1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946 |
- //===-- APFloat.cpp - Implement APFloat class -----------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements a class to represent arbitrary precision floating
- // point values and provide a variety of arithmetic operations on them.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APSInt.h"
- #include "llvm/ADT/FoldingSet.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include <cstring>
- #include <limits.h>
- using namespace llvm;
- /// A macro used to combine two fcCategory enums into one key which can be used
- /// in a switch statement to classify how the interaction of two APFloat's
- /// categories affects an operation.
- ///
- /// TODO: If clang source code is ever allowed to use constexpr in its own
- /// codebase, change this into a static inline function.
- #define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs))
- /* Assumed in hexadecimal significand parsing, and conversion to
- hexadecimal strings. */
- static_assert(integerPartWidth % 4 == 0, "Part width must be divisible by 4!");
- namespace llvm {
- /* Represents floating point arithmetic semantics. */
- struct fltSemantics {
- /* The largest E such that 2^E is representable; this matches the
- definition of IEEE 754. */
- APFloat::ExponentType maxExponent;
- /* The smallest E such that 2^E is a normalized number; this
- matches the definition of IEEE 754. */
- APFloat::ExponentType minExponent;
- /* Number of bits in the significand. This includes the integer
- bit. */
- unsigned int precision;
- /* Number of bits actually used in the semantics. */
- unsigned int sizeInBits;
- };
- const fltSemantics APFloat::IEEEhalf = { 15, -14, 11, 16 };
- const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, 32 };
- const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, 64 };
- const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, 128 };
- const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, 80 };
- const fltSemantics APFloat::Bogus = { 0, 0, 0, 0 };
- /* The PowerPC format consists of two doubles. It does not map cleanly
- onto the usual format above. It is approximated using twice the
- mantissa bits. Note that for exponents near the double minimum,
- we no longer can represent the full 106 mantissa bits, so those
- will be treated as denormal numbers.
- FIXME: While this approximation is equivalent to what GCC uses for
- compile-time arithmetic on PPC double-double numbers, it is not able
- to represent all possible values held by a PPC double-double number,
- for example: (long double) 1.0 + (long double) 0x1p-106
- Should this be replaced by a full emulation of PPC double-double? */
- const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022 + 53, 53 + 53, 128 };
- /* A tight upper bound on number of parts required to hold the value
- pow(5, power) is
- power * 815 / (351 * integerPartWidth) + 1
- However, whilst the result may require only this many parts,
- because we are multiplying two values to get it, the
- multiplication may require an extra part with the excess part
- being zero (consider the trivial case of 1 * 1, tcFullMultiply
- requires two parts to hold the single-part result). So we add an
- extra one to guarantee enough space whilst multiplying. */
- const unsigned int maxExponent = 16383;
- const unsigned int maxPrecision = 113;
- const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
- const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
- / (351 * integerPartWidth));
- }
- /* A bunch of private, handy routines. */
- static inline unsigned int
- partCountForBits(unsigned int bits)
- {
- return ((bits) + integerPartWidth - 1) / integerPartWidth;
- }
- /* Returns 0U-9U. Return values >= 10U are not digits. */
- static inline unsigned int
- decDigitValue(unsigned int c)
- {
- return c - '0';
- }
- /* Return the value of a decimal exponent of the form
- [+-]ddddddd.
- If the exponent overflows, returns a large exponent with the
- appropriate sign. */
- static int
- readExponent(StringRef::iterator begin, StringRef::iterator end)
- {
- bool isNegative;
- unsigned int absExponent;
- const unsigned int overlargeExponent = 24000; /* FIXME. */
- StringRef::iterator p = begin;
- assert(p != end && "Exponent has no digits");
- isNegative = (*p == '-');
- if (*p == '-' || *p == '+') {
- p++;
- assert(p != end && "Exponent has no digits");
- }
- absExponent = decDigitValue(*p++);
- assert(absExponent < 10U && "Invalid character in exponent");
- for (; p != end; ++p) {
- unsigned int value;
- value = decDigitValue(*p);
- assert(value < 10U && "Invalid character in exponent");
- value += absExponent * 10;
- if (absExponent >= overlargeExponent) {
- absExponent = overlargeExponent;
- p = end; /* outwit assert below */
- break;
- }
- absExponent = value;
- }
- assert(p == end && "Invalid exponent in exponent");
- if (isNegative)
- return -(int) absExponent;
- else
- return (int) absExponent;
- }
- /* This is ugly and needs cleaning up, but I don't immediately see
- how whilst remaining safe. */
- static int
- totalExponent(StringRef::iterator p, StringRef::iterator end,
- int exponentAdjustment)
- {
- int unsignedExponent;
- bool negative, overflow;
- int exponent = 0;
- assert(p != end && "Exponent has no digits");
- negative = *p == '-';
- if (*p == '-' || *p == '+') {
- p++;
- assert(p != end && "Exponent has no digits");
- }
- unsignedExponent = 0;
- overflow = false;
- for (; p != end; ++p) {
- unsigned int value;
- value = decDigitValue(*p);
- assert(value < 10U && "Invalid character in exponent");
- unsignedExponent = unsignedExponent * 10 + value;
- if (unsignedExponent > 32767) {
- overflow = true;
- break;
- }
- }
- if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
- overflow = true;
- if (!overflow) {
- exponent = unsignedExponent;
- if (negative)
- exponent = -exponent;
- exponent += exponentAdjustment;
- if (exponent > 32767 || exponent < -32768)
- overflow = true;
- }
- if (overflow)
- exponent = negative ? -32768: 32767;
- return exponent;
- }
- static StringRef::iterator
- skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
- StringRef::iterator *dot)
- {
- StringRef::iterator p = begin;
- *dot = end;
- while (p != end && *p == '0')
- p++;
- if (p != end && *p == '.') {
- *dot = p++;
- assert(end - begin != 1 && "Significand has no digits");
- while (p != end && *p == '0')
- p++;
- }
- return p;
- }
- /* Given a normal decimal floating point number of the form
- dddd.dddd[eE][+-]ddd
- where the decimal point and exponent are optional, fill out the
- structure D. Exponent is appropriate if the significand is
- treated as an integer, and normalizedExponent if the significand
- is taken to have the decimal point after a single leading
- non-zero digit.
- If the value is zero, V->firstSigDigit points to a non-digit, and
- the return exponent is zero.
- */
- struct decimalInfo {
- const char *firstSigDigit;
- const char *lastSigDigit;
- int exponent;
- int normalizedExponent;
- };
- static void
- interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
- decimalInfo *D)
- {
- StringRef::iterator dot = end;
- StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
- D->firstSigDigit = p;
- D->exponent = 0;
- D->normalizedExponent = 0;
- for (; p != end; ++p) {
- if (*p == '.') {
- assert(dot == end && "String contains multiple dots");
- dot = p++;
- if (p == end)
- break;
- }
- if (decDigitValue(*p) >= 10U)
- break;
- }
- if (p != end) {
- assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
- assert(p != begin && "Significand has no digits");
- assert((dot == end || p - begin != 1) && "Significand has no digits");
- /* p points to the first non-digit in the string */
- D->exponent = readExponent(p + 1, end);
- /* Implied decimal point? */
- if (dot == end)
- dot = p;
- }
- /* If number is all zeroes accept any exponent. */
- if (p != D->firstSigDigit) {
- /* Drop insignificant trailing zeroes. */
- if (p != begin) {
- do
- do
- p--;
- while (p != begin && *p == '0');
- while (p != begin && *p == '.');
- }
- /* Adjust the exponents for any decimal point. */
- D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p));
- D->normalizedExponent = (D->exponent +
- static_cast<APFloat::ExponentType>((p - D->firstSigDigit)
- - (dot > D->firstSigDigit && dot < p)));
- }
- D->lastSigDigit = p;
- }
- /* Return the trailing fraction of a hexadecimal number.
- DIGITVALUE is the first hex digit of the fraction, P points to
- the next digit. */
- static lostFraction
- trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
- unsigned int digitValue)
- {
- unsigned int hexDigit;
- /* If the first trailing digit isn't 0 or 8 we can work out the
- fraction immediately. */
- if (digitValue > 8)
- return lfMoreThanHalf;
- else if (digitValue < 8 && digitValue > 0)
- return lfLessThanHalf;
- // Otherwise we need to find the first non-zero digit.
- while (p != end && (*p == '0' || *p == '.'))
- p++;
- assert(p != end && "Invalid trailing hexadecimal fraction!");
- hexDigit = hexDigitValue(*p);
- /* If we ran off the end it is exactly zero or one-half, otherwise
- a little more. */
- if (hexDigit == -1U)
- return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
- else
- return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
- }
- /* Return the fraction lost were a bignum truncated losing the least
- significant BITS bits. */
- static lostFraction
- lostFractionThroughTruncation(const integerPart *parts,
- unsigned int partCount,
- unsigned int bits)
- {
- unsigned int lsb;
- lsb = APInt::tcLSB(parts, partCount);
- /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
- if (bits <= lsb)
- return lfExactlyZero;
- if (bits == lsb + 1)
- return lfExactlyHalf;
- if (bits <= partCount * integerPartWidth &&
- APInt::tcExtractBit(parts, bits - 1))
- return lfMoreThanHalf;
- return lfLessThanHalf;
- }
- /* Shift DST right BITS bits noting lost fraction. */
- static lostFraction
- shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
- {
- lostFraction lost_fraction;
- lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
- APInt::tcShiftRight(dst, parts, bits);
- return lost_fraction;
- }
- /* Combine the effect of two lost fractions. */
- static lostFraction
- combineLostFractions(lostFraction moreSignificant,
- lostFraction lessSignificant)
- {
- if (lessSignificant != lfExactlyZero) {
- if (moreSignificant == lfExactlyZero)
- moreSignificant = lfLessThanHalf;
- else if (moreSignificant == lfExactlyHalf)
- moreSignificant = lfMoreThanHalf;
- }
- return moreSignificant;
- }
- /* The error from the true value, in half-ulps, on multiplying two
- floating point numbers, which differ from the value they
- approximate by at most HUE1 and HUE2 half-ulps, is strictly less
- than the returned value.
- See "How to Read Floating Point Numbers Accurately" by William D
- Clinger. */
- static unsigned int
- HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
- {
- assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
- if (HUerr1 + HUerr2 == 0)
- return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */
- else
- return inexactMultiply + 2 * (HUerr1 + HUerr2);
- }
- /* The number of ulps from the boundary (zero, or half if ISNEAREST)
- when the least significant BITS are truncated. BITS cannot be
- zero. */
- static integerPart
- ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
- {
- unsigned int count, partBits;
- integerPart part, boundary;
- assert(bits != 0);
- bits--;
- count = bits / integerPartWidth;
- partBits = bits % integerPartWidth + 1;
- part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
- if (isNearest)
- boundary = (integerPart) 1 << (partBits - 1);
- else
- boundary = 0;
- if (count == 0) {
- if (part - boundary <= boundary - part)
- return part - boundary;
- else
- return boundary - part;
- }
- if (part == boundary) {
- while (--count)
- if (parts[count])
- return ~(integerPart) 0; /* A lot. */
- return parts[0];
- } else if (part == boundary - 1) {
- while (--count)
- if (~parts[count])
- return ~(integerPart) 0; /* A lot. */
- return -parts[0];
- }
- return ~(integerPart) 0; /* A lot. */
- }
- /* Place pow(5, power) in DST, and return the number of parts used.
- DST must be at least one part larger than size of the answer. */
- static unsigned int
- powerOf5(integerPart *dst, unsigned int power)
- {
- static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
- 15625, 78125 };
- integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
- pow5s[0] = 78125 * 5;
- unsigned int partsCount[16] = { 1 };
- integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
- unsigned int result;
- assert(power <= maxExponent);
- p1 = dst;
- p2 = scratch;
- *p1 = firstEightPowers[power & 7];
- power >>= 3;
- result = 1;
- pow5 = pow5s;
- for (unsigned int n = 0; power; power >>= 1, n++) {
- unsigned int pc;
- pc = partsCount[n];
- /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */
- if (pc == 0) {
- pc = partsCount[n - 1];
- APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
- pc *= 2;
- if (pow5[pc - 1] == 0)
- pc--;
- partsCount[n] = pc;
- }
- if (power & 1) {
- integerPart *tmp;
- APInt::tcFullMultiply(p2, p1, pow5, result, pc);
- result += pc;
- if (p2[result - 1] == 0)
- result--;
- /* Now result is in p1 with partsCount parts and p2 is scratch
- space. */
- tmp = p1, p1 = p2, p2 = tmp;
- }
- pow5 += pc;
- }
- if (p1 != dst)
- APInt::tcAssign(dst, p1, result);
- return result;
- }
- /* Zero at the end to avoid modular arithmetic when adding one; used
- when rounding up during hexadecimal output. */
- static const char hexDigitsLower[] = "0123456789abcdef0";
- static const char hexDigitsUpper[] = "0123456789ABCDEF0";
- static const char infinityL[] = "infinity";
- static const char infinityU[] = "INFINITY";
- static const char NaNL[] = "nan";
- static const char NaNU[] = "NAN";
- /* Write out an integerPart in hexadecimal, starting with the most
- significant nibble. Write out exactly COUNT hexdigits, return
- COUNT. */
- static unsigned int
- partAsHex (_Out_writes_(count) char *dst, integerPart part, unsigned int count,
- _In_count_(16) const char *hexDigitChars)
- {
- unsigned int result = count;
- assert(count != 0 && count <= integerPartWidth / 4);
- part >>= (integerPartWidth - 4 * count);
- while (count--) {
- dst[count] = hexDigitChars[part & 0xf];
- part >>= 4;
- }
- return result;
- }
- /* Write out an unsigned decimal integer. */
- static char *
- writeUnsignedDecimal (_Out_writes_(10) char *dst, unsigned int n) // HLSL Change: '4294967295' is ten characters
- {
- char buff[40], *p;
- p = buff;
- do
- *p++ = '0' + n % 10;
- while (n /= 10);
- do
- *dst++ = *--p;
- while (p != buff);
- return dst;
- }
- /* Write out a signed decimal integer. */
- static char *
- writeSignedDecimal(_Out_writes_(11) char *dst, int value) // HLSL Change: '-2147483648' is eleven characters
- {
- if (value < 0) {
- *dst++ = '-';
- dst = writeUnsignedDecimal(dst, -(unsigned) value);
- } else
- dst = writeUnsignedDecimal(dst, value);
- return dst;
- }
- /* Constructors. */
- void
- APFloat::initialize(const fltSemantics *ourSemantics)
- {
- unsigned int count;
- semantics = ourSemantics;
- count = partCount();
- if (count > 1)
- significand.parts = new integerPart[count];
- }
- void
- APFloat::freeSignificand()
- {
- if (needsCleanup())
- delete [] significand.parts;
- }
- void
- APFloat::assign(const APFloat &rhs)
- {
- assert(semantics == rhs.semantics);
- sign = rhs.sign;
- category = rhs.category;
- exponent = rhs.exponent;
- if (isFiniteNonZero() || category == fcNaN)
- copySignificand(rhs);
- }
- void
- APFloat::copySignificand(const APFloat &rhs)
- {
- assert(isFiniteNonZero() || category == fcNaN);
- assert(rhs.partCount() >= partCount());
- APInt::tcAssign(significandParts(), rhs.significandParts(),
- partCount());
- }
- /* Make this number a NaN, with an arbitrary but deterministic value
- for the significand. If double or longer, this is a signalling NaN,
- which may not be ideal. If float, this is QNaN(0). */
- void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill)
- {
- category = fcNaN;
- sign = Negative;
- integerPart *significand = significandParts();
- unsigned numParts = partCount();
- // Set the significand bits to the fill.
- if (!fill || fill->getNumWords() < numParts)
- APInt::tcSet(significand, 0, numParts);
- if (fill) {
- APInt::tcAssign(significand, fill->getRawData(),
- std::min(fill->getNumWords(), numParts));
- // Zero out the excess bits of the significand.
- unsigned bitsToPreserve = semantics->precision - 1;
- unsigned part = bitsToPreserve / 64;
- bitsToPreserve %= 64;
- significand[part] &= ((1ULL << bitsToPreserve) - 1);
- for (part++; part != numParts; ++part)
- significand[part] = 0;
- }
- unsigned QNaNBit = semantics->precision - 2;
- if (SNaN) {
- // We always have to clear the QNaN bit to make it an SNaN.
- APInt::tcClearBit(significand, QNaNBit);
- // If there are no bits set in the payload, we have to set
- // *something* to make it a NaN instead of an infinity;
- // conventionally, this is the next bit down from the QNaN bit.
- if (APInt::tcIsZero(significand, numParts))
- APInt::tcSetBit(significand, QNaNBit - 1);
- } else {
- // We always have to set the QNaN bit to make it a QNaN.
- APInt::tcSetBit(significand, QNaNBit);
- }
- // For x87 extended precision, we want to make a NaN, not a
- // pseudo-NaN. Maybe we should expose the ability to make
- // pseudo-NaNs?
- if (semantics == &APFloat::x87DoubleExtended)
- APInt::tcSetBit(significand, QNaNBit + 1);
- }
- APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
- const APInt *fill) {
- APFloat value(Sem, uninitialized);
- value.makeNaN(SNaN, Negative, fill);
- return value;
- }
- APFloat &
- APFloat::operator=(const APFloat &rhs)
- {
- if (this != &rhs) {
- if (semantics != rhs.semantics) {
- freeSignificand();
- initialize(rhs.semantics);
- }
- assign(rhs);
- }
- return *this;
- }
- APFloat &
- APFloat::operator=(APFloat &&rhs) {
- freeSignificand();
- semantics = rhs.semantics;
- significand = rhs.significand;
- exponent = rhs.exponent;
- category = rhs.category;
- sign = rhs.sign;
- rhs.semantics = &Bogus;
- return *this;
- }
- bool
- APFloat::isDenormal() const {
- return isFiniteNonZero() && (exponent == semantics->minExponent) &&
- (APInt::tcExtractBit(significandParts(),
- semantics->precision - 1) == 0);
- }
- bool
- APFloat::isSmallest() const {
- // The smallest number by magnitude in our format will be the smallest
- // denormal, i.e. the floating point number with exponent being minimum
- // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0).
- return isFiniteNonZero() && exponent == semantics->minExponent &&
- significandMSB() == 0;
- }
- bool APFloat::isSignificandAllOnes() const {
- // Test if the significand excluding the integral bit is all ones. This allows
- // us to test for binade boundaries.
- const integerPart *Parts = significandParts();
- const unsigned PartCount = partCount();
- for (unsigned i = 0; i < PartCount - 1; i++)
- if (~Parts[i])
- return false;
- // Set the unused high bits to all ones when we compare.
- const unsigned NumHighBits =
- PartCount*integerPartWidth - semantics->precision + 1;
- assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
- "fill than integerPartWidth");
- const integerPart HighBitFill =
- ~integerPart(0) << (integerPartWidth - NumHighBits);
- if (~(Parts[PartCount - 1] | HighBitFill))
- return false;
- return true;
- }
- bool APFloat::isSignificandAllZeros() const {
- // Test if the significand excluding the integral bit is all zeros. This
- // allows us to test for binade boundaries.
- const integerPart *Parts = significandParts();
- const unsigned PartCount = partCount();
- for (unsigned i = 0; i < PartCount - 1; i++)
- if (Parts[i])
- return false;
- const unsigned NumHighBits =
- PartCount*integerPartWidth - semantics->precision + 1;
- assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
- "clear than integerPartWidth");
- const integerPart HighBitMask = ~integerPart(0) >> NumHighBits;
- if (Parts[PartCount - 1] & HighBitMask)
- return false;
- return true;
- }
- bool
- APFloat::isLargest() const {
- // The largest number by magnitude in our format will be the floating point
- // number with maximum exponent and with significand that is all ones.
- return isFiniteNonZero() && exponent == semantics->maxExponent
- && isSignificandAllOnes();
- }
- bool
- APFloat::bitwiseIsEqual(const APFloat &rhs) const {
- if (this == &rhs)
- return true;
- if (semantics != rhs.semantics ||
- category != rhs.category ||
- sign != rhs.sign)
- return false;
- if (category==fcZero || category==fcInfinity)
- return true;
- else if (isFiniteNonZero() && exponent!=rhs.exponent)
- return false;
- else {
- int i= partCount();
- const integerPart* p=significandParts();
- const integerPart* q=rhs.significandParts();
- for (; i>0; i--, p++, q++) {
- if (*p != *q)
- return false;
- }
- return true;
- }
- }
- APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) {
- initialize(&ourSemantics);
- sign = 0;
- category = fcNormal;
- zeroSignificand();
- exponent = ourSemantics.precision - 1;
- significandParts()[0] = value;
- normalize(rmNearestTiesToEven, lfExactlyZero);
- }
- APFloat::APFloat(const fltSemantics &ourSemantics) {
- initialize(&ourSemantics);
- category = fcZero;
- sign = false;
- }
- APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag) {
- // Allocates storage if necessary but does not initialize it.
- initialize(&ourSemantics);
- }
- APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text) {
- initialize(&ourSemantics);
- convertFromString(text, rmNearestTiesToEven);
- }
- APFloat::APFloat(const APFloat &rhs) {
- initialize(rhs.semantics);
- assign(rhs);
- }
- APFloat::APFloat(APFloat &&rhs) : semantics(&Bogus) {
- *this = std::move(rhs);
- }
- APFloat::~APFloat()
- {
- freeSignificand();
- }
- // Profile - This method 'profiles' an APFloat for use with FoldingSet.
- void APFloat::Profile(FoldingSetNodeID& ID) const {
- ID.Add(bitcastToAPInt());
- }
- unsigned int
- APFloat::partCount() const
- {
- return partCountForBits(semantics->precision + 1);
- }
- unsigned int
- APFloat::semanticsPrecision(const fltSemantics &semantics)
- {
- return semantics.precision;
- }
- const integerPart *
- APFloat::significandParts() const
- {
- return const_cast<APFloat *>(this)->significandParts();
- }
- integerPart *
- APFloat::significandParts()
- {
- if (partCount() > 1)
- return significand.parts;
- else
- return &significand.part;
- }
- void
- APFloat::zeroSignificand()
- {
- APInt::tcSet(significandParts(), 0, partCount());
- }
- /* Increment an fcNormal floating point number's significand. */
- void
- APFloat::incrementSignificand()
- {
- integerPart carry;
- carry = APInt::tcIncrement(significandParts(), partCount());
- /* Our callers should never cause us to overflow. */
- assert(carry == 0);
- (void)carry;
- }
- /* Add the significand of the RHS. Returns the carry flag. */
- integerPart
- APFloat::addSignificand(const APFloat &rhs)
- {
- integerPart *parts;
- parts = significandParts();
- assert(semantics == rhs.semantics);
- assert(exponent == rhs.exponent);
- return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
- }
- /* Subtract the significand of the RHS with a borrow flag. Returns
- the borrow flag. */
- integerPart
- APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
- {
- integerPart *parts;
- parts = significandParts();
- assert(semantics == rhs.semantics);
- assert(exponent == rhs.exponent);
- return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
- partCount());
- }
- /* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
- on to the full-precision result of the multiplication. Returns the
- lost fraction. */
- lostFraction
- APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
- {
- unsigned int omsb; // One, not zero, based MSB.
- unsigned int partsCount, newPartsCount, precision;
- integerPart *lhsSignificand;
- integerPart scratch[4];
- integerPart *fullSignificand;
- lostFraction lost_fraction;
- bool ignored;
- assert(semantics == rhs.semantics);
- precision = semantics->precision;
- // Allocate space for twice as many bits as the original significand, plus one
- // extra bit for the addition to overflow into.
- newPartsCount = partCountForBits(precision * 2 + 1);
- if (newPartsCount > 4)
- fullSignificand = new integerPart[newPartsCount];
- else
- fullSignificand = scratch;
- lhsSignificand = significandParts();
- partsCount = partCount();
- APInt::tcFullMultiply(fullSignificand, lhsSignificand,
- rhs.significandParts(), partsCount, partsCount);
- lost_fraction = lfExactlyZero;
- omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
- exponent += rhs.exponent;
- // Assume the operands involved in the multiplication are single-precision
- // FP, and the two multiplicants are:
- // *this = a23 . a22 ... a0 * 2^e1
- // rhs = b23 . b22 ... b0 * 2^e2
- // the result of multiplication is:
- // *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
- // Note that there are three significant bits at the left-hand side of the
- // radix point: two for the multiplication, and an overflow bit for the
- // addition (that will always be zero at this point). Move the radix point
- // toward left by two bits, and adjust exponent accordingly.
- exponent += 2;
- if (addend && addend->isNonZero()) {
- // The intermediate result of the multiplication has "2 * precision"
- // signicant bit; adjust the addend to be consistent with mul result.
- //
- Significand savedSignificand = significand;
- const fltSemantics *savedSemantics = semantics;
- fltSemantics extendedSemantics;
- opStatus status;
- unsigned int extendedPrecision;
- // Normalize our MSB to one below the top bit to allow for overflow.
- extendedPrecision = 2 * precision + 1;
- if (omsb != extendedPrecision - 1) {
- assert(extendedPrecision > omsb);
- APInt::tcShiftLeft(fullSignificand, newPartsCount,
- (extendedPrecision - 1) - omsb);
- exponent -= (extendedPrecision - 1) - omsb;
- }
- /* Create new semantics. */
- extendedSemantics = *semantics;
- extendedSemantics.precision = extendedPrecision;
- if (newPartsCount == 1)
- significand.part = fullSignificand[0];
- else
- significand.parts = fullSignificand;
- semantics = &extendedSemantics;
- APFloat extendedAddend(*addend);
- status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
- assert(status == opOK);
- (void)status;
- // Shift the significand of the addend right by one bit. This guarantees
- // that the high bit of the significand is zero (same as fullSignificand),
- // so the addition will overflow (if it does overflow at all) into the top bit.
- lost_fraction = extendedAddend.shiftSignificandRight(1);
- assert(lost_fraction == lfExactlyZero &&
- "Lost precision while shifting addend for fused-multiply-add.");
- lost_fraction = addOrSubtractSignificand(extendedAddend, false);
- /* Restore our state. */
- if (newPartsCount == 1)
- fullSignificand[0] = significand.part;
- significand = savedSignificand;
- semantics = savedSemantics;
- omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
- }
- // Convert the result having "2 * precision" significant-bits back to the one
- // having "precision" significant-bits. First, move the radix point from
- // poision "2*precision - 1" to "precision - 1". The exponent need to be
- // adjusted by "2*precision - 1" - "precision - 1" = "precision".
- exponent -= precision + 1;
- // In case MSB resides at the left-hand side of radix point, shift the
- // mantissa right by some amount to make sure the MSB reside right before
- // the radix point (i.e. "MSB . rest-significant-bits").
- //
- // Note that the result is not normalized when "omsb < precision". So, the
- // caller needs to call APFloat::normalize() if normalized value is expected.
- if (omsb > precision) {
- unsigned int bits, significantParts;
- lostFraction lf;
- bits = omsb - precision;
- significantParts = partCountForBits(omsb);
- lf = shiftRight(fullSignificand, significantParts, bits);
- lost_fraction = combineLostFractions(lf, lost_fraction);
- exponent += bits;
- }
- APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
- if (newPartsCount > 4)
- delete [] fullSignificand;
- return lost_fraction;
- }
- /* Multiply the significands of LHS and RHS to DST. */
- lostFraction
- APFloat::divideSignificand(const APFloat &rhs)
- {
- unsigned int bit, i, partsCount;
- const integerPart *rhsSignificand;
- integerPart *lhsSignificand, *dividend, *divisor;
- integerPart scratch[4];
- lostFraction lost_fraction;
- assert(semantics == rhs.semantics);
- lhsSignificand = significandParts();
- rhsSignificand = rhs.significandParts();
- partsCount = partCount();
- if (partsCount > 2)
- dividend = new integerPart[partsCount * 2];
- else
- dividend = scratch;
- divisor = dividend + partsCount;
- /* Copy the dividend and divisor as they will be modified in-place. */
- for (i = 0; i < partsCount; i++) {
- dividend[i] = lhsSignificand[i];
- divisor[i] = rhsSignificand[i];
- lhsSignificand[i] = 0;
- }
- exponent -= rhs.exponent;
- unsigned int precision = semantics->precision;
- /* Normalize the divisor. */
- bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
- if (bit) {
- exponent += bit;
- APInt::tcShiftLeft(divisor, partsCount, bit);
- }
- /* Normalize the dividend. */
- bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
- if (bit) {
- exponent -= bit;
- APInt::tcShiftLeft(dividend, partsCount, bit);
- }
- /* Ensure the dividend >= divisor initially for the loop below.
- Incidentally, this means that the division loop below is
- guaranteed to set the integer bit to one. */
- if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
- exponent--;
- APInt::tcShiftLeft(dividend, partsCount, 1);
- assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
- }
- /* Long division. */
- for (bit = precision; bit; bit -= 1) {
- if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
- APInt::tcSubtract(dividend, divisor, 0, partsCount);
- APInt::tcSetBit(lhsSignificand, bit - 1);
- }
- APInt::tcShiftLeft(dividend, partsCount, 1);
- }
- /* Figure out the lost fraction. */
- int cmp = APInt::tcCompare(dividend, divisor, partsCount);
- if (cmp > 0)
- lost_fraction = lfMoreThanHalf;
- else if (cmp == 0)
- lost_fraction = lfExactlyHalf;
- else if (APInt::tcIsZero(dividend, partsCount))
- lost_fraction = lfExactlyZero;
- else
- lost_fraction = lfLessThanHalf;
- if (partsCount > 2)
- delete [] dividend;
- return lost_fraction;
- }
- unsigned int
- APFloat::significandMSB() const
- {
- return APInt::tcMSB(significandParts(), partCount());
- }
- unsigned int
- APFloat::significandLSB() const
- {
- return APInt::tcLSB(significandParts(), partCount());
- }
- /* Note that a zero result is NOT normalized to fcZero. */
- lostFraction
- APFloat::shiftSignificandRight(unsigned int bits)
- {
- /* Our exponent should not overflow. */
- assert((ExponentType) (exponent + bits) >= exponent);
- exponent += bits;
- return shiftRight(significandParts(), partCount(), bits);
- }
- /* Shift the significand left BITS bits, subtract BITS from its exponent. */
- void
- APFloat::shiftSignificandLeft(unsigned int bits)
- {
- assert(bits < semantics->precision);
- if (bits) {
- unsigned int partsCount = partCount();
- APInt::tcShiftLeft(significandParts(), partsCount, bits);
- exponent -= bits;
- assert(!APInt::tcIsZero(significandParts(), partsCount));
- }
- }
- APFloat::cmpResult
- APFloat::compareAbsoluteValue(const APFloat &rhs) const
- {
- int compare;
- assert(semantics == rhs.semantics);
- assert(isFiniteNonZero());
- assert(rhs.isFiniteNonZero());
- compare = exponent - rhs.exponent;
- /* If exponents are equal, do an unsigned bignum comparison of the
- significands. */
- if (compare == 0)
- compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
- partCount());
- if (compare > 0)
- return cmpGreaterThan;
- else if (compare < 0)
- return cmpLessThan;
- else
- return cmpEqual;
- }
- /* Handle overflow. Sign is preserved. We either become infinity or
- the largest finite number. */
- APFloat::opStatus
- APFloat::handleOverflow(roundingMode rounding_mode)
- {
- /* Infinity? */
- if (rounding_mode == rmNearestTiesToEven ||
- rounding_mode == rmNearestTiesToAway ||
- (rounding_mode == rmTowardPositive && !sign) ||
- (rounding_mode == rmTowardNegative && sign)) {
- category = fcInfinity;
- return (opStatus) (opOverflow | opInexact);
- }
- /* Otherwise we become the largest finite number. */
- category = fcNormal;
- exponent = semantics->maxExponent;
- APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
- semantics->precision);
- return opInexact;
- }
- /* Returns TRUE if, when truncating the current number, with BIT the
- new LSB, with the given lost fraction and rounding mode, the result
- would need to be rounded away from zero (i.e., by increasing the
- signficand). This routine must work for fcZero of both signs, and
- fcNormal numbers. */
- bool
- APFloat::roundAwayFromZero(roundingMode rounding_mode,
- lostFraction lost_fraction,
- unsigned int bit) const
- {
- /* NaNs and infinities should not have lost fractions. */
- assert(isFiniteNonZero() || category == fcZero);
- /* Current callers never pass this so we don't handle it. */
- assert(lost_fraction != lfExactlyZero);
- switch (rounding_mode) {
- case rmNearestTiesToAway:
- return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
- case rmNearestTiesToEven:
- if (lost_fraction == lfMoreThanHalf)
- return true;
- /* Our zeroes don't have a significand to test. */
- if (lost_fraction == lfExactlyHalf && category != fcZero)
- return APInt::tcExtractBit(significandParts(), bit);
- return false;
- case rmTowardZero:
- return false;
- case rmTowardPositive:
- return !sign;
- case rmTowardNegative:
- return sign;
- }
- llvm_unreachable("Invalid rounding mode found");
- }
- APFloat::opStatus
- APFloat::normalize(roundingMode rounding_mode,
- lostFraction lost_fraction)
- {
- unsigned int omsb; /* One, not zero, based MSB. */
- int exponentChange;
- if (!isFiniteNonZero())
- return opOK;
- /* Before rounding normalize the exponent of fcNormal numbers. */
- omsb = significandMSB() + 1;
- if (omsb) {
- /* OMSB is numbered from 1. We want to place it in the integer
- bit numbered PRECISION if possible, with a compensating change in
- the exponent. */
- exponentChange = omsb - semantics->precision;
- /* If the resulting exponent is too high, overflow according to
- the rounding mode. */
- if (exponent + exponentChange > semantics->maxExponent)
- return handleOverflow(rounding_mode);
- /* Subnormal numbers have exponent minExponent, and their MSB
- is forced based on that. */
- if (exponent + exponentChange < semantics->minExponent)
- exponentChange = semantics->minExponent - exponent;
- /* Shifting left is easy as we don't lose precision. */
- if (exponentChange < 0) {
- assert(lost_fraction == lfExactlyZero);
- shiftSignificandLeft(-exponentChange);
- return opOK;
- }
- if (exponentChange > 0) {
- lostFraction lf;
- /* Shift right and capture any new lost fraction. */
- lf = shiftSignificandRight(exponentChange);
- lost_fraction = combineLostFractions(lf, lost_fraction);
- /* Keep OMSB up-to-date. */
- if (omsb > (unsigned) exponentChange)
- omsb -= exponentChange;
- else
- omsb = 0;
- }
- }
- /* Now round the number according to rounding_mode given the lost
- fraction. */
- /* As specified in IEEE 754, since we do not trap we do not report
- underflow for exact results. */
- if (lost_fraction == lfExactlyZero) {
- /* Canonicalize zeroes. */
- if (omsb == 0)
- category = fcZero;
- return opOK;
- }
- /* Increment the significand if we're rounding away from zero. */
- if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
- if (omsb == 0)
- exponent = semantics->minExponent;
- incrementSignificand();
- omsb = significandMSB() + 1;
- /* Did the significand increment overflow? */
- if (omsb == (unsigned) semantics->precision + 1) {
- /* Renormalize by incrementing the exponent and shifting our
- significand right one. However if we already have the
- maximum exponent we overflow to infinity. */
- if (exponent == semantics->maxExponent) {
- category = fcInfinity;
- return (opStatus) (opOverflow | opInexact);
- }
- shiftSignificandRight(1);
- return opInexact;
- }
- }
- /* The normal case - we were and are not denormal, and any
- significand increment above didn't overflow. */
- if (omsb == semantics->precision)
- return opInexact;
- /* We have a non-zero denormal. */
- assert(omsb < semantics->precision);
- /* Canonicalize zeroes. */
- if (omsb == 0)
- category = fcZero;
- /* The fcZero case is a denormal that underflowed to zero. */
- return (opStatus) (opUnderflow | opInexact);
- }
- APFloat::opStatus
- APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
- {
- switch (PackCategoriesIntoKey(category, rhs.category)) {
- default:
- llvm_unreachable(nullptr);
- case PackCategoriesIntoKey(fcNaN, fcZero):
- case PackCategoriesIntoKey(fcNaN, fcNormal):
- case PackCategoriesIntoKey(fcNaN, fcInfinity):
- case PackCategoriesIntoKey(fcNaN, fcNaN):
- case PackCategoriesIntoKey(fcNormal, fcZero):
- case PackCategoriesIntoKey(fcInfinity, fcNormal):
- case PackCategoriesIntoKey(fcInfinity, fcZero):
- return opOK;
- case PackCategoriesIntoKey(fcZero, fcNaN):
- case PackCategoriesIntoKey(fcNormal, fcNaN):
- case PackCategoriesIntoKey(fcInfinity, fcNaN):
- // We need to be sure to flip the sign here for subtraction because we
- // don't have a separate negate operation so -NaN becomes 0 - NaN here.
- sign = rhs.sign ^ subtract;
- category = fcNaN;
- copySignificand(rhs);
- return opOK;
- case PackCategoriesIntoKey(fcNormal, fcInfinity):
- case PackCategoriesIntoKey(fcZero, fcInfinity):
- category = fcInfinity;
- sign = rhs.sign ^ subtract;
- return opOK;
- case PackCategoriesIntoKey(fcZero, fcNormal):
- assign(rhs);
- sign = rhs.sign ^ subtract;
- return opOK;
- case PackCategoriesIntoKey(fcZero, fcZero):
- /* Sign depends on rounding mode; handled by caller. */
- return opOK;
- case PackCategoriesIntoKey(fcInfinity, fcInfinity):
- /* Differently signed infinities can only be validly
- subtracted. */
- if (((sign ^ rhs.sign)!=0) != subtract) {
- makeNaN();
- return opInvalidOp;
- }
- return opOK;
- case PackCategoriesIntoKey(fcNormal, fcNormal):
- return opDivByZero;
- }
- }
- /* Add or subtract two normal numbers. */
- lostFraction
- APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
- {
- integerPart carry;
- lostFraction lost_fraction;
- int bits;
- /* Determine if the operation on the absolute values is effectively
- an addition or subtraction. */
- subtract ^= static_cast<bool>(sign ^ rhs.sign);
- /* Are we bigger exponent-wise than the RHS? */
- bits = exponent - rhs.exponent;
- /* Subtraction is more subtle than one might naively expect. */
- if (subtract) {
- APFloat temp_rhs(rhs);
- bool reverse;
- if (bits == 0) {
- reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
- lost_fraction = lfExactlyZero;
- } else if (bits > 0) {
- lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
- shiftSignificandLeft(1);
- reverse = false;
- } else {
- lost_fraction = shiftSignificandRight(-bits - 1);
- temp_rhs.shiftSignificandLeft(1);
- reverse = true;
- }
- if (reverse) {
- carry = temp_rhs.subtractSignificand
- (*this, lost_fraction != lfExactlyZero);
- copySignificand(temp_rhs);
- sign = !sign;
- } else {
- carry = subtractSignificand
- (temp_rhs, lost_fraction != lfExactlyZero);
- }
- /* Invert the lost fraction - it was on the RHS and
- subtracted. */
- if (lost_fraction == lfLessThanHalf)
- lost_fraction = lfMoreThanHalf;
- else if (lost_fraction == lfMoreThanHalf)
- lost_fraction = lfLessThanHalf;
- /* The code above is intended to ensure that no borrow is
- necessary. */
- assert(!carry);
- (void)carry;
- } else {
- if (bits > 0) {
- APFloat temp_rhs(rhs);
- lost_fraction = temp_rhs.shiftSignificandRight(bits);
- carry = addSignificand(temp_rhs);
- } else {
- lost_fraction = shiftSignificandRight(-bits);
- carry = addSignificand(rhs);
- }
- /* We have a guard bit; generating a carry cannot happen. */
- assert(!carry);
- (void)carry;
- }
- return lost_fraction;
- }
- APFloat::opStatus
- APFloat::multiplySpecials(const APFloat &rhs)
- {
- switch (PackCategoriesIntoKey(category, rhs.category)) {
- default:
- llvm_unreachable(nullptr);
- case PackCategoriesIntoKey(fcNaN, fcZero):
- case PackCategoriesIntoKey(fcNaN, fcNormal):
- case PackCategoriesIntoKey(fcNaN, fcInfinity):
- case PackCategoriesIntoKey(fcNaN, fcNaN):
- sign = false;
- return opOK;
- case PackCategoriesIntoKey(fcZero, fcNaN):
- case PackCategoriesIntoKey(fcNormal, fcNaN):
- case PackCategoriesIntoKey(fcInfinity, fcNaN):
- sign = false;
- category = fcNaN;
- copySignificand(rhs);
- return opOK;
- case PackCategoriesIntoKey(fcNormal, fcInfinity):
- case PackCategoriesIntoKey(fcInfinity, fcNormal):
- case PackCategoriesIntoKey(fcInfinity, fcInfinity):
- category = fcInfinity;
- return opOK;
- case PackCategoriesIntoKey(fcZero, fcNormal):
- case PackCategoriesIntoKey(fcNormal, fcZero):
- case PackCategoriesIntoKey(fcZero, fcZero):
- category = fcZero;
- return opOK;
- case PackCategoriesIntoKey(fcZero, fcInfinity):
- case PackCategoriesIntoKey(fcInfinity, fcZero):
- makeNaN();
- return opInvalidOp;
- case PackCategoriesIntoKey(fcNormal, fcNormal):
- return opOK;
- }
- }
- APFloat::opStatus
- APFloat::divideSpecials(const APFloat &rhs)
- {
- switch (PackCategoriesIntoKey(category, rhs.category)) {
- default:
- llvm_unreachable(nullptr);
- case PackCategoriesIntoKey(fcZero, fcNaN):
- case PackCategoriesIntoKey(fcNormal, fcNaN):
- case PackCategoriesIntoKey(fcInfinity, fcNaN):
- category = fcNaN;
- copySignificand(rhs);
- case PackCategoriesIntoKey(fcNaN, fcZero):
- case PackCategoriesIntoKey(fcNaN, fcNormal):
- case PackCategoriesIntoKey(fcNaN, fcInfinity):
- case PackCategoriesIntoKey(fcNaN, fcNaN):
- sign = false;
- case PackCategoriesIntoKey(fcInfinity, fcZero):
- case PackCategoriesIntoKey(fcInfinity, fcNormal):
- case PackCategoriesIntoKey(fcZero, fcInfinity):
- case PackCategoriesIntoKey(fcZero, fcNormal):
- return opOK;
- case PackCategoriesIntoKey(fcNormal, fcInfinity):
- category = fcZero;
- return opOK;
- case PackCategoriesIntoKey(fcNormal, fcZero):
- category = fcInfinity;
- return opDivByZero;
- case PackCategoriesIntoKey(fcInfinity, fcInfinity):
- case PackCategoriesIntoKey(fcZero, fcZero):
- makeNaN();
- return opInvalidOp;
- case PackCategoriesIntoKey(fcNormal, fcNormal):
- return opOK;
- }
- }
- APFloat::opStatus
- APFloat::modSpecials(const APFloat &rhs)
- {
- switch (PackCategoriesIntoKey(category, rhs.category)) {
- default:
- llvm_unreachable(nullptr);
- case PackCategoriesIntoKey(fcNaN, fcZero):
- case PackCategoriesIntoKey(fcNaN, fcNormal):
- case PackCategoriesIntoKey(fcNaN, fcInfinity):
- case PackCategoriesIntoKey(fcNaN, fcNaN):
- case PackCategoriesIntoKey(fcZero, fcInfinity):
- case PackCategoriesIntoKey(fcZero, fcNormal):
- case PackCategoriesIntoKey(fcNormal, fcInfinity):
- return opOK;
- case PackCategoriesIntoKey(fcZero, fcNaN):
- case PackCategoriesIntoKey(fcNormal, fcNaN):
- case PackCategoriesIntoKey(fcInfinity, fcNaN):
- sign = false;
- category = fcNaN;
- copySignificand(rhs);
- return opOK;
- case PackCategoriesIntoKey(fcNormal, fcZero):
- case PackCategoriesIntoKey(fcInfinity, fcZero):
- case PackCategoriesIntoKey(fcInfinity, fcNormal):
- case PackCategoriesIntoKey(fcInfinity, fcInfinity):
- case PackCategoriesIntoKey(fcZero, fcZero):
- makeNaN();
- return opInvalidOp;
- case PackCategoriesIntoKey(fcNormal, fcNormal):
- return opOK;
- }
- }
- /* Change sign. */
- void
- APFloat::changeSign()
- {
- /* Look mummy, this one's easy. */
- sign = !sign;
- }
- void
- APFloat::clearSign()
- {
- /* So is this one. */
- sign = 0;
- }
- void
- APFloat::copySign(const APFloat &rhs)
- {
- /* And this one. */
- sign = rhs.sign;
- }
- /* Normalized addition or subtraction. */
- APFloat::opStatus
- APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
- bool subtract)
- {
- opStatus fs;
- fs = addOrSubtractSpecials(rhs, subtract);
- /* This return code means it was not a simple case. */
- if (fs == opDivByZero) {
- lostFraction lost_fraction;
- lost_fraction = addOrSubtractSignificand(rhs, subtract);
- fs = normalize(rounding_mode, lost_fraction);
- /* Can only be zero if we lost no fraction. */
- assert(category != fcZero || lost_fraction == lfExactlyZero);
- }
- /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
- positive zero unless rounding to minus infinity, except that
- adding two like-signed zeroes gives that zero. */
- if (category == fcZero) {
- if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
- sign = (rounding_mode == rmTowardNegative);
- }
- return fs;
- }
- /* Normalized addition. */
- APFloat::opStatus
- APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
- {
- return addOrSubtract(rhs, rounding_mode, false);
- }
- /* Normalized subtraction. */
- APFloat::opStatus
- APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
- {
- return addOrSubtract(rhs, rounding_mode, true);
- }
- /* Normalized multiply. */
- APFloat::opStatus
- APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
- {
- opStatus fs;
- sign ^= rhs.sign;
- fs = multiplySpecials(rhs);
- if (isFiniteNonZero()) {
- lostFraction lost_fraction = multiplySignificand(rhs, nullptr);
- fs = normalize(rounding_mode, lost_fraction);
- if (lost_fraction != lfExactlyZero)
- fs = (opStatus) (fs | opInexact);
- }
- return fs;
- }
- /* Normalized divide. */
- APFloat::opStatus
- APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
- {
- opStatus fs;
- sign ^= rhs.sign;
- fs = divideSpecials(rhs);
- if (isFiniteNonZero()) {
- lostFraction lost_fraction = divideSignificand(rhs);
- fs = normalize(rounding_mode, lost_fraction);
- if (lost_fraction != lfExactlyZero)
- fs = (opStatus) (fs | opInexact);
- }
- return fs;
- }
- /* Normalized remainder. This is not currently correct in all cases. */
- APFloat::opStatus
- APFloat::remainder(const APFloat &rhs)
- {
- opStatus fs;
- APFloat V = *this;
- unsigned int origSign = sign;
- fs = V.divide(rhs, rmNearestTiesToEven);
- if (fs == opDivByZero)
- return fs;
- int parts = partCount();
- integerPart *x = new integerPart[parts];
- bool ignored;
- fs = V.convertToInteger(x, parts * integerPartWidth, true,
- rmNearestTiesToEven, &ignored);
- if (fs==opInvalidOp)
- return fs;
- fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
- rmNearestTiesToEven);
- assert(fs==opOK); // should always work
- fs = V.multiply(rhs, rmNearestTiesToEven);
- assert(fs==opOK || fs==opInexact); // should not overflow or underflow
- fs = subtract(V, rmNearestTiesToEven);
- assert(fs==opOK || fs==opInexact); // likewise
- if (isZero())
- sign = origSign; // IEEE754 requires this
- delete[] x;
- return fs;
- }
- /* Normalized llvm frem (C fmod).
- This is not currently correct in all cases. */
- APFloat::opStatus
- APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
- {
- opStatus fs;
- fs = modSpecials(rhs);
- if (isFiniteNonZero() && rhs.isFiniteNonZero()) {
- APFloat V = *this;
- unsigned int origSign = sign;
- fs = V.divide(rhs, rmNearestTiesToEven);
- if (fs == opDivByZero)
- return fs;
- int parts = partCount();
- integerPart *x = new integerPart[parts];
- bool ignored;
- fs = V.convertToInteger(x, parts * integerPartWidth, true,
- rmTowardZero, &ignored);
- if (fs==opInvalidOp)
- return fs;
- fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
- rmNearestTiesToEven);
- assert(fs==opOK); // should always work
- fs = V.multiply(rhs, rounding_mode);
- assert(fs==opOK || fs==opInexact); // should not overflow or underflow
- fs = subtract(V, rounding_mode);
- assert(fs==opOK || fs==opInexact); // likewise
- if (isZero())
- sign = origSign; // IEEE754 requires this
- delete[] x;
- }
- return fs;
- }
- /* Normalized fused-multiply-add. */
- APFloat::opStatus
- APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
- const APFloat &addend,
- roundingMode rounding_mode)
- {
- opStatus fs;
- /* Post-multiplication sign, before addition. */
- sign ^= multiplicand.sign;
- /* If and only if all arguments are normal do we need to do an
- extended-precision calculation. */
- if (isFiniteNonZero() &&
- multiplicand.isFiniteNonZero() &&
- addend.isFinite()) {
- lostFraction lost_fraction;
- lost_fraction = multiplySignificand(multiplicand, &addend);
- fs = normalize(rounding_mode, lost_fraction);
- if (lost_fraction != lfExactlyZero)
- fs = (opStatus) (fs | opInexact);
- /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
- positive zero unless rounding to minus infinity, except that
- adding two like-signed zeroes gives that zero. */
- if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign)
- sign = (rounding_mode == rmTowardNegative);
- } else {
- fs = multiplySpecials(multiplicand);
- /* FS can only be opOK or opInvalidOp. There is no more work
- to do in the latter case. The IEEE-754R standard says it is
- implementation-defined in this case whether, if ADDEND is a
- quiet NaN, we raise invalid op; this implementation does so.
- If we need to do the addition we can do so with normal
- precision. */
- if (fs == opOK)
- fs = addOrSubtract(addend, rounding_mode, false);
- }
- return fs;
- }
- /* Rounding-mode corrrect round to integral value. */
- APFloat::opStatus APFloat::roundToIntegral(roundingMode rounding_mode) {
- opStatus fs;
- // If the exponent is large enough, we know that this value is already
- // integral, and the arithmetic below would potentially cause it to saturate
- // to +/-Inf. Bail out early instead.
- if (isFiniteNonZero() && exponent+1 >= (int)semanticsPrecision(*semantics))
- return opOK;
- // The algorithm here is quite simple: we add 2^(p-1), where p is the
- // precision of our format, and then subtract it back off again. The choice
- // of rounding modes for the addition/subtraction determines the rounding mode
- // for our integral rounding as well.
- // NOTE: When the input value is negative, we do subtraction followed by
- // addition instead.
- APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1);
- IntegerConstant <<= semanticsPrecision(*semantics)-1;
- APFloat MagicConstant(*semantics);
- fs = MagicConstant.convertFromAPInt(IntegerConstant, false,
- rmNearestTiesToEven);
- MagicConstant.copySign(*this);
- if (fs != opOK)
- return fs;
- // Preserve the input sign so that we can handle 0.0/-0.0 cases correctly.
- bool inputSign = isNegative();
- fs = add(MagicConstant, rounding_mode);
- if (fs != opOK && fs != opInexact)
- return fs;
- fs = subtract(MagicConstant, rounding_mode);
- // Restore the input sign.
- if (inputSign != isNegative())
- changeSign();
- return fs;
- }
- /* Comparison requires normalized numbers. */
- APFloat::cmpResult
- APFloat::compare(const APFloat &rhs) const
- {
- cmpResult result;
- assert(semantics == rhs.semantics);
- switch (PackCategoriesIntoKey(category, rhs.category)) {
- default:
- llvm_unreachable(nullptr);
- case PackCategoriesIntoKey(fcNaN, fcZero):
- case PackCategoriesIntoKey(fcNaN, fcNormal):
- case PackCategoriesIntoKey(fcNaN, fcInfinity):
- case PackCategoriesIntoKey(fcNaN, fcNaN):
- case PackCategoriesIntoKey(fcZero, fcNaN):
- case PackCategoriesIntoKey(fcNormal, fcNaN):
- case PackCategoriesIntoKey(fcInfinity, fcNaN):
- return cmpUnordered;
- case PackCategoriesIntoKey(fcInfinity, fcNormal):
- case PackCategoriesIntoKey(fcInfinity, fcZero):
- case PackCategoriesIntoKey(fcNormal, fcZero):
- if (sign)
- return cmpLessThan;
- else
- return cmpGreaterThan;
- case PackCategoriesIntoKey(fcNormal, fcInfinity):
- case PackCategoriesIntoKey(fcZero, fcInfinity):
- case PackCategoriesIntoKey(fcZero, fcNormal):
- if (rhs.sign)
- return cmpGreaterThan;
- else
- return cmpLessThan;
- case PackCategoriesIntoKey(fcInfinity, fcInfinity):
- if (sign == rhs.sign)
- return cmpEqual;
- else if (sign)
- return cmpLessThan;
- else
- return cmpGreaterThan;
- case PackCategoriesIntoKey(fcZero, fcZero):
- return cmpEqual;
- case PackCategoriesIntoKey(fcNormal, fcNormal):
- break;
- }
- /* Two normal numbers. Do they have the same sign? */
- if (sign != rhs.sign) {
- if (sign)
- result = cmpLessThan;
- else
- result = cmpGreaterThan;
- } else {
- /* Compare absolute values; invert result if negative. */
- result = compareAbsoluteValue(rhs);
- if (sign) {
- if (result == cmpLessThan)
- result = cmpGreaterThan;
- else if (result == cmpGreaterThan)
- result = cmpLessThan;
- }
- }
- return result;
- }
- /// APFloat::convert - convert a value of one floating point type to another.
- /// The return value corresponds to the IEEE754 exceptions. *losesInfo
- /// records whether the transformation lost information, i.e. whether
- /// converting the result back to the original type will produce the
- /// original value (this is almost the same as return value==fsOK, but there
- /// are edge cases where this is not so).
- APFloat::opStatus
- APFloat::convert(const fltSemantics &toSemantics,
- roundingMode rounding_mode, bool *losesInfo)
- {
- lostFraction lostFraction;
- unsigned int newPartCount, oldPartCount;
- opStatus fs;
- int shift;
- const fltSemantics &fromSemantics = *semantics;
- lostFraction = lfExactlyZero;
- newPartCount = partCountForBits(toSemantics.precision + 1);
- oldPartCount = partCount();
- shift = toSemantics.precision - fromSemantics.precision;
- bool X86SpecialNan = false;
- if (&fromSemantics == &APFloat::x87DoubleExtended &&
- &toSemantics != &APFloat::x87DoubleExtended && category == fcNaN &&
- (!(*significandParts() & 0x8000000000000000ULL) ||
- !(*significandParts() & 0x4000000000000000ULL))) {
- // x86 has some unusual NaNs which cannot be represented in any other
- // format; note them here.
- X86SpecialNan = true;
- }
- // If this is a truncation of a denormal number, and the target semantics
- // has larger exponent range than the source semantics (this can happen
- // when truncating from PowerPC double-double to double format), the
- // right shift could lose result mantissa bits. Adjust exponent instead
- // of performing excessive shift.
- if (shift < 0 && isFiniteNonZero()) {
- int exponentChange = significandMSB() + 1 - fromSemantics.precision;
- if (exponent + exponentChange < toSemantics.minExponent)
- exponentChange = toSemantics.minExponent - exponent;
- if (exponentChange < shift)
- exponentChange = shift;
- if (exponentChange < 0) {
- shift -= exponentChange;
- exponent += exponentChange;
- }
- }
- // If this is a truncation, perform the shift before we narrow the storage.
- if (shift < 0 && (isFiniteNonZero() || category==fcNaN))
- lostFraction = shiftRight(significandParts(), oldPartCount, -shift);
- // Fix the storage so it can hold to new value.
- if (newPartCount > oldPartCount) {
- // The new type requires more storage; make it available.
- integerPart *newParts;
- newParts = new integerPart[newPartCount];
- APInt::tcSet(newParts, 0, newPartCount);
- if (isFiniteNonZero() || category==fcNaN)
- APInt::tcAssign(newParts, significandParts(), oldPartCount);
- freeSignificand();
- significand.parts = newParts;
- } else if (newPartCount == 1 && oldPartCount != 1) {
- // Switch to built-in storage for a single part.
- integerPart newPart = 0;
- if (isFiniteNonZero() || category==fcNaN)
- newPart = significandParts()[0];
- freeSignificand();
- significand.part = newPart;
- }
- // Now that we have the right storage, switch the semantics.
- semantics = &toSemantics;
- // If this is an extension, perform the shift now that the storage is
- // available.
- if (shift > 0 && (isFiniteNonZero() || category==fcNaN))
- APInt::tcShiftLeft(significandParts(), newPartCount, shift);
- if (isFiniteNonZero()) {
- fs = normalize(rounding_mode, lostFraction);
- *losesInfo = (fs != opOK);
- } else if (category == fcNaN) {
- *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan;
- // For x87 extended precision, we want to make a NaN, not a special NaN if
- // the input wasn't special either.
- if (!X86SpecialNan && semantics == &APFloat::x87DoubleExtended)
- APInt::tcSetBit(significandParts(), semantics->precision - 1);
- // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
- // does not give you back the same bits. This is dubious, and we
- // don't currently do it. You're really supposed to get
- // an invalid operation signal at runtime, but nobody does that.
- fs = opOK;
- } else {
- *losesInfo = false;
- fs = opOK;
- }
- return fs;
- }
- /* Convert a floating point number to an integer according to the
- rounding mode. If the rounded integer value is out of range this
- returns an invalid operation exception and the contents of the
- destination parts are unspecified. If the rounded value is in
- range but the floating point number is not the exact integer, the C
- standard doesn't require an inexact exception to be raised. IEEE
- 854 does require it so we do that.
- Note that for conversions to integer type the C standard requires
- round-to-zero to always be used. */
- APFloat::opStatus
- APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
- bool isSigned,
- roundingMode rounding_mode,
- bool *isExact) const
- {
- lostFraction lost_fraction;
- const integerPart *src;
- unsigned int dstPartsCount, truncatedBits;
- *isExact = false;
- /* Handle the three special cases first. */
- if (category == fcInfinity || category == fcNaN)
- return opInvalidOp;
- dstPartsCount = partCountForBits(width);
- if (category == fcZero) {
- APInt::tcSet(parts, 0, dstPartsCount);
- // Negative zero can't be represented as an int.
- *isExact = !sign;
- return opOK;
- }
- src = significandParts();
- /* Step 1: place our absolute value, with any fraction truncated, in
- the destination. */
- if (exponent < 0) {
- /* Our absolute value is less than one; truncate everything. */
- APInt::tcSet(parts, 0, dstPartsCount);
- /* For exponent -1 the integer bit represents .5, look at that.
- For smaller exponents leftmost truncated bit is 0. */
- truncatedBits = semantics->precision -1U - exponent;
- } else {
- /* We want the most significant (exponent + 1) bits; the rest are
- truncated. */
- unsigned int bits = exponent + 1U;
- /* Hopelessly large in magnitude? */
- if (bits > width)
- return opInvalidOp;
- if (bits < semantics->precision) {
- /* We truncate (semantics->precision - bits) bits. */
- truncatedBits = semantics->precision - bits;
- APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
- } else {
- /* We want at least as many bits as are available. */
- APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
- APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
- truncatedBits = 0;
- }
- }
- /* Step 2: work out any lost fraction, and increment the absolute
- value if we would round away from zero. */
- if (truncatedBits) {
- lost_fraction = lostFractionThroughTruncation(src, partCount(),
- truncatedBits);
- if (lost_fraction != lfExactlyZero &&
- roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
- if (APInt::tcIncrement(parts, dstPartsCount))
- return opInvalidOp; /* Overflow. */
- }
- } else {
- lost_fraction = lfExactlyZero;
- }
- /* Step 3: check if we fit in the destination. */
- unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
- if (sign) {
- if (!isSigned) {
- /* Negative numbers cannot be represented as unsigned. */
- if (omsb != 0)
- return opInvalidOp;
- } else {
- /* It takes omsb bits to represent the unsigned integer value.
- We lose a bit for the sign, but care is needed as the
- maximally negative integer is a special case. */
- if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
- return opInvalidOp;
- /* This case can happen because of rounding. */
- if (omsb > width)
- return opInvalidOp;
- }
- APInt::tcNegate (parts, dstPartsCount);
- } else {
- if (omsb >= width + !isSigned)
- return opInvalidOp;
- }
- if (lost_fraction == lfExactlyZero) {
- *isExact = true;
- return opOK;
- } else
- return opInexact;
- }
- /* Same as convertToSignExtendedInteger, except we provide
- deterministic values in case of an invalid operation exception,
- namely zero for NaNs and the minimal or maximal value respectively
- for underflow or overflow.
- The *isExact output tells whether the result is exact, in the sense
- that converting it back to the original floating point type produces
- the original value. This is almost equivalent to result==opOK,
- except for negative zeroes.
- */
- APFloat::opStatus
- APFloat::convertToInteger(integerPart *parts, unsigned int width,
- bool isSigned,
- roundingMode rounding_mode, bool *isExact) const
- {
- opStatus fs;
- fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
- isExact);
- if (fs == opInvalidOp) {
- unsigned int bits, dstPartsCount;
- dstPartsCount = partCountForBits(width);
- if (category == fcNaN)
- bits = 0;
- else if (sign)
- bits = isSigned;
- else
- bits = width - isSigned;
- APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
- if (sign && isSigned)
- APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
- }
- return fs;
- }
- /* Same as convertToInteger(integerPart*, ...), except the result is returned in
- an APSInt, whose initial bit-width and signed-ness are used to determine the
- precision of the conversion.
- */
- APFloat::opStatus
- APFloat::convertToInteger(APSInt &result,
- roundingMode rounding_mode, bool *isExact) const
- {
- unsigned bitWidth = result.getBitWidth();
- SmallVector<uint64_t, 4> parts(result.getNumWords());
- opStatus status = convertToInteger(
- parts.data(), bitWidth, result.isSigned(), rounding_mode, isExact);
- // Keeps the original signed-ness.
- result = APInt(bitWidth, parts);
- return status;
- }
- /* Convert an unsigned integer SRC to a floating point number,
- rounding according to ROUNDING_MODE. The sign of the floating
- point number is not modified. */
- APFloat::opStatus
- APFloat::convertFromUnsignedParts(const integerPart *src,
- unsigned int srcCount,
- roundingMode rounding_mode)
- {
- unsigned int omsb, precision, dstCount;
- integerPart *dst;
- lostFraction lost_fraction;
- category = fcNormal;
- omsb = APInt::tcMSB(src, srcCount) + 1;
- dst = significandParts();
- dstCount = partCount();
- precision = semantics->precision;
- /* We want the most significant PRECISION bits of SRC. There may not
- be that many; extract what we can. */
- if (precision <= omsb) {
- exponent = omsb - 1;
- lost_fraction = lostFractionThroughTruncation(src, srcCount,
- omsb - precision);
- APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
- } else {
- exponent = precision - 1;
- lost_fraction = lfExactlyZero;
- APInt::tcExtract(dst, dstCount, src, omsb, 0);
- }
- return normalize(rounding_mode, lost_fraction);
- }
- APFloat::opStatus
- APFloat::convertFromAPInt(const APInt &Val,
- bool isSigned,
- roundingMode rounding_mode)
- {
- unsigned int partCount = Val.getNumWords();
- APInt api = Val;
- sign = false;
- if (isSigned && api.isNegative()) {
- sign = true;
- api = -api;
- }
- return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
- }
- /* Convert a two's complement integer SRC to a floating point number,
- rounding according to ROUNDING_MODE. ISSIGNED is true if the
- integer is signed, in which case it must be sign-extended. */
- APFloat::opStatus
- APFloat::convertFromSignExtendedInteger(const integerPart *src,
- unsigned int srcCount,
- bool isSigned,
- roundingMode rounding_mode)
- {
- opStatus status;
- if (isSigned &&
- APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
- integerPart *copy;
- /* If we're signed and negative negate a copy. */
- sign = true;
- copy = new integerPart[srcCount];
- APInt::tcAssign(copy, src, srcCount);
- APInt::tcNegate(copy, srcCount);
- status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
- delete [] copy;
- } else {
- sign = false;
- status = convertFromUnsignedParts(src, srcCount, rounding_mode);
- }
- return status;
- }
- /* FIXME: should this just take a const APInt reference? */
- APFloat::opStatus
- APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
- unsigned int width, bool isSigned,
- roundingMode rounding_mode)
- {
- unsigned int partCount = partCountForBits(width);
- APInt api = APInt(width, makeArrayRef(parts, partCount));
- sign = false;
- if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
- sign = true;
- api = -api;
- }
- return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
- }
- APFloat::opStatus
- APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode)
- {
- lostFraction lost_fraction = lfExactlyZero;
- category = fcNormal;
- zeroSignificand();
- exponent = 0;
- integerPart *significand = significandParts();
- unsigned partsCount = partCount();
- unsigned bitPos = partsCount * integerPartWidth;
- bool computedTrailingFraction = false;
- // Skip leading zeroes and any (hexa)decimal point.
- StringRef::iterator begin = s.begin();
- StringRef::iterator end = s.end();
- StringRef::iterator dot;
- StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
- StringRef::iterator firstSignificantDigit = p;
- while (p != end) {
- integerPart hex_value;
- if (*p == '.') {
- assert(dot == end && "String contains multiple dots");
- dot = p++;
- continue;
- }
- hex_value = hexDigitValue(*p);
- if (hex_value == -1U)
- break;
- p++;
- // Store the number while we have space.
- if (bitPos) {
- bitPos -= 4;
- hex_value <<= bitPos % integerPartWidth;
- significand[bitPos / integerPartWidth] |= hex_value;
- } else if (!computedTrailingFraction) {
- lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
- computedTrailingFraction = true;
- }
- }
- /* Hex floats require an exponent but not a hexadecimal point. */
- assert(p != end && "Hex strings require an exponent");
- assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
- assert(p != begin && "Significand has no digits");
- assert((dot == end || p - begin != 1) && "Significand has no digits");
- /* Ignore the exponent if we are zero. */
- if (p != firstSignificantDigit) {
- int expAdjustment;
- /* Implicit hexadecimal point? */
- if (dot == end)
- dot = p;
- /* Calculate the exponent adjustment implicit in the number of
- significant digits. */
- expAdjustment = static_cast<int>(dot - firstSignificantDigit);
- if (expAdjustment < 0)
- expAdjustment++;
- expAdjustment = expAdjustment * 4 - 1;
- /* Adjust for writing the significand starting at the most
- significant nibble. */
- expAdjustment += semantics->precision;
- expAdjustment -= partsCount * integerPartWidth;
- /* Adjust for the given exponent. */
- exponent = totalExponent(p + 1, end, expAdjustment);
- }
- return normalize(rounding_mode, lost_fraction);
- }
- APFloat::opStatus
- APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
- unsigned sigPartCount, int exp,
- roundingMode rounding_mode)
- {
- unsigned int parts, pow5PartCount;
- fltSemantics calcSemantics = { 32767, -32767, 0, 0 };
- integerPart pow5Parts[maxPowerOfFiveParts];
- bool isNearest;
- isNearest = (rounding_mode == rmNearestTiesToEven ||
- rounding_mode == rmNearestTiesToAway);
- parts = partCountForBits(semantics->precision + 11);
- /* Calculate pow(5, abs(exp)). */
- pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
- for (;; parts *= 2) {
- opStatus sigStatus, powStatus;
- unsigned int excessPrecision, truncatedBits;
- calcSemantics.precision = parts * integerPartWidth - 1;
- excessPrecision = calcSemantics.precision - semantics->precision;
- truncatedBits = excessPrecision;
- APFloat decSig = APFloat::getZero(calcSemantics, sign);
- APFloat pow5(calcSemantics);
- sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
- rmNearestTiesToEven);
- powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
- rmNearestTiesToEven);
- /* Add exp, as 10^n = 5^n * 2^n. */
- decSig.exponent += exp;
- lostFraction calcLostFraction;
- integerPart HUerr, HUdistance;
- unsigned int powHUerr;
- if (exp >= 0) {
- /* multiplySignificand leaves the precision-th bit set to 1. */
- calcLostFraction = decSig.multiplySignificand(pow5, nullptr);
- powHUerr = powStatus != opOK;
- } else {
- calcLostFraction = decSig.divideSignificand(pow5);
- /* Denormal numbers have less precision. */
- if (decSig.exponent < semantics->minExponent) {
- excessPrecision += (semantics->minExponent - decSig.exponent);
- truncatedBits = excessPrecision;
- if (excessPrecision > calcSemantics.precision)
- excessPrecision = calcSemantics.precision;
- }
- /* Extra half-ulp lost in reciprocal of exponent. */
- powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
- }
- /* Both multiplySignificand and divideSignificand return the
- result with the integer bit set. */
- assert(APInt::tcExtractBit
- (decSig.significandParts(), calcSemantics.precision - 1) == 1);
- HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
- powHUerr);
- HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
- excessPrecision, isNearest);
- /* Are we guaranteed to round correctly if we truncate? */
- if (HUdistance >= HUerr) {
- APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
- calcSemantics.precision - excessPrecision,
- excessPrecision);
- /* Take the exponent of decSig. If we tcExtract-ed less bits
- above we must adjust our exponent to compensate for the
- implicit right shift. */
- exponent = (decSig.exponent + semantics->precision
- - (calcSemantics.precision - excessPrecision));
- calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
- decSig.partCount(),
- truncatedBits);
- return normalize(rounding_mode, calcLostFraction);
- }
- }
- }
- APFloat::opStatus
- APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode)
- {
- decimalInfo D;
- opStatus fs;
- /* Scan the text. */
- StringRef::iterator p = str.begin();
- interpretDecimal(p, str.end(), &D);
- /* Handle the quick cases. First the case of no significant digits,
- i.e. zero, and then exponents that are obviously too large or too
- small. Writing L for log 10 / log 2, a number d.ddddd*10^exp
- definitely overflows if
- (exp - 1) * L >= maxExponent
- and definitely underflows to zero where
- (exp + 1) * L <= minExponent - precision
- With integer arithmetic the tightest bounds for L are
- 93/28 < L < 196/59 [ numerator <= 256 ]
- 42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
- */
- // Test if we have a zero number allowing for strings with no null terminators
- // and zero decimals with non-zero exponents.
- //
- // We computed firstSigDigit by ignoring all zeros and dots. Thus if
- // D->firstSigDigit equals str.end(), every digit must be a zero and there can
- // be at most one dot. On the other hand, if we have a zero with a non-zero
- // exponent, then we know that D.firstSigDigit will be non-numeric.
- if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) {
- category = fcZero;
- fs = opOK;
- /* Check whether the normalized exponent is high enough to overflow
- max during the log-rebasing in the max-exponent check below. */
- } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
- fs = handleOverflow(rounding_mode);
- /* If it wasn't, then it also wasn't high enough to overflow max
- during the log-rebasing in the min-exponent check. Check that it
- won't overflow min in either check, then perform the min-exponent
- check. */
- } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
- (D.normalizedExponent + 1) * 28738 <=
- 8651 * (semantics->minExponent - (int) semantics->precision)) {
- /* Underflow to zero and round. */
- category = fcNormal;
- zeroSignificand();
- fs = normalize(rounding_mode, lfLessThanHalf);
- /* We can finally safely perform the max-exponent check. */
- } else if ((D.normalizedExponent - 1) * 42039
- >= 12655 * semantics->maxExponent) {
- /* Overflow and round. */
- fs = handleOverflow(rounding_mode);
- } else {
- integerPart *decSignificand;
- unsigned int partCount;
- /* A tight upper bound on number of bits required to hold an
- N-digit decimal integer is N * 196 / 59. Allocate enough space
- to hold the full significand, and an extra part required by
- tcMultiplyPart. */
- partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
- partCount = partCountForBits(1 + 196 * partCount / 59);
- decSignificand = new integerPart[partCount + 1];
- partCount = 0;
- /* Convert to binary efficiently - we do almost all multiplication
- in an integerPart. When this would overflow do we do a single
- bignum multiplication, and then revert again to multiplication
- in an integerPart. */
- do {
- integerPart decValue, val, multiplier;
- val = 0;
- multiplier = 1;
- do {
- if (*p == '.') {
- p++;
- if (p == str.end()) {
- break;
- }
- }
- decValue = decDigitValue(*p++);
- assert(decValue < 10U && "Invalid character in significand");
- multiplier *= 10;
- val = val * 10 + decValue;
- /* The maximum number that can be multiplied by ten with any
- digit added without overflowing an integerPart. */
- } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
- /* Multiply out the current part. */
- APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
- partCount, partCount + 1, false);
- /* If we used another part (likely but not guaranteed), increase
- the count. */
- if (decSignificand[partCount])
- partCount++;
- } while (p <= D.lastSigDigit);
- category = fcNormal;
- fs = roundSignificandWithExponent(decSignificand, partCount,
- D.exponent, rounding_mode);
- delete [] decSignificand;
- }
- return fs;
- }
- bool
- APFloat::convertFromStringSpecials(StringRef str) {
- if (str.equals("inf") || str.equals("INFINITY") || str.equals("1.#INF")) { // HLSL Change - support 1.#INF
- makeInf(false);
- return true;
- }
- if (str.equals("-inf") || str.equals("-INFINITY") || str.equals("-1.#INF")) { // HLSL Change - support 1.#INF
- makeInf(true);
- return true;
- }
- if (str.equals("nan") || str.equals("NaN")) {
- makeNaN(false, false);
- return true;
- }
- if (str.equals("-nan") || str.equals("-NaN")) {
- makeNaN(false, true);
- return true;
- }
- return false;
- }
- APFloat::opStatus
- APFloat::convertFromString(StringRef str, roundingMode rounding_mode)
- {
- assert(!str.empty() && "Invalid string length");
- // Handle special cases.
- if (convertFromStringSpecials(str))
- return opOK;
- /* Handle a leading minus sign. */
- StringRef::iterator p = str.begin();
- size_t slen = str.size();
- sign = *p == '-' ? 1 : 0;
- if (*p == '-' || *p == '+') {
- p++;
- slen--;
- assert(slen && "String has no digits");
- }
- if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
- assert(slen - 2 && "Invalid string");
- return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
- rounding_mode);
- }
- return convertFromDecimalString(StringRef(p, slen), rounding_mode);
- }
- #if 0 // HLSL Change
- /* Write out a hexadecimal representation of the floating point value
- to DST, which must be of sufficient size, in the C99 form
- [-]0xh.hhhhp[+-]d. Return the number of characters written,
- excluding the terminating NUL.
- If UPPERCASE, the output is in upper case, otherwise in lower case.
- HEXDIGITS digits appear altogether, rounding the value if
- necessary. If HEXDIGITS is 0, the minimal precision to display the
- number precisely is used instead. If nothing would appear after
- the decimal point it is suppressed.
- The decimal exponent is always printed and has at least one digit.
- Zero values display an exponent of zero. Infinities and NaNs
- appear as "infinity" or "nan" respectively.
- The above rules are as specified by C99. There is ambiguity about
- what the leading hexadecimal digit should be. This implementation
- uses whatever is necessary so that the exponent is displayed as
- stored. This implies the exponent will fall within the IEEE format
- range, and the leading hexadecimal digit will be 0 (for denormals),
- 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
- any other digits zero).
- */
- unsigned int
- APFloat::convertToHexString(char *dst, unsigned int hexDigits,
- bool upperCase, roundingMode rounding_mode) const
- {
- char *p;
- p = dst;
- if (sign)
- *dst++ = '-';
- switch (category) {
- case fcInfinity:
- memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
- dst += sizeof infinityL - 1;
- break;
- case fcNaN:
- memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
- dst += sizeof NaNU - 1;
- break;
- case fcZero:
- *dst++ = '0';
- *dst++ = upperCase ? 'X': 'x';
- *dst++ = '0';
- if (hexDigits > 1) {
- *dst++ = '.';
- memset (dst, '0', hexDigits - 1);
- dst += hexDigits - 1;
- }
- *dst++ = upperCase ? 'P': 'p';
- *dst++ = '0';
- break;
- case fcNormal:
- dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
- break;
- }
- *dst = 0;
- return static_cast<unsigned int>(dst - p);
- }
- /* Does the hard work of outputting the correctly rounded hexadecimal
- form of a normal floating point number with the specified number of
- hexadecimal digits. If HEXDIGITS is zero the minimum number of
- digits necessary to print the value precisely is output. */
- char *
- APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
- bool upperCase,
- roundingMode rounding_mode) const
- {
- unsigned int count, valueBits, shift, partsCount, outputDigits;
- const char *hexDigitChars;
- const integerPart *significand;
- char *p;
- bool roundUp;
- *dst++ = '0';
- *dst++ = upperCase ? 'X': 'x';
- roundUp = false;
- hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
- significand = significandParts();
- partsCount = partCount();
- /* +3 because the first digit only uses the single integer bit, so
- we have 3 virtual zero most-significant-bits. */
- valueBits = semantics->precision + 3;
- shift = integerPartWidth - valueBits % integerPartWidth;
- /* The natural number of digits required ignoring trailing
- insignificant zeroes. */
- outputDigits = (valueBits - significandLSB () + 3) / 4;
- /* hexDigits of zero means use the required number for the
- precision. Otherwise, see if we are truncating. If we are,
- find out if we need to round away from zero. */
- if (hexDigits) {
- if (hexDigits < outputDigits) {
- /* We are dropping non-zero bits, so need to check how to round.
- "bits" is the number of dropped bits. */
- unsigned int bits;
- lostFraction fraction;
- bits = valueBits - hexDigits * 4;
- fraction = lostFractionThroughTruncation (significand, partsCount, bits);
- roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
- }
- outputDigits = hexDigits;
- }
- /* Write the digits consecutively, and start writing in the location
- of the hexadecimal point. We move the most significant digit
- left and add the hexadecimal point later. */
- p = ++dst;
- count = (valueBits + integerPartWidth - 1) / integerPartWidth;
- while (outputDigits && count) {
- integerPart part;
- /* Put the most significant integerPartWidth bits in "part". */
- if (--count == partsCount)
- part = 0; /* An imaginary higher zero part. */
- else
- part = significand[count] << shift;
- if (count && shift)
- part |= significand[count - 1] >> (integerPartWidth - shift);
- /* Convert as much of "part" to hexdigits as we can. */
- unsigned int curDigits = integerPartWidth / 4;
- if (curDigits > outputDigits)
- curDigits = outputDigits;
- dst += partAsHex (dst, part, curDigits, hexDigitChars);
- outputDigits -= curDigits;
- }
- if (roundUp) {
- char *q = dst;
- /* Note that hexDigitChars has a trailing '0'. */
- do {
- q--;
- *q = hexDigitChars[hexDigitValue (*q) + 1];
- } while (*q == '0');
- assert(q >= p);
- } else {
- /* Add trailing zeroes. */
- memset (dst, '0', outputDigits);
- dst += outputDigits;
- }
- /* Move the most significant digit to before the point, and if there
- is something after the decimal point add it. This must come
- after rounding above. */
- p[-1] = p[0];
- if (dst -1 == p)
- dst--;
- else
- p[0] = '.';
- /* Finally output the exponent. */
- *dst++ = upperCase ? 'P': 'p';
- return writeSignedDecimal (dst, exponent);
- }
- #endif
- hash_code llvm::hash_value(const APFloat &Arg) {
- if (!Arg.isFiniteNonZero())
- return hash_combine((uint8_t)Arg.category,
- // NaN has no sign, fix it at zero.
- Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign,
- Arg.semantics->precision);
- // Normal floats need their exponent and significand hashed.
- return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign,
- Arg.semantics->precision, Arg.exponent,
- hash_combine_range(
- Arg.significandParts(),
- Arg.significandParts() + Arg.partCount()));
- }
- // Conversion from APFloat to/from host float/double. It may eventually be
- // possible to eliminate these and have everybody deal with APFloats, but that
- // will take a while. This approach will not easily extend to long double.
- // Current implementation requires integerPartWidth==64, which is correct at
- // the moment but could be made more general.
- // Denormals have exponent minExponent in APFloat, but minExponent-1 in
- // the actual IEEE respresentations. We compensate for that here.
- APInt
- APFloat::convertF80LongDoubleAPFloatToAPInt() const
- {
- assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
- assert(partCount()==2);
- uint64_t myexponent, mysignificand;
- if (isFiniteNonZero()) {
- myexponent = exponent+16383; //bias
- mysignificand = significandParts()[0];
- if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
- myexponent = 0; // denormal
- } else if (category==fcZero) {
- myexponent = 0;
- mysignificand = 0;
- } else if (category==fcInfinity) {
- myexponent = 0x7fff;
- mysignificand = 0x8000000000000000ULL;
- } else {
- assert(category == fcNaN && "Unknown category");
- myexponent = 0x7fff;
- mysignificand = significandParts()[0];
- }
- uint64_t words[2];
- words[0] = mysignificand;
- words[1] = ((uint64_t)(sign & 1) << 15) |
- (myexponent & 0x7fffLL);
- return APInt(80, words);
- }
- APInt
- APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
- {
- assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
- assert(partCount()==2);
- uint64_t words[2];
- opStatus fs;
- bool losesInfo;
- // Convert number to double. To avoid spurious underflows, we re-
- // normalize against the "double" minExponent first, and only *then*
- // truncate the mantissa. The result of that second conversion
- // may be inexact, but should never underflow.
- // Declare fltSemantics before APFloat that uses it (and
- // saves pointer to it) to ensure correct destruction order.
- fltSemantics extendedSemantics = *semantics;
- extendedSemantics.minExponent = IEEEdouble.minExponent;
- APFloat extended(*this);
- fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
- assert(fs == opOK && !losesInfo);
- (void)fs;
- APFloat u(extended);
- fs = u.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
- assert(fs == opOK || fs == opInexact);
- (void)fs;
- words[0] = *u.convertDoubleAPFloatToAPInt().getRawData();
- // If conversion was exact or resulted in a special case, we're done;
- // just set the second double to zero. Otherwise, re-convert back to
- // the extended format and compute the difference. This now should
- // convert exactly to double.
- if (u.isFiniteNonZero() && losesInfo) {
- fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
- assert(fs == opOK && !losesInfo);
- (void)fs;
- APFloat v(extended);
- v.subtract(u, rmNearestTiesToEven);
- fs = v.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
- assert(fs == opOK && !losesInfo);
- (void)fs;
- words[1] = *v.convertDoubleAPFloatToAPInt().getRawData();
- } else {
- words[1] = 0;
- }
- return APInt(128, words);
- }
- APInt
- APFloat::convertQuadrupleAPFloatToAPInt() const
- {
- assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
- assert(partCount()==2);
- uint64_t myexponent, mysignificand, mysignificand2;
- if (isFiniteNonZero()) {
- myexponent = exponent+16383; //bias
- mysignificand = significandParts()[0];
- mysignificand2 = significandParts()[1];
- if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
- myexponent = 0; // denormal
- } else if (category==fcZero) {
- myexponent = 0;
- mysignificand = mysignificand2 = 0;
- } else if (category==fcInfinity) {
- myexponent = 0x7fff;
- mysignificand = mysignificand2 = 0;
- } else {
- assert(category == fcNaN && "Unknown category!");
- myexponent = 0x7fff;
- mysignificand = significandParts()[0];
- mysignificand2 = significandParts()[1];
- }
- uint64_t words[2];
- words[0] = mysignificand;
- words[1] = ((uint64_t)(sign & 1) << 63) |
- ((myexponent & 0x7fff) << 48) |
- (mysignificand2 & 0xffffffffffffLL);
- return APInt(128, words);
- }
- APInt
- APFloat::convertDoubleAPFloatToAPInt() const
- {
- assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
- assert(partCount()==1);
- uint64_t myexponent, mysignificand;
- if (isFiniteNonZero()) {
- myexponent = exponent+1023; //bias
- mysignificand = *significandParts();
- if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
- myexponent = 0; // denormal
- } else if (category==fcZero) {
- myexponent = 0;
- mysignificand = 0;
- } else if (category==fcInfinity) {
- myexponent = 0x7ff;
- mysignificand = 0;
- } else {
- assert(category == fcNaN && "Unknown category!");
- myexponent = 0x7ff;
- mysignificand = *significandParts();
- }
- return APInt(64, ((((uint64_t)(sign & 1) << 63) |
- ((myexponent & 0x7ff) << 52) |
- (mysignificand & 0xfffffffffffffLL))));
- }
- APInt
- APFloat::convertFloatAPFloatToAPInt() const
- {
- assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
- assert(partCount()==1);
- uint32_t myexponent, mysignificand;
- if (isFiniteNonZero()) {
- myexponent = exponent+127; //bias
- mysignificand = (uint32_t)*significandParts();
- if (myexponent == 1 && !(mysignificand & 0x800000))
- myexponent = 0; // denormal
- } else if (category==fcZero) {
- myexponent = 0;
- mysignificand = 0;
- } else if (category==fcInfinity) {
- myexponent = 0xff;
- mysignificand = 0;
- } else {
- assert(category == fcNaN && "Unknown category!");
- myexponent = 0xff;
- mysignificand = (uint32_t)*significandParts();
- }
- return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
- (mysignificand & 0x7fffff)));
- }
- APInt
- APFloat::convertHalfAPFloatToAPInt() const
- {
- assert(semantics == (const llvm::fltSemantics*)&IEEEhalf);
- assert(partCount()==1);
- uint32_t myexponent, mysignificand;
- if (isFiniteNonZero()) {
- myexponent = exponent+15; //bias
- mysignificand = (uint32_t)*significandParts();
- if (myexponent == 1 && !(mysignificand & 0x400))
- myexponent = 0; // denormal
- } else if (category==fcZero) {
- myexponent = 0;
- mysignificand = 0;
- } else if (category==fcInfinity) {
- myexponent = 0x1f;
- mysignificand = 0;
- } else {
- assert(category == fcNaN && "Unknown category!");
- myexponent = 0x1f;
- mysignificand = (uint32_t)*significandParts();
- }
- return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
- (mysignificand & 0x3ff)));
- }
- // This function creates an APInt that is just a bit map of the floating
- // point constant as it would appear in memory. It is not a conversion,
- // and treating the result as a normal integer is unlikely to be useful.
- APInt
- APFloat::bitcastToAPInt() const
- {
- if (semantics == (const llvm::fltSemantics*)&IEEEhalf)
- return convertHalfAPFloatToAPInt();
- if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
- return convertFloatAPFloatToAPInt();
- if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
- return convertDoubleAPFloatToAPInt();
- if (semantics == (const llvm::fltSemantics*)&IEEEquad)
- return convertQuadrupleAPFloatToAPInt();
- if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
- return convertPPCDoubleDoubleAPFloatToAPInt();
- assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
- "unknown format!");
- return convertF80LongDoubleAPFloatToAPInt();
- }
- float
- APFloat::convertToFloat() const
- {
- assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
- "Float semantics are not IEEEsingle");
- APInt api = bitcastToAPInt();
- return api.bitsToFloat();
- }
- double
- APFloat::convertToDouble() const
- {
- assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
- "Float semantics are not IEEEdouble");
- APInt api = bitcastToAPInt();
- return api.bitsToDouble();
- }
- /// Integer bit is explicit in this format. Intel hardware (387 and later)
- /// does not support these bit patterns:
- /// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
- /// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
- /// exponent = 0, integer bit 1 ("pseudodenormal")
- /// exponent!=0 nor all 1's, integer bit 0 ("unnormal")
- /// At the moment, the first two are treated as NaNs, the second two as Normal.
- void
- APFloat::initFromF80LongDoubleAPInt(const APInt &api)
- {
- assert(api.getBitWidth()==80);
- uint64_t i1 = api.getRawData()[0];
- uint64_t i2 = api.getRawData()[1];
- uint64_t myexponent = (i2 & 0x7fff);
- uint64_t mysignificand = i1;
- initialize(&APFloat::x87DoubleExtended);
- assert(partCount()==2);
- sign = static_cast<unsigned int>(i2>>15);
- if (myexponent==0 && mysignificand==0) {
- // exponent, significand meaningless
- category = fcZero;
- } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
- // exponent, significand meaningless
- category = fcInfinity;
- } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
- // exponent meaningless
- category = fcNaN;
- significandParts()[0] = mysignificand;
- significandParts()[1] = 0;
- } else {
- category = fcNormal;
- exponent = myexponent - 16383;
- significandParts()[0] = mysignificand;
- significandParts()[1] = 0;
- if (myexponent==0) // denormal
- exponent = -16382;
- }
- }
- void
- APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
- {
- assert(api.getBitWidth()==128);
- uint64_t i1 = api.getRawData()[0];
- uint64_t i2 = api.getRawData()[1];
- opStatus fs;
- bool losesInfo;
- // Get the first double and convert to our format.
- initFromDoubleAPInt(APInt(64, i1));
- fs = convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
- assert(fs == opOK && !losesInfo);
- (void)fs;
- // Unless we have a special case, add in second double.
- if (isFiniteNonZero()) {
- APFloat v(IEEEdouble, APInt(64, i2));
- fs = v.convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
- assert(fs == opOK && !losesInfo);
- (void)fs;
- add(v, rmNearestTiesToEven);
- }
- }
- void
- APFloat::initFromQuadrupleAPInt(const APInt &api)
- {
- assert(api.getBitWidth()==128);
- uint64_t i1 = api.getRawData()[0];
- uint64_t i2 = api.getRawData()[1];
- uint64_t myexponent = (i2 >> 48) & 0x7fff;
- uint64_t mysignificand = i1;
- uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
- initialize(&APFloat::IEEEquad);
- assert(partCount()==2);
- sign = static_cast<unsigned int>(i2>>63);
- if (myexponent==0 &&
- (mysignificand==0 && mysignificand2==0)) {
- // exponent, significand meaningless
- category = fcZero;
- } else if (myexponent==0x7fff &&
- (mysignificand==0 && mysignificand2==0)) {
- // exponent, significand meaningless
- category = fcInfinity;
- } else if (myexponent==0x7fff &&
- (mysignificand!=0 || mysignificand2 !=0)) {
- // exponent meaningless
- category = fcNaN;
- significandParts()[0] = mysignificand;
- significandParts()[1] = mysignificand2;
- } else {
- category = fcNormal;
- exponent = myexponent - 16383;
- significandParts()[0] = mysignificand;
- significandParts()[1] = mysignificand2;
- if (myexponent==0) // denormal
- exponent = -16382;
- else
- significandParts()[1] |= 0x1000000000000LL; // integer bit
- }
- }
- void
- APFloat::initFromDoubleAPInt(const APInt &api)
- {
- assert(api.getBitWidth()==64);
- uint64_t i = *api.getRawData();
- uint64_t myexponent = (i >> 52) & 0x7ff;
- uint64_t mysignificand = i & 0xfffffffffffffLL;
- initialize(&APFloat::IEEEdouble);
- assert(partCount()==1);
- sign = static_cast<unsigned int>(i>>63);
- if (myexponent==0 && mysignificand==0) {
- // exponent, significand meaningless
- category = fcZero;
- } else if (myexponent==0x7ff && mysignificand==0) {
- // exponent, significand meaningless
- category = fcInfinity;
- } else if (myexponent==0x7ff && mysignificand!=0) {
- // exponent meaningless
- category = fcNaN;
- *significandParts() = mysignificand;
- } else {
- category = fcNormal;
- exponent = myexponent - 1023;
- *significandParts() = mysignificand;
- if (myexponent==0) // denormal
- exponent = -1022;
- else
- *significandParts() |= 0x10000000000000LL; // integer bit
- }
- }
- void
- APFloat::initFromFloatAPInt(const APInt & api)
- {
- assert(api.getBitWidth()==32);
- uint32_t i = (uint32_t)*api.getRawData();
- uint32_t myexponent = (i >> 23) & 0xff;
- uint32_t mysignificand = i & 0x7fffff;
- initialize(&APFloat::IEEEsingle);
- assert(partCount()==1);
- sign = i >> 31;
- if (myexponent==0 && mysignificand==0) {
- // exponent, significand meaningless
- category = fcZero;
- } else if (myexponent==0xff && mysignificand==0) {
- // exponent, significand meaningless
- category = fcInfinity;
- } else if (myexponent==0xff && mysignificand!=0) {
- // sign, exponent, significand meaningless
- category = fcNaN;
- *significandParts() = mysignificand;
- } else {
- category = fcNormal;
- exponent = myexponent - 127; //bias
- *significandParts() = mysignificand;
- if (myexponent==0) // denormal
- exponent = -126;
- else
- *significandParts() |= 0x800000; // integer bit
- }
- }
- void
- APFloat::initFromHalfAPInt(const APInt & api)
- {
- assert(api.getBitWidth()==16);
- uint32_t i = (uint32_t)*api.getRawData();
- uint32_t myexponent = (i >> 10) & 0x1f;
- uint32_t mysignificand = i & 0x3ff;
- initialize(&APFloat::IEEEhalf);
- assert(partCount()==1);
- sign = i >> 15;
- if (myexponent==0 && mysignificand==0) {
- // exponent, significand meaningless
- category = fcZero;
- } else if (myexponent==0x1f && mysignificand==0) {
- // exponent, significand meaningless
- category = fcInfinity;
- } else if (myexponent==0x1f && mysignificand!=0) {
- // sign, exponent, significand meaningless
- category = fcNaN;
- *significandParts() = mysignificand;
- } else {
- category = fcNormal;
- exponent = myexponent - 15; //bias
- *significandParts() = mysignificand;
- if (myexponent==0) // denormal
- exponent = -14;
- else
- *significandParts() |= 0x400; // integer bit
- }
- }
- /// Treat api as containing the bits of a floating point number. Currently
- /// we infer the floating point type from the size of the APInt. The
- /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
- /// when the size is anything else).
- void
- APFloat::initFromAPInt(const fltSemantics* Sem, const APInt& api)
- {
- if (Sem == &IEEEhalf)
- return initFromHalfAPInt(api);
- if (Sem == &IEEEsingle)
- return initFromFloatAPInt(api);
- if (Sem == &IEEEdouble)
- return initFromDoubleAPInt(api);
- if (Sem == &x87DoubleExtended)
- return initFromF80LongDoubleAPInt(api);
- if (Sem == &IEEEquad)
- return initFromQuadrupleAPInt(api);
- if (Sem == &PPCDoubleDouble)
- return initFromPPCDoubleDoubleAPInt(api);
- llvm_unreachable(nullptr);
- }
- APFloat
- APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE)
- {
- switch (BitWidth) {
- case 16:
- return APFloat(IEEEhalf, APInt::getAllOnesValue(BitWidth));
- case 32:
- return APFloat(IEEEsingle, APInt::getAllOnesValue(BitWidth));
- case 64:
- return APFloat(IEEEdouble, APInt::getAllOnesValue(BitWidth));
- case 80:
- return APFloat(x87DoubleExtended, APInt::getAllOnesValue(BitWidth));
- case 128:
- if (isIEEE)
- return APFloat(IEEEquad, APInt::getAllOnesValue(BitWidth));
- return APFloat(PPCDoubleDouble, APInt::getAllOnesValue(BitWidth));
- default:
- llvm_unreachable("Unknown floating bit width");
- }
- }
- unsigned APFloat::getSizeInBits(const fltSemantics &Sem) {
- return Sem.sizeInBits;
- }
- /// Make this number the largest magnitude normal number in the given
- /// semantics.
- void APFloat::makeLargest(bool Negative) {
- // We want (in interchange format):
- // sign = {Negative}
- // exponent = 1..10
- // significand = 1..1
- category = fcNormal;
- sign = Negative;
- exponent = semantics->maxExponent;
- // Use memset to set all but the highest integerPart to all ones.
- integerPart *significand = significandParts();
- unsigned PartCount = partCount();
- memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1));
- // Set the high integerPart especially setting all unused top bits for
- // internal consistency.
- const unsigned NumUnusedHighBits =
- PartCount*integerPartWidth - semantics->precision;
- significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth)
- ? (~integerPart(0) >> NumUnusedHighBits)
- : 0;
- }
- /// Make this number the smallest magnitude denormal number in the given
- /// semantics.
- void APFloat::makeSmallest(bool Negative) {
- // We want (in interchange format):
- // sign = {Negative}
- // exponent = 0..0
- // significand = 0..01
- category = fcNormal;
- sign = Negative;
- exponent = semantics->minExponent;
- APInt::tcSet(significandParts(), 1, partCount());
- }
- APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) {
- // We want (in interchange format):
- // sign = {Negative}
- // exponent = 1..10
- // significand = 1..1
- APFloat Val(Sem, uninitialized);
- Val.makeLargest(Negative);
- return Val;
- }
- APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) {
- // We want (in interchange format):
- // sign = {Negative}
- // exponent = 0..0
- // significand = 0..01
- APFloat Val(Sem, uninitialized);
- Val.makeSmallest(Negative);
- return Val;
- }
- APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) {
- APFloat Val(Sem, uninitialized);
- // We want (in interchange format):
- // sign = {Negative}
- // exponent = 0..0
- // significand = 10..0
- Val.category = fcNormal;
- Val.zeroSignificand();
- Val.sign = Negative;
- Val.exponent = Sem.minExponent;
- Val.significandParts()[partCountForBits(Sem.precision)-1] |=
- (((integerPart) 1) << ((Sem.precision - 1) % integerPartWidth));
- return Val;
- }
- APFloat::APFloat(const fltSemantics &Sem, const APInt &API) {
- initFromAPInt(&Sem, API);
- }
- APFloat::APFloat(float f) {
- initFromAPInt(&IEEEsingle, APInt::floatToBits(f));
- }
- APFloat::APFloat(double d) {
- initFromAPInt(&IEEEdouble, APInt::doubleToBits(d));
- }
- namespace {
- void append(SmallVectorImpl<char> &Buffer, StringRef Str) {
- Buffer.append(Str.begin(), Str.end());
- }
- /// Removes data from the given significand until it is no more
- /// precise than is required for the desired precision.
- void AdjustToPrecision(APInt &significand,
- int &exp, unsigned FormatPrecision) {
- unsigned bits = significand.getActiveBits();
- // 196/59 is a very slight overestimate of lg_2(10).
- unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
- if (bits <= bitsRequired) return;
- unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
- if (!tensRemovable) return;
- exp += tensRemovable;
- APInt divisor(significand.getBitWidth(), 1);
- APInt powten(significand.getBitWidth(), 10);
- while (true) {
- if (tensRemovable & 1)
- divisor *= powten;
- tensRemovable >>= 1;
- if (!tensRemovable) break;
- powten *= powten;
- }
- significand = significand.udiv(divisor);
- // Truncate the significand down to its active bit count.
- significand = significand.trunc(significand.getActiveBits());
- }
- void AdjustToPrecision(SmallVectorImpl<char> &buffer,
- int &exp, unsigned FormatPrecision) {
- unsigned N = buffer.size();
- if (N <= FormatPrecision) return;
- // The most significant figures are the last ones in the buffer.
- unsigned FirstSignificant = N - FormatPrecision;
- // Round.
- // FIXME: this probably shouldn't use 'round half up'.
- // Rounding down is just a truncation, except we also want to drop
- // trailing zeros from the new result.
- if (buffer[FirstSignificant - 1] < '5') {
- while (FirstSignificant < N && buffer[FirstSignificant] == '0')
- FirstSignificant++;
- exp += FirstSignificant;
- buffer.erase(&buffer[0], &buffer[FirstSignificant]);
- return;
- }
- // Rounding up requires a decimal add-with-carry. If we continue
- // the carry, the newly-introduced zeros will just be truncated.
- for (unsigned I = FirstSignificant; I != N; ++I) {
- if (buffer[I] == '9') {
- FirstSignificant++;
- } else {
- buffer[I]++;
- break;
- }
- }
- // If we carried through, we have exactly one digit of precision.
- if (FirstSignificant == N) {
- exp += FirstSignificant;
- buffer.clear();
- buffer.push_back('1');
- return;
- }
- exp += FirstSignificant;
- buffer.erase(&buffer[0], &buffer[FirstSignificant]);
- }
- }
- void APFloat::toString(SmallVectorImpl<char> &Str,
- unsigned FormatPrecision,
- unsigned FormatMaxPadding) const {
- switch (category) {
- case fcInfinity:
- if (isNegative())
- return append(Str, "-Inf");
- else
- return append(Str, "+Inf");
- case fcNaN: return append(Str, "NaN");
- case fcZero:
- if (isNegative())
- Str.push_back('-');
- if (!FormatMaxPadding)
- append(Str, "0.0E+0");
- else
- Str.push_back('0');
- return;
- case fcNormal:
- break;
- }
- if (isNegative())
- Str.push_back('-');
- // Decompose the number into an APInt and an exponent.
- int exp = exponent - ((int) semantics->precision - 1);
- APInt significand(semantics->precision,
- makeArrayRef(significandParts(),
- partCountForBits(semantics->precision)));
- // Set FormatPrecision if zero. We want to do this before we
- // truncate trailing zeros, as those are part of the precision.
- if (!FormatPrecision) {
- // We use enough digits so the number can be round-tripped back to an
- // APFloat. The formula comes from "How to Print Floating-Point Numbers
- // Accurately" by Steele and White.
- // FIXME: Using a formula based purely on the precision is conservative;
- // we can print fewer digits depending on the actual value being printed.
- // FormatPrecision = 2 + floor(significandBits / lg_2(10))
- FormatPrecision = 2 + semantics->precision * 59 / 196;
- }
- // Ignore trailing binary zeros.
- int trailingZeros = significand.countTrailingZeros();
- exp += trailingZeros;
- significand = significand.lshr(trailingZeros);
- // Change the exponent from 2^e to 10^e.
- if (exp == 0) {
- // Nothing to do.
- } else if (exp > 0) {
- // Just shift left.
- significand = significand.zext(semantics->precision + exp);
- significand <<= exp;
- exp = 0;
- } else { /* exp < 0 */
- int texp = -exp;
- // We transform this using the identity:
- // (N)(2^-e) == (N)(5^e)(10^-e)
- // This means we have to multiply N (the significand) by 5^e.
- // To avoid overflow, we have to operate on numbers large
- // enough to store N * 5^e:
- // log2(N * 5^e) == log2(N) + e * log2(5)
- // <= semantics->precision + e * 137 / 59
- // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
- unsigned precision = semantics->precision + (137 * texp + 136) / 59;
- // Multiply significand by 5^e.
- // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
- significand = significand.zext(precision);
- APInt five_to_the_i(precision, 5);
- while (true) {
- if (texp & 1) significand *= five_to_the_i;
- texp >>= 1;
- if (!texp) break;
- five_to_the_i *= five_to_the_i;
- }
- }
- AdjustToPrecision(significand, exp, FormatPrecision);
- SmallVector<char, 256> buffer;
- // Fill the buffer.
- unsigned precision = significand.getBitWidth();
- APInt ten(precision, 10);
- APInt digit(precision, 0);
- bool inTrail = true;
- while (significand != 0) {
- // digit <- significand % 10
- // significand <- significand / 10
- APInt::udivrem(significand, ten, significand, digit);
- unsigned d = digit.getZExtValue();
- // Drop trailing zeros.
- if (inTrail && !d) exp++;
- else {
- buffer.push_back((char) ('0' + d));
- inTrail = false;
- }
- }
- assert(!buffer.empty() && "no characters in buffer!");
- // Drop down to FormatPrecision.
- // TODO: don't do more precise calculations above than are required.
- AdjustToPrecision(buffer, exp, FormatPrecision);
- unsigned NDigits = buffer.size();
- // Check whether we should use scientific notation.
- bool FormatScientific;
- if (!FormatMaxPadding)
- FormatScientific = true;
- else {
- if (exp >= 0) {
- // 765e3 --> 765000
- // ^^^
- // But we shouldn't make the number look more precise than it is.
- FormatScientific = ((unsigned) exp > FormatMaxPadding ||
- NDigits + (unsigned) exp > FormatPrecision);
- } else {
- // Power of the most significant digit.
- int MSD = exp + (int) (NDigits - 1);
- if (MSD >= 0) {
- // 765e-2 == 7.65
- FormatScientific = false;
- } else {
- // 765e-5 == 0.00765
- // ^ ^^
- FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
- }
- }
- }
- // Scientific formatting is pretty straightforward.
- if (FormatScientific) {
- exp += (NDigits - 1);
- Str.push_back(buffer[NDigits-1]);
- Str.push_back('.');
- if (NDigits == 1)
- Str.push_back('0');
- else
- for (unsigned I = 1; I != NDigits; ++I)
- Str.push_back(buffer[NDigits-1-I]);
- Str.push_back('E');
- Str.push_back(exp >= 0 ? '+' : '-');
- if (exp < 0) exp = -exp;
- SmallVector<char, 6> expbuf;
- do {
- expbuf.push_back((char) ('0' + (exp % 10)));
- exp /= 10;
- } while (exp);
- for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
- Str.push_back(expbuf[E-1-I]);
- return;
- }
- // Non-scientific, positive exponents.
- if (exp >= 0) {
- for (unsigned I = 0; I != NDigits; ++I)
- Str.push_back(buffer[NDigits-1-I]);
- for (unsigned I = 0; I != (unsigned) exp; ++I)
- Str.push_back('0');
- return;
- }
- // Non-scientific, negative exponents.
- // The number of digits to the left of the decimal point.
- int NWholeDigits = exp + (int) NDigits;
- unsigned I = 0;
- if (NWholeDigits > 0) {
- for (; I != (unsigned) NWholeDigits; ++I)
- Str.push_back(buffer[NDigits-I-1]);
- Str.push_back('.');
- } else {
- unsigned NZeros = 1 + (unsigned) -NWholeDigits;
- Str.push_back('0');
- Str.push_back('.');
- for (unsigned Z = 1; Z != NZeros; ++Z)
- Str.push_back('0');
- }
- for (; I != NDigits; ++I)
- Str.push_back(buffer[NDigits-I-1]);
- }
- bool APFloat::getExactInverse(APFloat *inv) const {
- // Special floats and denormals have no exact inverse.
- if (!isFiniteNonZero())
- return false;
- // Check that the number is a power of two by making sure that only the
- // integer bit is set in the significand.
- if (significandLSB() != semantics->precision - 1)
- return false;
- // Get the inverse.
- APFloat reciprocal(*semantics, 1ULL);
- if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)
- return false;
- // Avoid multiplication with a denormal, it is not safe on all platforms and
- // may be slower than a normal division.
- if (reciprocal.isDenormal())
- return false;
- assert(reciprocal.isFiniteNonZero() &&
- reciprocal.significandLSB() == reciprocal.semantics->precision - 1);
- if (inv)
- *inv = reciprocal;
- return true;
- }
- bool APFloat::isSignaling() const {
- if (!isNaN())
- return false;
- // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the
- // first bit of the trailing significand being 0.
- return !APInt::tcExtractBit(significandParts(), semantics->precision - 2);
- }
- /// IEEE-754R 2008 5.3.1: nextUp/nextDown.
- ///
- /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with
- /// appropriate sign switching before/after the computation.
- APFloat::opStatus APFloat::next(bool nextDown) {
- // If we are performing nextDown, swap sign so we have -x.
- if (nextDown)
- changeSign();
- // Compute nextUp(x)
- opStatus result = opOK;
- // Handle each float category separately.
- switch (category) {
- case fcInfinity:
- // nextUp(+inf) = +inf
- if (!isNegative())
- break;
- // nextUp(-inf) = -getLargest()
- makeLargest(true);
- break;
- case fcNaN:
- // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag.
- // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not
- // change the payload.
- if (isSignaling()) {
- result = opInvalidOp;
- // For consistency, propagate the sign of the sNaN to the qNaN.
- makeNaN(false, isNegative(), nullptr);
- }
- break;
- case fcZero:
- // nextUp(pm 0) = +getSmallest()
- makeSmallest(false);
- break;
- case fcNormal:
- // nextUp(-getSmallest()) = -0
- if (isSmallest() && isNegative()) {
- APInt::tcSet(significandParts(), 0, partCount());
- category = fcZero;
- exponent = 0;
- break;
- }
- // nextUp(getLargest()) == INFINITY
- if (isLargest() && !isNegative()) {
- APInt::tcSet(significandParts(), 0, partCount());
- category = fcInfinity;
- exponent = semantics->maxExponent + 1;
- break;
- }
- // nextUp(normal) == normal + inc.
- if (isNegative()) {
- // If we are negative, we need to decrement the significand.
- // We only cross a binade boundary that requires adjusting the exponent
- // if:
- // 1. exponent != semantics->minExponent. This implies we are not in the
- // smallest binade or are dealing with denormals.
- // 2. Our significand excluding the integral bit is all zeros.
- bool WillCrossBinadeBoundary =
- exponent != semantics->minExponent && isSignificandAllZeros();
- // Decrement the significand.
- //
- // We always do this since:
- // 1. If we are dealing with a non-binade decrement, by definition we
- // just decrement the significand.
- // 2. If we are dealing with a normal -> normal binade decrement, since
- // we have an explicit integral bit the fact that all bits but the
- // integral bit are zero implies that subtracting one will yield a
- // significand with 0 integral bit and 1 in all other spots. Thus we
- // must just adjust the exponent and set the integral bit to 1.
- // 3. If we are dealing with a normal -> denormal binade decrement,
- // since we set the integral bit to 0 when we represent denormals, we
- // just decrement the significand.
- integerPart *Parts = significandParts();
- APInt::tcDecrement(Parts, partCount());
- if (WillCrossBinadeBoundary) {
- // Our result is a normal number. Do the following:
- // 1. Set the integral bit to 1.
- // 2. Decrement the exponent.
- APInt::tcSetBit(Parts, semantics->precision - 1);
- exponent--;
- }
- } else {
- // If we are positive, we need to increment the significand.
- // We only cross a binade boundary that requires adjusting the exponent if
- // the input is not a denormal and all of said input's significand bits
- // are set. If all of said conditions are true: clear the significand, set
- // the integral bit to 1, and increment the exponent. If we have a
- // denormal always increment since moving denormals and the numbers in the
- // smallest normal binade have the same exponent in our representation.
- bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes();
- if (WillCrossBinadeBoundary) {
- integerPart *Parts = significandParts();
- APInt::tcSet(Parts, 0, partCount());
- APInt::tcSetBit(Parts, semantics->precision - 1);
- assert(exponent != semantics->maxExponent &&
- "We can not increment an exponent beyond the maxExponent allowed"
- " by the given floating point semantics.");
- exponent++;
- } else {
- incrementSignificand();
- }
- }
- break;
- }
- // If we are performing nextDown, swap sign so we have -nextUp(-x)
- if (nextDown)
- changeSign();
- return result;
- }
- void
- APFloat::makeInf(bool Negative) {
- category = fcInfinity;
- sign = Negative;
- exponent = semantics->maxExponent + 1;
- APInt::tcSet(significandParts(), 0, partCount());
- }
- void
- APFloat::makeZero(bool Negative) {
- category = fcZero;
- sign = Negative;
- exponent = semantics->minExponent-1;
- APInt::tcSet(significandParts(), 0, partCount());
- }
- APFloat llvm::scalbn(APFloat X, int Exp) {
- if (X.isInfinity() || X.isZero() || X.isNaN())
- return X;
- auto MaxExp = X.getSemantics().maxExponent;
- auto MinExp = X.getSemantics().minExponent;
- if (Exp > (MaxExp - X.exponent))
- // Overflow saturates to infinity.
- return APFloat::getInf(X.getSemantics(), X.isNegative());
- if (Exp < (MinExp - X.exponent))
- // Underflow saturates to zero.
- return APFloat::getZero(X.getSemantics(), X.isNegative());
- X.exponent += Exp;
- return X;
- }
|