.getTgtMemIntrinsic(Inst, Info);
- }
- Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
- Type *ExpectedType) override {
- return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
- }
- bool hasCompatibleFunctionAttributes(const Function *Caller,
- const Function *Callee) const override {
- return Impl.hasCompatibleFunctionAttributes(Caller, Callee);
- }
- };
- template <typename T>
- TargetTransformInfo::TargetTransformInfo(T Impl)
- : TTIImpl(new Model<T>(Impl)) {}
- /// \brief Analysis pass providing the \c TargetTransformInfo.
- ///
- /// The core idea of the TargetIRAnalysis is to expose an interface through
- /// which LLVM targets can analyze and provide information about the middle
- /// end's target-independent IR. This supports use cases such as target-aware
- /// cost modeling of IR constructs.
- ///
- /// This is a function analysis because much of the cost modeling for targets
- /// is done in a subtarget specific way and LLVM supports compiling different
- /// functions targeting different subtargets in order to support runtime
- /// dispatch according to the observed subtarget.
- class TargetIRAnalysis {
- public:
- typedef TargetTransformInfo Result;
- /// \brief Opaque, unique identifier for this analysis pass.
- static void *ID() { return (void *)&PassID; }
- /// \brief Provide access to a name for this pass for debugging purposes.
- static StringRef name() { return "TargetIRAnalysis"; }
- /// \brief Default construct a target IR analysis.
- ///
- /// This will use the module's datalayout to construct a baseline
- /// conservative TTI result.
- TargetIRAnalysis();
- /// \brief Construct an IR analysis pass around a target-provide callback.
- ///
- /// The callback will be called with a particular function for which the TTI
- /// is needed and must return a TTI object for that function.
- TargetIRAnalysis(std::function<Result(Function &)> TTICallback);
- // Value semantics. We spell out the constructors for MSVC.
- TargetIRAnalysis(const TargetIRAnalysis &Arg)
- : TTICallback(Arg.TTICallback) {}
- TargetIRAnalysis(TargetIRAnalysis &&Arg)
- : TTICallback(std::move(Arg.TTICallback)) {}
- TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
- TTICallback = RHS.TTICallback;
- return *this;
- }
- TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
- TTICallback = std::move(RHS.TTICallback);
- return *this;
- }
- Result run(Function &F);
- private:
- static char PassID;
- /// \brief The callback used to produce a result.
- ///
- /// We use a completely opaque callback so that targets can provide whatever
- /// mechanism they desire for constructing the TTI for a given function.
- ///
- /// FIXME: Should we really use std::function? It's relatively inefficient.
- /// It might be possible to arrange for even stateful callbacks to outlive
- /// the analysis and thus use a function_ref which would be lighter weight.
- /// This may also be less error prone as the callback is likely to reference
- /// the external TargetMachine, and that reference needs to never dangle.
- std::function<Result(Function &)> TTICallback;
- /// \brief Helper function used as the callback in the default constructor.
- static Result getDefaultTTI(Function &F);
- };
- /// \brief Wrapper pass for TargetTransformInfo.
- ///
- /// This pass can be constructed from a TTI object which it stores internally
- /// and is queried by passes.
- class TargetTransformInfoWrapperPass : public ImmutablePass {
- TargetIRAnalysis TIRA;
- Optional<TargetTransformInfo> TTI;
- virtual void anchor();
- public:
- static char ID;
- /// \brief We must provide a default constructor for the pass but it should
- /// never be used.
- ///
- /// Use the constructor below or call one of the creation routines.
- TargetTransformInfoWrapperPass();
- explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
- TargetTransformInfo &getTTI(Function &F);
- };
- /// \brief Create an analysis pass wrapper around a TTI object.
- ///
- /// This analysis pass just holds the TTI instance and makes it available to
- /// clients.
- ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
- } // End llvm namespace
- #endif
|