123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835 |
- //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// This file describes how to lower LLVM code to machine code. This has two
- /// main components:
- ///
- /// 1. Which ValueTypes are natively supported by the target.
- /// 2. Which operations are supported for supported ValueTypes.
- /// 3. Cost thresholds for alternative implementations of certain operations.
- ///
- /// In addition it has a few other components, like information about FP
- /// immediates.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_TARGET_TARGETLOWERING_H
- #define LLVM_TARGET_TARGETLOWERING_H
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/CodeGen/DAGCombine.h"
- #include "llvm/CodeGen/RuntimeLibcalls.h"
- #include "llvm/CodeGen/SelectionDAGNodes.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/CallingConv.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/MC/MCRegisterInfo.h"
- #include "llvm/Target/TargetCallingConv.h"
- #include "llvm/Target/TargetMachine.h"
- #include <climits>
- #include <map>
- #include <vector>
- namespace llvm {
- class CallInst;
- class CCState;
- class FastISel;
- class FunctionLoweringInfo;
- class ImmutableCallSite;
- class IntrinsicInst;
- class MachineBasicBlock;
- class MachineFunction;
- class MachineInstr;
- class MachineJumpTableInfo;
- class MachineLoop;
- class Mangler;
- class MCContext;
- class MCExpr;
- class MCSymbol;
- template<typename T> class SmallVectorImpl;
- class DataLayout;
- class TargetRegisterClass;
- class TargetLibraryInfo;
- class TargetLoweringObjectFile;
- class Value;
- namespace Sched {
- enum Preference {
- None, // No preference
- Source, // Follow source order.
- RegPressure, // Scheduling for lowest register pressure.
- Hybrid, // Scheduling for both latency and register pressure.
- ILP, // Scheduling for ILP in low register pressure mode.
- VLIW // Scheduling for VLIW targets.
- };
- }
- /// This base class for TargetLowering contains the SelectionDAG-independent
- /// parts that can be used from the rest of CodeGen.
- class TargetLoweringBase {
- TargetLoweringBase(const TargetLoweringBase&) = delete;
- void operator=(const TargetLoweringBase&) = delete;
- public:
- /// This enum indicates whether operations are valid for a target, and if not,
- /// what action should be used to make them valid.
- enum LegalizeAction {
- Legal, // The target natively supports this operation.
- Promote, // This operation should be executed in a larger type.
- Expand, // Try to expand this to other ops, otherwise use a libcall.
- Custom // Use the LowerOperation hook to implement custom lowering.
- };
- /// This enum indicates whether a types are legal for a target, and if not,
- /// what action should be used to make them valid.
- enum LegalizeTypeAction {
- TypeLegal, // The target natively supports this type.
- TypePromoteInteger, // Replace this integer with a larger one.
- TypeExpandInteger, // Split this integer into two of half the size.
- TypeSoftenFloat, // Convert this float to a same size integer type.
- TypeExpandFloat, // Split this float into two of half the size.
- TypeScalarizeVector, // Replace this one-element vector with its element.
- TypeSplitVector, // Split this vector into two of half the size.
- TypeWidenVector, // This vector should be widened into a larger vector.
- TypePromoteFloat // Replace this float with a larger one.
- };
- /// LegalizeKind holds the legalization kind that needs to happen to EVT
- /// in order to type-legalize it.
- typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
- /// Enum that describes how the target represents true/false values.
- enum BooleanContent {
- UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage.
- ZeroOrOneBooleanContent, // All bits zero except for bit 0.
- ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
- };
- /// Enum that describes what type of support for selects the target has.
- enum SelectSupportKind {
- ScalarValSelect, // The target supports scalar selects (ex: cmov).
- ScalarCondVectorVal, // The target supports selects with a scalar condition
- // and vector values (ex: cmov).
- VectorMaskSelect // The target supports vector selects with a vector
- // mask (ex: x86 blends).
- };
- /// Enum that specifies what a AtomicRMWInst is expanded to, if at all. Exists
- /// because different targets have different levels of support for these
- /// atomic RMW instructions, and also have different options w.r.t. what they
- /// should expand to.
- enum class AtomicRMWExpansionKind {
- None, // Don't expand the instruction.
- LLSC, // Expand the instruction into loadlinked/storeconditional; used
- // by ARM/AArch64. Implies `hasLoadLinkedStoreConditional`
- // returns true.
- CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
- };
- static ISD::NodeType getExtendForContent(BooleanContent Content) {
- switch (Content) {
- case UndefinedBooleanContent:
- // Extend by adding rubbish bits.
- return ISD::ANY_EXTEND;
- case ZeroOrOneBooleanContent:
- // Extend by adding zero bits.
- return ISD::ZERO_EXTEND;
- case ZeroOrNegativeOneBooleanContent:
- // Extend by copying the sign bit.
- return ISD::SIGN_EXTEND;
- }
- llvm_unreachable("Invalid content kind");
- }
- /// NOTE: The TargetMachine owns TLOF.
- explicit TargetLoweringBase(const TargetMachine &TM);
- virtual ~TargetLoweringBase() {}
- protected:
- /// \brief Initialize all of the actions to default values.
- void initActions();
- public:
- const TargetMachine &getTargetMachine() const { return TM; }
- virtual bool useSoftFloat() const { return false; }
- /// Return the pointer type for the given address space, defaults to
- /// the pointer type from the data layout.
- /// FIXME: The default needs to be removed once all the code is updated.
- MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
- return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
- }
- /// EVT is not used in-tree, but is used by out-of-tree target.
- /// A documentation for this function would be nice...
- virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
- EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const;
- /// Returns the type to be used for the index operand of:
- /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
- /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
- virtual MVT getVectorIdxTy(const DataLayout &DL) const {
- return getPointerTy(DL);
- }
- /// Return true if the select operation is expensive for this target.
- bool isSelectExpensive() const { return SelectIsExpensive; }
- virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
- return true;
- }
- /// Return true if multiple condition registers are available.
- bool hasMultipleConditionRegisters() const {
- return HasMultipleConditionRegisters;
- }
- /// Return true if the target has BitExtract instructions.
- bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
- /// Return the preferred vector type legalization action.
- virtual TargetLoweringBase::LegalizeTypeAction
- getPreferredVectorAction(EVT VT) const {
- // The default action for one element vectors is to scalarize
- if (VT.getVectorNumElements() == 1)
- return TypeScalarizeVector;
- // The default action for other vectors is to promote
- return TypePromoteInteger;
- }
- // There are two general methods for expanding a BUILD_VECTOR node:
- // 1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
- // them together.
- // 2. Build the vector on the stack and then load it.
- // If this function returns true, then method (1) will be used, subject to
- // the constraint that all of the necessary shuffles are legal (as determined
- // by isShuffleMaskLegal). If this function returns false, then method (2) is
- // always used. The vector type, and the number of defined values, are
- // provided.
- virtual bool
- shouldExpandBuildVectorWithShuffles(EVT /* VT */,
- unsigned DefinedValues) const {
- return DefinedValues < 3;
- }
- /// Return true if integer divide is usually cheaper than a sequence of
- /// several shifts, adds, and multiplies for this target.
- bool isIntDivCheap() const { return IntDivIsCheap; }
- /// Return true if sqrt(x) is as cheap or cheaper than 1 / rsqrt(x)
- bool isFsqrtCheap() const {
- return FsqrtIsCheap;
- }
- /// Returns true if target has indicated at least one type should be bypassed.
- bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
- /// Returns map of slow types for division or remainder with corresponding
- /// fast types
- const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
- return BypassSlowDivWidths;
- }
- /// Return true if pow2 sdiv is cheaper than a chain of sra/srl/add/sra.
- bool isPow2SDivCheap() const { return Pow2SDivIsCheap; }
- /// Return true if Flow Control is an expensive operation that should be
- /// avoided.
- bool isJumpExpensive() const { return JumpIsExpensive; }
- /// Return true if selects are only cheaper than branches if the branch is
- /// unlikely to be predicted right.
- bool isPredictableSelectExpensive() const {
- return PredictableSelectIsExpensive;
- }
- /// isLoadBitCastBeneficial() - Return true if the following transform
- /// is beneficial.
- /// fold (conv (load x)) -> (load (conv*)x)
- /// On architectures that don't natively support some vector loads
- /// efficiently, casting the load to a smaller vector of larger types and
- /// loading is more efficient, however, this can be undone by optimizations in
- /// dag combiner.
- virtual bool isLoadBitCastBeneficial(EVT /* Load */,
- EVT /* Bitcast */) const {
- return true;
- }
- /// Return true if it is expected to be cheaper to do a store of a non-zero
- /// vector constant with the given size and type for the address space than to
- /// store the individual scalar element constants.
- virtual bool storeOfVectorConstantIsCheap(EVT MemVT,
- unsigned NumElem,
- unsigned AddrSpace) const {
- return false;
- }
- /// \brief Return true if it is cheap to speculate a call to intrinsic cttz.
- virtual bool isCheapToSpeculateCttz() const {
- return false;
- }
- /// \brief Return true if it is cheap to speculate a call to intrinsic ctlz.
- virtual bool isCheapToSpeculateCtlz() const {
- return false;
- }
- /// \brief Return if the target supports combining a
- /// chain like:
- /// \code
- /// %andResult = and %val1, #imm-with-one-bit-set;
- /// %icmpResult = icmp %andResult, 0
- /// br i1 %icmpResult, label %dest1, label %dest2
- /// \endcode
- /// into a single machine instruction of a form like:
- /// \code
- /// brOnBitSet %register, #bitNumber, dest
- /// \endcode
- bool isMaskAndBranchFoldingLegal() const {
- return MaskAndBranchFoldingIsLegal;
- }
- /// \brief Return true if the target wants to use the optimization that
- /// turns ext(promotableInst1(...(promotableInstN(load)))) into
- /// promotedInst1(...(promotedInstN(ext(load)))).
- bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
- /// Return true if the target can combine store(extractelement VectorTy,
- /// Idx).
- /// \p Cost[out] gives the cost of that transformation when this is true.
- virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
- unsigned &Cost) const {
- return false;
- }
- /// Return true if target supports floating point exceptions.
- bool hasFloatingPointExceptions() const {
- return HasFloatingPointExceptions;
- }
- /// Return true if target always beneficiates from combining into FMA for a
- /// given value type. This must typically return false on targets where FMA
- /// takes more cycles to execute than FADD.
- virtual bool enableAggressiveFMAFusion(EVT VT) const {
- return false;
- }
- /// Return the ValueType of the result of SETCC operations.
- virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
- EVT VT) const;
- /// Return the ValueType for comparison libcalls. Comparions libcalls include
- /// floating point comparion calls, and Ordered/Unordered check calls on
- /// floating point numbers.
- virtual
- MVT::SimpleValueType getCmpLibcallReturnType() const;
- /// For targets without i1 registers, this gives the nature of the high-bits
- /// of boolean values held in types wider than i1.
- ///
- /// "Boolean values" are special true/false values produced by nodes like
- /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
- /// Not to be confused with general values promoted from i1. Some cpus
- /// distinguish between vectors of boolean and scalars; the isVec parameter
- /// selects between the two kinds. For example on X86 a scalar boolean should
- /// be zero extended from i1, while the elements of a vector of booleans
- /// should be sign extended from i1.
- ///
- /// Some cpus also treat floating point types the same way as they treat
- /// vectors instead of the way they treat scalars.
- BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
- if (isVec)
- return BooleanVectorContents;
- return isFloat ? BooleanFloatContents : BooleanContents;
- }
- BooleanContent getBooleanContents(EVT Type) const {
- return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
- }
- /// Return target scheduling preference.
- Sched::Preference getSchedulingPreference() const {
- return SchedPreferenceInfo;
- }
- /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
- /// for different nodes. This function returns the preference (or none) for
- /// the given node.
- virtual Sched::Preference getSchedulingPreference(SDNode *) const {
- return Sched::None;
- }
- /// Return the register class that should be used for the specified value
- /// type.
- virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
- const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
- assert(RC && "This value type is not natively supported!");
- return RC;
- }
- /// Return the 'representative' register class for the specified value
- /// type.
- ///
- /// The 'representative' register class is the largest legal super-reg
- /// register class for the register class of the value type. For example, on
- /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
- /// register class is GR64 on x86_64.
- virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
- const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
- return RC;
- }
- /// Return the cost of the 'representative' register class for the specified
- /// value type.
- virtual uint8_t getRepRegClassCostFor(MVT VT) const {
- return RepRegClassCostForVT[VT.SimpleTy];
- }
- /// Return true if the target has native support for the specified value type.
- /// This means that it has a register that directly holds it without
- /// promotions or expansions.
- bool isTypeLegal(EVT VT) const {
- assert(!VT.isSimple() ||
- (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
- return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
- }
- class ValueTypeActionImpl {
- /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
- /// that indicates how instruction selection should deal with the type.
- uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
- public:
- ValueTypeActionImpl() {
- std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions), 0);
- }
- LegalizeTypeAction getTypeAction(MVT VT) const {
- return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
- }
- void setTypeAction(MVT VT, LegalizeTypeAction Action) {
- unsigned I = VT.SimpleTy;
- ValueTypeActions[I] = Action;
- }
- };
- const ValueTypeActionImpl &getValueTypeActions() const {
- return ValueTypeActions;
- }
- /// Return how we should legalize values of this type, either it is already
- /// legal (return 'Legal') or we need to promote it to a larger type (return
- /// 'Promote'), or we need to expand it into multiple registers of smaller
- /// integer type (return 'Expand'). 'Custom' is not an option.
- LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
- return getTypeConversion(Context, VT).first;
- }
- LegalizeTypeAction getTypeAction(MVT VT) const {
- return ValueTypeActions.getTypeAction(VT);
- }
- /// For types supported by the target, this is an identity function. For
- /// types that must be promoted to larger types, this returns the larger type
- /// to promote to. For integer types that are larger than the largest integer
- /// register, this contains one step in the expansion to get to the smaller
- /// register. For illegal floating point types, this returns the integer type
- /// to transform to.
- EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
- return getTypeConversion(Context, VT).second;
- }
- /// For types supported by the target, this is an identity function. For
- /// types that must be expanded (i.e. integer types that are larger than the
- /// largest integer register or illegal floating point types), this returns
- /// the largest legal type it will be expanded to.
- EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
- assert(!VT.isVector());
- while (true) {
- switch (getTypeAction(Context, VT)) {
- case TypeLegal:
- return VT;
- case TypeExpandInteger:
- VT = getTypeToTransformTo(Context, VT);
- break;
- default:
- llvm_unreachable("Type is not legal nor is it to be expanded!");
- }
- }
- }
- /// Vector types are broken down into some number of legal first class types.
- /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
- /// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64
- /// turns into 4 EVT::i32 values with both PPC and X86.
- ///
- /// This method returns the number of registers needed, and the VT for each
- /// register. It also returns the VT and quantity of the intermediate values
- /// before they are promoted/expanded.
- unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
- EVT &IntermediateVT,
- unsigned &NumIntermediates,
- MVT &RegisterVT) const;
- struct IntrinsicInfo {
- unsigned opc; // target opcode
- EVT memVT; // memory VT
- const Value* ptrVal; // value representing memory location
- int offset; // offset off of ptrVal
- unsigned size; // the size of the memory location
- // (taken from memVT if zero)
- unsigned align; // alignment
- bool vol; // is volatile?
- bool readMem; // reads memory?
- bool writeMem; // writes memory?
- IntrinsicInfo() : opc(0), ptrVal(nullptr), offset(0), size(0), align(1),
- vol(false), readMem(false), writeMem(false) {}
- };
- /// Given an intrinsic, checks if on the target the intrinsic will need to map
- /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
- /// true and store the intrinsic information into the IntrinsicInfo that was
- /// passed to the function.
- virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
- unsigned /*Intrinsic*/) const {
- return false;
- }
- /// Returns true if the target can instruction select the specified FP
- /// immediate natively. If false, the legalizer will materialize the FP
- /// immediate as a load from a constant pool.
- virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
- return false;
- }
- /// Targets can use this to indicate that they only support *some*
- /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
- /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
- /// legal.
- virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
- EVT /*VT*/) const {
- return true;
- }
- /// Returns true if the operation can trap for the value type.
- ///
- /// VT must be a legal type. By default, we optimistically assume most
- /// operations don't trap except for divide and remainder.
- virtual bool canOpTrap(unsigned Op, EVT VT) const;
- /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
- /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace
- /// a VAND with a constant pool entry.
- virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
- EVT /*VT*/) const {
- return false;
- }
- /// Return how this operation should be treated: either it is legal, needs to
- /// be promoted to a larger size, needs to be expanded to some other code
- /// sequence, or the target has a custom expander for it.
- LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
- if (VT.isExtended()) return Expand;
- // If a target-specific SDNode requires legalization, require the target
- // to provide custom legalization for it.
- if (Op > array_lengthof(OpActions[0])) return Custom;
- unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
- return (LegalizeAction)OpActions[I][Op];
- }
- /// Return true if the specified operation is legal on this target or can be
- /// made legal with custom lowering. This is used to help guide high-level
- /// lowering decisions.
- bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
- return (VT == MVT::Other || isTypeLegal(VT)) &&
- (getOperationAction(Op, VT) == Legal ||
- getOperationAction(Op, VT) == Custom);
- }
- /// Return true if the specified operation is legal on this target or can be
- /// made legal using promotion. This is used to help guide high-level lowering
- /// decisions.
- bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
- return (VT == MVT::Other || isTypeLegal(VT)) &&
- (getOperationAction(Op, VT) == Legal ||
- getOperationAction(Op, VT) == Promote);
- }
- /// Return true if the specified operation is illegal on this target or
- /// unlikely to be made legal with custom lowering. This is used to help guide
- /// high-level lowering decisions.
- bool isOperationExpand(unsigned Op, EVT VT) const {
- return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
- }
- /// Return true if the specified operation is legal on this target.
- bool isOperationLegal(unsigned Op, EVT VT) const {
- return (VT == MVT::Other || isTypeLegal(VT)) &&
- getOperationAction(Op, VT) == Legal;
- }
- /// Return how this load with extension should be treated: either it is legal,
- /// needs to be promoted to a larger size, needs to be expanded to some other
- /// code sequence, or the target has a custom expander for it.
- LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
- EVT MemVT) const {
- if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
- unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
- unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
- assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
- MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
- return (LegalizeAction)LoadExtActions[ValI][MemI][ExtType];
- }
- /// Return true if the specified load with extension is legal on this target.
- bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
- return ValVT.isSimple() && MemVT.isSimple() &&
- getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
- }
- /// Return true if the specified load with extension is legal or custom
- /// on this target.
- bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
- return ValVT.isSimple() && MemVT.isSimple() &&
- (getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
- getLoadExtAction(ExtType, ValVT, MemVT) == Custom);
- }
- /// Return how this store with truncation should be treated: either it is
- /// legal, needs to be promoted to a larger size, needs to be expanded to some
- /// other code sequence, or the target has a custom expander for it.
- LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
- if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
- unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
- unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
- assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
- "Table isn't big enough!");
- return (LegalizeAction)TruncStoreActions[ValI][MemI];
- }
- /// Return true if the specified store with truncation is legal on this
- /// target.
- bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
- return isTypeLegal(ValVT) && MemVT.isSimple() &&
- getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
- }
- /// Return how the indexed load should be treated: either it is legal, needs
- /// to be promoted to a larger size, needs to be expanded to some other code
- /// sequence, or the target has a custom expander for it.
- LegalizeAction
- getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
- assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
- "Table isn't big enough!");
- unsigned Ty = (unsigned)VT.SimpleTy;
- return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
- }
- /// Return true if the specified indexed load is legal on this target.
- bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
- return VT.isSimple() &&
- (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
- getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
- }
- /// Return how the indexed store should be treated: either it is legal, needs
- /// to be promoted to a larger size, needs to be expanded to some other code
- /// sequence, or the target has a custom expander for it.
- LegalizeAction
- getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
- assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
- "Table isn't big enough!");
- unsigned Ty = (unsigned)VT.SimpleTy;
- return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
- }
- /// Return true if the specified indexed load is legal on this target.
- bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
- return VT.isSimple() &&
- (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
- getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
- }
- /// Return how the condition code should be treated: either it is legal, needs
- /// to be expanded to some other code sequence, or the target has a custom
- /// expander for it.
- LegalizeAction
- getCondCodeAction(ISD::CondCode CC, MVT VT) const {
- assert((unsigned)CC < array_lengthof(CondCodeActions) &&
- ((unsigned)VT.SimpleTy >> 4) < array_lengthof(CondCodeActions[0]) &&
- "Table isn't big enough!");
- // See setCondCodeAction for how this is encoded.
- uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
- uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 4];
- LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0x3);
- assert(Action != Promote && "Can't promote condition code!");
- return Action;
- }
- /// Return true if the specified condition code is legal on this target.
- bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
- return
- getCondCodeAction(CC, VT) == Legal ||
- getCondCodeAction(CC, VT) == Custom;
- }
- /// If the action for this operation is to promote, this method returns the
- /// ValueType to promote to.
- MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
- assert(getOperationAction(Op, VT) == Promote &&
- "This operation isn't promoted!");
- // See if this has an explicit type specified.
- std::map<std::pair<unsigned, MVT::SimpleValueType>,
- MVT::SimpleValueType>::const_iterator PTTI =
- PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
- if (PTTI != PromoteToType.end()) return PTTI->second;
- assert((VT.isInteger() || VT.isFloatingPoint()) &&
- "Cannot autopromote this type, add it with AddPromotedToType.");
- MVT NVT = VT;
- do {
- NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
- assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
- "Didn't find type to promote to!");
- } while (!isTypeLegal(NVT) ||
- getOperationAction(Op, NVT) == Promote);
- return NVT;
- }
- /// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM
- /// operations except for the pointer size. If AllowUnknown is true, this
- /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
- /// otherwise it will assert.
- EVT getValueType(const DataLayout &DL, Type *Ty,
- bool AllowUnknown = false) const {
- // Lower scalar pointers to native pointer types.
- if (PointerType *PTy = dyn_cast<PointerType>(Ty))
- return getPointerTy(DL, PTy->getAddressSpace());
- if (Ty->isVectorTy()) {
- VectorType *VTy = cast<VectorType>(Ty);
- Type *Elm = VTy->getElementType();
- // Lower vectors of pointers to native pointer types.
- if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
- EVT PointerTy(getPointerTy(DL, PT->getAddressSpace()));
- Elm = PointerTy.getTypeForEVT(Ty->getContext());
- }
- return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
- VTy->getNumElements());
- }
- return EVT::getEVT(Ty, AllowUnknown);
- }
- /// Return the MVT corresponding to this LLVM type. See getValueType.
- MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
- bool AllowUnknown = false) const {
- return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
- }
- /// Return the desired alignment for ByVal or InAlloca aggregate function
- /// arguments in the caller parameter area. This is the actual alignment, not
- /// its logarithm.
- virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
- /// Return the type of registers that this ValueType will eventually require.
- MVT getRegisterType(MVT VT) const {
- assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
- return RegisterTypeForVT[VT.SimpleTy];
- }
- /// Return the type of registers that this ValueType will eventually require.
- MVT getRegisterType(LLVMContext &Context, EVT VT) const {
- if (VT.isSimple()) {
- assert((unsigned)VT.getSimpleVT().SimpleTy <
- array_lengthof(RegisterTypeForVT));
- return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
- }
- if (VT.isVector()) {
- EVT VT1;
- MVT RegisterVT;
- unsigned NumIntermediates;
- (void)getVectorTypeBreakdown(Context, VT, VT1,
- NumIntermediates, RegisterVT);
- return RegisterVT;
- }
- if (VT.isInteger()) {
- return getRegisterType(Context, getTypeToTransformTo(Context, VT));
- }
- llvm_unreachable("Unsupported extended type!");
- }
- /// Return the number of registers that this ValueType will eventually
- /// require.
- ///
- /// This is one for any types promoted to live in larger registers, but may be
- /// more than one for types (like i64) that are split into pieces. For types
- /// like i140, which are first promoted then expanded, it is the number of
- /// registers needed to hold all the bits of the original type. For an i140
- /// on a 32 bit machine this means 5 registers.
- unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
- if (VT.isSimple()) {
- assert((unsigned)VT.getSimpleVT().SimpleTy <
- array_lengthof(NumRegistersForVT));
- return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
- }
- if (VT.isVector()) {
- EVT VT1;
- MVT VT2;
- unsigned NumIntermediates;
- return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
- }
- if (VT.isInteger()) {
- unsigned BitWidth = VT.getSizeInBits();
- unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
- return (BitWidth + RegWidth - 1) / RegWidth;
- }
- llvm_unreachable("Unsupported extended type!");
- }
- /// If true, then instruction selection should seek to shrink the FP constant
- /// of the specified type to a smaller type in order to save space and / or
- /// reduce runtime.
- virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
- // Return true if it is profitable to reduce the given load node to a smaller
- // type.
- //
- // e.g. (i16 (trunc (i32 (load x))) -> i16 load x should be performed
- virtual bool shouldReduceLoadWidth(SDNode *Load,
- ISD::LoadExtType ExtTy,
- EVT NewVT) const {
- return true;
- }
- /// When splitting a value of the specified type into parts, does the Lo
- /// or Hi part come first? This usually follows the endianness, except
- /// for ppcf128, where the Hi part always comes first.
- bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
- return DL.isBigEndian() || VT == MVT::ppcf128;
- }
- /// If true, the target has custom DAG combine transformations that it can
- /// perform for the specified node.
- bool hasTargetDAGCombine(ISD::NodeType NT) const {
- assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
- return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
- }
- /// \brief Get maximum # of store operations permitted for llvm.memset
- ///
- /// This function returns the maximum number of store operations permitted
- /// to replace a call to llvm.memset. The value is set by the target at the
- /// performance threshold for such a replacement. If OptSize is true,
- /// return the limit for functions that have OptSize attribute.
- unsigned getMaxStoresPerMemset(bool OptSize) const {
- return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
- }
- /// \brief Get maximum # of store operations permitted for llvm.memcpy
- ///
- /// This function returns the maximum number of store operations permitted
- /// to replace a call to llvm.memcpy. The value is set by the target at the
- /// performance threshold for such a replacement. If OptSize is true,
- /// return the limit for functions that have OptSize attribute.
- unsigned getMaxStoresPerMemcpy(bool OptSize) const {
- return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
- }
- /// \brief Get maximum # of store operations permitted for llvm.memmove
- ///
- /// This function returns the maximum number of store operations permitted
- /// to replace a call to llvm.memmove. The value is set by the target at the
- /// performance threshold for such a replacement. If OptSize is true,
- /// return the limit for functions that have OptSize attribute.
- unsigned getMaxStoresPerMemmove(bool OptSize) const {
- return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
- }
- /// \brief Determine if the target supports unaligned memory accesses.
- ///
- /// This function returns true if the target allows unaligned memory accesses
- /// of the specified type in the given address space. If true, it also returns
- /// whether the unaligned memory access is "fast" in the last argument by
- /// reference. This is used, for example, in situations where an array
- /// copy/move/set is converted to a sequence of store operations. Its use
- /// helps to ensure that such replacements don't generate code that causes an
- /// alignment error (trap) on the target machine.
- virtual bool allowsMisalignedMemoryAccesses(EVT,
- unsigned AddrSpace = 0,
- unsigned Align = 1,
- bool * /*Fast*/ = nullptr) const {
- return false;
- }
- /// Returns the target specific optimal type for load and store operations as
- /// a result of memset, memcpy, and memmove lowering.
- ///
- /// If DstAlign is zero that means it's safe to destination alignment can
- /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
- /// a need to check it against alignment requirement, probably because the
- /// source does not need to be loaded. If 'IsMemset' is true, that means it's
- /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
- /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
- /// does not need to be loaded. It returns EVT::Other if the type should be
- /// determined using generic target-independent logic.
- virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
- unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
- bool /*IsMemset*/,
- bool /*ZeroMemset*/,
- bool /*MemcpyStrSrc*/,
- MachineFunction &/*MF*/) const {
- return MVT::Other;
- }
- /// Returns true if it's safe to use load / store of the specified type to
- /// expand memcpy / memset inline.
- ///
- /// This is mostly true for all types except for some special cases. For
- /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
- /// fstpl which also does type conversion. Note the specified type doesn't
- /// have to be legal as the hook is used before type legalization.
- virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
- /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
- bool usesUnderscoreSetJmp() const {
- return UseUnderscoreSetJmp;
- }
- /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
- bool usesUnderscoreLongJmp() const {
- return UseUnderscoreLongJmp;
- }
- /// Return integer threshold on number of blocks to use jump tables rather
- /// than if sequence.
- int getMinimumJumpTableEntries() const {
- return MinimumJumpTableEntries;
- }
- /// If a physical register, this specifies the register that
- /// llvm.savestack/llvm.restorestack should save and restore.
- unsigned getStackPointerRegisterToSaveRestore() const {
- return StackPointerRegisterToSaveRestore;
- }
- /// If a physical register, this returns the register that receives the
- /// exception address on entry to a landing pad.
- unsigned getExceptionPointerRegister() const {
- return ExceptionPointerRegister;
- }
- /// If a physical register, this returns the register that receives the
- /// exception typeid on entry to a landing pad.
- unsigned getExceptionSelectorRegister() const {
- return ExceptionSelectorRegister;
- }
- /// Returns the target's jmp_buf size in bytes (if never set, the default is
- /// 200)
- unsigned getJumpBufSize() const {
- return JumpBufSize;
- }
- /// Returns the target's jmp_buf alignment in bytes (if never set, the default
- /// is 0)
- unsigned getJumpBufAlignment() const {
- return JumpBufAlignment;
- }
- /// Return the minimum stack alignment of an argument.
- unsigned getMinStackArgumentAlignment() const {
- return MinStackArgumentAlignment;
- }
- /// Return the minimum function alignment.
- unsigned getMinFunctionAlignment() const {
- return MinFunctionAlignment;
- }
- /// Return the preferred function alignment.
- unsigned getPrefFunctionAlignment() const {
- return PrefFunctionAlignment;
- }
- /// Return the preferred loop alignment.
- virtual unsigned getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
- return PrefLoopAlignment;
- }
- /// Return whether the DAG builder should automatically insert fences and
- /// reduce ordering for atomics.
- bool getInsertFencesForAtomic() const {
- return InsertFencesForAtomic;
- }
- /// Return true if the target stores stack protector cookies at a fixed offset
- /// in some non-standard address space, and populates the address space and
- /// offset as appropriate.
- virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
- unsigned &/*Offset*/) const {
- return false;
- }
- /// Returns true if a cast between SrcAS and DestAS is a noop.
- virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
- return false;
- }
- /// Return true if the pointer arguments to CI should be aligned by aligning
- /// the object whose address is being passed. If so then MinSize is set to the
- /// minimum size the object must be to be aligned and PrefAlign is set to the
- /// preferred alignment.
- virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
- unsigned & /*PrefAlign*/) const {
- return false;
- }
- //===--------------------------------------------------------------------===//
- /// \name Helpers for TargetTransformInfo implementations
- /// @{
- /// Get the ISD node that corresponds to the Instruction class opcode.
- int InstructionOpcodeToISD(unsigned Opcode) const;
- /// Estimate the cost of type-legalization and the legalized type.
- std::pair<unsigned, MVT> getTypeLegalizationCost(const DataLayout &DL,
- Type *Ty) const;
- /// @}
- //===--------------------------------------------------------------------===//
- /// \name Helpers for atomic expansion.
- /// @{
- /// True if AtomicExpandPass should use emitLoadLinked/emitStoreConditional
- /// and expand AtomicCmpXchgInst.
- virtual bool hasLoadLinkedStoreConditional() const { return false; }
- /// Perform a load-linked operation on Addr, returning a "Value *" with the
- /// corresponding pointee type. This may entail some non-trivial operations to
- /// truncate or reconstruct types that will be illegal in the backend. See
- /// ARMISelLowering for an example implementation.
- virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
- AtomicOrdering Ord) const {
- llvm_unreachable("Load linked unimplemented on this target");
- }
- /// Perform a store-conditional operation to Addr. Return the status of the
- /// store. This should be 0 if the store succeeded, non-zero otherwise.
- virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
- Value *Addr, AtomicOrdering Ord) const {
- llvm_unreachable("Store conditional unimplemented on this target");
- }
- /// Inserts in the IR a target-specific intrinsic specifying a fence.
- /// It is called by AtomicExpandPass before expanding an
- /// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad.
- /// RMW and CmpXchg set both IsStore and IsLoad to true.
- /// This function should either return a nullptr, or a pointer to an IR-level
- /// Instruction*. Even complex fence sequences can be represented by a
- /// single Instruction* through an intrinsic to be lowered later.
- /// Backends with !getInsertFencesForAtomic() should keep a no-op here.
- /// Backends should override this method to produce target-specific intrinsic
- /// for their fences.
- /// FIXME: Please note that the default implementation here in terms of
- /// IR-level fences exists for historical/compatibility reasons and is
- /// *unsound* ! Fences cannot, in general, be used to restore sequential
- /// consistency. For example, consider the following example:
- /// atomic<int> x = y = 0;
- /// int r1, r2, r3, r4;
- /// Thread 0:
- /// x.store(1);
- /// Thread 1:
- /// y.store(1);
- /// Thread 2:
- /// r1 = x.load();
- /// r2 = y.load();
- /// Thread 3:
- /// r3 = y.load();
- /// r4 = x.load();
- /// r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
- /// seq_cst. But if they are lowered to monotonic accesses, no amount of
- /// IR-level fences can prevent it.
- /// @{
- virtual Instruction *emitLeadingFence(IRBuilder<> &Builder,
- AtomicOrdering Ord, bool IsStore,
- bool IsLoad) const {
- if (!getInsertFencesForAtomic())
- return nullptr;
- if (isAtLeastRelease(Ord) && IsStore)
- return Builder.CreateFence(Ord);
- else
- return nullptr;
- }
- virtual Instruction *emitTrailingFence(IRBuilder<> &Builder,
- AtomicOrdering Ord, bool IsStore,
- bool IsLoad) const {
- if (!getInsertFencesForAtomic())
- return nullptr;
- if (isAtLeastAcquire(Ord))
- return Builder.CreateFence(Ord);
- else
- return nullptr;
- }
- /// @}
- /// Returns true if the given (atomic) store should be expanded by the
- /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
- virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
- return false;
- }
- /// Returns true if arguments should be sign-extended in lib calls.
- virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
- return IsSigned;
- }
- /// Returns true if the given (atomic) load should be expanded by the
- /// IR-level AtomicExpand pass into a load-linked instruction
- /// (through emitLoadLinked()).
- virtual bool shouldExpandAtomicLoadInIR(LoadInst *LI) const { return false; }
- /// Returns how the IR-level AtomicExpand pass should expand the given
- /// AtomicRMW, if at all. Default is to never expand.
- virtual AtomicRMWExpansionKind
- shouldExpandAtomicRMWInIR(AtomicRMWInst *) const {
- return AtomicRMWExpansionKind::None;
- }
- /// On some platforms, an AtomicRMW that never actually modifies the value
- /// (such as fetch_add of 0) can be turned into a fence followed by an
- /// atomic load. This may sound useless, but it makes it possible for the
- /// processor to keep the cacheline shared, dramatically improving
- /// performance. And such idempotent RMWs are useful for implementing some
- /// kinds of locks, see for example (justification + benchmarks):
- /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
- /// This method tries doing that transformation, returning the atomic load if
- /// it succeeds, and nullptr otherwise.
- /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
- /// another round of expansion.
- virtual LoadInst *
- lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
- return nullptr;
- }
- /// Returns true if we should normalize
- /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
- /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
- /// that it saves us from materializing N0 and N1 in an integer register.
- /// Targets that are able to perform and/or on flags should return false here.
- virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
- EVT VT) const {
- // If a target has multiple condition registers, then it likely has logical
- // operations on those registers.
- if (hasMultipleConditionRegisters())
- return false;
- // Only do the transform if the value won't be split into multiple
- // registers.
- LegalizeTypeAction Action = getTypeAction(Context, VT);
- return Action != TypeExpandInteger && Action != TypeExpandFloat &&
- Action != TypeSplitVector;
- }
- //===--------------------------------------------------------------------===//
- // TargetLowering Configuration Methods - These methods should be invoked by
- // the derived class constructor to configure this object for the target.
- //
- protected:
- /// Specify how the target extends the result of integer and floating point
- /// boolean values from i1 to a wider type. See getBooleanContents.
- void setBooleanContents(BooleanContent Ty) {
- BooleanContents = Ty;
- BooleanFloatContents = Ty;
- }
- /// Specify how the target extends the result of integer and floating point
- /// boolean values from i1 to a wider type. See getBooleanContents.
- void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
- BooleanContents = IntTy;
- BooleanFloatContents = FloatTy;
- }
- /// Specify how the target extends the result of a vector boolean value from a
- /// vector of i1 to a wider type. See getBooleanContents.
- void setBooleanVectorContents(BooleanContent Ty) {
- BooleanVectorContents = Ty;
- }
- /// Specify the target scheduling preference.
- void setSchedulingPreference(Sched::Preference Pref) {
- SchedPreferenceInfo = Pref;
- }
- /// Indicate whether this target prefers to use _setjmp to implement
- /// llvm.setjmp or the version without _. Defaults to false.
- void setUseUnderscoreSetJmp(bool Val) {
- UseUnderscoreSetJmp = Val;
- }
- /// Indicate whether this target prefers to use _longjmp to implement
- /// llvm.longjmp or the version without _. Defaults to false.
- void setUseUnderscoreLongJmp(bool Val) {
- UseUnderscoreLongJmp = Val;
- }
- /// Indicate the number of blocks to generate jump tables rather than if
- /// sequence.
- void setMinimumJumpTableEntries(int Val) {
- MinimumJumpTableEntries = Val;
- }
- /// If set to a physical register, this specifies the register that
- /// llvm.savestack/llvm.restorestack should save and restore.
- void setStackPointerRegisterToSaveRestore(unsigned R) {
- StackPointerRegisterToSaveRestore = R;
- }
- /// If set to a physical register, this sets the register that receives the
- /// exception address on entry to a landing pad.
- void setExceptionPointerRegister(unsigned R) {
- ExceptionPointerRegister = R;
- }
- /// If set to a physical register, this sets the register that receives the
- /// exception typeid on entry to a landing pad.
- void setExceptionSelectorRegister(unsigned R) {
- ExceptionSelectorRegister = R;
- }
- /// Tells the code generator not to expand operations into sequences that use
- /// the select operations if possible.
- void setSelectIsExpensive(bool isExpensive = true) {
- SelectIsExpensive = isExpensive;
- }
- /// Tells the code generator that the target has multiple (allocatable)
- /// condition registers that can be used to store the results of comparisons
- /// for use by selects and conditional branches. With multiple condition
- /// registers, the code generator will not aggressively sink comparisons into
- /// the blocks of their users.
- void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
- HasMultipleConditionRegisters = hasManyRegs;
- }
- /// Tells the code generator that the target has BitExtract instructions.
- /// The code generator will aggressively sink "shift"s into the blocks of
- /// their users if the users will generate "and" instructions which can be
- /// combined with "shift" to BitExtract instructions.
- void setHasExtractBitsInsn(bool hasExtractInsn = true) {
- HasExtractBitsInsn = hasExtractInsn;
- }
- /// Tells the code generator not to expand logic operations on comparison
- /// predicates into separate sequences that increase the amount of flow
- /// control.
- void setJumpIsExpensive(bool isExpensive = true);
- /// Tells the code generator that integer divide is expensive, and if
- /// possible, should be replaced by an alternate sequence of instructions not
- /// containing an integer divide.
- void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
- /// Tells the code generator that fsqrt is cheap, and should not be replaced
- /// with an alternative sequence of instructions.
- void setFsqrtIsCheap(bool isCheap = true) { FsqrtIsCheap = isCheap; }
- /// Tells the code generator that this target supports floating point
- /// exceptions and cares about preserving floating point exception behavior.
- void setHasFloatingPointExceptions(bool FPExceptions = true) {
- HasFloatingPointExceptions = FPExceptions;
- }
- /// Tells the code generator which bitwidths to bypass.
- void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
- BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
- }
- /// Tells the code generator that it shouldn't generate sra/srl/add/sra for a
- /// signed divide by power of two; let the target handle it.
- void setPow2SDivIsCheap(bool isCheap = true) { Pow2SDivIsCheap = isCheap; }
- /// Add the specified register class as an available regclass for the
- /// specified value type. This indicates the selector can handle values of
- /// that class natively.
- void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
- assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
- AvailableRegClasses.push_back(std::make_pair(VT, RC));
- RegClassForVT[VT.SimpleTy] = RC;
- }
- /// Remove all register classes.
- void clearRegisterClasses() {
- memset(RegClassForVT, 0,MVT::LAST_VALUETYPE * sizeof(TargetRegisterClass*));
- AvailableRegClasses.clear();
- }
- /// \brief Remove all operation actions.
- void clearOperationActions() {
- }
- /// Return the largest legal super-reg register class of the register class
- /// for the specified type and its associated "cost".
- virtual std::pair<const TargetRegisterClass *, uint8_t>
- findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
- /// Once all of the register classes are added, this allows us to compute
- /// derived properties we expose.
- void computeRegisterProperties(const TargetRegisterInfo *TRI);
- /// Indicate that the specified operation does not work with the specified
- /// type and indicate what to do about it.
- void setOperationAction(unsigned Op, MVT VT,
- LegalizeAction Action) {
- assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
- OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
- }
- /// Indicate that the specified load with extension does not work with the
- /// specified type and indicate what to do about it.
- void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
- LegalizeAction Action) {
- assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
- MemVT.isValid() && "Table isn't big enough!");
- LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy][ExtType] = (uint8_t)Action;
- }
- /// Indicate that the specified truncating store does not work with the
- /// specified type and indicate what to do about it.
- void setTruncStoreAction(MVT ValVT, MVT MemVT,
- LegalizeAction Action) {
- assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
- TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
- }
- /// Indicate that the specified indexed load does or does not work with the
- /// specified type and indicate what to do abort it.
- ///
- /// NOTE: All indexed mode loads are initialized to Expand in
- /// TargetLowering.cpp
- void setIndexedLoadAction(unsigned IdxMode, MVT VT,
- LegalizeAction Action) {
- assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
- (unsigned)Action < 0xf && "Table isn't big enough!");
- // Load action are kept in the upper half.
- IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
- IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
- }
- /// Indicate that the specified indexed store does or does not work with the
- /// specified type and indicate what to do about it.
- ///
- /// NOTE: All indexed mode stores are initialized to Expand in
- /// TargetLowering.cpp
- void setIndexedStoreAction(unsigned IdxMode, MVT VT,
- LegalizeAction Action) {
- assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
- (unsigned)Action < 0xf && "Table isn't big enough!");
- // Store action are kept in the lower half.
- IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
- IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
- }
- /// Indicate that the specified condition code is or isn't supported on the
- /// target and indicate what to do about it.
- void setCondCodeAction(ISD::CondCode CC, MVT VT,
- LegalizeAction Action) {
- assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
- "Table isn't big enough!");
- /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 32-bit
- /// value and the upper 27 bits index into the second dimension of the array
- /// to select what 32-bit value to use.
- uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
- CondCodeActions[CC][VT.SimpleTy >> 4] &= ~((uint32_t)0x3 << Shift);
- CondCodeActions[CC][VT.SimpleTy >> 4] |= (uint32_t)Action << Shift;
- }
- /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
- /// to trying a larger integer/fp until it can find one that works. If that
- /// default is insufficient, this method can be used by the target to override
- /// the default.
- void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
- PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
- }
- /// Targets should invoke this method for each target independent node that
- /// they want to provide a custom DAG combiner for by implementing the
- /// PerformDAGCombine virtual method.
- void setTargetDAGCombine(ISD::NodeType NT) {
- assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
- TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
- }
- /// Set the target's required jmp_buf buffer size (in bytes); default is 200
- void setJumpBufSize(unsigned Size) {
- JumpBufSize = Size;
- }
- /// Set the target's required jmp_buf buffer alignment (in bytes); default is
- /// 0
- void setJumpBufAlignment(unsigned Align) {
- JumpBufAlignment = Align;
- }
- /// Set the target's minimum function alignment (in log2(bytes))
- void setMinFunctionAlignment(unsigned Align) {
- MinFunctionAlignment = Align;
- }
- /// Set the target's preferred function alignment. This should be set if
- /// there is a performance benefit to higher-than-minimum alignment (in
- /// log2(bytes))
- void setPrefFunctionAlignment(unsigned Align) {
- PrefFunctionAlignment = Align;
- }
- /// Set the target's preferred loop alignment. Default alignment is zero, it
- /// means the target does not care about loop alignment. The alignment is
- /// specified in log2(bytes). The target may also override
- /// getPrefLoopAlignment to provide per-loop values.
- void setPrefLoopAlignment(unsigned Align) {
- PrefLoopAlignment = Align;
- }
- /// Set the minimum stack alignment of an argument (in log2(bytes)).
- void setMinStackArgumentAlignment(unsigned Align) {
- MinStackArgumentAlignment = Align;
- }
- /// Set if the DAG builder should automatically insert fences and reduce the
- /// order of atomic memory operations to Monotonic.
- void setInsertFencesForAtomic(bool fence) {
- InsertFencesForAtomic = fence;
- }
- public:
- //===--------------------------------------------------------------------===//
- // Addressing mode description hooks (used by LSR etc).
- //
- /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
- /// instructions reading the address. This allows as much computation as
- /// possible to be done in the address mode for that operand. This hook lets
- /// targets also pass back when this should be done on intrinsics which
- /// load/store.
- virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/,
- SmallVectorImpl<Value*> &/*Ops*/,
- Type *&/*AccessTy*/,
- unsigned AddrSpace = 0) const {
- return false;
- }
- /// This represents an addressing mode of:
- /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
- /// If BaseGV is null, there is no BaseGV.
- /// If BaseOffs is zero, there is no base offset.
- /// If HasBaseReg is false, there is no base register.
- /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
- /// no scale.
- struct AddrMode {
- GlobalValue *BaseGV;
- int64_t BaseOffs;
- bool HasBaseReg;
- int64_t Scale;
- AddrMode() : BaseGV(nullptr), BaseOffs(0), HasBaseReg(false), Scale(0) {}
- };
- /// Return true if the addressing mode represented by AM is legal for this
- /// target, for a load/store of the specified type.
- ///
- /// The type may be VoidTy, in which case only return true if the addressing
- /// mode is legal for a load/store of any legal type. TODO: Handle
- /// pre/postinc as well.
- ///
- /// If the address space cannot be determined, it will be -1.
- ///
- /// TODO: Remove default argument
- virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
- Type *Ty, unsigned AddrSpace) const;
- /// \brief Return the cost of the scaling factor used in the addressing mode
- /// represented by AM for this target, for a load/store of the specified type.
- ///
- /// If the AM is supported, the return value must be >= 0.
- /// If the AM is not supported, it returns a negative value.
- /// TODO: Handle pre/postinc as well.
- /// TODO: Remove default argument
- virtual int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM,
- Type *Ty, unsigned AS = 0) const {
- // Default: assume that any scaling factor used in a legal AM is free.
- if (isLegalAddressingMode(DL, AM, Ty, AS))
- return 0;
- return -1;
- }
- /// Return true if the specified immediate is legal icmp immediate, that is
- /// the target has icmp instructions which can compare a register against the
- /// immediate without having to materialize the immediate into a register.
- virtual bool isLegalICmpImmediate(int64_t) const {
- return true;
- }
- /// Return true if the specified immediate is legal add immediate, that is the
- /// target has add instructions which can add a register with the immediate
- /// without having to materialize the immediate into a register.
- virtual bool isLegalAddImmediate(int64_t) const {
- return true;
- }
- /// Return true if it's significantly cheaper to shift a vector by a uniform
- /// scalar than by an amount which will vary across each lane. On x86, for
- /// example, there is a "psllw" instruction for the former case, but no simple
- /// instruction for a general "a << b" operation on vectors.
- virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
- return false;
- }
- /// Return true if it's free to truncate a value of type Ty1 to type
- /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
- /// by referencing its sub-register AX.
- virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
- return false;
- }
- /// Return true if a truncation from Ty1 to Ty2 is permitted when deciding
- /// whether a call is in tail position. Typically this means that both results
- /// would be assigned to the same register or stack slot, but it could mean
- /// the target performs adequate checks of its own before proceeding with the
- /// tail call.
- virtual bool allowTruncateForTailCall(Type * /*Ty1*/, Type * /*Ty2*/) const {
- return false;
- }
- virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
- return false;
- }
- virtual bool isProfitableToHoist(Instruction *I) const { return true; }
- /// Return true if the extension represented by \p I is free.
- /// Unlikely the is[Z|FP]ExtFree family which is based on types,
- /// this method can use the context provided by \p I to decide
- /// whether or not \p I is free.
- /// This method extends the behavior of the is[Z|FP]ExtFree family.
- /// In other words, if is[Z|FP]Free returns true, then this method
- /// returns true as well. The converse is not true.
- /// The target can perform the adequate checks by overriding isExtFreeImpl.
- /// \pre \p I must be a sign, zero, or fp extension.
- bool isExtFree(const Instruction *I) const {
- switch (I->getOpcode()) {
- case Instruction::FPExt:
- if (isFPExtFree(EVT::getEVT(I->getType())))
- return true;
- break;
- case Instruction::ZExt:
- if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
- return true;
- break;
- case Instruction::SExt:
- break;
- default:
- llvm_unreachable("Instruction is not an extension");
- }
- return isExtFreeImpl(I);
- }
- /// Return true if any actual instruction that defines a value of type Ty1
- /// implicitly zero-extends the value to Ty2 in the result register.
- ///
- /// This does not necessarily include registers defined in unknown ways, such
- /// as incoming arguments, or copies from unknown virtual registers. Also, if
- /// isTruncateFree(Ty2, Ty1) is true, this does not necessarily apply to
- /// truncate instructions. e.g. on x86-64, all instructions that define 32-bit
- /// values implicit zero-extend the result out to 64 bits.
- virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
- return false;
- }
- virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
- return false;
- }
- /// Return true if the target supplies and combines to a paired load
- /// two loaded values of type LoadedType next to each other in memory.
- /// RequiredAlignment gives the minimal alignment constraints that must be met
- /// to be able to select this paired load.
- ///
- /// This information is *not* used to generate actual paired loads, but it is
- /// used to generate a sequence of loads that is easier to combine into a
- /// paired load.
- /// For instance, something like this:
- /// a = load i64* addr
- /// b = trunc i64 a to i32
- /// c = lshr i64 a, 32
- /// d = trunc i64 c to i32
- /// will be optimized into:
- /// b = load i32* addr1
- /// d = load i32* addr2
- /// Where addr1 = addr2 +/- sizeof(i32).
- ///
- /// In other words, unless the target performs a post-isel load combining,
- /// this information should not be provided because it will generate more
- /// loads.
- virtual bool hasPairedLoad(Type * /*LoadedType*/,
- unsigned & /*RequiredAligment*/) const {
- return false;
- }
- virtual bool hasPairedLoad(EVT /*LoadedType*/,
- unsigned & /*RequiredAligment*/) const {
- return false;
- }
- /// \brief Get the maximum supported factor for interleaved memory accesses.
- /// Default to be the minimum interleave factor: 2.
- virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
- /// \brief Lower an interleaved load to target specific intrinsics. Return
- /// true on success.
- ///
- /// \p LI is the vector load instruction.
- /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
- /// \p Indices is the corresponding indices for each shufflevector.
- /// \p Factor is the interleave factor.
- virtual bool lowerInterleavedLoad(LoadInst *LI,
- ArrayRef<ShuffleVectorInst *> Shuffles,
- ArrayRef<unsigned> Indices,
- unsigned Factor) const {
- return false;
- }
- /// \brief Lower an interleaved store to target specific intrinsics. Return
- /// true on success.
- ///
- /// \p SI is the vector store instruction.
- /// \p SVI is the shufflevector to RE-interleave the stored vector.
- /// \p Factor is the interleave factor.
- virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
- unsigned Factor) const {
- return false;
- }
- /// Return true if zero-extending the specific node Val to type VT2 is free
- /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
- /// because it's folded such as X86 zero-extending loads).
- virtual bool isZExtFree(SDValue Val, EVT VT2) const {
- return isZExtFree(Val.getValueType(), VT2);
- }
- /// Return true if an fpext operation is free (for instance, because
- /// single-precision floating-point numbers are implicitly extended to
- /// double-precision).
- virtual bool isFPExtFree(EVT VT) const {
- assert(VT.isFloatingPoint());
- return false;
- }
- /// Return true if folding a vector load into ExtVal (a sign, zero, or any
- /// extend node) is profitable.
- virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
- /// Return true if an fneg operation is free to the point where it is never
- /// worthwhile to replace it with a bitwise operation.
- virtual bool isFNegFree(EVT VT) const {
- assert(VT.isFloatingPoint());
- return false;
- }
- /// Return true if an fabs operation is free to the point where it is never
- /// worthwhile to replace it with a bitwise operation.
- virtual bool isFAbsFree(EVT VT) const {
- assert(VT.isFloatingPoint());
- return false;
- }
- /// Return true if an FMA operation is faster than a pair of fmul and fadd
- /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
- /// returns true, otherwise fmuladd is expanded to fmul + fadd.
- ///
- /// NOTE: This may be called before legalization on types for which FMAs are
- /// not legal, but should return true if those types will eventually legalize
- /// to types that support FMAs. After legalization, it will only be called on
- /// types that support FMAs (via Legal or Custom actions)
- virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
- return false;
- }
- /// Return true if it's profitable to narrow operations of type VT1 to
- /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
- /// i32 to i16.
- virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
- return false;
- }
- /// \brief Return true if it is beneficial to convert a load of a constant to
- /// just the constant itself.
- /// On some targets it might be more efficient to use a combination of
- /// arithmetic instructions to materialize the constant instead of loading it
- /// from a constant pool.
- virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
- Type *Ty) const {
- return false;
- }
- /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
- /// with this index. This is needed because EXTRACT_SUBVECTOR usually
- /// has custom lowering that depends on the index of the first element,
- /// and only the target knows which lowering is cheap.
- virtual bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const {
- return false;
- }
- //===--------------------------------------------------------------------===//
- // Runtime Library hooks
- //
- /// Rename the default libcall routine name for the specified libcall.
- void setLibcallName(RTLIB::Libcall Call, const char *Name) {
- LibcallRoutineNames[Call] = Name;
- }
- /// Get the libcall routine name for the specified libcall.
- const char *getLibcallName(RTLIB::Libcall Call) const {
- return LibcallRoutineNames[Call];
- }
- /// Override the default CondCode to be used to test the result of the
- /// comparison libcall against zero.
- void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
- CmpLibcallCCs[Call] = CC;
- }
- /// Get the CondCode that's to be used to test the result of the comparison
- /// libcall against zero.
- ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
- return CmpLibcallCCs[Call];
- }
- /// Set the CallingConv that should be used for the specified libcall.
- void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
- LibcallCallingConvs[Call] = CC;
- }
- /// Get the CallingConv that should be used for the specified libcall.
- CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
- return LibcallCallingConvs[Call];
- }
- private:
- const TargetMachine &TM;
- /// Tells the code generator not to expand operations into sequences that use
- /// the select operations if possible.
- bool SelectIsExpensive;
- /// Tells the code generator that the target has multiple (allocatable)
- /// condition registers that can be used to store the results of comparisons
- /// for use by selects and conditional branches. With multiple condition
- /// registers, the code generator will not aggressively sink comparisons into
- /// the blocks of their users.
- bool HasMultipleConditionRegisters;
- /// Tells the code generator that the target has BitExtract instructions.
- /// The code generator will aggressively sink "shift"s into the blocks of
- /// their users if the users will generate "and" instructions which can be
- /// combined with "shift" to BitExtract instructions.
- bool HasExtractBitsInsn;
- /// Tells the code generator not to expand integer divides by constants into a
- /// sequence of muls, adds, and shifts. This is a hack until a real cost
- /// model is in place. If we ever optimize for size, this will be set to true
- /// unconditionally.
- bool IntDivIsCheap;
- // Don't expand fsqrt with an approximation based on the inverse sqrt.
- bool FsqrtIsCheap;
- /// Tells the code generator to bypass slow divide or remainder
- /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
- /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
- /// div/rem when the operands are positive and less than 256.
- DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
- /// Tells the code generator that it shouldn't generate sra/srl/add/sra for a
- /// signed divide by power of two; let the target handle it.
- bool Pow2SDivIsCheap;
- /// Tells the code generator that it shouldn't generate extra flow control
- /// instructions and should attempt to combine flow control instructions via
- /// predication.
- bool JumpIsExpensive;
- /// Whether the target supports or cares about preserving floating point
- /// exception behavior.
- bool HasFloatingPointExceptions;
- /// This target prefers to use _setjmp to implement llvm.setjmp.
- ///
- /// Defaults to false.
- bool UseUnderscoreSetJmp;
- /// This target prefers to use _longjmp to implement llvm.longjmp.
- ///
- /// Defaults to false.
- bool UseUnderscoreLongJmp;
- /// Number of blocks threshold to use jump tables.
- int MinimumJumpTableEntries;
- /// Information about the contents of the high-bits in boolean values held in
- /// a type wider than i1. See getBooleanContents.
- BooleanContent BooleanContents;
- /// Information about the contents of the high-bits in boolean values held in
- /// a type wider than i1. See getBooleanContents.
- BooleanContent BooleanFloatContents;
- /// Information about the contents of the high-bits in boolean vector values
- /// when the element type is wider than i1. See getBooleanContents.
- BooleanContent BooleanVectorContents;
- /// The target scheduling preference: shortest possible total cycles or lowest
- /// register usage.
- Sched::Preference SchedPreferenceInfo;
- /// The size, in bytes, of the target's jmp_buf buffers
- unsigned JumpBufSize;
- /// The alignment, in bytes, of the target's jmp_buf buffers
- unsigned JumpBufAlignment;
- /// The minimum alignment that any argument on the stack needs to have.
- unsigned MinStackArgumentAlignment;
- /// The minimum function alignment (used when optimizing for size, and to
- /// prevent explicitly provided alignment from leading to incorrect code).
- unsigned MinFunctionAlignment;
- /// The preferred function alignment (used when alignment unspecified and
- /// optimizing for speed).
- unsigned PrefFunctionAlignment;
- /// The preferred loop alignment.
- unsigned PrefLoopAlignment;
- /// Whether the DAG builder should automatically insert fences and reduce
- /// ordering for atomics. (This will be set for for most architectures with
- /// weak memory ordering.)
- bool InsertFencesForAtomic;
- /// If set to a physical register, this specifies the register that
- /// llvm.savestack/llvm.restorestack should save and restore.
- unsigned StackPointerRegisterToSaveRestore;
- /// If set to a physical register, this specifies the register that receives
- /// the exception address on entry to a landing pad.
- unsigned ExceptionPointerRegister;
- /// If set to a physical register, this specifies the register that receives
- /// the exception typeid on entry to a landing pad.
- unsigned ExceptionSelectorRegister;
- /// This indicates the default register class to use for each ValueType the
- /// target supports natively.
- const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
- unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
- MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
- /// This indicates the "representative" register class to use for each
- /// ValueType the target supports natively. This information is used by the
- /// scheduler to track register pressure. By default, the representative
- /// register class is the largest legal super-reg register class of the
- /// register class of the specified type. e.g. On x86, i8, i16, and i32's
- /// representative class would be GR32.
- const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
- /// This indicates the "cost" of the "representative" register class for each
- /// ValueType. The cost is used by the scheduler to approximate register
- /// pressure.
- uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
- /// For any value types we are promoting or expanding, this contains the value
- /// type that we are changing to. For Expanded types, this contains one step
- /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
- /// (e.g. i64 -> i16). For types natively supported by the system, this holds
- /// the same type (e.g. i32 -> i32).
- MVT TransformToType[MVT::LAST_VALUETYPE];
- /// For each operation and each value type, keep a LegalizeAction that
- /// indicates how instruction selection should deal with the operation. Most
- /// operations are Legal (aka, supported natively by the target), but
- /// operations that are not should be described. Note that operations on
- /// non-legal value types are not described here.
- uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
- /// For each load extension type and each value type, keep a LegalizeAction
- /// that indicates how instruction selection should deal with a load of a
- /// specific value type and extension type.
- uint8_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]
- [ISD::LAST_LOADEXT_TYPE];
- /// For each value type pair keep a LegalizeAction that indicates whether a
- /// truncating store of a specific value type and truncating type is legal.
- uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
- /// For each indexed mode and each value type, keep a pair of LegalizeAction
- /// that indicates how instruction selection should deal with the load /
- /// store.
- ///
- /// The first dimension is the value_type for the reference. The second
- /// dimension represents the various modes for load store.
- uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
- /// For each condition code (ISD::CondCode) keep a LegalizeAction that
- /// indicates how instruction selection should deal with the condition code.
- ///
- /// Because each CC action takes up 2 bits, we need to have the array size be
- /// large enough to fit all of the value types. This can be done by rounding
- /// up the MVT::LAST_VALUETYPE value to the next multiple of 16.
- uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 15) / 16];
- ValueTypeActionImpl ValueTypeActions;
- private:
- LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
- private:
- std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
- /// Targets can specify ISD nodes that they would like PerformDAGCombine
- /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
- /// array.
- unsigned char
- TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
- /// For operations that must be promoted to a specific type, this holds the
- /// destination type. This map should be sparse, so don't hold it as an
- /// array.
- ///
- /// Targets add entries to this map with AddPromotedToType(..), clients access
- /// this with getTypeToPromoteTo(..).
- std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
- PromoteToType;
- /// Stores the name each libcall.
- const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
- /// The ISD::CondCode that should be used to test the result of each of the
- /// comparison libcall against zero.
- ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
- /// Stores the CallingConv that should be used for each libcall.
- CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
- protected:
- /// Return true if the extension represented by \p I is free.
- /// \pre \p I is a sign, zero, or fp extension and
- /// is[Z|FP]ExtFree of the related types is not true.
- virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
- /// \brief Specify maximum number of store instructions per memset call.
- ///
- /// When lowering \@llvm.memset this field specifies the maximum number of
- /// store operations that may be substituted for the call to memset. Targets
- /// must set this value based on the cost threshold for that target. Targets
- /// should assume that the memset will be done using as many of the largest
- /// store operations first, followed by smaller ones, if necessary, per
- /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
- /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
- /// store. This only applies to setting a constant array of a constant size.
- unsigned MaxStoresPerMemset;
- /// Maximum number of stores operations that may be substituted for the call
- /// to memset, used for functions with OptSize attribute.
- unsigned MaxStoresPerMemsetOptSize;
- /// \brief Specify maximum bytes of store instructions per memcpy call.
- ///
- /// When lowering \@llvm.memcpy this field specifies the maximum number of
- /// store operations that may be substituted for a call to memcpy. Targets
- /// must set this value based on the cost threshold for that target. Targets
- /// should assume that the memcpy will be done using as many of the largest
- /// store operations first, followed by smaller ones, if necessary, per
- /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
- /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
- /// and one 1-byte store. This only applies to copying a constant array of
- /// constant size.
- unsigned MaxStoresPerMemcpy;
- /// Maximum number of store operations that may be substituted for a call to
- /// memcpy, used for functions with OptSize attribute.
- unsigned MaxStoresPerMemcpyOptSize;
- /// \brief Specify maximum bytes of store instructions per memmove call.
- ///
- /// When lowering \@llvm.memmove this field specifies the maximum number of
- /// store instructions that may be substituted for a call to memmove. Targets
- /// must set this value based on the cost threshold for that target. Targets
- /// should assume that the memmove will be done using as many of the largest
- /// store operations first, followed by smaller ones, if necessary, per
- /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
- /// with 8-bit alignment would result in nine 1-byte stores. This only
- /// applies to copying a constant array of constant size.
- unsigned MaxStoresPerMemmove;
- /// Maximum number of store instructions that may be substituted for a call to
- /// memmove, used for functions with OpSize attribute.
- unsigned MaxStoresPerMemmoveOptSize;
- /// Tells the code generator that select is more expensive than a branch if
- /// the branch is usually predicted right.
- bool PredictableSelectIsExpensive;
- /// MaskAndBranchFoldingIsLegal - Indicates if the target supports folding
- /// a mask of a single bit, a compare, and a branch into a single instruction.
- bool MaskAndBranchFoldingIsLegal;
- /// \see enableExtLdPromotion.
- bool EnableExtLdPromotion;
- protected:
- /// Return true if the value types that can be represented by the specified
- /// register class are all legal.
- bool isLegalRC(const TargetRegisterClass *RC) const;
- /// Replace/modify any TargetFrameIndex operands with a targte-dependent
- /// sequence of memory operands that is recognized by PrologEpilogInserter.
- MachineBasicBlock *emitPatchPoint(MachineInstr *MI,
- MachineBasicBlock *MBB) const;
- };
- /// This class defines information used to lower LLVM code to legal SelectionDAG
- /// operators that the target instruction selector can accept natively.
- ///
- /// This class also defines callbacks that targets must implement to lower
- /// target-specific constructs to SelectionDAG operators.
- class TargetLowering : public TargetLoweringBase {
- TargetLowering(const TargetLowering&) = delete;
- void operator=(const TargetLowering&) = delete;
- public:
- /// NOTE: The TargetMachine owns TLOF.
- explicit TargetLowering(const TargetMachine &TM);
- /// Returns true by value, base pointer and offset pointer and addressing mode
- /// by reference if the node's address can be legally represented as
- /// pre-indexed load / store address.
- virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
- SDValue &/*Offset*/,
- ISD::MemIndexedMode &/*AM*/,
- SelectionDAG &/*DAG*/) const {
- return false;
- }
- /// Returns true by value, base pointer and offset pointer and addressing mode
- /// by reference if this node can be combined with a load / store to form a
- /// post-indexed load / store.
- virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
- SDValue &/*Base*/,
- SDValue &/*Offset*/,
- ISD::MemIndexedMode &/*AM*/,
- SelectionDAG &/*DAG*/) const {
- return false;
- }
- /// Return the entry encoding for a jump table in the current function. The
- /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
- virtual unsigned getJumpTableEncoding() const;
- virtual const MCExpr *
- LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
- const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
- MCContext &/*Ctx*/) const {
- llvm_unreachable("Need to implement this hook if target has custom JTIs");
- }
- /// Returns relocation base for the given PIC jumptable.
- virtual SDValue getPICJumpTableRelocBase(SDValue Table,
- SelectionDAG &DAG) const;
- /// This returns the relocation base for the given PIC jumptable, the same as
- /// getPICJumpTableRelocBase, but as an MCExpr.
- virtual const MCExpr *
- getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
- unsigned JTI, MCContext &Ctx) const;
- /// Return true if folding a constant offset with the given GlobalAddress is
- /// legal. It is frequently not legal in PIC relocation models.
- virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
- bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
- SDValue &Chain) const;
- void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
- SDValue &NewLHS, SDValue &NewRHS,
- ISD::CondCode &CCCode, SDLoc DL) const;
- /// Returns a pair of (return value, chain).
- /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
- std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
- EVT RetVT, const SDValue *Ops,
- unsigned NumOps, bool isSigned,
- SDLoc dl, bool doesNotReturn = false,
- bool isReturnValueUsed = true) const;
- //===--------------------------------------------------------------------===//
- // TargetLowering Optimization Methods
- //
- /// A convenience struct that encapsulates a DAG, and two SDValues for
- /// returning information from TargetLowering to its clients that want to
- /// combine.
- struct TargetLoweringOpt {
- SelectionDAG &DAG;
- bool LegalTys;
- bool LegalOps;
- SDValue Old;
- SDValue New;
- explicit TargetLoweringOpt(SelectionDAG &InDAG,
- bool LT, bool LO) :
- DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
- bool LegalTypes() const { return LegalTys; }
- bool LegalOperations() const { return LegalOps; }
- bool CombineTo(SDValue O, SDValue N) {
- Old = O;
- New = N;
- return true;
- }
- /// Check to see if the specified operand of the specified instruction is a
- /// constant integer. If so, check to see if there are any bits set in the
- /// constant that are not demanded. If so, shrink the constant and return
- /// true.
- bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
- /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. This
- /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
- /// generalized for targets with other types of implicit widening casts.
- bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
- SDLoc dl);
- };
- /// Look at Op. At this point, we know that only the DemandedMask bits of the
- /// result of Op are ever used downstream. If we can use this information to
- /// simplify Op, create a new simplified DAG node and return true, returning
- /// the original and new nodes in Old and New. Otherwise, analyze the
- /// expression and return a mask of KnownOne and KnownZero bits for the
- /// expression (used to simplify the caller). The KnownZero/One bits may only
- /// be accurate for those bits in the DemandedMask.
- bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
- APInt &KnownZero, APInt &KnownOne,
- TargetLoweringOpt &TLO, unsigned Depth = 0) const;
- /// Determine which of the bits specified in Mask are known to be either zero
- /// or one and return them in the KnownZero/KnownOne bitsets.
- virtual void computeKnownBitsForTargetNode(const SDValue Op,
- APInt &KnownZero,
- APInt &KnownOne,
- const SelectionDAG &DAG,
- unsigned Depth = 0) const;
- /// This method can be implemented by targets that want to expose additional
- /// information about sign bits to the DAG Combiner.
- virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
- const SelectionDAG &DAG,
- unsigned Depth = 0) const;
- struct DAGCombinerInfo {
- void *DC; // The DAG Combiner object.
- CombineLevel Level;
- bool CalledByLegalizer;
- public:
- SelectionDAG &DAG;
- DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc)
- : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
- bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
- bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
- bool isAfterLegalizeVectorOps() const {
- return Level == AfterLegalizeDAG;
- }
- CombineLevel getDAGCombineLevel() { return Level; }
- bool isCalledByLegalizer() const { return CalledByLegalizer; }
- void AddToWorklist(SDNode *N);
- void RemoveFromWorklist(SDNode *N);
- SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
- SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
- SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
- void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
- };
- /// Return if the N is a constant or constant vector equal to the true value
- /// from getBooleanContents().
- bool isConstTrueVal(const SDNode *N) const;
- /// Return if the N is a constant or constant vector equal to the false value
- /// from getBooleanContents().
- bool isConstFalseVal(const SDNode *N) const;
- /// Try to simplify a setcc built with the specified operands and cc. If it is
- /// unable to simplify it, return a null SDValue.
- SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
- ISD::CondCode Cond, bool foldBooleans,
- DAGCombinerInfo &DCI, SDLoc dl) const;
- /// Returns true (and the GlobalValue and the offset) if the node is a
- /// GlobalAddress + offset.
- virtual bool
- isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
- /// This method will be invoked for all target nodes and for any
- /// target-independent nodes that the target has registered with invoke it
- /// for.
- ///
- /// The semantics are as follows:
- /// Return Value:
- /// SDValue.Val == 0 - No change was made
- /// SDValue.Val == N - N was replaced, is dead, and is already handled.
- /// otherwise - N should be replaced by the returned Operand.
- ///
- /// In addition, methods provided by DAGCombinerInfo may be used to perform
- /// more complex transformations.
- ///
- virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
- /// Return true if it is profitable to move a following shift through this
- // node, adjusting any immediate operands as necessary to preserve semantics.
- // This transformation may not be desirable if it disrupts a particularly
- // auspicious target-specific tree (e.g. bitfield extraction in AArch64).
- // By default, it returns true.
- virtual bool isDesirableToCommuteWithShift(const SDNode *N /*Op*/) const {
- return true;
- }
- /// Return true if the target has native support for the specified value type
- /// and it is 'desirable' to use the type for the given node type. e.g. On x86
- /// i16 is legal, but undesirable since i16 instruction encodings are longer
- /// and some i16 instructions are slow.
- virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
- // By default, assume all legal types are desirable.
- return isTypeLegal(VT);
- }
- /// Return true if it is profitable for dag combiner to transform a floating
- /// point op of specified opcode to a equivalent op of an integer
- /// type. e.g. f32 load -> i32 load can be profitable on ARM.
- virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
- EVT /*VT*/) const {
- return false;
- }
- /// This method query the target whether it is beneficial for dag combiner to
- /// promote the specified node. If true, it should return the desired
- /// promotion type by reference.
- virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
- return false;
- }
- //===--------------------------------------------------------------------===//
- // Lowering methods - These methods must be implemented by targets so that
- // the SelectionDAGBuilder code knows how to lower these.
- //
- /// This hook must be implemented to lower the incoming (formal) arguments,
- /// described by the Ins array, into the specified DAG. The implementation
- /// should fill in the InVals array with legal-type argument values, and
- /// return the resulting token chain value.
- ///
- virtual SDValue
- LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
- bool /*isVarArg*/,
- const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
- SDLoc /*dl*/, SelectionDAG &/*DAG*/,
- SmallVectorImpl<SDValue> &/*InVals*/) const {
- llvm_unreachable("Not Implemented");
- }
- struct ArgListEntry {
- SDValue Node;
- Type* Ty;
- bool isSExt : 1;
- bool isZExt : 1;
- bool isInReg : 1;
- bool isSRet : 1;
- bool isNest : 1;
- bool isByVal : 1;
- bool isInAlloca : 1;
- bool isReturned : 1;
- uint16_t Alignment;
- ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
- isSRet(false), isNest(false), isByVal(false), isInAlloca(false),
- isReturned(false), Alignment(0) { }
- void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
- };
- typedef std::vector<ArgListEntry> ArgListTy;
- /// This structure contains all information that is necessary for lowering
- /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
- /// needs to lower a call, and targets will see this struct in their LowerCall
- /// implementation.
- struct CallLoweringInfo {
- SDValue Chain;
- Type *RetTy;
- bool RetSExt : 1;
- bool RetZExt : 1;
- bool IsVarArg : 1;
- bool IsInReg : 1;
- bool DoesNotReturn : 1;
- bool IsReturnValueUsed : 1;
- // IsTailCall should be modified by implementations of
- // TargetLowering::LowerCall that perform tail call conversions.
- bool IsTailCall;
- unsigned NumFixedArgs;
- CallingConv::ID CallConv;
- SDValue Callee;
- ArgListTy Args;
- SelectionDAG &DAG;
- SDLoc DL;
- ImmutableCallSite *CS;
- bool IsPatchPoint;
- SmallVector<ISD::OutputArg, 32> Outs;
- SmallVector<SDValue, 32> OutVals;
- SmallVector<ISD::InputArg, 32> Ins;
- CallLoweringInfo(SelectionDAG &DAG)
- : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
- IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
- IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
- DAG(DAG), CS(nullptr), IsPatchPoint(false) {}
- CallLoweringInfo &setDebugLoc(SDLoc dl) {
- DL = dl;
- return *this;
- }
- CallLoweringInfo &setChain(SDValue InChain) {
- Chain = InChain;
- return *this;
- }
- CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
- SDValue Target, ArgListTy &&ArgsList,
- unsigned FixedArgs = -1) {
- RetTy = ResultType;
- Callee = Target;
- CallConv = CC;
- NumFixedArgs =
- (FixedArgs == static_cast<unsigned>(-1) ? Args.size() : FixedArgs);
- Args = std::move(ArgsList);
- return *this;
- }
- CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
- SDValue Target, ArgListTy &&ArgsList,
- ImmutableCallSite &Call) {
- RetTy = ResultType;
- IsInReg = Call.paramHasAttr(0, Attribute::InReg);
- DoesNotReturn = Call.doesNotReturn();
- IsVarArg = FTy->isVarArg();
- IsReturnValueUsed = !Call.getInstruction()->use_empty();
- RetSExt = Call.paramHasAttr(0, Attribute::SExt);
- RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
- Callee = Target;
- CallConv = Call.getCallingConv();
- NumFixedArgs = FTy->getNumParams();
- Args = std::move(ArgsList);
- CS = &Call;
- return *this;
- }
- CallLoweringInfo &setInRegister(bool Value = true) {
- IsInReg = Value;
- return *this;
- }
- CallLoweringInfo &setNoReturn(bool Value = true) {
- DoesNotReturn = Value;
- return *this;
- }
- CallLoweringInfo &setVarArg(bool Value = true) {
- IsVarArg = Value;
- return *this;
- }
- CallLoweringInfo &setTailCall(bool Value = true) {
- IsTailCall = Value;
- return *this;
- }
- CallLoweringInfo &setDiscardResult(bool Value = true) {
- IsReturnValueUsed = !Value;
- return *this;
- }
- CallLoweringInfo &setSExtResult(bool Value = true) {
- RetSExt = Value;
- return *this;
- }
- CallLoweringInfo &setZExtResult(bool Value = true) {
- RetZExt = Value;
- return *this;
- }
- CallLoweringInfo &setIsPatchPoint(bool Value = true) {
- IsPatchPoint = Value;
- return *this;
- }
- ArgListTy &getArgs() {
- return Args;
- }
- };
- /// This function lowers an abstract call to a function into an actual call.
- /// This returns a pair of operands. The first element is the return value
- /// for the function (if RetTy is not VoidTy). The second element is the
- /// outgoing token chain. It calls LowerCall to do the actual lowering.
- std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
- /// This hook must be implemented to lower calls into the specified
- /// DAG. The outgoing arguments to the call are described by the Outs array,
- /// and the values to be returned by the call are described by the Ins
- /// array. The implementation should fill in the InVals array with legal-type
- /// return values from the call, and return the resulting token chain value.
- virtual SDValue
- LowerCall(CallLoweringInfo &/*CLI*/,
- SmallVectorImpl<SDValue> &/*InVals*/) const {
- llvm_unreachable("Not Implemented");
- }
- /// Target-specific cleanup for formal ByVal parameters.
- virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
- /// This hook should be implemented to check whether the return values
- /// described by the Outs array can fit into the return registers. If false
- /// is returned, an sret-demotion is performed.
- virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
- MachineFunction &/*MF*/, bool /*isVarArg*/,
- const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
- LLVMContext &/*Context*/) const
- {
- // Return true by default to get preexisting behavior.
- return true;
- }
- /// This hook must be implemented to lower outgoing return values, described
- /// by the Outs array, into the specified DAG. The implementation should
- /// return the resulting token chain value.
- virtual SDValue
- LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
- bool /*isVarArg*/,
- const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
- const SmallVectorImpl<SDValue> &/*OutVals*/,
- SDLoc /*dl*/, SelectionDAG &/*DAG*/) const {
- llvm_unreachable("Not Implemented");
- }
- /// Return true if result of the specified node is used by a return node
- /// only. It also compute and return the input chain for the tail call.
- ///
- /// This is used to determine whether it is possible to codegen a libcall as
- /// tail call at legalization time.
- virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
- return false;
- }
- /// Return true if the target may be able emit the call instruction as a tail
- /// call. This is used by optimization passes to determine if it's profitable
- /// to duplicate return instructions to enable tailcall optimization.
- virtual bool mayBeEmittedAsTailCall(CallInst *) const {
- return false;
- }
- /// Return the builtin name for the __builtin___clear_cache intrinsic
- /// Default is to invoke the clear cache library call
- virtual const char * getClearCacheBuiltinName() const {
- return "__clear_cache";
- }
- /// Return the register ID of the name passed in. Used by named register
- /// global variables extension. There is no target-independent behaviour
- /// so the default action is to bail.
- virtual unsigned getRegisterByName(const char* RegName, EVT VT,
- SelectionDAG &DAG) const {
- report_fatal_error("Named registers not implemented for this target");
- }
- /// Return the type that should be used to zero or sign extend a
- /// zeroext/signext integer argument or return value. FIXME: Most C calling
- /// convention requires the return type to be promoted, but this is not true
- /// all the time, e.g. i1 on x86-64. It is also not necessary for non-C
- /// calling conventions. The frontend should handle this and include all of
- /// the necessary information.
- virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
- ISD::NodeType /*ExtendKind*/) const {
- EVT MinVT = getRegisterType(Context, MVT::i32);
- return VT.bitsLT(MinVT) ? MinVT : VT;
- }
- /// For some targets, an LLVM struct type must be broken down into multiple
- /// simple types, but the calling convention specifies that the entire struct
- /// must be passed in a block of consecutive registers.
- virtual bool
- functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
- bool isVarArg) const {
- return false;
- }
- /// Returns a 0 terminated array of registers that can be safely used as
- /// scratch registers.
- virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
- return nullptr;
- }
- /// This callback is used to prepare for a volatile or atomic load.
- /// It takes a chain node as input and returns the chain for the load itself.
- ///
- /// Having a callback like this is necessary for targets like SystemZ,
- /// which allows a CPU to reuse the result of a previous load indefinitely,
- /// even if a cache-coherent store is performed by another CPU. The default
- /// implementation does nothing.
- virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL,
- SelectionDAG &DAG) const {
- return Chain;
- }
- /// This callback is invoked by the type legalizer to legalize nodes with an
- /// illegal operand type but legal result types. It replaces the
- /// LowerOperation callback in the type Legalizer. The reason we can not do
- /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
- /// use this callback.
- ///
- /// TODO: Consider merging with ReplaceNodeResults.
- ///
- /// The target places new result values for the node in Results (their number
- /// and types must exactly match those of the original return values of
- /// the node), or leaves Results empty, which indicates that the node is not
- /// to be custom lowered after all.
- /// The default implementation calls LowerOperation.
- virtual void LowerOperationWrapper(SDNode *N,
- SmallVectorImpl<SDValue> &Results,
- SelectionDAG &DAG) const;
- /// This callback is invoked for operations that are unsupported by the
- /// target, which are registered to use 'custom' lowering, and whose defined
- /// values are all legal. If the target has no operations that require custom
- /// lowering, it need not implement this. The default implementation of this
- /// aborts.
- virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
- /// This callback is invoked when a node result type is illegal for the
- /// target, and the operation was registered to use 'custom' lowering for that
- /// result type. The target places new result values for the node in Results
- /// (their number and types must exactly match those of the original return
- /// values of the node), or leaves Results empty, which indicates that the
- /// node is not to be custom lowered after all.
- ///
- /// If the target has no operations that require custom lowering, it need not
- /// implement this. The default implementation aborts.
- virtual void ReplaceNodeResults(SDNode * /*N*/,
- SmallVectorImpl<SDValue> &/*Results*/,
- SelectionDAG &/*DAG*/) const {
- llvm_unreachable("ReplaceNodeResults not implemented for this target!");
- }
- /// This method returns the name of a target specific DAG node.
- virtual const char *getTargetNodeName(unsigned Opcode) const;
- /// This method returns a target specific FastISel object, or null if the
- /// target does not support "fast" ISel.
- virtual FastISel *createFastISel(FunctionLoweringInfo &,
- const TargetLibraryInfo *) const {
- return nullptr;
- }
- bool verifyReturnAddressArgumentIsConstant(SDValue Op,
- SelectionDAG &DAG) const;
- //===--------------------------------------------------------------------===//
- // Inline Asm Support hooks
- //
- /// This hook allows the target to expand an inline asm call to be explicit
- /// llvm code if it wants to. This is useful for turning simple inline asms
- /// into LLVM intrinsics, which gives the compiler more information about the
- /// behavior of the code.
- virtual bool ExpandInlineAsm(CallInst *) const {
- return false;
- }
- enum ConstraintType {
- C_Register, // Constraint represents specific register(s).
- C_RegisterClass, // Constraint represents any of register(s) in class.
- C_Memory, // Memory constraint.
- C_Other, // Something else.
- C_Unknown // Unsupported constraint.
- };
- enum ConstraintWeight {
- // Generic weights.
- CW_Invalid = -1, // No match.
- CW_Okay = 0, // Acceptable.
- CW_Good = 1, // Good weight.
- CW_Better = 2, // Better weight.
- CW_Best = 3, // Best weight.
- // Well-known weights.
- CW_SpecificReg = CW_Okay, // Specific register operands.
- CW_Register = CW_Good, // Register operands.
- CW_Memory = CW_Better, // Memory operands.
- CW_Constant = CW_Best, // Constant operand.
- CW_Default = CW_Okay // Default or don't know type.
- };
- /// This contains information for each constraint that we are lowering.
- struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
- /// This contains the actual string for the code, like "m". TargetLowering
- /// picks the 'best' code from ConstraintInfo::Codes that most closely
- /// matches the operand.
- std::string ConstraintCode;
- /// Information about the constraint code, e.g. Register, RegisterClass,
- /// Memory, Other, Unknown.
- TargetLowering::ConstraintType ConstraintType;
- /// If this is the result output operand or a clobber, this is null,
- /// otherwise it is the incoming operand to the CallInst. This gets
- /// modified as the asm is processed.
- Value *CallOperandVal;
- /// The ValueType for the operand value.
- MVT ConstraintVT;
- /// Return true of this is an input operand that is a matching constraint
- /// like "4".
- bool isMatchingInputConstraint() const;
- /// If this is an input matching constraint, this method returns the output
- /// operand it matches.
- unsigned getMatchedOperand() const;
- /// Copy constructor for copying from a ConstraintInfo.
- AsmOperandInfo(InlineAsm::ConstraintInfo Info)
- : InlineAsm::ConstraintInfo(std::move(Info)),
- ConstraintType(TargetLowering::C_Unknown), CallOperandVal(nullptr),
- ConstraintVT(MVT::Other) {}
- };
- typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
- /// Split up the constraint string from the inline assembly value into the
- /// specific constraints and their prefixes, and also tie in the associated
- /// operand values. If this returns an empty vector, and if the constraint
- /// string itself isn't empty, there was an error parsing.
- virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
- const TargetRegisterInfo *TRI,
- ImmutableCallSite CS) const;
- /// Examine constraint type and operand type and determine a weight value.
- /// The operand object must already have been set up with the operand type.
- virtual ConstraintWeight getMultipleConstraintMatchWeight(
- AsmOperandInfo &info, int maIndex) const;
- /// Examine constraint string and operand type and determine a weight value.
- /// The operand object must already have been set up with the operand type.
- virtual ConstraintWeight getSingleConstraintMatchWeight(
- AsmOperandInfo &info, const char *constraint) const;
- /// Determines the constraint code and constraint type to use for the specific
- /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
- /// If the actual operand being passed in is available, it can be passed in as
- /// Op, otherwise an empty SDValue can be passed.
- virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
- SDValue Op,
- SelectionDAG *DAG = nullptr) const;
- /// Given a constraint, return the type of constraint it is for this target.
- virtual ConstraintType getConstraintType(StringRef Constraint) const;
- /// Given a physical register constraint (e.g. {edx}), return the register
- /// number and the register class for the register.
- ///
- /// Given a register class constraint, like 'r', if this corresponds directly
- /// to an LLVM register class, return a register of 0 and the register class
- /// pointer.
- ///
- /// This should only be used for C_Register constraints. On error, this
- /// returns a register number of 0 and a null register class pointer.
- virtual std::pair<unsigned, const TargetRegisterClass *>
- getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
- StringRef Constraint, MVT VT) const;
- virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const {
- if (ConstraintCode == "i")
- return InlineAsm::Constraint_i;
- else if (ConstraintCode == "m")
- return InlineAsm::Constraint_m;
- return InlineAsm::Constraint_Unknown;
- }
- /// Try to replace an X constraint, which matches anything, with another that
- /// has more specific requirements based on the type of the corresponding
- /// operand. This returns null if there is no replacement to make.
- virtual const char *LowerXConstraint(EVT ConstraintVT) const;
- /// Lower the specified operand into the Ops vector. If it is invalid, don't
- /// add anything to Ops.
- virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
- std::vector<SDValue> &Ops,
- SelectionDAG &DAG) const;
- //===--------------------------------------------------------------------===//
- // Div utility functions
- //
- SDValue BuildSDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
- bool IsAfterLegalization,
- std::vector<SDNode *> *Created) const;
- SDValue BuildUDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
- bool IsAfterLegalization,
- std::vector<SDNode *> *Created) const;
- virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
- SelectionDAG &DAG,
- std::vector<SDNode *> *Created) const {
- return SDValue();
- }
- /// Indicate whether this target prefers to combine the given number of FDIVs
- /// with the same divisor.
- virtual bool combineRepeatedFPDivisors(unsigned NumUsers) const {
- return false;
- }
- /// Hooks for building estimates in place of slower divisions and square
- /// roots.
- /// Return a reciprocal square root estimate value for the input operand.
- /// The RefinementSteps output is the number of Newton-Raphson refinement
- /// iterations required to generate a sufficient (though not necessarily
- /// IEEE-754 compliant) estimate for the value type.
- /// The boolean UseOneConstNR output is used to select a Newton-Raphson
- /// algorithm implementation that uses one constant or two constants.
- /// A target may choose to implement its own refinement within this function.
- /// If that's true, then return '0' as the number of RefinementSteps to avoid
- /// any further refinement of the estimate.
- /// An empty SDValue return means no estimate sequence can be created.
- virtual SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
- unsigned &RefinementSteps,
- bool &UseOneConstNR) const {
- return SDValue();
- }
- /// Return a reciprocal estimate value for the input operand.
- /// The RefinementSteps output is the number of Newton-Raphson refinement
- /// iterations required to generate a sufficient (though not necessarily
- /// IEEE-754 compliant) estimate for the value type.
- /// A target may choose to implement its own refinement within this function.
- /// If that's true, then return '0' as the number of RefinementSteps to avoid
- /// any further refinement of the estimate.
- /// An empty SDValue return means no estimate sequence can be created.
- virtual SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
- unsigned &RefinementSteps) const {
- return SDValue();
- }
- //===--------------------------------------------------------------------===//
- // Legalization utility functions
- //
- /// Expand a MUL into two nodes. One that computes the high bits of
- /// the result and one that computes the low bits.
- /// \param HiLoVT The value type to use for the Lo and Hi nodes.
- /// \param LL Low bits of the LHS of the MUL. You can use this parameter
- /// if you want to control how low bits are extracted from the LHS.
- /// \param LH High bits of the LHS of the MUL. See LL for meaning.
- /// \param RL Low bits of the RHS of the MUL. See LL for meaning
- /// \param RH High bits of the RHS of the MUL. See LL for meaning.
- /// \returns true if the node has been expanded. false if it has not
- bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
- SelectionDAG &DAG, SDValue LL = SDValue(),
- SDValue LH = SDValue(), SDValue RL = SDValue(),
- SDValue RH = SDValue()) const;
- /// Expand float(f32) to SINT(i64) conversion
- /// \param N Node to expand
- /// \param Result output after conversion
- /// \returns True, if the expansion was successful, false otherwise
- bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
- //===--------------------------------------------------------------------===//
- // Instruction Emitting Hooks
- //
- /// This method should be implemented by targets that mark instructions with
- /// the 'usesCustomInserter' flag. These instructions are special in various
- /// ways, which require special support to insert. The specified MachineInstr
- /// is created but not inserted into any basic blocks, and this method is
- /// called to expand it into a sequence of instructions, potentially also
- /// creating new basic blocks and control flow.
- /// As long as the returned basic block is different (i.e., we created a new
- /// one), the custom inserter is free to modify the rest of \p MBB.
- virtual MachineBasicBlock *
- EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
- /// This method should be implemented by targets that mark instructions with
- /// the 'hasPostISelHook' flag. These instructions must be adjusted after
- /// instruction selection by target hooks. e.g. To fill in optional defs for
- /// ARM 's' setting instructions.
- virtual void
- AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
- /// If this function returns true, SelectionDAGBuilder emits a
- /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
- virtual bool useLoadStackGuardNode() const {
- return false;
- }
- };
- /// Given an LLVM IR type and return type attributes, compute the return value
- /// EVTs and flags, and optionally also the offsets, if the return value is
- /// being lowered to memory.
- void GetReturnInfo(Type *ReturnType, AttributeSet attr,
- SmallVectorImpl<ISD::OutputArg> &Outs,
- const TargetLowering &TLI, const DataLayout &DL);
- } // end llvm namespace
- #endif
|