123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815 |
- //===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- /// \file
- /// This file provides a helper that implements much of the TTI interface in
- /// terms of the target-independent code generator and TargetLowering
- /// interfaces.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_CODEGEN_BASICTTIIMPL_H
- #define LLVM_CODEGEN_BASICTTIIMPL_H
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/TargetTransformInfoImpl.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetSubtargetInfo.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- namespace llvm {
- extern cl::opt<unsigned> PartialUnrollingThreshold;
- /// \brief Base class which can be used to help build a TTI implementation.
- ///
- /// This class provides as much implementation of the TTI interface as is
- /// possible using the target independent parts of the code generator.
- ///
- /// In order to subclass it, your class must implement a getST() method to
- /// return the subtarget, and a getTLI() method to return the target lowering.
- /// We need these methods implemented in the derived class so that this class
- /// doesn't have to duplicate storage for them.
- template <typename T>
- class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
- private:
- typedef TargetTransformInfoImplCRTPBase<T> BaseT;
- typedef TargetTransformInfo TTI;
- /// Estimate the overhead of scalarizing an instruction. Insert and Extract
- /// are set if the result needs to be inserted and/or extracted from vectors.
- unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
- assert(Ty->isVectorTy() && "Can only scalarize vectors");
- unsigned Cost = 0;
- for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
- if (Insert)
- Cost += static_cast<T *>(this)
- ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
- if (Extract)
- Cost += static_cast<T *>(this)
- ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
- }
- return Cost;
- }
- /// Estimate the cost overhead of SK_Alternate shuffle.
- unsigned getAltShuffleOverhead(Type *Ty) {
- assert(Ty->isVectorTy() && "Can only shuffle vectors");
- unsigned Cost = 0;
- // Shuffle cost is equal to the cost of extracting element from its argument
- // plus the cost of inserting them onto the result vector.
- // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
- // index 0 of first vector, index 1 of second vector,index 2 of first
- // vector and finally index 3 of second vector and insert them at index
- // <0,1,2,3> of result vector.
- for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
- Cost += static_cast<T *>(this)
- ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
- Cost += static_cast<T *>(this)
- ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
- }
- return Cost;
- }
- /// \brief Local query method delegates up to T which *must* implement this!
- const TargetSubtargetInfo *getST() const {
- return static_cast<const T *>(this)->getST();
- }
- /// \brief Local query method delegates up to T which *must* implement this!
- const TargetLoweringBase *getTLI() const {
- return static_cast<const T *>(this)->getTLI();
- }
- protected:
- explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
- : BaseT(DL) {}
- using TargetTransformInfoImplBase::DL;
- public:
- // Provide value semantics. MSVC requires that we spell all of these out.
- BasicTTIImplBase(const BasicTTIImplBase &Arg)
- : BaseT(static_cast<const BaseT &>(Arg)) {}
- BasicTTIImplBase(BasicTTIImplBase &&Arg)
- : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
- /// \name Scalar TTI Implementations
- /// @{
- bool hasBranchDivergence() { return false; }
- bool isSourceOfDivergence(const Value *V) { return false; }
- bool isLegalAddImmediate(int64_t imm) {
- return getTLI()->isLegalAddImmediate(imm);
- }
- bool isLegalICmpImmediate(int64_t imm) {
- return getTLI()->isLegalICmpImmediate(imm);
- }
- bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale,
- unsigned AddrSpace) {
- TargetLoweringBase::AddrMode AM;
- AM.BaseGV = BaseGV;
- AM.BaseOffs = BaseOffset;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Scale;
- return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace);
- }
- int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
- TargetLoweringBase::AddrMode AM;
- AM.BaseGV = BaseGV;
- AM.BaseOffs = BaseOffset;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Scale;
- return getTLI()->getScalingFactorCost(DL, AM, Ty, AddrSpace);
- }
- bool isTruncateFree(Type *Ty1, Type *Ty2) {
- return getTLI()->isTruncateFree(Ty1, Ty2);
- }
- bool isProfitableToHoist(Instruction *I) {
- return getTLI()->isProfitableToHoist(I);
- }
- bool isTypeLegal(Type *Ty) {
- EVT VT = getTLI()->getValueType(DL, Ty);
- return getTLI()->isTypeLegal(VT);
- }
- unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
- ArrayRef<const Value *> Arguments) {
- return BaseT::getIntrinsicCost(IID, RetTy, Arguments);
- }
- unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
- ArrayRef<Type *> ParamTys) {
- if (IID == Intrinsic::cttz) {
- if (getTLI()->isCheapToSpeculateCttz())
- return TargetTransformInfo::TCC_Basic;
- return TargetTransformInfo::TCC_Expensive;
- }
- if (IID == Intrinsic::ctlz) {
- if (getTLI()->isCheapToSpeculateCtlz())
- return TargetTransformInfo::TCC_Basic;
- return TargetTransformInfo::TCC_Expensive;
- }
- return BaseT::getIntrinsicCost(IID, RetTy, ParamTys);
- }
- unsigned getJumpBufAlignment() { return getTLI()->getJumpBufAlignment(); }
- unsigned getJumpBufSize() { return getTLI()->getJumpBufSize(); }
- bool shouldBuildLookupTables() {
- const TargetLoweringBase *TLI = getTLI();
- return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
- TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
- }
- bool haveFastSqrt(Type *Ty) {
- const TargetLoweringBase *TLI = getTLI();
- EVT VT = TLI->getValueType(DL, Ty);
- return TLI->isTypeLegal(VT) &&
- TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
- }
- unsigned getFPOpCost(Type *Ty) {
- // By default, FP instructions are no more expensive since they are
- // implemented in HW. Target specific TTI can override this.
- return TargetTransformInfo::TCC_Basic;
- }
- unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
- const TargetLoweringBase *TLI = getTLI();
- switch (Opcode) {
- default: break;
- case Instruction::Trunc: {
- if (TLI->isTruncateFree(OpTy, Ty))
- return TargetTransformInfo::TCC_Free;
- return TargetTransformInfo::TCC_Basic;
- }
- case Instruction::ZExt: {
- if (TLI->isZExtFree(OpTy, Ty))
- return TargetTransformInfo::TCC_Free;
- return TargetTransformInfo::TCC_Basic;
- }
- }
- return BaseT::getOperationCost(Opcode, Ty, OpTy);
- }
- void getUnrollingPreferences(Loop *L, TTI::UnrollingPreferences &UP) {
- // This unrolling functionality is target independent, but to provide some
- // motivation for its intended use, for x86:
- // According to the Intel 64 and IA-32 Architectures Optimization Reference
- // Manual, Intel Core models and later have a loop stream detector (and
- // associated uop queue) that can benefit from partial unrolling.
- // The relevant requirements are:
- // - The loop must have no more than 4 (8 for Nehalem and later) branches
- // taken, and none of them may be calls.
- // - The loop can have no more than 18 (28 for Nehalem and later) uops.
- // According to the Software Optimization Guide for AMD Family 15h
- // Processors, models 30h-4fh (Steamroller and later) have a loop predictor
- // and loop buffer which can benefit from partial unrolling.
- // The relevant requirements are:
- // - The loop must have fewer than 16 branches
- // - The loop must have less than 40 uops in all executed loop branches
- // The number of taken branches in a loop is hard to estimate here, and
- // benchmarking has revealed that it is better not to be conservative when
- // estimating the branch count. As a result, we'll ignore the branch limits
- // until someone finds a case where it matters in practice.
- unsigned MaxOps;
- const TargetSubtargetInfo *ST = getST();
- if (PartialUnrollingThreshold.getNumOccurrences() > 0)
- MaxOps = PartialUnrollingThreshold;
- else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
- MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
- else
- return;
- // Scan the loop: don't unroll loops with calls.
- for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
- ++I) {
- BasicBlock *BB = *I;
- for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
- if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
- ImmutableCallSite CS(J);
- if (const Function *F = CS.getCalledFunction()) {
- if (!static_cast<T *>(this)->isLoweredToCall(F))
- continue;
- }
- return;
- }
- }
- // Enable runtime and partial unrolling up to the specified size.
- UP.Partial = UP.Runtime = true;
- UP.PartialThreshold = UP.PartialOptSizeThreshold = MaxOps;
- }
- /// @}
- /// \name Vector TTI Implementations
- /// @{
- unsigned getNumberOfRegisters(bool Vector) { return Vector ? 0 : 1; }
- unsigned getRegisterBitWidth(bool Vector) { return 32; }
- unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
- unsigned getArithmeticInstrCost(
- unsigned Opcode, Type *Ty,
- TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
- TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
- TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
- TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None) {
- // Check if any of the operands are vector operands.
- const TargetLoweringBase *TLI = getTLI();
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
- std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
- bool IsFloat = Ty->getScalarType()->isFloatingPointTy();
- // Assume that floating point arithmetic operations cost twice as much as
- // integer operations.
- unsigned OpCost = (IsFloat ? 2 : 1);
- if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
- // The operation is legal. Assume it costs 1.
- // If the type is split to multiple registers, assume that there is some
- // overhead to this.
- // TODO: Once we have extract/insert subvector cost we need to use them.
- if (LT.first > 1)
- return LT.first * 2 * OpCost;
- return LT.first * 1 * OpCost;
- }
- if (!TLI->isOperationExpand(ISD, LT.second)) {
- // If the operation is custom lowered then assume
- // thare the code is twice as expensive.
- return LT.first * 2 * OpCost;
- }
- // Else, assume that we need to scalarize this op.
- if (Ty->isVectorTy()) {
- unsigned Num = Ty->getVectorNumElements();
- unsigned Cost = static_cast<T *>(this)
- ->getArithmeticInstrCost(Opcode, Ty->getScalarType());
- // return the cost of multiple scalar invocation plus the cost of
- // inserting
- // and extracting the values.
- return getScalarizationOverhead(Ty, true, true) + Num * Cost;
- }
- // We don't know anything about this scalar instruction.
- return OpCost;
- }
- unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
- Type *SubTp) {
- if (Kind == TTI::SK_Alternate) {
- return getAltShuffleOverhead(Tp);
- }
- return 1;
- }
- unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
- const TargetLoweringBase *TLI = getTLI();
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
- std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, Src);
- std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(DL, Dst);
- // Check for NOOP conversions.
- if (SrcLT.first == DstLT.first &&
- SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
- // Bitcast between types that are legalized to the same type are free.
- if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
- return 0;
- }
- if (Opcode == Instruction::Trunc &&
- TLI->isTruncateFree(SrcLT.second, DstLT.second))
- return 0;
- if (Opcode == Instruction::ZExt &&
- TLI->isZExtFree(SrcLT.second, DstLT.second))
- return 0;
- // If the cast is marked as legal (or promote) then assume low cost.
- if (SrcLT.first == DstLT.first &&
- TLI->isOperationLegalOrPromote(ISD, DstLT.second))
- return 1;
- // Handle scalar conversions.
- if (!Src->isVectorTy() && !Dst->isVectorTy()) {
- // Scalar bitcasts are usually free.
- if (Opcode == Instruction::BitCast)
- return 0;
- // Just check the op cost. If the operation is legal then assume it costs
- // 1.
- if (!TLI->isOperationExpand(ISD, DstLT.second))
- return 1;
- // Assume that illegal scalar instruction are expensive.
- return 4;
- }
- // Check vector-to-vector casts.
- if (Dst->isVectorTy() && Src->isVectorTy()) {
- // If the cast is between same-sized registers, then the check is simple.
- if (SrcLT.first == DstLT.first &&
- SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
- // Assume that Zext is done using AND.
- if (Opcode == Instruction::ZExt)
- return 1;
- // Assume that sext is done using SHL and SRA.
- if (Opcode == Instruction::SExt)
- return 2;
- // Just check the op cost. If the operation is legal then assume it
- // costs
- // 1 and multiply by the type-legalization overhead.
- if (!TLI->isOperationExpand(ISD, DstLT.second))
- return SrcLT.first * 1;
- }
- // If we are converting vectors and the operation is illegal, or
- // if the vectors are legalized to different types, estimate the
- // scalarization costs.
- unsigned Num = Dst->getVectorNumElements();
- unsigned Cost = static_cast<T *>(this)->getCastInstrCost(
- Opcode, Dst->getScalarType(), Src->getScalarType());
- // Return the cost of multiple scalar invocation plus the cost of
- // inserting and extracting the values.
- return getScalarizationOverhead(Dst, true, true) + Num * Cost;
- }
- // We already handled vector-to-vector and scalar-to-scalar conversions.
- // This
- // is where we handle bitcast between vectors and scalars. We need to assume
- // that the conversion is scalarized in one way or another.
- if (Opcode == Instruction::BitCast)
- // Illegal bitcasts are done by storing and loading from a stack slot.
- return (Src->isVectorTy() ? getScalarizationOverhead(Src, false, true)
- : 0) +
- (Dst->isVectorTy() ? getScalarizationOverhead(Dst, true, false)
- : 0);
- llvm_unreachable("Unhandled cast");
- }
- unsigned getCFInstrCost(unsigned Opcode) {
- // Branches are assumed to be predicted.
- return 0;
- }
- unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
- const TargetLoweringBase *TLI = getTLI();
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
- // Selects on vectors are actually vector selects.
- if (ISD == ISD::SELECT) {
- assert(CondTy && "CondTy must exist");
- if (CondTy->isVectorTy())
- ISD = ISD::VSELECT;
- }
- std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
- if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
- !TLI->isOperationExpand(ISD, LT.second)) {
- // The operation is legal. Assume it costs 1. Multiply
- // by the type-legalization overhead.
- return LT.first * 1;
- }
- // Otherwise, assume that the cast is scalarized.
- if (ValTy->isVectorTy()) {
- unsigned Num = ValTy->getVectorNumElements();
- if (CondTy)
- CondTy = CondTy->getScalarType();
- unsigned Cost = static_cast<T *>(this)->getCmpSelInstrCost(
- Opcode, ValTy->getScalarType(), CondTy);
- // Return the cost of multiple scalar invocation plus the cost of
- // inserting
- // and extracting the values.
- return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
- }
- // Unknown scalar opcode.
- return 1;
- }
- unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
- std::pair<unsigned, MVT> LT =
- getTLI()->getTypeLegalizationCost(DL, Val->getScalarType());
- return LT.first;
- }
- unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
- unsigned AddressSpace) {
- assert(!Src->isVoidTy() && "Invalid type");
- std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Src);
- // Assuming that all loads of legal types cost 1.
- unsigned Cost = LT.first;
- if (Src->isVectorTy() &&
- Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
- // This is a vector load that legalizes to a larger type than the vector
- // itself. Unless the corresponding extending load or truncating store is
- // legal, then this will scalarize.
- TargetLowering::LegalizeAction LA = TargetLowering::Expand;
- EVT MemVT = getTLI()->getValueType(DL, Src, true);
- if (MemVT.isSimple() && MemVT != MVT::Other) {
- if (Opcode == Instruction::Store)
- LA = getTLI()->getTruncStoreAction(LT.second, MemVT.getSimpleVT());
- else
- LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
- }
- if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
- // This is a vector load/store for some illegal type that is scalarized.
- // We must account for the cost of building or decomposing the vector.
- Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
- Opcode == Instruction::Store);
- }
- }
- return Cost;
- }
- unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
- unsigned Factor,
- ArrayRef<unsigned> Indices,
- unsigned Alignment,
- unsigned AddressSpace) {
- VectorType *VT = dyn_cast<VectorType>(VecTy);
- assert(VT && "Expect a vector type for interleaved memory op");
- unsigned NumElts = VT->getNumElements();
- assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
- unsigned NumSubElts = NumElts / Factor;
- VectorType *SubVT = VectorType::get(VT->getElementType(), NumSubElts);
- // Firstly, the cost of load/store operation.
- unsigned Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace);
- // Then plus the cost of interleave operation.
- if (Opcode == Instruction::Load) {
- // The interleave cost is similar to extract sub vectors' elements
- // from the wide vector, and insert them into sub vectors.
- //
- // E.g. An interleaved load of factor 2 (with one member of index 0):
- // %vec = load <8 x i32>, <8 x i32>* %ptr
- // %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0
- // The cost is estimated as extract elements at 0, 2, 4, 6 from the
- // <8 x i32> vector and insert them into a <4 x i32> vector.
- assert(Indices.size() <= Factor &&
- "Interleaved memory op has too many members");
- for (unsigned Index : Indices) {
- assert(Index < Factor && "Invalid index for interleaved memory op");
- // Extract elements from loaded vector for each sub vector.
- for (unsigned i = 0; i < NumSubElts; i++)
- Cost += getVectorInstrCost(Instruction::ExtractElement, VT,
- Index + i * Factor);
- }
- unsigned InsSubCost = 0;
- for (unsigned i = 0; i < NumSubElts; i++)
- InsSubCost += getVectorInstrCost(Instruction::InsertElement, SubVT, i);
- Cost += Indices.size() * InsSubCost;
- } else {
- // The interleave cost is extract all elements from sub vectors, and
- // insert them into the wide vector.
- //
- // E.g. An interleaved store of factor 2:
- // %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7>
- // store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
- // The cost is estimated as extract all elements from both <4 x i32>
- // vectors and insert into the <8 x i32> vector.
- unsigned ExtSubCost = 0;
- for (unsigned i = 0; i < NumSubElts; i++)
- ExtSubCost += getVectorInstrCost(Instruction::ExtractElement, SubVT, i);
- Cost += Factor * ExtSubCost;
- for (unsigned i = 0; i < NumElts; i++)
- Cost += getVectorInstrCost(Instruction::InsertElement, VT, i);
- }
- return Cost;
- }
- unsigned getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
- ArrayRef<Type *> Tys) {
- unsigned ISD = 0;
- switch (IID) {
- default: {
- // Assume that we need to scalarize this intrinsic.
- unsigned ScalarizationCost = 0;
- unsigned ScalarCalls = 1;
- Type *ScalarRetTy = RetTy;
- if (RetTy->isVectorTy()) {
- ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
- ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
- ScalarRetTy = RetTy->getScalarType();
- }
- SmallVector<Type *, 4> ScalarTys;
- for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
- Type *Ty = Tys[i];
- if (Ty->isVectorTy()) {
- ScalarizationCost += getScalarizationOverhead(Ty, false, true);
- ScalarCalls = std::max(ScalarCalls, Ty->getVectorNumElements());
- Ty = Ty->getScalarType();
- }
- ScalarTys.push_back(Ty);
- }
- if (ScalarCalls == 1)
- return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
- unsigned ScalarCost = static_cast<T *>(this)->getIntrinsicInstrCost(
- IID, ScalarRetTy, ScalarTys);
- return ScalarCalls * ScalarCost + ScalarizationCost;
- }
- // Look for intrinsics that can be lowered directly or turned into a scalar
- // intrinsic call.
- case Intrinsic::sqrt:
- ISD = ISD::FSQRT;
- break;
- case Intrinsic::sin:
- ISD = ISD::FSIN;
- break;
- case Intrinsic::cos:
- ISD = ISD::FCOS;
- break;
- case Intrinsic::exp:
- ISD = ISD::FEXP;
- break;
- case Intrinsic::exp2:
- ISD = ISD::FEXP2;
- break;
- case Intrinsic::log:
- ISD = ISD::FLOG;
- break;
- case Intrinsic::log10:
- ISD = ISD::FLOG10;
- break;
- case Intrinsic::log2:
- ISD = ISD::FLOG2;
- break;
- case Intrinsic::fabs:
- ISD = ISD::FABS;
- break;
- case Intrinsic::minnum:
- ISD = ISD::FMINNUM;
- break;
- case Intrinsic::maxnum:
- ISD = ISD::FMAXNUM;
- break;
- case Intrinsic::copysign:
- ISD = ISD::FCOPYSIGN;
- break;
- case Intrinsic::floor:
- ISD = ISD::FFLOOR;
- break;
- case Intrinsic::ceil:
- ISD = ISD::FCEIL;
- break;
- case Intrinsic::trunc:
- ISD = ISD::FTRUNC;
- break;
- case Intrinsic::nearbyint:
- ISD = ISD::FNEARBYINT;
- break;
- case Intrinsic::rint:
- ISD = ISD::FRINT;
- break;
- case Intrinsic::round:
- ISD = ISD::FROUND;
- break;
- case Intrinsic::pow:
- ISD = ISD::FPOW;
- break;
- case Intrinsic::fma:
- ISD = ISD::FMA;
- break;
- case Intrinsic::fmuladd:
- ISD = ISD::FMA;
- break;
- // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- return 0;
- case Intrinsic::masked_store:
- return static_cast<T *>(this)
- ->getMaskedMemoryOpCost(Instruction::Store, Tys[0], 0, 0);
- case Intrinsic::masked_load:
- return static_cast<T *>(this)
- ->getMaskedMemoryOpCost(Instruction::Load, RetTy, 0, 0);
- }
- const TargetLoweringBase *TLI = getTLI();
- std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
- if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
- // The operation is legal. Assume it costs 1.
- // If the type is split to multiple registers, assume that there is some
- // overhead to this.
- // TODO: Once we have extract/insert subvector cost we need to use them.
- if (LT.first > 1)
- return LT.first * 2;
- return LT.first * 1;
- }
- if (!TLI->isOperationExpand(ISD, LT.second)) {
- // If the operation is custom lowered then assume
- // thare the code is twice as expensive.
- return LT.first * 2;
- }
- // If we can't lower fmuladd into an FMA estimate the cost as a floating
- // point mul followed by an add.
- if (IID == Intrinsic::fmuladd)
- return static_cast<T *>(this)
- ->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
- static_cast<T *>(this)
- ->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
- // Else, assume that we need to scalarize this intrinsic. For math builtins
- // this will emit a costly libcall, adding call overhead and spills. Make it
- // very expensive.
- if (RetTy->isVectorTy()) {
- unsigned ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
- unsigned ScalarCalls = RetTy->getVectorNumElements();
- SmallVector<Type *, 4> ScalarTys;
- for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
- Type *Ty = Tys[i];
- if (Ty->isVectorTy())
- Ty = Ty->getScalarType();
- ScalarTys.push_back(Ty);
- }
- unsigned ScalarCost = static_cast<T *>(this)->getIntrinsicInstrCost(
- IID, RetTy->getScalarType(), ScalarTys);
- for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
- if (Tys[i]->isVectorTy()) {
- ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
- ScalarCalls = std::max(ScalarCalls, Tys[i]->getVectorNumElements());
- }
- }
- return ScalarCalls * ScalarCost + ScalarizationCost;
- }
- // This is going to be turned into a library call, make it expensive.
- return 10;
- }
- /// \brief Compute a cost of the given call instruction.
- ///
- /// Compute the cost of calling function F with return type RetTy and
- /// argument types Tys. F might be nullptr, in this case the cost of an
- /// arbitrary call with the specified signature will be returned.
- /// This is used, for instance, when we estimate call of a vector
- /// counterpart of the given function.
- /// \param F Called function, might be nullptr.
- /// \param RetTy Return value types.
- /// \param Tys Argument types.
- /// \returns The cost of Call instruction.
- unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
- return 10;
- }
- unsigned getNumberOfParts(Type *Tp) {
- std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Tp);
- return LT.first;
- }
- unsigned getAddressComputationCost(Type *Ty, bool IsComplex) { return 0; }
- unsigned getReductionCost(unsigned Opcode, Type *Ty, bool IsPairwise) {
- assert(Ty->isVectorTy() && "Expect a vector type");
- unsigned NumVecElts = Ty->getVectorNumElements();
- unsigned NumReduxLevels = Log2_32(NumVecElts);
- unsigned ArithCost =
- NumReduxLevels *
- static_cast<T *>(this)->getArithmeticInstrCost(Opcode, Ty);
- // Assume the pairwise shuffles add a cost.
- unsigned ShuffleCost =
- NumReduxLevels * (IsPairwise + 1) *
- static_cast<T *>(this)
- ->getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts / 2, Ty);
- return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
- }
- /// @}
- };
- /// \brief Concrete BasicTTIImpl that can be used if no further customization
- /// is needed.
- class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
- typedef BasicTTIImplBase<BasicTTIImpl> BaseT;
- friend class BasicTTIImplBase<BasicTTIImpl>;
- const TargetSubtargetInfo *ST;
- const TargetLoweringBase *TLI;
- const TargetSubtargetInfo *getST() const { return ST; }
- const TargetLoweringBase *getTLI() const { return TLI; }
- public:
- explicit BasicTTIImpl(const TargetMachine *ST, Function &F);
- // Provide value semantics. MSVC requires that we spell all of these out.
- BasicTTIImpl(const BasicTTIImpl &Arg)
- : BaseT(static_cast<const BaseT &>(Arg)), ST(Arg.ST), TLI(Arg.TLI) {}
- BasicTTIImpl(BasicTTIImpl &&Arg)
- : BaseT(std::move(static_cast<BaseT &>(Arg))), ST(std::move(Arg.ST)),
- TLI(std::move(Arg.TLI)) {}
- };
- }
- #endif
|