1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204 |
- //===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the target-independent interfaces which should be
- // implemented by each target which is using a TableGen based code generator.
- //
- //===----------------------------------------------------------------------===//
- include "llvm/IR/Intrinsics.td"
- //===----------------------------------------------------------------------===//
- // Register file description - These classes are used to fill in the target
- // description classes.
- class RegisterClass; // Forward def
- // SubRegIndex - Use instances of SubRegIndex to identify subregisters.
- class SubRegIndex<int size, int offset = 0> {
- string Namespace = "";
- // Size - Size (in bits) of the sub-registers represented by this index.
- int Size = size;
- // Offset - Offset of the first bit that is part of this sub-register index.
- // Set it to -1 if the same index is used to represent sub-registers that can
- // be at different offsets (for example when using an index to access an
- // element in a register tuple).
- int Offset = offset;
- // ComposedOf - A list of two SubRegIndex instances, [A, B].
- // This indicates that this SubRegIndex is the result of composing A and B.
- // See ComposedSubRegIndex.
- list<SubRegIndex> ComposedOf = [];
- // CoveringSubRegIndices - A list of two or more sub-register indexes that
- // cover this sub-register.
- //
- // This field should normally be left blank as TableGen can infer it.
- //
- // TableGen automatically detects sub-registers that straddle the registers
- // in the SubRegs field of a Register definition. For example:
- //
- // Q0 = dsub_0 -> D0, dsub_1 -> D1
- // Q1 = dsub_0 -> D2, dsub_1 -> D3
- // D1_D2 = dsub_0 -> D1, dsub_1 -> D2
- // QQ0 = qsub_0 -> Q0, qsub_1 -> Q1
- //
- // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
- // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
- // CoveringSubRegIndices = [dsub_1, dsub_2].
- list<SubRegIndex> CoveringSubRegIndices = [];
- }
- // ComposedSubRegIndex - A sub-register that is the result of composing A and B.
- // Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
- class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
- : SubRegIndex<B.Size, !if(!eq(A.Offset, -1), -1,
- !if(!eq(B.Offset, -1), -1,
- !add(A.Offset, B.Offset)))> {
- // See SubRegIndex.
- let ComposedOf = [A, B];
- }
- // RegAltNameIndex - The alternate name set to use for register operands of
- // this register class when printing.
- class RegAltNameIndex {
- string Namespace = "";
- }
- def NoRegAltName : RegAltNameIndex;
- // Register - You should define one instance of this class for each register
- // in the target machine. String n will become the "name" of the register.
- class Register<string n, list<string> altNames = []> {
- string Namespace = "";
- string AsmName = n;
- list<string> AltNames = altNames;
- // Aliases - A list of registers that this register overlaps with. A read or
- // modification of this register can potentially read or modify the aliased
- // registers.
- list<Register> Aliases = [];
- // SubRegs - A list of registers that are parts of this register. Note these
- // are "immediate" sub-registers and the registers within the list do not
- // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
- // not [AX, AH, AL].
- list<Register> SubRegs = [];
- // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
- // to address it. Sub-sub-register indices are automatically inherited from
- // SubRegs.
- list<SubRegIndex> SubRegIndices = [];
- // RegAltNameIndices - The alternate name indices which are valid for this
- // register.
- list<RegAltNameIndex> RegAltNameIndices = [];
- // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
- // These values can be determined by locating the <target>.h file in the
- // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
- // order of these names correspond to the enumeration used by gcc. A value of
- // -1 indicates that the gcc number is undefined and -2 that register number
- // is invalid for this mode/flavour.
- list<int> DwarfNumbers = [];
- // CostPerUse - Additional cost of instructions using this register compared
- // to other registers in its class. The register allocator will try to
- // minimize the number of instructions using a register with a CostPerUse.
- // This is used by the x86-64 and ARM Thumb targets where some registers
- // require larger instruction encodings.
- int CostPerUse = 0;
- // CoveredBySubRegs - When this bit is set, the value of this register is
- // completely determined by the value of its sub-registers. For example, the
- // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
- // covered by its sub-register AX.
- bit CoveredBySubRegs = 0;
- // HWEncoding - The target specific hardware encoding for this register.
- bits<16> HWEncoding = 0;
- }
- // RegisterWithSubRegs - This can be used to define instances of Register which
- // need to specify sub-registers.
- // List "subregs" specifies which registers are sub-registers to this one. This
- // is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
- // This allows the code generator to be careful not to put two values with
- // overlapping live ranges into registers which alias.
- class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
- let SubRegs = subregs;
- }
- // DAGOperand - An empty base class that unifies RegisterClass's and other forms
- // of Operand's that are legal as type qualifiers in DAG patterns. This should
- // only ever be used for defining multiclasses that are polymorphic over both
- // RegisterClass's and other Operand's.
- class DAGOperand { }
- // RegisterClass - Now that all of the registers are defined, and aliases
- // between registers are defined, specify which registers belong to which
- // register classes. This also defines the default allocation order of
- // registers by register allocators.
- //
- class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
- dag regList, RegAltNameIndex idx = NoRegAltName>
- : DAGOperand {
- string Namespace = namespace;
- // RegType - Specify the list ValueType of the registers in this register
- // class. Note that all registers in a register class must have the same
- // ValueTypes. This is a list because some targets permit storing different
- // types in same register, for example vector values with 128-bit total size,
- // but different count/size of items, like SSE on x86.
- //
- list<ValueType> RegTypes = regTypes;
- // Size - Specify the spill size in bits of the registers. A default value of
- // zero lets tablgen pick an appropriate size.
- int Size = 0;
- // Alignment - Specify the alignment required of the registers when they are
- // stored or loaded to memory.
- //
- int Alignment = alignment;
- // CopyCost - This value is used to specify the cost of copying a value
- // between two registers in this register class. The default value is one
- // meaning it takes a single instruction to perform the copying. A negative
- // value means copying is extremely expensive or impossible.
- int CopyCost = 1;
- // MemberList - Specify which registers are in this class. If the
- // allocation_order_* method are not specified, this also defines the order of
- // allocation used by the register allocator.
- //
- dag MemberList = regList;
- // AltNameIndex - The alternate register name to use when printing operands
- // of this register class. Every register in the register class must have
- // a valid alternate name for the given index.
- RegAltNameIndex altNameIndex = idx;
- // isAllocatable - Specify that the register class can be used for virtual
- // registers and register allocation. Some register classes are only used to
- // model instruction operand constraints, and should have isAllocatable = 0.
- bit isAllocatable = 1;
- // AltOrders - List of alternative allocation orders. The default order is
- // MemberList itself, and that is good enough for most targets since the
- // register allocators automatically remove reserved registers and move
- // callee-saved registers to the end.
- list<dag> AltOrders = [];
- // AltOrderSelect - The body of a function that selects the allocation order
- // to use in a given machine function. The code will be inserted in a
- // function like this:
- //
- // static inline unsigned f(const MachineFunction &MF) { ... }
- //
- // The function should return 0 to select the default order defined by
- // MemberList, 1 to select the first AltOrders entry and so on.
- code AltOrderSelect = [{}];
- // Specify allocation priority for register allocators using a greedy
- // heuristic. Classes with higher priority values are assigned first. This is
- // useful as it is sometimes beneficial to assign registers to highly
- // constrained classes first. The value has to be in the range [0,63].
- int AllocationPriority = 0;
- }
- // The memberList in a RegisterClass is a dag of set operations. TableGen
- // evaluates these set operations and expand them into register lists. These
- // are the most common operation, see test/TableGen/SetTheory.td for more
- // examples of what is possible:
- //
- // (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
- // register class, or a sub-expression. This is also the way to simply list
- // registers.
- //
- // (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
- //
- // (and GPR, CSR) - Set intersection. All registers from the first set that are
- // also in the second set.
- //
- // (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
- // numbered registers. Takes an optional 4th operand which is a stride to use
- // when generating the sequence.
- //
- // (shl GPR, 4) - Remove the first N elements.
- //
- // (trunc GPR, 4) - Truncate after the first N elements.
- //
- // (rotl GPR, 1) - Rotate N places to the left.
- //
- // (rotr GPR, 1) - Rotate N places to the right.
- //
- // (decimate GPR, 2) - Pick every N'th element, starting with the first.
- //
- // (interleave A, B, ...) - Interleave the elements from each argument list.
- //
- // All of these operators work on ordered sets, not lists. That means
- // duplicates are removed from sub-expressions.
- // Set operators. The rest is defined in TargetSelectionDAG.td.
- def sequence;
- def decimate;
- def interleave;
- // RegisterTuples - Automatically generate super-registers by forming tuples of
- // sub-registers. This is useful for modeling register sequence constraints
- // with pseudo-registers that are larger than the architectural registers.
- //
- // The sub-register lists are zipped together:
- //
- // def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
- //
- // Generates the same registers as:
- //
- // let SubRegIndices = [sube, subo] in {
- // def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
- // def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
- // }
- //
- // The generated pseudo-registers inherit super-classes and fields from their
- // first sub-register. Most fields from the Register class are inferred, and
- // the AsmName and Dwarf numbers are cleared.
- //
- // RegisterTuples instances can be used in other set operations to form
- // register classes and so on. This is the only way of using the generated
- // registers.
- class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
- // SubRegs - N lists of registers to be zipped up. Super-registers are
- // synthesized from the first element of each SubRegs list, the second
- // element and so on.
- list<dag> SubRegs = Regs;
- // SubRegIndices - N SubRegIndex instances. This provides the names of the
- // sub-registers in the synthesized super-registers.
- list<SubRegIndex> SubRegIndices = Indices;
- }
- //===----------------------------------------------------------------------===//
- // DwarfRegNum - This class provides a mapping of the llvm register enumeration
- // to the register numbering used by gcc and gdb. These values are used by a
- // debug information writer to describe where values may be located during
- // execution.
- class DwarfRegNum<list<int> Numbers> {
- // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
- // These values can be determined by locating the <target>.h file in the
- // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
- // order of these names correspond to the enumeration used by gcc. A value of
- // -1 indicates that the gcc number is undefined and -2 that register number
- // is invalid for this mode/flavour.
- list<int> DwarfNumbers = Numbers;
- }
- // DwarfRegAlias - This class declares that a given register uses the same dwarf
- // numbers as another one. This is useful for making it clear that the two
- // registers do have the same number. It also lets us build a mapping
- // from dwarf register number to llvm register.
- class DwarfRegAlias<Register reg> {
- Register DwarfAlias = reg;
- }
- //===----------------------------------------------------------------------===//
- // Pull in the common support for scheduling
- //
- include "llvm/Target/TargetSchedule.td"
- class Predicate; // Forward def
- //===----------------------------------------------------------------------===//
- // Instruction set description - These classes correspond to the C++ classes in
- // the Target/TargetInstrInfo.h file.
- //
- class Instruction {
- string Namespace = "";
- dag OutOperandList; // An dag containing the MI def operand list.
- dag InOperandList; // An dag containing the MI use operand list.
- string AsmString = ""; // The .s format to print the instruction with.
- // Pattern - Set to the DAG pattern for this instruction, if we know of one,
- // otherwise, uninitialized.
- list<dag> Pattern;
- // The follow state will eventually be inferred automatically from the
- // instruction pattern.
- list<Register> Uses = []; // Default to using no non-operand registers
- list<Register> Defs = []; // Default to modifying no non-operand registers
- // Predicates - List of predicates which will be turned into isel matching
- // code.
- list<Predicate> Predicates = [];
- // Size - Size of encoded instruction, or zero if the size cannot be determined
- // from the opcode.
- int Size = 0;
- // DecoderNamespace - The "namespace" in which this instruction exists, on
- // targets like ARM which multiple ISA namespaces exist.
- string DecoderNamespace = "";
- // Code size, for instruction selection.
- // FIXME: What does this actually mean?
- int CodeSize = 0;
- // Added complexity passed onto matching pattern.
- int AddedComplexity = 0;
- // These bits capture information about the high-level semantics of the
- // instruction.
- bit isReturn = 0; // Is this instruction a return instruction?
- bit isBranch = 0; // Is this instruction a branch instruction?
- bit isIndirectBranch = 0; // Is this instruction an indirect branch?
- bit isCompare = 0; // Is this instruction a comparison instruction?
- bit isMoveImm = 0; // Is this instruction a move immediate instruction?
- bit isBitcast = 0; // Is this instruction a bitcast instruction?
- bit isSelect = 0; // Is this instruction a select instruction?
- bit isBarrier = 0; // Can control flow fall through this instruction?
- bit isCall = 0; // Is this instruction a call instruction?
- bit canFoldAsLoad = 0; // Can this be folded as a simple memory operand?
- bit mayLoad = ?; // Is it possible for this inst to read memory?
- bit mayStore = ?; // Is it possible for this inst to write memory?
- bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
- bit isCommutable = 0; // Is this 3 operand instruction commutable?
- bit isTerminator = 0; // Is this part of the terminator for a basic block?
- bit isReMaterializable = 0; // Is this instruction re-materializable?
- bit isPredicable = 0; // Is this instruction predicable?
- bit hasDelaySlot = 0; // Does this instruction have an delay slot?
- bit usesCustomInserter = 0; // Pseudo instr needing special help.
- bit hasPostISelHook = 0; // To be *adjusted* after isel by target hook.
- bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains?
- bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction?
- bit isConvergent = 0; // Is this instruction convergent?
- bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
- bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
- bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
- bit isRegSequence = 0; // Is this instruction a kind of reg sequence?
- // If so, make sure to override
- // TargetInstrInfo::getRegSequenceLikeInputs.
- bit isPseudo = 0; // Is this instruction a pseudo-instruction?
- // If so, won't have encoding information for
- // the [MC]CodeEmitter stuff.
- bit isExtractSubreg = 0; // Is this instruction a kind of extract subreg?
- // If so, make sure to override
- // TargetInstrInfo::getExtractSubregLikeInputs.
- bit isInsertSubreg = 0; // Is this instruction a kind of insert subreg?
- // If so, make sure to override
- // TargetInstrInfo::getInsertSubregLikeInputs.
- // Side effect flags - When set, the flags have these meanings:
- //
- // hasSideEffects - The instruction has side effects that are not
- // captured by any operands of the instruction or other flags.
- //
- bit hasSideEffects = ?;
- // Is this instruction a "real" instruction (with a distinct machine
- // encoding), or is it a pseudo instruction used for codegen modeling
- // purposes.
- // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
- // instructions can (and often do) still have encoding information
- // associated with them. Once we've migrated all of them over to true
- // pseudo-instructions that are lowered to real instructions prior to
- // the printer/emitter, we can remove this attribute and just use isPseudo.
- //
- // The intended use is:
- // isPseudo: Does not have encoding information and should be expanded,
- // at the latest, during lowering to MCInst.
- //
- // isCodeGenOnly: Does have encoding information and can go through to the
- // CodeEmitter unchanged, but duplicates a canonical instruction
- // definition's encoding and should be ignored when constructing the
- // assembler match tables.
- bit isCodeGenOnly = 0;
- // Is this instruction a pseudo instruction for use by the assembler parser.
- bit isAsmParserOnly = 0;
- InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
- // Scheduling information from TargetSchedule.td.
- list<SchedReadWrite> SchedRW;
- string Constraints = ""; // OperandConstraint, e.g. $src = $dst.
- /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
- /// be encoded into the output machineinstr.
- string DisableEncoding = "";
- string PostEncoderMethod = "";
- string DecoderMethod = "";
- /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
- bits<64> TSFlags = 0;
- ///@name Assembler Parser Support
- ///@{
- string AsmMatchConverter = "";
- /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
- /// two-operand matcher inst-alias for a three operand instruction.
- /// For example, the arm instruction "add r3, r3, r5" can be written
- /// as "add r3, r5". The constraint is of the same form as a tied-operand
- /// constraint. For example, "$Rn = $Rd".
- string TwoOperandAliasConstraint = "";
- ///@}
- /// UseNamedOperandTable - If set, the operand indices of this instruction
- /// can be queried via the getNamedOperandIdx() function which is generated
- /// by TableGen.
- bit UseNamedOperandTable = 0;
- }
- /// PseudoInstExpansion - Expansion information for a pseudo-instruction.
- /// Which instruction it expands to and how the operands map from the
- /// pseudo.
- class PseudoInstExpansion<dag Result> {
- dag ResultInst = Result; // The instruction to generate.
- bit isPseudo = 1;
- }
- /// Predicates - These are extra conditionals which are turned into instruction
- /// selector matching code. Currently each predicate is just a string.
- class Predicate<string cond> {
- string CondString = cond;
- /// AssemblerMatcherPredicate - If this feature can be used by the assembler
- /// matcher, this is true. Targets should set this by inheriting their
- /// feature from the AssemblerPredicate class in addition to Predicate.
- bit AssemblerMatcherPredicate = 0;
- /// AssemblerCondString - Name of the subtarget feature being tested used
- /// as alternative condition string used for assembler matcher.
- /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
- /// "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
- /// It can also list multiple features separated by ",".
- /// e.g. "ModeThumb,FeatureThumb2" is translated to
- /// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
- string AssemblerCondString = "";
- /// PredicateName - User-level name to use for the predicate. Mainly for use
- /// in diagnostics such as missing feature errors in the asm matcher.
- string PredicateName = "";
- }
- /// NoHonorSignDependentRounding - This predicate is true if support for
- /// sign-dependent-rounding is not enabled.
- def NoHonorSignDependentRounding
- : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
- class Requires<list<Predicate> preds> {
- list<Predicate> Predicates = preds;
- }
- /// ops definition - This is just a simple marker used to identify the operand
- /// list for an instruction. outs and ins are identical both syntactically and
- /// semantically; they are used to define def operands and use operands to
- /// improve readibility. This should be used like this:
- /// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
- def ops;
- def outs;
- def ins;
- /// variable_ops definition - Mark this instruction as taking a variable number
- /// of operands.
- def variable_ops;
- /// PointerLikeRegClass - Values that are designed to have pointer width are
- /// derived from this. TableGen treats the register class as having a symbolic
- /// type that it doesn't know, and resolves the actual regclass to use by using
- /// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
- class PointerLikeRegClass<int Kind> {
- int RegClassKind = Kind;
- }
- /// ptr_rc definition - Mark this operand as being a pointer value whose
- /// register class is resolved dynamically via a callback to TargetInstrInfo.
- /// FIXME: We should probably change this to a class which contain a list of
- /// flags. But currently we have but one flag.
- def ptr_rc : PointerLikeRegClass<0>;
- /// unknown definition - Mark this operand as being of unknown type, causing
- /// it to be resolved by inference in the context it is used.
- class unknown_class;
- def unknown : unknown_class;
- /// AsmOperandClass - Representation for the kinds of operands which the target
- /// specific parser can create and the assembly matcher may need to distinguish.
- ///
- /// Operand classes are used to define the order in which instructions are
- /// matched, to ensure that the instruction which gets matched for any
- /// particular list of operands is deterministic.
- ///
- /// The target specific parser must be able to classify a parsed operand into a
- /// unique class which does not partially overlap with any other classes. It can
- /// match a subset of some other class, in which case the super class field
- /// should be defined.
- class AsmOperandClass {
- /// The name to use for this class, which should be usable as an enum value.
- string Name = ?;
- /// The super classes of this operand.
- list<AsmOperandClass> SuperClasses = [];
- /// The name of the method on the target specific operand to call to test
- /// whether the operand is an instance of this class. If not set, this will
- /// default to "isFoo", where Foo is the AsmOperandClass name. The method
- /// signature should be:
- /// bool isFoo() const;
- string PredicateMethod = ?;
- /// The name of the method on the target specific operand to call to add the
- /// target specific operand to an MCInst. If not set, this will default to
- /// "addFooOperands", where Foo is the AsmOperandClass name. The method
- /// signature should be:
- /// void addFooOperands(MCInst &Inst, unsigned N) const;
- string RenderMethod = ?;
- /// The name of the method on the target specific operand to call to custom
- /// handle the operand parsing. This is useful when the operands do not relate
- /// to immediates or registers and are very instruction specific (as flags to
- /// set in a processor register, coprocessor number, ...).
- string ParserMethod = ?;
- // The diagnostic type to present when referencing this operand in a
- // match failure error message. By default, use a generic "invalid operand"
- // diagnostic. The target AsmParser maps these codes to text.
- string DiagnosticType = "";
- }
- def ImmAsmOperand : AsmOperandClass {
- let Name = "Imm";
- }
- /// Operand Types - These provide the built-in operand types that may be used
- /// by a target. Targets can optionally provide their own operand types as
- /// needed, though this should not be needed for RISC targets.
- class Operand<ValueType ty> : DAGOperand {
- ValueType Type = ty;
- string PrintMethod = "printOperand";
- string EncoderMethod = "";
- string DecoderMethod = "";
- string OperandType = "OPERAND_UNKNOWN";
- dag MIOperandInfo = (ops);
- // MCOperandPredicate - Optionally, a code fragment operating on
- // const MCOperand &MCOp, and returning a bool, to indicate if
- // the value of MCOp is valid for the specific subclass of Operand
- code MCOperandPredicate;
- // ParserMatchClass - The "match class" that operands of this type fit
- // in. Match classes are used to define the order in which instructions are
- // match, to ensure that which instructions gets matched is deterministic.
- //
- // The target specific parser must be able to classify an parsed operand into
- // a unique class, which does not partially overlap with any other classes. It
- // can match a subset of some other class, in which case the AsmOperandClass
- // should declare the other operand as one of its super classes.
- AsmOperandClass ParserMatchClass = ImmAsmOperand;
- }
- class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
- : DAGOperand {
- // RegClass - The register class of the operand.
- RegisterClass RegClass = regclass;
- // PrintMethod - The target method to call to print register operands of
- // this type. The method normally will just use an alt-name index to look
- // up the name to print. Default to the generic printOperand().
- string PrintMethod = pm;
- // ParserMatchClass - The "match class" that operands of this type fit
- // in. Match classes are used to define the order in which instructions are
- // match, to ensure that which instructions gets matched is deterministic.
- //
- // The target specific parser must be able to classify an parsed operand into
- // a unique class, which does not partially overlap with any other classes. It
- // can match a subset of some other class, in which case the AsmOperandClass
- // should declare the other operand as one of its super classes.
- AsmOperandClass ParserMatchClass;
- string OperandNamespace = "MCOI";
- string OperandType = "OPERAND_REGISTER";
- }
- let OperandType = "OPERAND_IMMEDIATE" in {
- def i1imm : Operand<i1>;
- def i8imm : Operand<i8>;
- def i16imm : Operand<i16>;
- def i32imm : Operand<i32>;
- def i64imm : Operand<i64>;
- def f32imm : Operand<f32>;
- def f64imm : Operand<f64>;
- }
- /// zero_reg definition - Special node to stand for the zero register.
- ///
- def zero_reg;
- /// All operands which the MC layer classifies as predicates should inherit from
- /// this class in some manner. This is already handled for the most commonly
- /// used PredicateOperand, but may be useful in other circumstances.
- class PredicateOp;
- /// OperandWithDefaultOps - This Operand class can be used as the parent class
- /// for an Operand that needs to be initialized with a default value if
- /// no value is supplied in a pattern. This class can be used to simplify the
- /// pattern definitions for instructions that have target specific flags
- /// encoded as immediate operands.
- class OperandWithDefaultOps<ValueType ty, dag defaultops>
- : Operand<ty> {
- dag DefaultOps = defaultops;
- }
- /// PredicateOperand - This can be used to define a predicate operand for an
- /// instruction. OpTypes specifies the MIOperandInfo for the operand, and
- /// AlwaysVal specifies the value of this predicate when set to "always
- /// execute".
- class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
- : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
- let MIOperandInfo = OpTypes;
- }
- /// OptionalDefOperand - This is used to define a optional definition operand
- /// for an instruction. DefaultOps is the register the operand represents if
- /// none is supplied, e.g. zero_reg.
- class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
- : OperandWithDefaultOps<ty, defaultops> {
- let MIOperandInfo = OpTypes;
- }
- // InstrInfo - This class should only be instantiated once to provide parameters
- // which are global to the target machine.
- //
- class InstrInfo {
- // Target can specify its instructions in either big or little-endian formats.
- // For instance, while both Sparc and PowerPC are big-endian platforms, the
- // Sparc manual specifies its instructions in the format [31..0] (big), while
- // PowerPC specifies them using the format [0..31] (little).
- bit isLittleEndianEncoding = 0;
- // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
- // by default, and TableGen will infer their value from the instruction
- // pattern when possible.
- //
- // Normally, TableGen will issue an error it it can't infer the value of a
- // property that hasn't been set explicitly. When guessInstructionProperties
- // is set, it will guess a safe value instead.
- //
- // This option is a temporary migration help. It will go away.
- bit guessInstructionProperties = 1;
- // TableGen's instruction encoder generator has support for matching operands
- // to bit-field variables both by name and by position. While matching by
- // name is preferred, this is currently not possible for complex operands,
- // and some targets still reply on the positional encoding rules. When
- // generating a decoder for such targets, the positional encoding rules must
- // be used by the decoder generator as well.
- //
- // This option is temporary; it will go away once the TableGen decoder
- // generator has better support for complex operands and targets have
- // migrated away from using positionally encoded operands.
- bit decodePositionallyEncodedOperands = 0;
- // When set, this indicates that there will be no overlap between those
- // operands that are matched by ordering (positional operands) and those
- // matched by name.
- //
- // This option is temporary; it will go away once the TableGen decoder
- // generator has better support for complex operands and targets have
- // migrated away from using positionally encoded operands.
- bit noNamedPositionallyEncodedOperands = 0;
- }
- // Standard Pseudo Instructions.
- // This list must match TargetOpcodes.h and CodeGenTarget.cpp.
- // Only these instructions are allowed in the TargetOpcode namespace.
- let isCodeGenOnly = 1, isPseudo = 1, Namespace = "TargetOpcode" in {
- def PHI : Instruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let AsmString = "PHINODE";
- }
- def INLINEASM : Instruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let AsmString = "";
- let hasSideEffects = 0; // Note side effect is encoded in an operand.
- }
- def CFI_INSTRUCTION : Instruction {
- let OutOperandList = (outs);
- let InOperandList = (ins i32imm:$id);
- let AsmString = "";
- let hasCtrlDep = 1;
- let isNotDuplicable = 1;
- }
- def EH_LABEL : Instruction {
- let OutOperandList = (outs);
- let InOperandList = (ins i32imm:$id);
- let AsmString = "";
- let hasCtrlDep = 1;
- let isNotDuplicable = 1;
- }
- def GC_LABEL : Instruction {
- let OutOperandList = (outs);
- let InOperandList = (ins i32imm:$id);
- let AsmString = "";
- let hasCtrlDep = 1;
- let isNotDuplicable = 1;
- }
- def KILL : Instruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let AsmString = "";
- let hasSideEffects = 0;
- }
- def EXTRACT_SUBREG : Instruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
- let AsmString = "";
- let hasSideEffects = 0;
- }
- def INSERT_SUBREG : Instruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
- let AsmString = "";
- let hasSideEffects = 0;
- let Constraints = "$supersrc = $dst";
- }
- def IMPLICIT_DEF : Instruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins);
- let AsmString = "";
- let hasSideEffects = 0;
- let isReMaterializable = 1;
- let isAsCheapAsAMove = 1;
- }
- def SUBREG_TO_REG : Instruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
- let AsmString = "";
- let hasSideEffects = 0;
- }
- def COPY_TO_REGCLASS : Instruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins unknown:$src, i32imm:$regclass);
- let AsmString = "";
- let hasSideEffects = 0;
- let isAsCheapAsAMove = 1;
- }
- def DBG_VALUE : Instruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let AsmString = "DBG_VALUE";
- let hasSideEffects = 0;
- }
- def REG_SEQUENCE : Instruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins unknown:$supersrc, variable_ops);
- let AsmString = "";
- let hasSideEffects = 0;
- let isAsCheapAsAMove = 1;
- }
- def COPY : Instruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins unknown:$src);
- let AsmString = "";
- let hasSideEffects = 0;
- let isAsCheapAsAMove = 1;
- }
- def BUNDLE : Instruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let AsmString = "BUNDLE";
- }
- def LIFETIME_START : Instruction {
- let OutOperandList = (outs);
- let InOperandList = (ins i32imm:$id);
- let AsmString = "LIFETIME_START";
- let hasSideEffects = 0;
- }
- def LIFETIME_END : Instruction {
- let OutOperandList = (outs);
- let InOperandList = (ins i32imm:$id);
- let AsmString = "LIFETIME_END";
- let hasSideEffects = 0;
- }
- def STACKMAP : Instruction {
- let OutOperandList = (outs);
- let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
- let isCall = 1;
- let mayLoad = 1;
- let usesCustomInserter = 1;
- }
- def PATCHPOINT : Instruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
- i32imm:$nargs, i32imm:$cc, variable_ops);
- let isCall = 1;
- let mayLoad = 1;
- let usesCustomInserter = 1;
- }
- def STATEPOINT : Instruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let usesCustomInserter = 1;
- let mayLoad = 1;
- let mayStore = 1;
- let hasSideEffects = 1;
- let isCall = 1;
- }
- def LOAD_STACK_GUARD : Instruction {
- let OutOperandList = (outs ptr_rc:$dst);
- let InOperandList = (ins);
- let mayLoad = 1;
- bit isReMaterializable = 1;
- let hasSideEffects = 0;
- bit isPseudo = 1;
- }
- def LOCAL_ESCAPE : Instruction {
- // This instruction is really just a label. It has to be part of the chain so
- // that it doesn't get dropped from the DAG, but it produces nothing and has
- // no side effects.
- let OutOperandList = (outs);
- let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
- let hasSideEffects = 0;
- let hasCtrlDep = 1;
- }
- def FAULTING_LOAD_OP : Instruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins variable_ops);
- let usesCustomInserter = 1;
- let mayLoad = 1;
- }
- }
- //===----------------------------------------------------------------------===//
- // AsmParser - This class can be implemented by targets that wish to implement
- // .s file parsing.
- //
- // Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
- // syntax on X86 for example).
- //
- class AsmParser {
- // AsmParserClassName - This specifies the suffix to use for the asmparser
- // class. Generated AsmParser classes are always prefixed with the target
- // name.
- string AsmParserClassName = "AsmParser";
- // AsmParserInstCleanup - If non-empty, this is the name of a custom member
- // function of the AsmParser class to call on every matched instruction.
- // This can be used to perform target specific instruction post-processing.
- string AsmParserInstCleanup = "";
- // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
- // written register name matcher
- bit ShouldEmitMatchRegisterName = 1;
- /// Does the instruction mnemonic allow '.'
- bit MnemonicContainsDot = 0;
- }
- def DefaultAsmParser : AsmParser;
- //===----------------------------------------------------------------------===//
- // AsmParserVariant - Subtargets can have multiple different assembly parsers
- // (e.g. AT&T vs Intel syntax on X86 for example). This class can be
- // implemented by targets to describe such variants.
- //
- class AsmParserVariant {
- // Variant - AsmParsers can be of multiple different variants. Variants are
- // used to support targets that need to parser multiple formats for the
- // assembly language.
- int Variant = 0;
- // Name - The AsmParser variant name (e.g., AT&T vs Intel).
- string Name = "";
- // CommentDelimiter - If given, the delimiter string used to recognize
- // comments which are hard coded in the .td assembler strings for individual
- // instructions.
- string CommentDelimiter = "";
- // RegisterPrefix - If given, the token prefix which indicates a register
- // token. This is used by the matcher to automatically recognize hard coded
- // register tokens as constrained registers, instead of tokens, for the
- // purposes of matching.
- string RegisterPrefix = "";
- }
- def DefaultAsmParserVariant : AsmParserVariant;
- /// AssemblerPredicate - This is a Predicate that can be used when the assembler
- /// matches instructions and aliases.
- class AssemblerPredicate<string cond, string name = ""> {
- bit AssemblerMatcherPredicate = 1;
- string AssemblerCondString = cond;
- string PredicateName = name;
- }
- /// TokenAlias - This class allows targets to define assembler token
- /// operand aliases. That is, a token literal operand which is equivalent
- /// to another, canonical, token literal. For example, ARM allows:
- /// vmov.u32 s4, #0 -> vmov.i32, #0
- /// 'u32' is a more specific designator for the 32-bit integer type specifier
- /// and is legal for any instruction which accepts 'i32' as a datatype suffix.
- /// def : TokenAlias<".u32", ".i32">;
- ///
- /// This works by marking the match class of 'From' as a subclass of the
- /// match class of 'To'.
- class TokenAlias<string From, string To> {
- string FromToken = From;
- string ToToken = To;
- }
- /// MnemonicAlias - This class allows targets to define assembler mnemonic
- /// aliases. This should be used when all forms of one mnemonic are accepted
- /// with a different mnemonic. For example, X86 allows:
- /// sal %al, 1 -> shl %al, 1
- /// sal %ax, %cl -> shl %ax, %cl
- /// sal %eax, %cl -> shl %eax, %cl
- /// etc. Though "sal" is accepted with many forms, all of them are directly
- /// translated to a shl, so it can be handled with (in the case of X86, it
- /// actually has one for each suffix as well):
- /// def : MnemonicAlias<"sal", "shl">;
- ///
- /// Mnemonic aliases are mapped before any other translation in the match phase,
- /// and do allow Requires predicates, e.g.:
- ///
- /// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
- /// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
- ///
- /// Mnemonic aliases can also be constrained to specific variants, e.g.:
- ///
- /// def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
- ///
- /// If no variant (e.g., "att" or "intel") is specified then the alias is
- /// applied unconditionally.
- class MnemonicAlias<string From, string To, string VariantName = ""> {
- string FromMnemonic = From;
- string ToMnemonic = To;
- string AsmVariantName = VariantName;
- // Predicates - Predicates that must be true for this remapping to happen.
- list<Predicate> Predicates = [];
- }
- /// InstAlias - This defines an alternate assembly syntax that is allowed to
- /// match an instruction that has a different (more canonical) assembly
- /// representation.
- class InstAlias<string Asm, dag Result, int Emit = 1> {
- string AsmString = Asm; // The .s format to match the instruction with.
- dag ResultInst = Result; // The MCInst to generate.
- // This determines which order the InstPrinter detects aliases for
- // printing. A larger value makes the alias more likely to be
- // emitted. The Instruction's own definition is notionally 0.5, so 0
- // disables printing and 1 enables it if there are no conflicting aliases.
- int EmitPriority = Emit;
- // Predicates - Predicates that must be true for this to match.
- list<Predicate> Predicates = [];
- // If the instruction specified in Result has defined an AsmMatchConverter
- // then setting this to 1 will cause the alias to use the AsmMatchConverter
- // function when converting the OperandVector into an MCInst instead of the
- // function that is generated by the dag Result.
- // Setting this to 0 will cause the alias to ignore the Result instruction's
- // defined AsmMatchConverter and instead use the function generated by the
- // dag Result.
- bit UseInstAsmMatchConverter = 1;
- }
- //===----------------------------------------------------------------------===//
- // AsmWriter - This class can be implemented by targets that need to customize
- // the format of the .s file writer.
- //
- // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
- // on X86 for example).
- //
- class AsmWriter {
- // AsmWriterClassName - This specifies the suffix to use for the asmwriter
- // class. Generated AsmWriter classes are always prefixed with the target
- // name.
- string AsmWriterClassName = "InstPrinter";
- // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
- // the various print methods.
- // FIXME: Remove after all ports are updated.
- int PassSubtarget = 0;
- // Variant - AsmWriters can be of multiple different variants. Variants are
- // used to support targets that need to emit assembly code in ways that are
- // mostly the same for different targets, but have minor differences in
- // syntax. If the asmstring contains {|} characters in them, this integer
- // will specify which alternative to use. For example "{x|y|z}" with Variant
- // == 1, will expand to "y".
- int Variant = 0;
- }
- def DefaultAsmWriter : AsmWriter;
- //===----------------------------------------------------------------------===//
- // Target - This class contains the "global" target information
- //
- class Target {
- // InstructionSet - Instruction set description for this target.
- InstrInfo InstructionSet;
- // AssemblyParsers - The AsmParser instances available for this target.
- list<AsmParser> AssemblyParsers = [DefaultAsmParser];
- /// AssemblyParserVariants - The AsmParserVariant instances available for
- /// this target.
- list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
- // AssemblyWriters - The AsmWriter instances available for this target.
- list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
- }
- //===----------------------------------------------------------------------===//
- // SubtargetFeature - A characteristic of the chip set.
- //
- class SubtargetFeature<string n, string a, string v, string d,
- list<SubtargetFeature> i = []> {
- // Name - Feature name. Used by command line (-mattr=) to determine the
- // appropriate target chip.
- //
- string Name = n;
- // Attribute - Attribute to be set by feature.
- //
- string Attribute = a;
- // Value - Value the attribute to be set to by feature.
- //
- string Value = v;
- // Desc - Feature description. Used by command line (-mattr=) to display help
- // information.
- //
- string Desc = d;
- // Implies - Features that this feature implies are present. If one of those
- // features isn't set, then this one shouldn't be set either.
- //
- list<SubtargetFeature> Implies = i;
- }
- /// Specifies a Subtarget feature that this instruction is deprecated on.
- class Deprecated<SubtargetFeature dep> {
- SubtargetFeature DeprecatedFeatureMask = dep;
- }
- /// A custom predicate used to determine if an instruction is
- /// deprecated or not.
- class ComplexDeprecationPredicate<string dep> {
- string ComplexDeprecationPredicate = dep;
- }
- //===----------------------------------------------------------------------===//
- // Processor chip sets - These values represent each of the chip sets supported
- // by the scheduler. Each Processor definition requires corresponding
- // instruction itineraries.
- //
- class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
- // Name - Chip set name. Used by command line (-mcpu=) to determine the
- // appropriate target chip.
- //
- string Name = n;
- // SchedModel - The machine model for scheduling and instruction cost.
- //
- SchedMachineModel SchedModel = NoSchedModel;
- // ProcItin - The scheduling information for the target processor.
- //
- ProcessorItineraries ProcItin = pi;
- // Features - list of
- list<SubtargetFeature> Features = f;
- }
- // ProcessorModel allows subtargets to specify the more general
- // SchedMachineModel instead if a ProcessorItinerary. Subtargets will
- // gradually move to this newer form.
- //
- // Although this class always passes NoItineraries to the Processor
- // class, the SchedMachineModel may still define valid Itineraries.
- class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f>
- : Processor<n, NoItineraries, f> {
- let SchedModel = m;
- }
- //===----------------------------------------------------------------------===//
- // InstrMapping - This class is used to create mapping tables to relate
- // instructions with each other based on the values specified in RowFields,
- // ColFields, KeyCol and ValueCols.
- //
- class InstrMapping {
- // FilterClass - Used to limit search space only to the instructions that
- // define the relationship modeled by this InstrMapping record.
- string FilterClass;
- // RowFields - List of fields/attributes that should be same for all the
- // instructions in a row of the relation table. Think of this as a set of
- // properties shared by all the instructions related by this relationship
- // model and is used to categorize instructions into subgroups. For instance,
- // if we want to define a relation that maps 'Add' instruction to its
- // predicated forms, we can define RowFields like this:
- //
- // let RowFields = BaseOp
- // All add instruction predicated/non-predicated will have to set their BaseOp
- // to the same value.
- //
- // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
- // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
- // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false' }
- list<string> RowFields = [];
- // List of fields/attributes that are same for all the instructions
- // in a column of the relation table.
- // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
- // based on the 'predSense' values. All the instruction in a specific
- // column have the same value and it is fixed for the column according
- // to the values set in 'ValueCols'.
- list<string> ColFields = [];
- // Values for the fields/attributes listed in 'ColFields'.
- // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
- // that models this relation) should be non-predicated.
- // In the example above, 'Add' is the key instruction.
- list<string> KeyCol = [];
- // List of values for the fields/attributes listed in 'ColFields', one for
- // each column in the relation table.
- //
- // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
- // table. First column requires all the instructions to have predSense
- // set to 'true' and second column requires it to be 'false'.
- list<list<string> > ValueCols = [];
- }
- //===----------------------------------------------------------------------===//
- // Pull in the common support for calling conventions.
- //
- include "llvm/Target/TargetCallingConv.td"
- //===----------------------------------------------------------------------===//
- // Pull in the common support for DAG isel generation.
- //
- include "llvm/Target/TargetSelectionDAG.td"
|