123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777 |
- //===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- /// \file
- ///
- /// This file defines a set of templates that efficiently compute a dominator
- /// tree over a generic graph. This is used typically in LLVM for fast
- /// dominance queries on the CFG, but is fully generic w.r.t. the underlying
- /// graph types.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_SUPPORT_GENERICDOMTREE_H
- #define LLVM_SUPPORT_GENERICDOMTREE_H
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/GraphTraits.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- namespace llvm {
- /// \brief Base class that other, more interesting dominator analyses
- /// inherit from.
- template <class NodeT> class DominatorBase {
- protected:
- std::vector<NodeT *> Roots;
- bool IsPostDominators;
- explicit DominatorBase(bool isPostDom)
- : Roots(), IsPostDominators(isPostDom) {}
- DominatorBase(DominatorBase &&Arg)
- : Roots(std::move(Arg.Roots)),
- IsPostDominators(std::move(Arg.IsPostDominators)) {
- Arg.Roots.clear();
- }
- DominatorBase &operator=(DominatorBase &&RHS) {
- Roots = std::move(RHS.Roots);
- IsPostDominators = std::move(RHS.IsPostDominators);
- RHS.Roots.clear();
- return *this;
- }
- public:
- /// getRoots - Return the root blocks of the current CFG. This may include
- /// multiple blocks if we are computing post dominators. For forward
- /// dominators, this will always be a single block (the entry node).
- ///
- const std::vector<NodeT *> &getRoots() const { return Roots; }
- /// isPostDominator - Returns true if analysis based of postdoms
- ///
- bool isPostDominator() const { return IsPostDominators; }
- };
- template <class NodeT> class DominatorTreeBase;
- struct PostDominatorTree;
- /// \brief Base class for the actual dominator tree node.
- template <class NodeT> class DomTreeNodeBase {
- NodeT *TheBB;
- DomTreeNodeBase<NodeT> *IDom;
- std::vector<DomTreeNodeBase<NodeT> *> Children;
- mutable int DFSNumIn, DFSNumOut;
- template <class N> friend class DominatorTreeBase;
- friend struct PostDominatorTree;
- public:
- typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
- typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
- const_iterator;
- iterator begin() { return Children.begin(); }
- iterator end() { return Children.end(); }
- const_iterator begin() const { return Children.begin(); }
- const_iterator end() const { return Children.end(); }
- NodeT *getBlock() const { return TheBB; }
- DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
- const std::vector<DomTreeNodeBase<NodeT> *> &getChildren() const {
- return Children;
- }
- DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
- : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) {}
- std::unique_ptr<DomTreeNodeBase<NodeT>>
- addChild(std::unique_ptr<DomTreeNodeBase<NodeT>> C) {
- Children.push_back(C.get());
- return C;
- }
- size_t getNumChildren() const { return Children.size(); }
- void clearAllChildren() { Children.clear(); }
- bool compare(const DomTreeNodeBase<NodeT> *Other) const {
- if (getNumChildren() != Other->getNumChildren())
- return true;
- SmallPtrSet<const NodeT *, 4> OtherChildren;
- for (const_iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
- const NodeT *Nd = (*I)->getBlock();
- OtherChildren.insert(Nd);
- }
- for (const_iterator I = begin(), E = end(); I != E; ++I) {
- const NodeT *N = (*I)->getBlock();
- if (OtherChildren.count(N) == 0)
- return true;
- }
- return false;
- }
- void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
- assert(IDom && "No immediate dominator?");
- if (IDom != NewIDom) {
- typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
- std::find(IDom->Children.begin(), IDom->Children.end(), this);
- assert(I != IDom->Children.end() &&
- "Not in immediate dominator children set!");
- // I am no longer your child...
- IDom->Children.erase(I);
- // Switch to new dominator
- IDom = NewIDom;
- IDom->Children.push_back(this);
- }
- }
- /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
- /// not call them.
- unsigned getDFSNumIn() const { return DFSNumIn; }
- unsigned getDFSNumOut() const { return DFSNumOut; }
- private:
- // Return true if this node is dominated by other. Use this only if DFS info
- // is valid.
- bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
- return this->DFSNumIn >= other->DFSNumIn &&
- this->DFSNumOut <= other->DFSNumOut;
- }
- };
- template <class NodeT>
- raw_ostream &operator<<(raw_ostream &o, const DomTreeNodeBase<NodeT> *Node) {
- if (Node->getBlock())
- Node->getBlock()->printAsOperand(o, false);
- else
- o << " <<exit node>>";
- o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
- return o << "\n";
- }
- template <class NodeT>
- void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
- unsigned Lev) {
- o.indent(2 * Lev) << "[" << Lev << "] " << N;
- for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
- E = N->end();
- I != E; ++I)
- PrintDomTree<NodeT>(*I, o, Lev + 1);
- }
- // The calculate routine is provided in a separate header but referenced here.
- template <class FuncT, class N>
- void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT,
- FuncT &F);
- /// \brief Core dominator tree base class.
- ///
- /// This class is a generic template over graph nodes. It is instantiated for
- /// various graphs in the LLVM IR or in the code generator.
- template <class NodeT> class DominatorTreeBase : public DominatorBase<NodeT> {
- DominatorTreeBase(const DominatorTreeBase &) = delete;
- DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
- bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
- const DomTreeNodeBase<NodeT> *B) const {
- assert(A != B);
- assert(isReachableFromEntry(B));
- assert(isReachableFromEntry(A));
- const DomTreeNodeBase<NodeT> *IDom;
- while ((IDom = B->getIDom()) != nullptr && IDom != A && IDom != B)
- B = IDom; // Walk up the tree
- return IDom != nullptr;
- }
- /// \brief Wipe this tree's state without releasing any resources.
- ///
- /// This is essentially a post-move helper only. It leaves the object in an
- /// assignable and destroyable state, but otherwise invalid.
- void wipe() {
- DomTreeNodes.clear();
- IDoms.clear();
- Vertex.clear();
- Info.clear();
- RootNode = nullptr;
- }
- protected:
- typedef DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>
- DomTreeNodeMapType;
- DomTreeNodeMapType DomTreeNodes;
- DomTreeNodeBase<NodeT> *RootNode;
- mutable bool DFSInfoValid;
- mutable unsigned int SlowQueries;
- // Information record used during immediate dominators computation.
- struct InfoRec {
- unsigned DFSNum;
- unsigned Parent;
- unsigned Semi;
- NodeT *Label;
- InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(nullptr) {}
- };
- DenseMap<NodeT *, NodeT *> IDoms;
- // Vertex - Map the DFS number to the NodeT*
- std::vector<NodeT *> Vertex;
- // Info - Collection of information used during the computation of idoms.
- DenseMap<NodeT *, InfoRec> Info;
- void reset() {
- DomTreeNodes.clear();
- IDoms.clear();
- this->Roots.clear();
- Vertex.clear();
- RootNode = nullptr;
- DFSInfoValid = false;
- SlowQueries = 0;
- }
- // NewBB is split and now it has one successor. Update dominator tree to
- // reflect this change.
- template <class N, class GraphT>
- void Split(DominatorTreeBase<typename GraphT::NodeType> &DT,
- typename GraphT::NodeType *NewBB) {
- assert(std::distance(GraphT::child_begin(NewBB),
- GraphT::child_end(NewBB)) == 1 &&
- "NewBB should have a single successor!");
- typename GraphT::NodeType *NewBBSucc = *GraphT::child_begin(NewBB);
- std::vector<typename GraphT::NodeType *> PredBlocks;
- typedef GraphTraits<Inverse<N>> InvTraits;
- for (typename InvTraits::ChildIteratorType
- PI = InvTraits::child_begin(NewBB),
- PE = InvTraits::child_end(NewBB);
- PI != PE; ++PI)
- PredBlocks.push_back(*PI);
- assert(!PredBlocks.empty() && "No predblocks?");
- bool NewBBDominatesNewBBSucc = true;
- for (typename InvTraits::ChildIteratorType
- PI = InvTraits::child_begin(NewBBSucc),
- E = InvTraits::child_end(NewBBSucc);
- PI != E; ++PI) {
- typename InvTraits::NodeType *ND = *PI;
- if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
- DT.isReachableFromEntry(ND)) {
- NewBBDominatesNewBBSucc = false;
- break;
- }
- }
- // Find NewBB's immediate dominator and create new dominator tree node for
- // NewBB.
- NodeT *NewBBIDom = nullptr;
- unsigned i = 0;
- for (i = 0; i < PredBlocks.size(); ++i)
- if (DT.isReachableFromEntry(PredBlocks[i])) {
- NewBBIDom = PredBlocks[i];
- break;
- }
- // It's possible that none of the predecessors of NewBB are reachable;
- // in that case, NewBB itself is unreachable, so nothing needs to be
- // changed.
- if (!NewBBIDom)
- return;
- for (i = i + 1; i < PredBlocks.size(); ++i) {
- if (DT.isReachableFromEntry(PredBlocks[i]))
- NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
- }
- // Create the new dominator tree node... and set the idom of NewBB.
- DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
- // If NewBB strictly dominates other blocks, then it is now the immediate
- // dominator of NewBBSucc. Update the dominator tree as appropriate.
- if (NewBBDominatesNewBBSucc) {
- DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
- DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
- }
- }
- public:
- explicit DominatorTreeBase(bool isPostDom)
- : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
- DominatorTreeBase(DominatorTreeBase &&Arg)
- : DominatorBase<NodeT>(
- std::move(static_cast<DominatorBase<NodeT> &>(Arg))),
- DomTreeNodes(std::move(Arg.DomTreeNodes)),
- RootNode(std::move(Arg.RootNode)),
- DFSInfoValid(std::move(Arg.DFSInfoValid)),
- SlowQueries(std::move(Arg.SlowQueries)), IDoms(std::move(Arg.IDoms)),
- Vertex(std::move(Arg.Vertex)), Info(std::move(Arg.Info)) {
- Arg.wipe();
- }
- DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
- DominatorBase<NodeT>::operator=(
- std::move(static_cast<DominatorBase<NodeT> &>(RHS)));
- DomTreeNodes = std::move(RHS.DomTreeNodes);
- RootNode = std::move(RHS.RootNode);
- DFSInfoValid = std::move(RHS.DFSInfoValid);
- SlowQueries = std::move(RHS.SlowQueries);
- IDoms = std::move(RHS.IDoms);
- Vertex = std::move(RHS.Vertex);
- Info = std::move(RHS.Info);
- RHS.wipe();
- return *this;
- }
- /// compare - Return false if the other dominator tree base matches this
- /// dominator tree base. Otherwise return true.
- bool compare(const DominatorTreeBase &Other) const {
- const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
- if (DomTreeNodes.size() != OtherDomTreeNodes.size())
- return true;
- for (typename DomTreeNodeMapType::const_iterator
- I = this->DomTreeNodes.begin(),
- E = this->DomTreeNodes.end();
- I != E; ++I) {
- NodeT *BB = I->first;
- typename DomTreeNodeMapType::const_iterator OI =
- OtherDomTreeNodes.find(BB);
- if (OI == OtherDomTreeNodes.end())
- return true;
- DomTreeNodeBase<NodeT> &MyNd = *I->second;
- DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
- if (MyNd.compare(&OtherNd))
- return true;
- }
- return false;
- }
- void releaseMemory() { reset(); }
- /// getNode - return the (Post)DominatorTree node for the specified basic
- /// block. This is the same as using operator[] on this class.
- ///
- DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
- auto I = DomTreeNodes.find(BB);
- if (I != DomTreeNodes.end())
- return I->second.get();
- return nullptr;
- }
- DomTreeNodeBase<NodeT> *operator[](NodeT *BB) const { return getNode(BB); }
- /// getRootNode - This returns the entry node for the CFG of the function. If
- /// this tree represents the post-dominance relations for a function, however,
- /// this root may be a node with the block == NULL. This is the case when
- /// there are multiple exit nodes from a particular function. Consumers of
- /// post-dominance information must be capable of dealing with this
- /// possibility.
- ///
- DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
- const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
- /// Get all nodes dominated by R, including R itself.
- void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
- Result.clear();
- const DomTreeNodeBase<NodeT> *RN = getNode(R);
- if (!RN)
- return; // If R is unreachable, it will not be present in the DOM tree.
- SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
- WL.push_back(RN);
- while (!WL.empty()) {
- const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
- Result.push_back(N->getBlock());
- WL.append(N->begin(), N->end());
- }
- }
- /// properlyDominates - Returns true iff A dominates B and A != B.
- /// Note that this is not a constant time operation!
- ///
- bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
- const DomTreeNodeBase<NodeT> *B) const {
- if (!A || !B)
- return false;
- if (A == B)
- return false;
- return dominates(A, B);
- }
- bool properlyDominates(const NodeT *A, const NodeT *B) const;
- /// isReachableFromEntry - Return true if A is dominated by the entry
- /// block of the function containing it.
- bool isReachableFromEntry(const NodeT *A) const {
- assert(!this->isPostDominator() &&
- "This is not implemented for post dominators");
- return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
- }
- bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
- /// dominates - Returns true iff A dominates B. Note that this is not a
- /// constant time operation!
- ///
- bool dominates(const DomTreeNodeBase<NodeT> *A,
- const DomTreeNodeBase<NodeT> *B) const {
- // A node trivially dominates itself.
- if (B == A)
- return true;
- // An unreachable node is dominated by anything.
- if (!isReachableFromEntry(B))
- return true;
- // And dominates nothing.
- if (!isReachableFromEntry(A))
- return false;
- // Compare the result of the tree walk and the dfs numbers, if expensive
- // checks are enabled.
- #ifdef XDEBUG
- assert((!DFSInfoValid ||
- (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
- "Tree walk disagrees with dfs numbers!");
- #endif
- if (DFSInfoValid)
- return B->DominatedBy(A);
- // If we end up with too many slow queries, just update the
- // DFS numbers on the theory that we are going to keep querying.
- SlowQueries++;
- if (SlowQueries > 32) {
- updateDFSNumbers();
- return B->DominatedBy(A);
- }
- return dominatedBySlowTreeWalk(A, B);
- }
- bool dominates(const NodeT *A, const NodeT *B) const;
- NodeT *getRoot() const {
- assert(this->Roots.size() == 1 && "Should always have entry node!");
- return this->Roots[0];
- }
- /// findNearestCommonDominator - Find nearest common dominator basic block
- /// for basic block A and B. If there is no such block then return NULL.
- NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
- assert(A->getParent() == B->getParent() &&
- "Two blocks are not in same function");
- // If either A or B is a entry block then it is nearest common dominator
- // (for forward-dominators).
- if (!this->isPostDominator()) {
- NodeT &Entry = A->getParent()->front();
- if (A == &Entry || B == &Entry)
- return &Entry;
- }
- // If B dominates A then B is nearest common dominator.
- if (dominates(B, A))
- return B;
- // If A dominates B then A is nearest common dominator.
- if (dominates(A, B))
- return A;
- DomTreeNodeBase<NodeT> *NodeA = getNode(A);
- DomTreeNodeBase<NodeT> *NodeB = getNode(B);
- // If we have DFS info, then we can avoid all allocations by just querying
- // it from each IDom. Note that because we call 'dominates' twice above, we
- // expect to call through this code at most 16 times in a row without
- // building valid DFS information. This is important as below is a *very*
- // slow tree walk.
- if (DFSInfoValid) {
- DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
- while (IDomA) {
- if (NodeB->DominatedBy(IDomA))
- return IDomA->getBlock();
- IDomA = IDomA->getIDom();
- }
- return nullptr;
- }
- // Collect NodeA dominators set.
- SmallPtrSet<DomTreeNodeBase<NodeT> *, 16> NodeADoms;
- NodeADoms.insert(NodeA);
- DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
- while (IDomA) {
- NodeADoms.insert(IDomA);
- IDomA = IDomA->getIDom();
- }
- // Walk NodeB immediate dominators chain and find common dominator node.
- DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
- while (IDomB) {
- if (NodeADoms.count(IDomB) != 0)
- return IDomB->getBlock();
- IDomB = IDomB->getIDom();
- }
- return nullptr;
- }
- const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
- // Cast away the const qualifiers here. This is ok since
- // const is re-introduced on the return type.
- return findNearestCommonDominator(const_cast<NodeT *>(A),
- const_cast<NodeT *>(B));
- }
- //===--------------------------------------------------------------------===//
- // API to update (Post)DominatorTree information based on modifications to
- // the CFG...
- /// addNewBlock - Add a new node to the dominator tree information. This
- /// creates a new node as a child of DomBB dominator node,linking it into
- /// the children list of the immediate dominator.
- DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
- assert(getNode(BB) == nullptr && "Block already in dominator tree!");
- DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
- assert(IDomNode && "Not immediate dominator specified for block!");
- DFSInfoValid = false;
- return (DomTreeNodes[BB] = IDomNode->addChild(
- llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
- }
- /// changeImmediateDominator - This method is used to update the dominator
- /// tree information when a node's immediate dominator changes.
- ///
- void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
- DomTreeNodeBase<NodeT> *NewIDom) {
- assert(N && NewIDom && "Cannot change null node pointers!");
- DFSInfoValid = false;
- N->setIDom(NewIDom);
- }
- void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
- changeImmediateDominator(getNode(BB), getNode(NewBB));
- }
- /// eraseNode - Removes a node from the dominator tree. Block must not
- /// dominate any other blocks. Removes node from its immediate dominator's
- /// children list. Deletes dominator node associated with basic block BB.
- void eraseNode(NodeT *BB) {
- DomTreeNodeBase<NodeT> *Node = getNode(BB);
- assert(Node && "Removing node that isn't in dominator tree.");
- assert(Node->getChildren().empty() && "Node is not a leaf node.");
- // Remove node from immediate dominator's children list.
- DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
- if (IDom) {
- typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
- std::find(IDom->Children.begin(), IDom->Children.end(), Node);
- assert(I != IDom->Children.end() &&
- "Not in immediate dominator children set!");
- // I am no longer your child...
- IDom->Children.erase(I);
- }
- DomTreeNodes.erase(BB);
- }
- /// splitBlock - BB is split and now it has one successor. Update dominator
- /// tree to reflect this change.
- void splitBlock(NodeT *NewBB) {
- if (this->IsPostDominators)
- this->Split<Inverse<NodeT *>, GraphTraits<Inverse<NodeT *>>>(*this,
- NewBB);
- else
- this->Split<NodeT *, GraphTraits<NodeT *>>(*this, NewBB);
- }
- /// print - Convert to human readable form
- ///
- void print(raw_ostream &o) const {
- o << "=============================--------------------------------\n";
- if (this->isPostDominator())
- o << "Inorder PostDominator Tree: ";
- else
- o << "Inorder Dominator Tree: ";
- if (!this->DFSInfoValid)
- o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
- o << "\n";
- // The postdom tree can have a null root if there are no returns.
- if (getRootNode())
- PrintDomTree<NodeT>(getRootNode(), o, 1);
- }
- protected:
- template <class GraphT>
- friend typename GraphT::NodeType *
- Eval(DominatorTreeBase<typename GraphT::NodeType> &DT,
- typename GraphT::NodeType *V, unsigned LastLinked);
- template <class GraphT>
- friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType> &DT,
- typename GraphT::NodeType *V, unsigned N);
- template <class FuncT, class N>
- friend void
- Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT, FuncT &F);
- DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
- if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
- return Node;
- // Haven't calculated this node yet? Get or calculate the node for the
- // immediate dominator.
- NodeT *IDom = getIDom(BB);
- assert(IDom || this->DomTreeNodes[nullptr]);
- DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
- // Add a new tree node for this NodeT, and link it as a child of
- // IDomNode
- return (this->DomTreeNodes[BB] = IDomNode->addChild(
- llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
- }
- NodeT *getIDom(NodeT *BB) const { return IDoms.lookup(BB); }
- void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
- public:
- /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
- /// dominator tree in dfs order.
- void updateDFSNumbers() const {
- if (DFSInfoValid) {
- SlowQueries = 0;
- return;
- }
- unsigned DFSNum = 0;
- SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
- typename DomTreeNodeBase<NodeT>::const_iterator>,
- 32> WorkStack;
- const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
- if (!ThisRoot)
- return;
- // Even in the case of multiple exits that form the post dominator root
- // nodes, do not iterate over all exits, but start from the virtual root
- // node. Otherwise bbs, that are not post dominated by any exit but by the
- // virtual root node, will never be assigned a DFS number.
- WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
- ThisRoot->DFSNumIn = DFSNum++;
- while (!WorkStack.empty()) {
- const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
- typename DomTreeNodeBase<NodeT>::const_iterator ChildIt =
- WorkStack.back().second;
- // If we visited all of the children of this node, "recurse" back up the
- // stack setting the DFOutNum.
- if (ChildIt == Node->end()) {
- Node->DFSNumOut = DFSNum++;
- WorkStack.pop_back();
- } else {
- // Otherwise, recursively visit this child.
- const DomTreeNodeBase<NodeT> *Child = *ChildIt;
- ++WorkStack.back().second;
- WorkStack.push_back(std::make_pair(Child, Child->begin()));
- Child->DFSNumIn = DFSNum++;
- }
- }
- SlowQueries = 0;
- DFSInfoValid = true;
- }
- /// recalculate - compute a dominator tree for the given function
- template <class FT> void recalculate(FT &F) {
- typedef GraphTraits<FT *> TraitsTy;
- reset();
- this->Vertex.push_back(nullptr);
- if (!this->IsPostDominators) {
- // Initialize root
- NodeT *entry = TraitsTy::getEntryNode(&F);
- this->Roots.push_back(entry);
- this->IDoms[entry] = nullptr;
- this->DomTreeNodes[entry] = nullptr;
- Calculate<FT, NodeT *>(*this, F);
- } else {
- // Initialize the roots list
- for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
- E = TraitsTy::nodes_end(&F);
- I != E; ++I) {
- if (TraitsTy::child_begin(I) == TraitsTy::child_end(I))
- addRoot(I);
- // Prepopulate maps so that we don't get iterator invalidation issues
- // later.
- this->IDoms[I] = nullptr;
- this->DomTreeNodes[I] = nullptr;
- }
- Calculate<FT, Inverse<NodeT *>>(*this, F);
- }
- }
- };
- // These two functions are declared out of line as a workaround for building
- // with old (< r147295) versions of clang because of pr11642.
- template <class NodeT>
- bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) const {
- if (A == B)
- return true;
- // Cast away the const qualifiers here. This is ok since
- // this function doesn't actually return the values returned
- // from getNode.
- return dominates(getNode(const_cast<NodeT *>(A)),
- getNode(const_cast<NodeT *>(B)));
- }
- template <class NodeT>
- bool DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A,
- const NodeT *B) const {
- if (A == B)
- return false;
- // Cast away the const qualifiers here. This is ok since
- // this function doesn't actually return the values returned
- // from getNode.
- return dominates(getNode(const_cast<NodeT *>(A)),
- getNode(const_cast<NodeT *>(B)));
- }
- }
- #endif
|