123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275 |
- //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file describes the target machine instruction set to the code generator.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_TARGET_TARGETINSTRINFO_H
- #define LLVM_TARGET_TARGETINSTRINFO_H
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/CodeGen/MachineCombinerPattern.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/MC/MCInstrInfo.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- namespace llvm {
- class InstrItineraryData;
- class LiveVariables;
- class MCAsmInfo;
- class MachineMemOperand;
- class MachineRegisterInfo;
- class MDNode;
- class MCInst;
- struct MCSchedModel;
- class MCSymbolRefExpr;
- class SDNode;
- class ScheduleHazardRecognizer;
- class SelectionDAG;
- class ScheduleDAG;
- class TargetRegisterClass;
- class TargetRegisterInfo;
- class BranchProbability;
- class TargetSubtargetInfo;
- class TargetSchedModel;
- class DFAPacketizer;
- template<class T> class SmallVectorImpl;
- //---------------------------------------------------------------------------
- ///
- /// TargetInstrInfo - Interface to description of machine instruction set
- ///
- class TargetInstrInfo : public MCInstrInfo {
- TargetInstrInfo(const TargetInstrInfo &) = delete;
- void operator=(const TargetInstrInfo &) = delete;
- public:
- TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u)
- : CallFrameSetupOpcode(CFSetupOpcode),
- CallFrameDestroyOpcode(CFDestroyOpcode) {
- }
- virtual ~TargetInstrInfo();
- /// Given a machine instruction descriptor, returns the register
- /// class constraint for OpNum, or NULL.
- const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
- unsigned OpNum,
- const TargetRegisterInfo *TRI,
- const MachineFunction &MF) const;
- /// Return true if the instruction is trivially rematerializable, meaning it
- /// has no side effects and requires no operands that aren't always available.
- /// This means the only allowed uses are constants and unallocatable physical
- /// registers so that the instructions result is independent of the place
- /// in the function.
- bool isTriviallyReMaterializable(const MachineInstr *MI,
- AliasAnalysis *AA = nullptr) const {
- return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
- (MI->getDesc().isRematerializable() &&
- (isReallyTriviallyReMaterializable(MI, AA) ||
- isReallyTriviallyReMaterializableGeneric(MI, AA)));
- }
- protected:
- /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
- /// set, this hook lets the target specify whether the instruction is actually
- /// trivially rematerializable, taking into consideration its operands. This
- /// predicate must return false if the instruction has any side effects other
- /// than producing a value, or if it requres any address registers that are
- /// not always available.
- /// Requirements must be check as stated in isTriviallyReMaterializable() .
- virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
- AliasAnalysis *AA) const {
- return false;
- }
- private:
- /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
- /// set and the target hook isReallyTriviallyReMaterializable returns false,
- /// this function does target-independent tests to determine if the
- /// instruction is really trivially rematerializable.
- bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
- AliasAnalysis *AA) const;
- public:
- /// These methods return the opcode of the frame setup/destroy instructions
- /// if they exist (-1 otherwise). Some targets use pseudo instructions in
- /// order to abstract away the difference between operating with a frame
- /// pointer and operating without, through the use of these two instructions.
- ///
- unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
- unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
- /// Returns the actual stack pointer adjustment made by an instruction
- /// as part of a call sequence. By default, only call frame setup/destroy
- /// instructions adjust the stack, but targets may want to override this
- /// to enable more fine-grained adjustment, or adjust by a different value.
- virtual int getSPAdjust(const MachineInstr *MI) const;
- /// Return true if the instruction is a "coalescable" extension instruction.
- /// That is, it's like a copy where it's legal for the source to overlap the
- /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
- /// expected the pre-extension value is available as a subreg of the result
- /// register. This also returns the sub-register index in SubIdx.
- virtual bool isCoalescableExtInstr(const MachineInstr &MI,
- unsigned &SrcReg, unsigned &DstReg,
- unsigned &SubIdx) const {
- return false;
- }
- /// If the specified machine instruction is a direct
- /// load from a stack slot, return the virtual or physical register number of
- /// the destination along with the FrameIndex of the loaded stack slot. If
- /// not, return 0. This predicate must return 0 if the instruction has
- /// any side effects other than loading from the stack slot.
- virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
- int &FrameIndex) const {
- return 0;
- }
- /// Check for post-frame ptr elimination stack locations as well.
- /// This uses a heuristic so it isn't reliable for correctness.
- virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
- int &FrameIndex) const {
- return 0;
- }
- /// If the specified machine instruction has a load from a stack slot,
- /// return true along with the FrameIndex of the loaded stack slot and the
- /// machine mem operand containing the reference.
- /// If not, return false. Unlike isLoadFromStackSlot, this returns true for
- /// any instructions that loads from the stack. This is just a hint, as some
- /// cases may be missed.
- virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
- const MachineMemOperand *&MMO,
- int &FrameIndex) const;
- /// If the specified machine instruction is a direct
- /// store to a stack slot, return the virtual or physical register number of
- /// the source reg along with the FrameIndex of the loaded stack slot. If
- /// not, return 0. This predicate must return 0 if the instruction has
- /// any side effects other than storing to the stack slot.
- virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
- int &FrameIndex) const {
- return 0;
- }
- /// Check for post-frame ptr elimination stack locations as well.
- /// This uses a heuristic, so it isn't reliable for correctness.
- virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
- int &FrameIndex) const {
- return 0;
- }
- /// If the specified machine instruction has a store to a stack slot,
- /// return true along with the FrameIndex of the loaded stack slot and the
- /// machine mem operand containing the reference.
- /// If not, return false. Unlike isStoreToStackSlot,
- /// this returns true for any instructions that stores to the
- /// stack. This is just a hint, as some cases may be missed.
- virtual bool hasStoreToStackSlot(const MachineInstr *MI,
- const MachineMemOperand *&MMO,
- int &FrameIndex) const;
- /// Return true if the specified machine instruction
- /// is a copy of one stack slot to another and has no other effect.
- /// Provide the identity of the two frame indices.
- virtual bool isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex,
- int &SrcFrameIndex) const {
- return false;
- }
- /// Compute the size in bytes and offset within a stack slot of a spilled
- /// register or subregister.
- ///
- /// \param [out] Size in bytes of the spilled value.
- /// \param [out] Offset in bytes within the stack slot.
- /// \returns true if both Size and Offset are successfully computed.
- ///
- /// Not all subregisters have computable spill slots. For example,
- /// subregisters registers may not be byte-sized, and a pair of discontiguous
- /// subregisters has no single offset.
- ///
- /// Targets with nontrivial bigendian implementations may need to override
- /// this, particularly to support spilled vector registers.
- virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
- unsigned &Size, unsigned &Offset,
- const MachineFunction &MF) const;
- /// Return true if the instruction is as cheap as a move instruction.
- ///
- /// Targets for different archs need to override this, and different
- /// micro-architectures can also be finely tuned inside.
- virtual bool isAsCheapAsAMove(const MachineInstr *MI) const {
- return MI->isAsCheapAsAMove();
- }
- /// Re-issue the specified 'original' instruction at the
- /// specific location targeting a new destination register.
- /// The register in Orig->getOperand(0).getReg() will be substituted by
- /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
- /// SubIdx.
- virtual void reMaterialize(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- unsigned DestReg, unsigned SubIdx,
- const MachineInstr *Orig,
- const TargetRegisterInfo &TRI) const;
- /// Create a duplicate of the Orig instruction in MF. This is like
- /// MachineFunction::CloneMachineInstr(), but the target may update operands
- /// that are required to be unique.
- ///
- /// The instruction must be duplicable as indicated by isNotDuplicable().
- virtual MachineInstr *duplicate(MachineInstr *Orig,
- MachineFunction &MF) const;
- /// This method must be implemented by targets that
- /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
- /// may be able to convert a two-address instruction into one or more true
- /// three-address instructions on demand. This allows the X86 target (for
- /// example) to convert ADD and SHL instructions into LEA instructions if they
- /// would require register copies due to two-addressness.
- ///
- /// This method returns a null pointer if the transformation cannot be
- /// performed, otherwise it returns the last new instruction.
- ///
- virtual MachineInstr *
- convertToThreeAddress(MachineFunction::iterator &MFI,
- MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
- return nullptr;
- }
- /// If a target has any instructions that are commutable but require
- /// converting to different instructions or making non-trivial changes to
- /// commute them, this method can overloaded to do that.
- /// The default implementation simply swaps the commutable operands.
- /// If NewMI is false, MI is modified in place and returned; otherwise, a
- /// new machine instruction is created and returned. Do not call this
- /// method for a non-commutable instruction, but there may be some cases
- /// where this method fails and returns null.
- virtual MachineInstr *commuteInstruction(MachineInstr *MI,
- bool NewMI = false) const;
- /// If specified MI is commutable, return the two operand indices that would
- /// swap value. Return false if the instruction
- /// is not in a form which this routine understands.
- virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
- unsigned &SrcOpIdx2) const;
- /// A pair composed of a register and a sub-register index.
- /// Used to give some type checking when modeling Reg:SubReg.
- struct RegSubRegPair {
- unsigned Reg;
- unsigned SubReg;
- RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
- : Reg(Reg), SubReg(SubReg) {}
- };
- /// A pair composed of a pair of a register and a sub-register index,
- /// and another sub-register index.
- /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
- struct RegSubRegPairAndIdx : RegSubRegPair {
- unsigned SubIdx;
- RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
- unsigned SubIdx = 0)
- : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
- };
- /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
- /// and \p DefIdx.
- /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
- /// the list is modeled as <Reg:SubReg, SubIdx>.
- /// E.g., REG_SEQUENCE vreg1:sub1, sub0, vreg2, sub1 would produce
- /// two elements:
- /// - vreg1:sub1, sub0
- /// - vreg2<:0>, sub1
- ///
- /// \returns true if it is possible to build such an input sequence
- /// with the pair \p MI, \p DefIdx. False otherwise.
- ///
- /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
- ///
- /// \note The generic implementation does not provide any support for
- /// MI.isRegSequenceLike(). In other words, one has to override
- /// getRegSequenceLikeInputs for target specific instructions.
- bool
- getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
- SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
- /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
- /// and \p DefIdx.
- /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
- /// E.g., EXTRACT_SUBREG vreg1:sub1, sub0, sub1 would produce:
- /// - vreg1:sub1, sub0
- ///
- /// \returns true if it is possible to build such an input sequence
- /// with the pair \p MI, \p DefIdx. False otherwise.
- ///
- /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
- ///
- /// \note The generic implementation does not provide any support for
- /// MI.isExtractSubregLike(). In other words, one has to override
- /// getExtractSubregLikeInputs for target specific instructions.
- bool
- getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
- RegSubRegPairAndIdx &InputReg) const;
- /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
- /// and \p DefIdx.
- /// \p [out] BaseReg and \p [out] InsertedReg contain
- /// the equivalent inputs of INSERT_SUBREG.
- /// E.g., INSERT_SUBREG vreg0:sub0, vreg1:sub1, sub3 would produce:
- /// - BaseReg: vreg0:sub0
- /// - InsertedReg: vreg1:sub1, sub3
- ///
- /// \returns true if it is possible to build such an input sequence
- /// with the pair \p MI, \p DefIdx. False otherwise.
- ///
- /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
- ///
- /// \note The generic implementation does not provide any support for
- /// MI.isInsertSubregLike(). In other words, one has to override
- /// getInsertSubregLikeInputs for target specific instructions.
- bool
- getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
- RegSubRegPair &BaseReg,
- RegSubRegPairAndIdx &InsertedReg) const;
- /// Return true if two machine instructions would produce identical values.
- /// By default, this is only true when the two instructions
- /// are deemed identical except for defs. If this function is called when the
- /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
- /// aggressive checks.
- virtual bool produceSameValue(const MachineInstr *MI0,
- const MachineInstr *MI1,
- const MachineRegisterInfo *MRI = nullptr) const;
- /// Analyze the branching code at the end of MBB, returning
- /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
- /// implemented for a target). Upon success, this returns false and returns
- /// with the following information in various cases:
- ///
- /// 1. If this block ends with no branches (it just falls through to its succ)
- /// just return false, leaving TBB/FBB null.
- /// 2. If this block ends with only an unconditional branch, it sets TBB to be
- /// the destination block.
- /// 3. If this block ends with a conditional branch and it falls through to a
- /// successor block, it sets TBB to be the branch destination block and a
- /// list of operands that evaluate the condition. These operands can be
- /// passed to other TargetInstrInfo methods to create new branches.
- /// 4. If this block ends with a conditional branch followed by an
- /// unconditional branch, it returns the 'true' destination in TBB, the
- /// 'false' destination in FBB, and a list of operands that evaluate the
- /// condition. These operands can be passed to other TargetInstrInfo
- /// methods to create new branches.
- ///
- /// Note that RemoveBranch and InsertBranch must be implemented to support
- /// cases where this method returns success.
- ///
- /// If AllowModify is true, then this routine is allowed to modify the basic
- /// block (e.g. delete instructions after the unconditional branch).
- ///
- virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
- MachineBasicBlock *&FBB,
- SmallVectorImpl<MachineOperand> &Cond,
- bool AllowModify = false) const {
- return true;
- }
- /// Represents a predicate at the MachineFunction level. The control flow a
- /// MachineBranchPredicate represents is:
- ///
- /// Reg <def>= LHS `Predicate` RHS == ConditionDef
- /// if Reg then goto TrueDest else goto FalseDest
- ///
- struct MachineBranchPredicate {
- enum ComparePredicate {
- PRED_EQ, // True if two values are equal
- PRED_NE, // True if two values are not equal
- PRED_INVALID // Sentinel value
- };
- ComparePredicate Predicate;
- MachineOperand LHS;
- MachineOperand RHS;
- MachineBasicBlock *TrueDest;
- MachineBasicBlock *FalseDest;
- MachineInstr *ConditionDef;
- /// SingleUseCondition is true if ConditionDef is dead except for the
- /// branch(es) at the end of the basic block.
- ///
- bool SingleUseCondition;
- explicit MachineBranchPredicate()
- : Predicate(PRED_INVALID), LHS(MachineOperand::CreateImm(0)),
- RHS(MachineOperand::CreateImm(0)), TrueDest(nullptr),
- FalseDest(nullptr), ConditionDef(nullptr), SingleUseCondition(false) {
- }
- };
- /// Analyze the branching code at the end of MBB and parse it into the
- /// MachineBranchPredicate structure if possible. Returns false on success
- /// and true on failure.
- ///
- /// If AllowModify is true, then this routine is allowed to modify the basic
- /// block (e.g. delete instructions after the unconditional branch).
- ///
- virtual bool AnalyzeBranchPredicate(MachineBasicBlock &MBB,
- MachineBranchPredicate &MBP,
- bool AllowModify = false) const {
- return true;
- }
- /// Remove the branching code at the end of the specific MBB.
- /// This is only invoked in cases where AnalyzeBranch returns success. It
- /// returns the number of instructions that were removed.
- virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
- llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
- }
- /// Insert branch code into the end of the specified MachineBasicBlock.
- /// The operands to this method are the same as those
- /// returned by AnalyzeBranch. This is only invoked in cases where
- /// AnalyzeBranch returns success. It returns the number of instructions
- /// inserted.
- ///
- /// It is also invoked by tail merging to add unconditional branches in
- /// cases where AnalyzeBranch doesn't apply because there was no original
- /// branch to analyze. At least this much must be implemented, else tail
- /// merging needs to be disabled.
- virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- ArrayRef<MachineOperand> Cond,
- DebugLoc DL) const {
- llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
- }
- /// Delete the instruction OldInst and everything after it, replacing it with
- /// an unconditional branch to NewDest. This is used by the tail merging pass.
- virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
- MachineBasicBlock *NewDest) const;
- /// Get an instruction that performs an unconditional branch to the given
- /// symbol.
- virtual void
- getUnconditionalBranch(MCInst &MI,
- const MCSymbolRefExpr *BranchTarget) const {
- llvm_unreachable("Target didn't implement "
- "TargetInstrInfo::getUnconditionalBranch!");
- }
- /// Get a machine trap instruction.
- virtual void getTrap(MCInst &MI) const {
- llvm_unreachable("Target didn't implement TargetInstrInfo::getTrap!");
- }
- /// Get a number of bytes that suffices to hold
- /// either the instruction returned by getUnconditionalBranch or the
- /// instruction returned by getTrap. This only makes sense because
- /// getUnconditionalBranch returns a single, specific instruction. This
- /// information is needed by the jumptable construction code, since it must
- /// decide how many bytes to use for a jumptable entry so it can generate the
- /// right mask.
- ///
- /// Note that if the jumptable instruction requires alignment, then that
- /// alignment should be factored into this required bound so that the
- /// resulting bound gives the right alignment for the instruction.
- virtual unsigned getJumpInstrTableEntryBound() const {
- // This method gets called by LLVMTargetMachine always, so it can't fail
- // just because there happens to be no implementation for this target.
- // Any code that tries to use a jumptable annotation without defining
- // getUnconditionalBranch on the appropriate Target will fail anyway, and
- // the value returned here won't matter in that case.
- return 0;
- }
- /// Return true if it's legal to split the given basic
- /// block at the specified instruction (i.e. instruction would be the start
- /// of a new basic block).
- virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MBBI) const {
- return true;
- }
- /// Return true if it's profitable to predicate
- /// instructions with accumulated instruction latency of "NumCycles"
- /// of the specified basic block, where the probability of the instructions
- /// being executed is given by Probability, and Confidence is a measure
- /// of our confidence that it will be properly predicted.
- virtual
- bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
- unsigned ExtraPredCycles,
- const BranchProbability &Probability) const {
- return false;
- }
- /// Second variant of isProfitableToIfCvt. This one
- /// checks for the case where two basic blocks from true and false path
- /// of a if-then-else (diamond) are predicated on mutally exclusive
- /// predicates, where the probability of the true path being taken is given
- /// by Probability, and Confidence is a measure of our confidence that it
- /// will be properly predicted.
- virtual bool
- isProfitableToIfCvt(MachineBasicBlock &TMBB,
- unsigned NumTCycles, unsigned ExtraTCycles,
- MachineBasicBlock &FMBB,
- unsigned NumFCycles, unsigned ExtraFCycles,
- const BranchProbability &Probability) const {
- return false;
- }
- /// Return true if it's profitable for if-converter to duplicate instructions
- /// of specified accumulated instruction latencies in the specified MBB to
- /// enable if-conversion.
- /// The probability of the instructions being executed is given by
- /// Probability, and Confidence is a measure of our confidence that it
- /// will be properly predicted.
- virtual bool
- isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
- const BranchProbability &Probability) const {
- return false;
- }
- /// Return true if it's profitable to unpredicate
- /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
- /// exclusive predicates.
- /// e.g.
- /// subeq r0, r1, #1
- /// addne r0, r1, #1
- /// =>
- /// sub r0, r1, #1
- /// addne r0, r1, #1
- ///
- /// This may be profitable is conditional instructions are always executed.
- virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
- MachineBasicBlock &FMBB) const {
- return false;
- }
- /// Return true if it is possible to insert a select
- /// instruction that chooses between TrueReg and FalseReg based on the
- /// condition code in Cond.
- ///
- /// When successful, also return the latency in cycles from TrueReg,
- /// FalseReg, and Cond to the destination register. In most cases, a select
- /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
- ///
- /// Some x86 implementations have 2-cycle cmov instructions.
- ///
- /// @param MBB Block where select instruction would be inserted.
- /// @param Cond Condition returned by AnalyzeBranch.
- /// @param TrueReg Virtual register to select when Cond is true.
- /// @param FalseReg Virtual register to select when Cond is false.
- /// @param CondCycles Latency from Cond+Branch to select output.
- /// @param TrueCycles Latency from TrueReg to select output.
- /// @param FalseCycles Latency from FalseReg to select output.
- virtual bool canInsertSelect(const MachineBasicBlock &MBB,
- ArrayRef<MachineOperand> Cond,
- unsigned TrueReg, unsigned FalseReg,
- int &CondCycles,
- int &TrueCycles, int &FalseCycles) const {
- return false;
- }
- /// Insert a select instruction into MBB before I that will copy TrueReg to
- /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
- ///
- /// This function can only be called after canInsertSelect() returned true.
- /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
- /// that the same flags or registers required by Cond are available at the
- /// insertion point.
- ///
- /// @param MBB Block where select instruction should be inserted.
- /// @param I Insertion point.
- /// @param DL Source location for debugging.
- /// @param DstReg Virtual register to be defined by select instruction.
- /// @param Cond Condition as computed by AnalyzeBranch.
- /// @param TrueReg Virtual register to copy when Cond is true.
- /// @param FalseReg Virtual register to copy when Cons is false.
- virtual void insertSelect(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I, DebugLoc DL,
- unsigned DstReg, ArrayRef<MachineOperand> Cond,
- unsigned TrueReg, unsigned FalseReg) const {
- llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
- }
- /// Analyze the given select instruction, returning true if
- /// it cannot be understood. It is assumed that MI->isSelect() is true.
- ///
- /// When successful, return the controlling condition and the operands that
- /// determine the true and false result values.
- ///
- /// Result = SELECT Cond, TrueOp, FalseOp
- ///
- /// Some targets can optimize select instructions, for example by predicating
- /// the instruction defining one of the operands. Such targets should set
- /// Optimizable.
- ///
- /// @param MI Select instruction to analyze.
- /// @param Cond Condition controlling the select.
- /// @param TrueOp Operand number of the value selected when Cond is true.
- /// @param FalseOp Operand number of the value selected when Cond is false.
- /// @param Optimizable Returned as true if MI is optimizable.
- /// @returns False on success.
- virtual bool analyzeSelect(const MachineInstr *MI,
- SmallVectorImpl<MachineOperand> &Cond,
- unsigned &TrueOp, unsigned &FalseOp,
- bool &Optimizable) const {
- assert(MI && MI->getDesc().isSelect() && "MI must be a select instruction");
- return true;
- }
- /// Given a select instruction that was understood by
- /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
- /// merging it with one of its operands. Returns NULL on failure.
- ///
- /// When successful, returns the new select instruction. The client is
- /// responsible for deleting MI.
- ///
- /// If both sides of the select can be optimized, PreferFalse is used to pick
- /// a side.
- ///
- /// @param MI Optimizable select instruction.
- /// @param NewMIs Set that record all MIs in the basic block up to \p
- /// MI. Has to be updated with any newly created MI or deleted ones.
- /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
- /// @returns Optimized instruction or NULL.
- virtual MachineInstr *optimizeSelect(MachineInstr *MI,
- SmallPtrSetImpl<MachineInstr *> &NewMIs,
- bool PreferFalse = false) const {
- // This function must be implemented if Optimizable is ever set.
- llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
- }
- /// Emit instructions to copy a pair of physical registers.
- ///
- /// This function should support copies within any legal register class as
- /// well as any cross-class copies created during instruction selection.
- ///
- /// The source and destination registers may overlap, which may require a
- /// careful implementation when multiple copy instructions are required for
- /// large registers. See for example the ARM target.
- virtual void copyPhysReg(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI, DebugLoc DL,
- unsigned DestReg, unsigned SrcReg,
- bool KillSrc) const {
- llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
- }
- /// Store the specified register of the given register class to the specified
- /// stack frame index. The store instruction is to be added to the given
- /// machine basic block before the specified machine instruction. If isKill
- /// is true, the register operand is the last use and must be marked kill.
- virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- unsigned SrcReg, bool isKill, int FrameIndex,
- const TargetRegisterClass *RC,
- const TargetRegisterInfo *TRI) const {
- llvm_unreachable("Target didn't implement "
- "TargetInstrInfo::storeRegToStackSlot!");
- }
- /// Load the specified register of the given register class from the specified
- /// stack frame index. The load instruction is to be added to the given
- /// machine basic block before the specified machine instruction.
- virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- unsigned DestReg, int FrameIndex,
- const TargetRegisterClass *RC,
- const TargetRegisterInfo *TRI) const {
- llvm_unreachable("Target didn't implement "
- "TargetInstrInfo::loadRegFromStackSlot!");
- }
- /// This function is called for all pseudo instructions
- /// that remain after register allocation. Many pseudo instructions are
- /// created to help register allocation. This is the place to convert them
- /// into real instructions. The target can edit MI in place, or it can insert
- /// new instructions and erase MI. The function should return true if
- /// anything was changed.
- virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
- return false;
- }
- /// Attempt to fold a load or store of the specified stack
- /// slot into the specified machine instruction for the specified operand(s).
- /// If this is possible, a new instruction is returned with the specified
- /// operand folded, otherwise NULL is returned.
- /// The new instruction is inserted before MI, and the client is responsible
- /// for removing the old instruction.
- MachineInstr *foldMemoryOperand(MachineBasicBlock::iterator MI,
- ArrayRef<unsigned> Ops, int FrameIndex) const;
- /// Same as the previous version except it allows folding of any load and
- /// store from / to any address, not just from a specific stack slot.
- MachineInstr *foldMemoryOperand(MachineBasicBlock::iterator MI,
- ArrayRef<unsigned> Ops,
- MachineInstr *LoadMI) const;
- /// Return true when there is potentially a faster code sequence
- /// for an instruction chain ending in \p Root. All potential patterns are
- /// returned in the \p Pattern vector. Pattern should be sorted in priority
- /// order since the pattern evaluator stops checking as soon as it finds a
- /// faster sequence.
- /// \param Root - Instruction that could be combined with one of its operands
- /// \param Pattern - Vector of possible combination patterns
- virtual bool getMachineCombinerPatterns(
- MachineInstr &Root,
- SmallVectorImpl<MachineCombinerPattern::MC_PATTERN> &Pattern) const {
- return false;
- }
- /// When getMachineCombinerPatterns() finds patterns, this function generates
- /// the instructions that could replace the original code sequence. The client
- /// has to decide whether the actual replacement is beneficial or not.
- /// \param Root - Instruction that could be combined with one of its operands
- /// \param Pattern - Combination pattern for Root
- /// \param InsInstrs - Vector of new instructions that implement P
- /// \param DelInstrs - Old instructions, including Root, that could be
- /// replaced by InsInstr
- /// \param InstrIdxForVirtReg - map of virtual register to instruction in
- /// InsInstr that defines it
- virtual void genAlternativeCodeSequence(
- MachineInstr &Root, MachineCombinerPattern::MC_PATTERN Pattern,
- SmallVectorImpl<MachineInstr *> &InsInstrs,
- SmallVectorImpl<MachineInstr *> &DelInstrs,
- DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
- return;
- }
- /// Return true when a target supports MachineCombiner.
- virtual bool useMachineCombiner() const { return false; }
- protected:
- /// Target-dependent implementation for foldMemoryOperand.
- /// Target-independent code in foldMemoryOperand will
- /// take care of adding a MachineMemOperand to the newly created instruction.
- /// The instruction and any auxiliary instructions necessary will be inserted
- /// at InsertPt.
- virtual MachineInstr *foldMemoryOperandImpl(
- MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
- MachineBasicBlock::iterator InsertPt, int FrameIndex) const {
- return nullptr;
- }
- /// Target-dependent implementation for foldMemoryOperand.
- /// Target-independent code in foldMemoryOperand will
- /// take care of adding a MachineMemOperand to the newly created instruction.
- /// The instruction and any auxiliary instructions necessary will be inserted
- /// at InsertPt.
- virtual MachineInstr *foldMemoryOperandImpl(
- MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
- MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const {
- return nullptr;
- }
- /// \brief Target-dependent implementation of getRegSequenceInputs.
- ///
- /// \returns true if it is possible to build the equivalent
- /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
- ///
- /// \pre MI.isRegSequenceLike().
- ///
- /// \see TargetInstrInfo::getRegSequenceInputs.
- virtual bool getRegSequenceLikeInputs(
- const MachineInstr &MI, unsigned DefIdx,
- SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
- return false;
- }
- /// \brief Target-dependent implementation of getExtractSubregInputs.
- ///
- /// \returns true if it is possible to build the equivalent
- /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
- ///
- /// \pre MI.isExtractSubregLike().
- ///
- /// \see TargetInstrInfo::getExtractSubregInputs.
- virtual bool getExtractSubregLikeInputs(
- const MachineInstr &MI, unsigned DefIdx,
- RegSubRegPairAndIdx &InputReg) const {
- return false;
- }
- /// \brief Target-dependent implementation of getInsertSubregInputs.
- ///
- /// \returns true if it is possible to build the equivalent
- /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
- ///
- /// \pre MI.isInsertSubregLike().
- ///
- /// \see TargetInstrInfo::getInsertSubregInputs.
- virtual bool
- getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
- RegSubRegPair &BaseReg,
- RegSubRegPairAndIdx &InsertedReg) const {
- return false;
- }
- public:
- /// Returns true for the specified load / store if folding is possible.
- virtual bool canFoldMemoryOperand(const MachineInstr *MI,
- ArrayRef<unsigned> Ops) const;
- /// unfoldMemoryOperand - Separate a single instruction which folded a load or
- /// a store or a load and a store into two or more instruction. If this is
- /// possible, returns true as well as the new instructions by reference.
- virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
- unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
- SmallVectorImpl<MachineInstr*> &NewMIs) const{
- return false;
- }
- virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
- SmallVectorImpl<SDNode*> &NewNodes) const {
- return false;
- }
- /// Returns the opcode of the would be new
- /// instruction after load / store are unfolded from an instruction of the
- /// specified opcode. It returns zero if the specified unfolding is not
- /// possible. If LoadRegIndex is non-null, it is filled in with the operand
- /// index of the operand which will hold the register holding the loaded
- /// value.
- virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
- bool UnfoldLoad, bool UnfoldStore,
- unsigned *LoadRegIndex = nullptr) const {
- return 0;
- }
- /// This is used by the pre-regalloc scheduler to determine if two loads are
- /// loading from the same base address. It should only return true if the base
- /// pointers are the same and the only differences between the two addresses
- /// are the offset. It also returns the offsets by reference.
- virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
- int64_t &Offset1, int64_t &Offset2) const {
- return false;
- }
- /// This is a used by the pre-regalloc scheduler to determine (in conjunction
- /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
- /// On some targets if two loads are loading from
- /// addresses in the same cache line, it's better if they are scheduled
- /// together. This function takes two integers that represent the load offsets
- /// from the common base address. It returns true if it decides it's desirable
- /// to schedule the two loads together. "NumLoads" is the number of loads that
- /// have already been scheduled after Load1.
- virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
- int64_t Offset1, int64_t Offset2,
- unsigned NumLoads) const {
- return false;
- }
- /// Get the base register and byte offset of an instruction that reads/writes
- /// memory.
- virtual bool getMemOpBaseRegImmOfs(MachineInstr *MemOp, unsigned &BaseReg,
- unsigned &Offset,
- const TargetRegisterInfo *TRI) const {
- return false;
- }
- virtual bool enableClusterLoads() const { return false; }
- virtual bool shouldClusterLoads(MachineInstr *FirstLdSt,
- MachineInstr *SecondLdSt,
- unsigned NumLoads) const {
- return false;
- }
- /// Can this target fuse the given instructions if they are scheduled
- /// adjacent.
- virtual bool shouldScheduleAdjacent(MachineInstr* First,
- MachineInstr *Second) const {
- return false;
- }
- /// Reverses the branch condition of the specified condition list,
- /// returning false on success and true if it cannot be reversed.
- virtual
- bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
- return true;
- }
- /// Insert a noop into the instruction stream at the specified point.
- virtual void insertNoop(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI) const;
- /// Return the noop instruction to use for a noop.
- virtual void getNoopForMachoTarget(MCInst &NopInst) const;
- /// Returns true if the instruction is already predicated.
- virtual bool isPredicated(const MachineInstr *MI) const {
- return false;
- }
- /// Returns true if the instruction is a
- /// terminator instruction that has not been predicated.
- virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
- /// Convert the instruction into a predicated instruction.
- /// It returns true if the operation was successful.
- virtual
- bool PredicateInstruction(MachineInstr *MI,
- ArrayRef<MachineOperand> Pred) const;
- /// Returns true if the first specified predicate
- /// subsumes the second, e.g. GE subsumes GT.
- virtual
- bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
- ArrayRef<MachineOperand> Pred2) const {
- return false;
- }
- /// If the specified instruction defines any predicate
- /// or condition code register(s) used for predication, returns true as well
- /// as the definition predicate(s) by reference.
- virtual bool DefinesPredicate(MachineInstr *MI,
- std::vector<MachineOperand> &Pred) const {
- return false;
- }
- /// Return true if the specified instruction can be predicated.
- /// By default, this returns true for every instruction with a
- /// PredicateOperand.
- virtual bool isPredicable(MachineInstr *MI) const {
- return MI->getDesc().isPredicable();
- }
- /// Return true if it's safe to move a machine
- /// instruction that defines the specified register class.
- virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
- return true;
- }
- /// Test if the given instruction should be considered a scheduling boundary.
- /// This primarily includes labels and terminators.
- virtual bool isSchedulingBoundary(const MachineInstr *MI,
- const MachineBasicBlock *MBB,
- const MachineFunction &MF) const;
- /// Measure the specified inline asm to determine an approximation of its
- /// length.
- virtual unsigned getInlineAsmLength(const char *Str,
- const MCAsmInfo &MAI) const;
- /// Allocate and return a hazard recognizer to use for this target when
- /// scheduling the machine instructions before register allocation.
- virtual ScheduleHazardRecognizer*
- CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
- const ScheduleDAG *DAG) const;
- /// Allocate and return a hazard recognizer to use for this target when
- /// scheduling the machine instructions before register allocation.
- virtual ScheduleHazardRecognizer*
- CreateTargetMIHazardRecognizer(const InstrItineraryData*,
- const ScheduleDAG *DAG) const;
- /// Allocate and return a hazard recognizer to use for this target when
- /// scheduling the machine instructions after register allocation.
- virtual ScheduleHazardRecognizer*
- CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
- const ScheduleDAG *DAG) const;
- /// Provide a global flag for disabling the PreRA hazard recognizer that
- /// targets may choose to honor.
- bool usePreRAHazardRecognizer() const;
- /// For a comparison instruction, return the source registers
- /// in SrcReg and SrcReg2 if having two register operands, and the value it
- /// compares against in CmpValue. Return true if the comparison instruction
- /// can be analyzed.
- virtual bool analyzeCompare(const MachineInstr *MI,
- unsigned &SrcReg, unsigned &SrcReg2,
- int &Mask, int &Value) const {
- return false;
- }
- /// See if the comparison instruction can be converted
- /// into something more efficient. E.g., on ARM most instructions can set the
- /// flags register, obviating the need for a separate CMP.
- virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
- unsigned SrcReg, unsigned SrcReg2,
- int Mask, int Value,
- const MachineRegisterInfo *MRI) const {
- return false;
- }
- virtual bool optimizeCondBranch(MachineInstr *MI) const { return false; }
- /// Try to remove the load by folding it to a register operand at the use.
- /// We fold the load instructions if and only if the
- /// def and use are in the same BB. We only look at one load and see
- /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
- /// defined by the load we are trying to fold. DefMI returns the machine
- /// instruction that defines FoldAsLoadDefReg, and the function returns
- /// the machine instruction generated due to folding.
- virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
- const MachineRegisterInfo *MRI,
- unsigned &FoldAsLoadDefReg,
- MachineInstr *&DefMI) const {
- return nullptr;
- }
- /// 'Reg' is known to be defined by a move immediate instruction,
- /// try to fold the immediate into the use instruction.
- /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
- /// then the caller may assume that DefMI has been erased from its parent
- /// block. The caller may assume that it will not be erased by this
- /// function otherwise.
- virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
- unsigned Reg, MachineRegisterInfo *MRI) const {
- return false;
- }
- /// Return the number of u-operations the given machine
- /// instruction will be decoded to on the target cpu. The itinerary's
- /// IssueWidth is the number of microops that can be dispatched each
- /// cycle. An instruction with zero microops takes no dispatch resources.
- virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
- const MachineInstr *MI) const;
- /// Return true for pseudo instructions that don't consume any
- /// machine resources in their current form. These are common cases that the
- /// scheduler should consider free, rather than conservatively handling them
- /// as instructions with no itinerary.
- bool isZeroCost(unsigned Opcode) const {
- return Opcode <= TargetOpcode::COPY;
- }
- virtual int getOperandLatency(const InstrItineraryData *ItinData,
- SDNode *DefNode, unsigned DefIdx,
- SDNode *UseNode, unsigned UseIdx) const;
- /// Compute and return the use operand latency of a given pair of def and use.
- /// In most cases, the static scheduling itinerary was enough to determine the
- /// operand latency. But it may not be possible for instructions with variable
- /// number of defs / uses.
- ///
- /// This is a raw interface to the itinerary that may be directly overridden
- /// by a target. Use computeOperandLatency to get the best estimate of
- /// latency.
- virtual int getOperandLatency(const InstrItineraryData *ItinData,
- const MachineInstr *DefMI, unsigned DefIdx,
- const MachineInstr *UseMI,
- unsigned UseIdx) const;
- /// Compute and return the latency of the given data
- /// dependent def and use when the operand indices are already known.
- unsigned computeOperandLatency(const InstrItineraryData *ItinData,
- const MachineInstr *DefMI, unsigned DefIdx,
- const MachineInstr *UseMI, unsigned UseIdx)
- const;
- /// Compute the instruction latency of a given instruction.
- /// If the instruction has higher cost when predicated, it's returned via
- /// PredCost.
- virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
- const MachineInstr *MI,
- unsigned *PredCost = nullptr) const;
- virtual unsigned getPredicationCost(const MachineInstr *MI) const;
- virtual int getInstrLatency(const InstrItineraryData *ItinData,
- SDNode *Node) const;
- /// Return the default expected latency for a def based on it's opcode.
- unsigned defaultDefLatency(const MCSchedModel &SchedModel,
- const MachineInstr *DefMI) const;
- int computeDefOperandLatency(const InstrItineraryData *ItinData,
- const MachineInstr *DefMI) const;
- /// Return true if this opcode has high latency to its result.
- virtual bool isHighLatencyDef(int opc) const { return false; }
- /// Compute operand latency between a def of 'Reg'
- /// and a use in the current loop. Return true if the target considered
- /// it 'high'. This is used by optimization passes such as machine LICM to
- /// determine whether it makes sense to hoist an instruction out even in a
- /// high register pressure situation.
- virtual
- bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
- const MachineRegisterInfo *MRI,
- const MachineInstr *DefMI, unsigned DefIdx,
- const MachineInstr *UseMI, unsigned UseIdx) const {
- return false;
- }
- /// Compute operand latency of a def of 'Reg'. Return true
- /// if the target considered it 'low'.
- virtual
- bool hasLowDefLatency(const TargetSchedModel &SchedModel,
- const MachineInstr *DefMI, unsigned DefIdx) const;
- /// Perform target-specific instruction verification.
- virtual
- bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
- return true;
- }
- /// Return the current execution domain and bit mask of
- /// possible domains for instruction.
- ///
- /// Some micro-architectures have multiple execution domains, and multiple
- /// opcodes that perform the same operation in different domains. For
- /// example, the x86 architecture provides the por, orps, and orpd
- /// instructions that all do the same thing. There is a latency penalty if a
- /// register is written in one domain and read in another.
- ///
- /// This function returns a pair (domain, mask) containing the execution
- /// domain of MI, and a bit mask of possible domains. The setExecutionDomain
- /// function can be used to change the opcode to one of the domains in the
- /// bit mask. Instructions whose execution domain can't be changed should
- /// return a 0 mask.
- ///
- /// The execution domain numbers don't have any special meaning except domain
- /// 0 is used for instructions that are not associated with any interesting
- /// execution domain.
- ///
- virtual std::pair<uint16_t, uint16_t>
- getExecutionDomain(const MachineInstr *MI) const {
- return std::make_pair(0, 0);
- }
- /// Change the opcode of MI to execute in Domain.
- ///
- /// The bit (1 << Domain) must be set in the mask returned from
- /// getExecutionDomain(MI).
- virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
- /// Returns the preferred minimum clearance
- /// before an instruction with an unwanted partial register update.
- ///
- /// Some instructions only write part of a register, and implicitly need to
- /// read the other parts of the register. This may cause unwanted stalls
- /// preventing otherwise unrelated instructions from executing in parallel in
- /// an out-of-order CPU.
- ///
- /// For example, the x86 instruction cvtsi2ss writes its result to bits
- /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
- /// the instruction needs to wait for the old value of the register to become
- /// available:
- ///
- /// addps %xmm1, %xmm0
- /// movaps %xmm0, (%rax)
- /// cvtsi2ss %rbx, %xmm0
- ///
- /// In the code above, the cvtsi2ss instruction needs to wait for the addps
- /// instruction before it can issue, even though the high bits of %xmm0
- /// probably aren't needed.
- ///
- /// This hook returns the preferred clearance before MI, measured in
- /// instructions. Other defs of MI's operand OpNum are avoided in the last N
- /// instructions before MI. It should only return a positive value for
- /// unwanted dependencies. If the old bits of the defined register have
- /// useful values, or if MI is determined to otherwise read the dependency,
- /// the hook should return 0.
- ///
- /// The unwanted dependency may be handled by:
- ///
- /// 1. Allocating the same register for an MI def and use. That makes the
- /// unwanted dependency identical to a required dependency.
- ///
- /// 2. Allocating a register for the def that has no defs in the previous N
- /// instructions.
- ///
- /// 3. Calling breakPartialRegDependency() with the same arguments. This
- /// allows the target to insert a dependency breaking instruction.
- ///
- virtual unsigned
- getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
- const TargetRegisterInfo *TRI) const {
- // The default implementation returns 0 for no partial register dependency.
- return 0;
- }
- /// \brief Return the minimum clearance before an instruction that reads an
- /// unused register.
- ///
- /// For example, AVX instructions may copy part of a register operand into
- /// the unused high bits of the destination register.
- ///
- /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
- ///
- /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
- /// false dependence on any previous write to %xmm0.
- ///
- /// This hook works similarly to getPartialRegUpdateClearance, except that it
- /// does not take an operand index. Instead sets \p OpNum to the index of the
- /// unused register.
- virtual unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
- const TargetRegisterInfo *TRI) const {
- // The default implementation returns 0 for no undef register dependency.
- return 0;
- }
- /// Insert a dependency-breaking instruction
- /// before MI to eliminate an unwanted dependency on OpNum.
- ///
- /// If it wasn't possible to avoid a def in the last N instructions before MI
- /// (see getPartialRegUpdateClearance), this hook will be called to break the
- /// unwanted dependency.
- ///
- /// On x86, an xorps instruction can be used as a dependency breaker:
- ///
- /// addps %xmm1, %xmm0
- /// movaps %xmm0, (%rax)
- /// xorps %xmm0, %xmm0
- /// cvtsi2ss %rbx, %xmm0
- ///
- /// An <imp-kill> operand should be added to MI if an instruction was
- /// inserted. This ties the instructions together in the post-ra scheduler.
- ///
- virtual void
- breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
- const TargetRegisterInfo *TRI) const {}
- /// Create machine specific model for scheduling.
- virtual DFAPacketizer *
- CreateTargetScheduleState(const TargetSubtargetInfo &) const {
- return nullptr;
- }
- // Sometimes, it is possible for the target
- // to tell, even without aliasing information, that two MIs access different
- // memory addresses. This function returns true if two MIs access different
- // memory addresses and false otherwise.
- virtual bool
- areMemAccessesTriviallyDisjoint(MachineInstr *MIa, MachineInstr *MIb,
- AliasAnalysis *AA = nullptr) const {
- assert(MIa && (MIa->mayLoad() || MIa->mayStore()) &&
- "MIa must load from or modify a memory location");
- assert(MIb && (MIb->mayLoad() || MIb->mayStore()) &&
- "MIb must load from or modify a memory location");
- return false;
- }
- /// \brief Return the value to use for the MachineCSE's LookAheadLimit,
- /// which is a heuristic used for CSE'ing phys reg defs.
- virtual unsigned getMachineCSELookAheadLimit () const {
- // The default lookahead is small to prevent unprofitable quadratic
- // behavior.
- return 5;
- }
- private:
- unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
- };
- } // End llvm namespace
- #endif
|