123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322 |
- //===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains routines that help analyze properties that chains of
- // computations have.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ANALYSIS_VALUETRACKING_H
- #define LLVM_ANALYSIS_VALUETRACKING_H
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/Support/DataTypes.h"
- namespace llvm {
- class Value;
- class Instruction;
- class APInt;
- class DataLayout;
- class StringRef;
- class MDNode;
- class AssumptionCache;
- class DominatorTree;
- class TargetLibraryInfo;
- class LoopInfo;
- /// Determine which bits of V are known to be either zero or one and return
- /// them in the KnownZero/KnownOne bit sets.
- ///
- /// This function is defined on values with integer type, values with pointer
- /// type, and vectors of integers. In the case
- /// where V is a vector, the known zero and known one values are the
- /// same width as the vector element, and the bit is set only if it is true
- /// for all of the elements in the vector.
- void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout &DL, unsigned Depth = 0,
- AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr);
- /// Compute known bits from the range metadata.
- /// \p KnownZero the set of bits that are known to be zero
- void computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
- APInt &KnownZero);
- /// Returns true if LHS and RHS have no common bits set.
- bool haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
- AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr);
- /// ComputeSignBit - Determine whether the sign bit is known to be zero or
- /// one. Convenience wrapper around computeKnownBits.
- void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const DataLayout &DL, unsigned Depth = 0,
- AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr);
- /// isKnownToBeAPowerOfTwo - Return true if the given value is known to have
- /// exactly one bit set when defined. For vectors return true if every
- /// element is known to be a power of two when defined. Supports values with
- /// integer or pointer type and vectors of integers. If 'OrZero' is set then
- /// returns true if the given value is either a power of two or zero.
- bool isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL,
- bool OrZero = false, unsigned Depth = 0,
- AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr);
- /// isKnownNonZero - Return true if the given value is known to be non-zero
- /// when defined. For vectors return true if every element is known to be
- /// non-zero when defined. Supports values with integer or pointer type and
- /// vectors of integers.
- bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth = 0,
- AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr);
- /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
- /// this predicate to simplify operations downstream. Mask is known to be
- /// zero for bits that V cannot have.
- ///
- /// This function is defined on values with integer type, values with pointer
- /// type, and vectors of integers. In the case
- /// where V is a vector, the mask, known zero, and known one values are the
- /// same width as the vector element, and the bit is set only if it is true
- /// for all of the elements in the vector.
- bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
- unsigned Depth = 0, AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr);
- /// ComputeNumSignBits - Return the number of times the sign bit of the
- /// register is replicated into the other bits. We know that at least 1 bit
- /// is always equal to the sign bit (itself), but other cases can give us
- /// information. For example, immediately after an "ashr X, 2", we know that
- /// the top 3 bits are all equal to each other, so we return 3.
- ///
- /// 'Op' must have a scalar integer type.
- ///
- unsigned ComputeNumSignBits(Value *Op, const DataLayout &DL,
- unsigned Depth = 0, AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr);
- /// ComputeMultiple - This function computes the integer multiple of Base that
- /// equals V. If successful, it returns true and returns the multiple in
- /// Multiple. If unsuccessful, it returns false. Also, if V can be
- /// simplified to an integer, then the simplified V is returned in Val. Look
- /// through sext only if LookThroughSExt=true.
- bool ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
- bool LookThroughSExt = false,
- unsigned Depth = 0);
- /// CannotBeNegativeZero - Return true if we can prove that the specified FP
- /// value is never equal to -0.0.
- ///
- bool CannotBeNegativeZero(const Value *V, unsigned Depth = 0);
- /// CannotBeOrderedLessThanZero - Return true if we can prove that the
- /// specified FP value is either a NaN or never less than 0.0.
- ///
- bool CannotBeOrderedLessThanZero(const Value *V, unsigned Depth = 0);
- /// isBytewiseValue - If the specified value can be set by repeating the same
- /// byte in memory, return the i8 value that it is represented with. This is
- /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
- /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
- /// byte store (e.g. i16 0x1234), return null.
- Value *isBytewiseValue(Value *V);
-
- /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
- /// the scalar value indexed is already around as a register, for example if
- /// it were inserted directly into the aggregrate.
- ///
- /// If InsertBefore is not null, this function will duplicate (modified)
- /// insertvalues when a part of a nested struct is extracted.
- Value *FindInsertedValue(Value *V,
- ArrayRef<unsigned> idx_range,
- Instruction *InsertBefore = nullptr);
- /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
- /// it can be expressed as a base pointer plus a constant offset. Return the
- /// base and offset to the caller.
- Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
- const DataLayout &DL);
- static inline const Value *
- GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
- const DataLayout &DL) {
- return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset,
- DL);
- }
-
- /// getConstantStringInfo - This function computes the length of a
- /// null-terminated C string pointed to by V. If successful, it returns true
- /// and returns the string in Str. If unsuccessful, it returns false. This
- /// does not include the trailing nul character by default. If TrimAtNul is
- /// set to false, then this returns any trailing nul characters as well as any
- /// other characters that come after it.
- bool getConstantStringInfo(const Value *V, StringRef &Str,
- uint64_t Offset = 0, bool TrimAtNul = true);
- /// GetStringLength - If we can compute the length of the string pointed to by
- /// the specified pointer, return 'len+1'. If we can't, return 0.
- uint64_t GetStringLength(Value *V);
- /// GetUnderlyingObject - This method strips off any GEP address adjustments
- /// and pointer casts from the specified value, returning the original object
- /// being addressed. Note that the returned value has pointer type if the
- /// specified value does. If the MaxLookup value is non-zero, it limits the
- /// number of instructions to be stripped off.
- Value *GetUnderlyingObject(Value *V, const DataLayout &DL,
- unsigned MaxLookup = 6);
- static inline const Value *GetUnderlyingObject(const Value *V,
- const DataLayout &DL,
- unsigned MaxLookup = 6) {
- return GetUnderlyingObject(const_cast<Value *>(V), DL, MaxLookup);
- }
- /// \brief This method is similar to GetUnderlyingObject except that it can
- /// look through phi and select instructions and return multiple objects.
- ///
- /// If LoopInfo is passed, loop phis are further analyzed. If a pointer
- /// accesses different objects in each iteration, we don't look through the
- /// phi node. E.g. consider this loop nest:
- ///
- /// int **A;
- /// for (i)
- /// for (j) {
- /// A[i][j] = A[i-1][j] * B[j]
- /// }
- ///
- /// This is transformed by Load-PRE to stash away A[i] for the next iteration
- /// of the outer loop:
- ///
- /// Curr = A[0]; // Prev_0
- /// for (i: 1..N) {
- /// Prev = Curr; // Prev = PHI (Prev_0, Curr)
- /// Curr = A[i];
- /// for (j: 0..N) {
- /// Curr[j] = Prev[j] * B[j]
- /// }
- /// }
- ///
- /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
- /// should not assume that Curr and Prev share the same underlying object thus
- /// it shouldn't look through the phi above.
- void GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
- const DataLayout &DL, LoopInfo *LI = nullptr,
- unsigned MaxLookup = 6);
- /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
- /// are lifetime markers.
- bool onlyUsedByLifetimeMarkers(const Value *V);
- /// isDereferenceablePointer - Return true if this is always a dereferenceable
- /// pointer. If the context instruction is specified perform context-sensitive
- /// analysis and return true if the pointer is dereferenceable at the
- /// specified instruction.
- bool isDereferenceablePointer(const Value *V, const DataLayout &DL,
- const Instruction *CtxI = nullptr,
- const DominatorTree *DT = nullptr,
- const TargetLibraryInfo *TLI = nullptr);
-
- /// isSafeToSpeculativelyExecute - Return true if the instruction does not
- /// have any effects besides calculating the result and does not have
- /// undefined behavior.
- ///
- /// This method never returns true for an instruction that returns true for
- /// mayHaveSideEffects; however, this method also does some other checks in
- /// addition. It checks for undefined behavior, like dividing by zero or
- /// loading from an invalid pointer (but not for undefined results, like a
- /// shift with a shift amount larger than the width of the result). It checks
- /// for malloc and alloca because speculatively executing them might cause a
- /// memory leak. It also returns false for instructions related to control
- /// flow, specifically terminators and PHI nodes.
- ///
- /// If the CtxI is specified this method performs context-sensitive analysis
- /// and returns true if it is safe to execute the instruction immediately
- /// before the CtxI.
- ///
- /// If the CtxI is NOT specified this method only looks at the instruction
- /// itself and its operands, so if this method returns true, it is safe to
- /// move the instruction as long as the correct dominance relationships for
- /// the operands and users hold.
- ///
- /// This method can return true for instructions that read memory;
- /// for such instructions, moving them may change the resulting value.
- bool isSafeToSpeculativelyExecute(const Value *V,
- const Instruction *CtxI = nullptr,
- const DominatorTree *DT = nullptr,
- const TargetLibraryInfo *TLI = nullptr);
- /// isKnownNonNull - Return true if this pointer couldn't possibly be null by
- /// its definition. This returns true for allocas, non-extern-weak globals
- /// and byval arguments.
- bool isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI = nullptr);
- /// isKnownNonNullAt - Return true if this pointer couldn't possibly be null.
- /// If the context instruction is specified perform context-sensitive analysis
- /// and return true if the pointer couldn't possibly be null at the specified
- /// instruction.
- bool isKnownNonNullAt(const Value *V,
- const Instruction *CtxI = nullptr,
- const DominatorTree *DT = nullptr,
- const TargetLibraryInfo *TLI = nullptr);
- /// Return true if it is valid to use the assumptions provided by an
- /// assume intrinsic, I, at the point in the control-flow identified by the
- /// context instruction, CxtI.
- bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
- const DominatorTree *DT = nullptr);
- enum class OverflowResult { AlwaysOverflows, MayOverflow, NeverOverflows };
- OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT);
- OverflowResult computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT);
-
- /// \brief Specific patterns of select instructions we can match.
- enum SelectPatternFlavor {
- SPF_UNKNOWN = 0,
- SPF_SMIN, // Signed minimum
- SPF_UMIN, // Unsigned minimum
- SPF_SMAX, // Signed maximum
- SPF_UMAX, // Unsigned maximum
- SPF_ABS, // Absolute value
- SPF_NABS // Negated absolute value
- };
- /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
- /// and providing the out parameter results if we successfully match.
- ///
- /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
- /// not match that of the original select. If this is the case, the cast
- /// operation (one of Trunc,SExt,Zext) that must be done to transform the
- /// type of LHS and RHS into the type of V is returned in CastOp.
- ///
- /// For example:
- /// %1 = icmp slt i32 %a, i32 4
- /// %2 = sext i32 %a to i64
- /// %3 = select i1 %1, i64 %2, i64 4
- ///
- /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
- ///
- SelectPatternFlavor matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
- Instruction::CastOps *CastOp = nullptr);
- } // end namespace llvm
- #endif
|