1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930 |
- =========================
- Clang Language Extensions
- =========================
- .. contents::
- :local:
- :depth: 1
- .. toctree::
- :hidden:
- BlockLanguageSpec
- Block-ABI-Apple
- Introduction
- ============
- NOTE: this document applies to the original Clang project, not the DirectX
- Compiler. It's made available for informational purposes only.
- This document describes the language extensions provided by Clang. In addition
- to the language extensions listed here, Clang aims to support a broad range of
- GCC extensions. Please see the `GCC manual
- <http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html>`_ for more information on
- these extensions.
- .. _langext-feature_check:
- Feature Checking Macros
- =======================
- Language extensions can be very useful, but only if you know you can depend on
- them. In order to allow fine-grain features checks, we support three builtin
- function-like macros. This allows you to directly test for a feature in your
- code without having to resort to something like autoconf or fragile "compiler
- version checks".
- ``__has_builtin``
- -----------------
- This function-like macro takes a single identifier argument that is the name of
- a builtin function. It evaluates to 1 if the builtin is supported or 0 if not.
- It can be used like this:
- .. code-block:: c++
- #ifndef __has_builtin // Optional of course.
- #define __has_builtin(x) 0 // Compatibility with non-clang compilers.
- #endif
- ...
- #if __has_builtin(__builtin_trap)
- __builtin_trap();
- #else
- abort();
- #endif
- ...
- .. _langext-__has_feature-__has_extension:
- ``__has_feature`` and ``__has_extension``
- -----------------------------------------
- These function-like macros take a single identifier argument that is the name
- of a feature. ``__has_feature`` evaluates to 1 if the feature is both
- supported by Clang and standardized in the current language standard or 0 if
- not (but see :ref:`below <langext-has-feature-back-compat>`), while
- ``__has_extension`` evaluates to 1 if the feature is supported by Clang in the
- current language (either as a language extension or a standard language
- feature) or 0 if not. They can be used like this:
- .. code-block:: c++
- #ifndef __has_feature // Optional of course.
- #define __has_feature(x) 0 // Compatibility with non-clang compilers.
- #endif
- #ifndef __has_extension
- #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
- #endif
- ...
- #if __has_feature(cxx_rvalue_references)
- // This code will only be compiled with the -std=c++11 and -std=gnu++11
- // options, because rvalue references are only standardized in C++11.
- #endif
- #if __has_extension(cxx_rvalue_references)
- // This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
- // and -std=gnu++98 options, because rvalue references are supported as a
- // language extension in C++98.
- #endif
- .. _langext-has-feature-back-compat:
- For backward compatibility, ``__has_feature`` can also be used to test
- for support for non-standardized features, i.e. features not prefixed ``c_``,
- ``cxx_`` or ``objc_``.
- Another use of ``__has_feature`` is to check for compiler features not related
- to the language standard, such as e.g. :doc:`AddressSanitizer
- <AddressSanitizer>`.
- If the ``-pedantic-errors`` option is given, ``__has_extension`` is equivalent
- to ``__has_feature``.
- The feature tag is described along with the language feature below.
- The feature name or extension name can also be specified with a preceding and
- following ``__`` (double underscore) to avoid interference from a macro with
- the same name. For instance, ``__cxx_rvalue_references__`` can be used instead
- of ``cxx_rvalue_references``.
- ``__has_cpp_attribute``
- -----------------------
- This function-like macro takes a single argument that is the name of a
- C++11-style attribute. The argument can either be a single identifier, or a
- scoped identifier. If the attribute is supported, a nonzero value is returned.
- If the attribute is a standards-based attribute, this macro returns a nonzero
- value based on the year and month in which the attribute was voted into the
- working draft. If the attribute is not supported by the current compliation
- target, this macro evaluates to 0. It can be used like this:
- .. code-block:: c++
- #ifndef __has_cpp_attribute // Optional of course.
- #define __has_cpp_attribute(x) 0 // Compatibility with non-clang compilers.
- #endif
- ...
- #if __has_cpp_attribute(clang::fallthrough)
- #define FALLTHROUGH [[clang::fallthrough]]
- #else
- #define FALLTHROUGH
- #endif
- ...
- The attribute identifier (but not scope) can also be specified with a preceding
- and following ``__`` (double underscore) to avoid interference from a macro with
- the same name. For instance, ``gnu::__const__`` can be used instead of
- ``gnu::const``.
- ``__has_attribute``
- -------------------
- This function-like macro takes a single identifier argument that is the name of
- a GNU-style attribute. It evaluates to 1 if the attribute is supported by the
- current compilation target, or 0 if not. It can be used like this:
- .. code-block:: c++
- #ifndef __has_attribute // Optional of course.
- #define __has_attribute(x) 0 // Compatibility with non-clang compilers.
- #endif
- ...
- #if __has_attribute(always_inline)
- #define ALWAYS_INLINE __attribute__((always_inline))
- #else
- #define ALWAYS_INLINE
- #endif
- ...
- The attribute name can also be specified with a preceding and following ``__``
- (double underscore) to avoid interference from a macro with the same name. For
- instance, ``__always_inline__`` can be used instead of ``always_inline``.
- ``__has_declspec_attribute``
- ----------------------------
- This function-like macro takes a single identifier argument that is the name of
- an attribute implemented as a Microsoft-style ``__declspec`` attribute. It
- evaluates to 1 if the attribute is supported by the current compilation target,
- or 0 if not. It can be used like this:
- .. code-block:: c++
- #ifndef __has_declspec_attribute // Optional of course.
- #define __has_declspec_attribute(x) 0 // Compatibility with non-clang compilers.
- #endif
- ...
- #if __has_declspec_attribute(dllexport)
- #define DLLEXPORT __declspec(dllexport)
- #else
- #define DLLEXPORT
- #endif
- ...
- The attribute name can also be specified with a preceding and following ``__``
- (double underscore) to avoid interference from a macro with the same name. For
- instance, ``__dllexport__`` can be used instead of ``dllexport``.
- ``__is_identifier``
- -------------------
- This function-like macro takes a single identifier argument that might be either
- a reserved word or a regular identifier. It evaluates to 1 if the argument is just
- a regular identifier and not a reserved word, in the sense that it can then be
- used as the name of a user-defined function or variable. Otherwise it evaluates
- to 0. It can be used like this:
- .. code-block:: c++
- ...
- #ifdef __is_identifier // Compatibility with non-clang compilers.
- #if __is_identifier(__wchar_t)
- typedef wchar_t __wchar_t;
- #endif
- #endif
- __wchar_t WideCharacter;
- ...
- Include File Checking Macros
- ============================
- Not all developments systems have the same include files. The
- :ref:`langext-__has_include` and :ref:`langext-__has_include_next` macros allow
- you to check for the existence of an include file before doing a possibly
- failing ``#include`` directive. Include file checking macros must be used
- as expressions in ``#if`` or ``#elif`` preprocessing directives.
- .. _langext-__has_include:
- ``__has_include``
- -----------------
- This function-like macro takes a single file name string argument that is the
- name of an include file. It evaluates to 1 if the file can be found using the
- include paths, or 0 otherwise:
- .. code-block:: c++
- // Note the two possible file name string formats.
- #if __has_include("myinclude.h") && __has_include(<stdint.h>)
- # include "myinclude.h"
- #endif
- To test for this feature, use ``#if defined(__has_include)``:
- .. code-block:: c++
- // To avoid problem with non-clang compilers not having this macro.
- #if defined(__has_include)
- #if __has_include("myinclude.h")
- # include "myinclude.h"
- #endif
- #endif
- .. _langext-__has_include_next:
- ``__has_include_next``
- ----------------------
- This function-like macro takes a single file name string argument that is the
- name of an include file. It is like ``__has_include`` except that it looks for
- the second instance of the given file found in the include paths. It evaluates
- to 1 if the second instance of the file can be found using the include paths,
- or 0 otherwise:
- .. code-block:: c++
- // Note the two possible file name string formats.
- #if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
- # include_next "myinclude.h"
- #endif
- // To avoid problem with non-clang compilers not having this macro.
- #if defined(__has_include_next)
- #if __has_include_next("myinclude.h")
- # include_next "myinclude.h"
- #endif
- #endif
- Note that ``__has_include_next``, like the GNU extension ``#include_next``
- directive, is intended for use in headers only, and will issue a warning if
- used in the top-level compilation file. A warning will also be issued if an
- absolute path is used in the file argument.
- ``__has_warning``
- -----------------
- This function-like macro takes a string literal that represents a command line
- option for a warning and returns true if that is a valid warning option.
- .. code-block:: c++
- #if __has_warning("-Wformat")
- ...
- #endif
- Builtin Macros
- ==============
- ``__BASE_FILE__``
- Defined to a string that contains the name of the main input file passed to
- Clang.
- ``__COUNTER__``
- Defined to an integer value that starts at zero and is incremented each time
- the ``__COUNTER__`` macro is expanded.
- ``__INCLUDE_LEVEL__``
- Defined to an integral value that is the include depth of the file currently
- being translated. For the main file, this value is zero.
- ``__TIMESTAMP__``
- Defined to the date and time of the last modification of the current source
- file.
- ``__clang__``
- Defined when compiling with Clang
- ``__clang_major__``
- Defined to the major marketing version number of Clang (e.g., the 2 in
- 2.0.1). Note that marketing version numbers should not be used to check for
- language features, as different vendors use different numbering schemes.
- Instead, use the :ref:`langext-feature_check`.
- ``__clang_minor__``
- Defined to the minor version number of Clang (e.g., the 0 in 2.0.1). Note
- that marketing version numbers should not be used to check for language
- features, as different vendors use different numbering schemes. Instead, use
- the :ref:`langext-feature_check`.
- ``__clang_patchlevel__``
- Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).
- ``__clang_version__``
- Defined to a string that captures the Clang marketing version, including the
- Subversion tag or revision number, e.g., "``1.5 (trunk 102332)``".
- .. _langext-vectors:
- Vectors and Extended Vectors
- ============================
- Supports the GCC, OpenCL, AltiVec and NEON vector extensions.
- OpenCL vector types are created using ``ext_vector_type`` attribute. It
- support for ``V.xyzw`` syntax and other tidbits as seen in OpenCL. An example
- is:
- .. code-block:: c++
- typedef float float4 __attribute__((ext_vector_type(4)));
- typedef float float2 __attribute__((ext_vector_type(2)));
- float4 foo(float2 a, float2 b) {
- float4 c;
- c.xz = a;
- c.yw = b;
- return c;
- }
- Query for this feature with ``__has_extension(attribute_ext_vector_type)``.
- Giving ``-faltivec`` option to clang enables support for AltiVec vector syntax
- and functions. For example:
- .. code-block:: c++
- vector float foo(vector int a) {
- vector int b;
- b = vec_add(a, a) + a;
- return (vector float)b;
- }
- NEON vector types are created using ``neon_vector_type`` and
- ``neon_polyvector_type`` attributes. For example:
- .. code-block:: c++
- typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
- typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t;
- int8x8_t foo(int8x8_t a) {
- int8x8_t v;
- v = a;
- return v;
- }
- Vector Literals
- ---------------
- Vector literals can be used to create vectors from a set of scalars, or
- vectors. Either parentheses or braces form can be used. In the parentheses
- form the number of literal values specified must be one, i.e. referring to a
- scalar value, or must match the size of the vector type being created. If a
- single scalar literal value is specified, the scalar literal value will be
- replicated to all the components of the vector type. In the brackets form any
- number of literals can be specified. For example:
- .. code-block:: c++
- typedef int v4si __attribute__((__vector_size__(16)));
- typedef float float4 __attribute__((ext_vector_type(4)));
- typedef float float2 __attribute__((ext_vector_type(2)));
- v4si vsi = (v4si){1, 2, 3, 4};
- float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
- vector int vi1 = (vector int)(1); // vi1 will be (1, 1, 1, 1).
- vector int vi2 = (vector int){1}; // vi2 will be (1, 0, 0, 0).
- vector int vi3 = (vector int)(1, 2); // error
- vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
- vector int vi5 = (vector int)(1, 2, 3, 4);
- float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
- Vector Operations
- -----------------
- The table below shows the support for each operation by vector extension. A
- dash indicates that an operation is not accepted according to a corresponding
- specification.
- ============================== ======= ======= ======= =======
- Opeator OpenCL AltiVec GCC NEON
- ============================== ======= ======= ======= =======
- [] yes yes yes --
- unary operators +, -- yes yes yes --
- ++, -- -- yes yes yes --
- +,--,*,/,% yes yes yes --
- bitwise operators &,|,^,~ yes yes yes --
- >>,<< yes yes yes --
- !, &&, || yes -- -- --
- ==, !=, >, <, >=, <= yes yes -- --
- = yes yes yes yes
- :? yes -- -- --
- sizeof yes yes yes yes
- C-style cast yes yes yes no
- reinterpret_cast yes no yes no
- static_cast yes no yes no
- const_cast no no no no
- ============================== ======= ======= ======= =======
- See also :ref:`langext-__builtin_shufflevector`, :ref:`langext-__builtin_convertvector`.
- Messages on ``deprecated`` and ``unavailable`` Attributes
- =========================================================
- An optional string message can be added to the ``deprecated`` and
- ``unavailable`` attributes. For example:
- .. code-block:: c++
- void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));
- If the deprecated or unavailable declaration is used, the message will be
- incorporated into the appropriate diagnostic:
- .. code-block:: c++
- harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
- [-Wdeprecated-declarations]
- explode();
- ^
- Query for this feature with
- ``__has_extension(attribute_deprecated_with_message)`` and
- ``__has_extension(attribute_unavailable_with_message)``.
- Attributes on Enumerators
- =========================
- Clang allows attributes to be written on individual enumerators. This allows
- enumerators to be deprecated, made unavailable, etc. The attribute must appear
- after the enumerator name and before any initializer, like so:
- .. code-block:: c++
- enum OperationMode {
- OM_Invalid,
- OM_Normal,
- OM_Terrified __attribute__((deprecated)),
- OM_AbortOnError __attribute__((deprecated)) = 4
- };
- Attributes on the ``enum`` declaration do not apply to individual enumerators.
- Query for this feature with ``__has_extension(enumerator_attributes)``.
- 'User-Specified' System Frameworks
- ==================================
- Clang provides a mechanism by which frameworks can be built in such a way that
- they will always be treated as being "system frameworks", even if they are not
- present in a system framework directory. This can be useful to system
- framework developers who want to be able to test building other applications
- with development builds of their framework, including the manner in which the
- compiler changes warning behavior for system headers.
- Framework developers can opt-in to this mechanism by creating a
- "``.system_framework``" file at the top-level of their framework. That is, the
- framework should have contents like:
- .. code-block:: none
- .../TestFramework.framework
- .../TestFramework.framework/.system_framework
- .../TestFramework.framework/Headers
- .../TestFramework.framework/Headers/TestFramework.h
- ...
- Clang will treat the presence of this file as an indicator that the framework
- should be treated as a system framework, regardless of how it was found in the
- framework search path. For consistency, we recommend that such files never be
- included in installed versions of the framework.
- Checks for Standard Language Features
- =====================================
- The ``__has_feature`` macro can be used to query if certain standard language
- features are enabled. The ``__has_extension`` macro can be used to query if
- language features are available as an extension when compiling for a standard
- which does not provide them. The features which can be tested are listed here.
- Since Clang 3.4, the C++ SD-6 feature test macros are also supported.
- These are macros with names of the form ``__cpp_<feature_name>``, and are
- intended to be a portable way to query the supported features of the compiler.
- See `the C++ status page <http://clang.llvm.org/cxx_status.html#ts>`_ for
- information on the version of SD-6 supported by each Clang release, and the
- macros provided by that revision of the recommendations.
- C++98
- -----
- The features listed below are part of the C++98 standard. These features are
- enabled by default when compiling C++ code.
- C++ exceptions
- ^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_exceptions)`` to determine if C++ exceptions have been
- enabled. For example, compiling code with ``-fno-exceptions`` disables C++
- exceptions.
- C++ RTTI
- ^^^^^^^^
- Use ``__has_feature(cxx_rtti)`` to determine if C++ RTTI has been enabled. For
- example, compiling code with ``-fno-rtti`` disables the use of RTTI.
- C++11
- -----
- The features listed below are part of the C++11 standard. As a result, all
- these features are enabled with the ``-std=c++11`` or ``-std=gnu++11`` option
- when compiling C++ code.
- C++11 SFINAE includes access control
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_access_control_sfinae)`` or
- ``__has_extension(cxx_access_control_sfinae)`` to determine whether
- access-control errors (e.g., calling a private constructor) are considered to
- be template argument deduction errors (aka SFINAE errors), per `C++ DR1170
- <http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170>`_.
- C++11 alias templates
- ^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_alias_templates)`` or
- ``__has_extension(cxx_alias_templates)`` to determine if support for C++11's
- alias declarations and alias templates is enabled.
- C++11 alignment specifiers
- ^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_alignas)`` or ``__has_extension(cxx_alignas)`` to
- determine if support for alignment specifiers using ``alignas`` is enabled.
- Use ``__has_feature(cxx_alignof)`` or ``__has_extension(cxx_alignof)`` to
- determine if support for the ``alignof`` keyword is enabled.
- C++11 attributes
- ^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_attributes)`` or ``__has_extension(cxx_attributes)`` to
- determine if support for attribute parsing with C++11's square bracket notation
- is enabled.
- C++11 generalized constant expressions
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_constexpr)`` to determine if support for generalized
- constant expressions (e.g., ``constexpr``) is enabled.
- C++11 ``decltype()``
- ^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_decltype)`` or ``__has_extension(cxx_decltype)`` to
- determine if support for the ``decltype()`` specifier is enabled. C++11's
- ``decltype`` does not require type-completeness of a function call expression.
- Use ``__has_feature(cxx_decltype_incomplete_return_types)`` or
- ``__has_extension(cxx_decltype_incomplete_return_types)`` to determine if
- support for this feature is enabled.
- C++11 default template arguments in function templates
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_default_function_template_args)`` or
- ``__has_extension(cxx_default_function_template_args)`` to determine if support
- for default template arguments in function templates is enabled.
- C++11 ``default``\ ed functions
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_defaulted_functions)`` or
- ``__has_extension(cxx_defaulted_functions)`` to determine if support for
- defaulted function definitions (with ``= default``) is enabled.
- C++11 delegating constructors
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_delegating_constructors)`` to determine if support for
- delegating constructors is enabled.
- C++11 ``deleted`` functions
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_deleted_functions)`` or
- ``__has_extension(cxx_deleted_functions)`` to determine if support for deleted
- function definitions (with ``= delete``) is enabled.
- C++11 explicit conversion functions
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_explicit_conversions)`` to determine if support for
- ``explicit`` conversion functions is enabled.
- C++11 generalized initializers
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_generalized_initializers)`` to determine if support for
- generalized initializers (using braced lists and ``std::initializer_list``) is
- enabled.
- C++11 implicit move constructors/assignment operators
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_implicit_moves)`` to determine if Clang will implicitly
- generate move constructors and move assignment operators where needed.
- C++11 inheriting constructors
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_inheriting_constructors)`` to determine if support for
- inheriting constructors is enabled.
- C++11 inline namespaces
- ^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_inline_namespaces)`` or
- ``__has_extension(cxx_inline_namespaces)`` to determine if support for inline
- namespaces is enabled.
- C++11 lambdas
- ^^^^^^^^^^^^^
- Use ``__has_feature(cxx_lambdas)`` or ``__has_extension(cxx_lambdas)`` to
- determine if support for lambdas is enabled.
- C++11 local and unnamed types as template arguments
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_local_type_template_args)`` or
- ``__has_extension(cxx_local_type_template_args)`` to determine if support for
- local and unnamed types as template arguments is enabled.
- C++11 noexcept
- ^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_noexcept)`` or ``__has_extension(cxx_noexcept)`` to
- determine if support for noexcept exception specifications is enabled.
- C++11 in-class non-static data member initialization
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_nonstatic_member_init)`` to determine whether in-class
- initialization of non-static data members is enabled.
- C++11 ``nullptr``
- ^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_nullptr)`` or ``__has_extension(cxx_nullptr)`` to
- determine if support for ``nullptr`` is enabled.
- C++11 ``override control``
- ^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_override_control)`` or
- ``__has_extension(cxx_override_control)`` to determine if support for the
- override control keywords is enabled.
- C++11 reference-qualified functions
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_reference_qualified_functions)`` or
- ``__has_extension(cxx_reference_qualified_functions)`` to determine if support
- for reference-qualified functions (e.g., member functions with ``&`` or ``&&``
- applied to ``*this``) is enabled.
- C++11 range-based ``for`` loop
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_range_for)`` or ``__has_extension(cxx_range_for)`` to
- determine if support for the range-based for loop is enabled.
- C++11 raw string literals
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_raw_string_literals)`` to determine if support for raw
- string literals (e.g., ``R"x(foo\bar)x"``) is enabled.
- C++11 rvalue references
- ^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_rvalue_references)`` or
- ``__has_extension(cxx_rvalue_references)`` to determine if support for rvalue
- references is enabled.
- C++11 ``static_assert()``
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_static_assert)`` or
- ``__has_extension(cxx_static_assert)`` to determine if support for compile-time
- assertions using ``static_assert`` is enabled.
- C++11 ``thread_local``
- ^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_thread_local)`` to determine if support for
- ``thread_local`` variables is enabled.
- C++11 type inference
- ^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_auto_type)`` or ``__has_extension(cxx_auto_type)`` to
- determine C++11 type inference is supported using the ``auto`` specifier. If
- this is disabled, ``auto`` will instead be a storage class specifier, as in C
- or C++98.
- C++11 strongly typed enumerations
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_strong_enums)`` or
- ``__has_extension(cxx_strong_enums)`` to determine if support for strongly
- typed, scoped enumerations is enabled.
- C++11 trailing return type
- ^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_trailing_return)`` or
- ``__has_extension(cxx_trailing_return)`` to determine if support for the
- alternate function declaration syntax with trailing return type is enabled.
- C++11 Unicode string literals
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_unicode_literals)`` to determine if support for Unicode
- string literals is enabled.
- C++11 unrestricted unions
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_unrestricted_unions)`` to determine if support for
- unrestricted unions is enabled.
- C++11 user-defined literals
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_user_literals)`` to determine if support for
- user-defined literals is enabled.
- C++11 variadic templates
- ^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_variadic_templates)`` or
- ``__has_extension(cxx_variadic_templates)`` to determine if support for
- variadic templates is enabled.
- C++1y
- -----
- The features listed below are part of the committee draft for the C++1y
- standard. As a result, all these features are enabled with the ``-std=c++1y``
- or ``-std=gnu++1y`` option when compiling C++ code.
- C++1y binary literals
- ^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_binary_literals)`` or
- ``__has_extension(cxx_binary_literals)`` to determine whether
- binary literals (for instance, ``0b10010``) are recognized. Clang supports this
- feature as an extension in all language modes.
- C++1y contextual conversions
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_contextual_conversions)`` or
- ``__has_extension(cxx_contextual_conversions)`` to determine if the C++1y rules
- are used when performing an implicit conversion for an array bound in a
- *new-expression*, the operand of a *delete-expression*, an integral constant
- expression, or a condition in a ``switch`` statement.
- C++1y decltype(auto)
- ^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_decltype_auto)`` or
- ``__has_extension(cxx_decltype_auto)`` to determine if support
- for the ``decltype(auto)`` placeholder type is enabled.
- C++1y default initializers for aggregates
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_aggregate_nsdmi)`` or
- ``__has_extension(cxx_aggregate_nsdmi)`` to determine if support
- for default initializers in aggregate members is enabled.
- C++1y digit separators
- ^^^^^^^^^^^^^^^^^^^^^^
- Use ``__cpp_digit_separators`` to determine if support for digit separators
- using single quotes (for instance, ``10'000``) is enabled. At this time, there
- is no corresponding ``__has_feature`` name
- C++1y generalized lambda capture
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_init_captures)`` or
- ``__has_extension(cxx_init_captures)`` to determine if support for
- lambda captures with explicit initializers is enabled
- (for instance, ``[n(0)] { return ++n; }``).
- C++1y generic lambdas
- ^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_generic_lambdas)`` or
- ``__has_extension(cxx_generic_lambdas)`` to determine if support for generic
- (polymorphic) lambdas is enabled
- (for instance, ``[] (auto x) { return x + 1; }``).
- C++1y relaxed constexpr
- ^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_relaxed_constexpr)`` or
- ``__has_extension(cxx_relaxed_constexpr)`` to determine if variable
- declarations, local variable modification, and control flow constructs
- are permitted in ``constexpr`` functions.
- C++1y return type deduction
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_return_type_deduction)`` or
- ``__has_extension(cxx_return_type_deduction)`` to determine if support
- for return type deduction for functions (using ``auto`` as a return type)
- is enabled.
- C++1y runtime-sized arrays
- ^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_runtime_array)`` or
- ``__has_extension(cxx_runtime_array)`` to determine if support
- for arrays of runtime bound (a restricted form of variable-length arrays)
- is enabled.
- Clang's implementation of this feature is incomplete.
- C++1y variable templates
- ^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_variable_templates)`` or
- ``__has_extension(cxx_variable_templates)`` to determine if support for
- templated variable declarations is enabled.
- C11
- ---
- The features listed below are part of the C11 standard. As a result, all these
- features are enabled with the ``-std=c11`` or ``-std=gnu11`` option when
- compiling C code. Additionally, because these features are all
- backward-compatible, they are available as extensions in all language modes.
- C11 alignment specifiers
- ^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(c_alignas)`` or ``__has_extension(c_alignas)`` to determine
- if support for alignment specifiers using ``_Alignas`` is enabled.
- Use ``__has_feature(c_alignof)`` or ``__has_extension(c_alignof)`` to determine
- if support for the ``_Alignof`` keyword is enabled.
- C11 atomic operations
- ^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(c_atomic)`` or ``__has_extension(c_atomic)`` to determine
- if support for atomic types using ``_Atomic`` is enabled. Clang also provides
- :ref:`a set of builtins <langext-__c11_atomic>` which can be used to implement
- the ``<stdatomic.h>`` operations on ``_Atomic`` types. Use
- ``__has_include(<stdatomic.h>)`` to determine if C11's ``<stdatomic.h>`` header
- is available.
- Clang will use the system's ``<stdatomic.h>`` header when one is available, and
- will otherwise use its own. When using its own, implementations of the atomic
- operations are provided as macros. In the cases where C11 also requires a real
- function, this header provides only the declaration of that function (along
- with a shadowing macro implementation), and you must link to a library which
- provides a definition of the function if you use it instead of the macro.
- C11 generic selections
- ^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(c_generic_selections)`` or
- ``__has_extension(c_generic_selections)`` to determine if support for generic
- selections is enabled.
- As an extension, the C11 generic selection expression is available in all
- languages supported by Clang. The syntax is the same as that given in the C11
- standard.
- In C, type compatibility is decided according to the rules given in the
- appropriate standard, but in C++, which lacks the type compatibility rules used
- in C, types are considered compatible only if they are equivalent.
- C11 ``_Static_assert()``
- ^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(c_static_assert)`` or ``__has_extension(c_static_assert)``
- to determine if support for compile-time assertions using ``_Static_assert`` is
- enabled.
- C11 ``_Thread_local``
- ^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(c_thread_local)`` or ``__has_extension(c_thread_local)``
- to determine if support for ``_Thread_local`` variables is enabled.
- Modules
- -------
- Use ``__has_feature(modules)`` to determine if Modules have been enabled.
- For example, compiling code with ``-fmodules`` enables the use of Modules.
- More information could be found `here <http://clang.llvm.org/docs/Modules.html>`_.
- Checks for Type Trait Primitives
- ================================
- Type trait primitives are special builtin constant expressions that can be used
- by the standard C++ library to facilitate or simplify the implementation of
- user-facing type traits in the <type_traits> header.
- They are not intended to be used directly by user code because they are
- implementation-defined and subject to change -- as such they're tied closely to
- the supported set of system headers, currently:
- * LLVM's own libc++
- * GNU libstdc++
- * The Microsoft standard C++ library
- Clang supports the `GNU C++ type traits
- <http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html>`_ and a subset of the
- `Microsoft Visual C++ Type traits
- <http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx>`_.
- Feature detection is supported only for some of the primitives at present. User
- code should not use these checks because they bear no direct relation to the
- actual set of type traits supported by the C++ standard library.
- For type trait ``__X``, ``__has_extension(X)`` indicates the presence of the
- type trait primitive in the compiler. A simplistic usage example as might be
- seen in standard C++ headers follows:
- .. code-block:: c++
- #if __has_extension(is_convertible_to)
- template<typename From, typename To>
- struct is_convertible_to {
- static const bool value = __is_convertible_to(From, To);
- };
- #else
- // Emulate type trait for compatibility with other compilers.
- #endif
- The following type trait primitives are supported by Clang:
- * ``__has_nothrow_assign`` (GNU, Microsoft)
- * ``__has_nothrow_copy`` (GNU, Microsoft)
- * ``__has_nothrow_constructor`` (GNU, Microsoft)
- * ``__has_trivial_assign`` (GNU, Microsoft)
- * ``__has_trivial_copy`` (GNU, Microsoft)
- * ``__has_trivial_constructor`` (GNU, Microsoft)
- * ``__has_trivial_destructor`` (GNU, Microsoft)
- * ``__has_virtual_destructor`` (GNU, Microsoft)
- * ``__is_abstract`` (GNU, Microsoft)
- * ``__is_base_of`` (GNU, Microsoft)
- * ``__is_class`` (GNU, Microsoft)
- * ``__is_convertible_to`` (Microsoft)
- * ``__is_empty`` (GNU, Microsoft)
- * ``__is_enum`` (GNU, Microsoft)
- * ``__is_interface_class`` (Microsoft)
- * ``__is_pod`` (GNU, Microsoft)
- * ``__is_polymorphic`` (GNU, Microsoft)
- * ``__is_union`` (GNU, Microsoft)
- * ``__is_literal(type)``: Determines whether the given type is a literal type
- * ``__is_final``: Determines whether the given type is declared with a
- ``final`` class-virt-specifier.
- * ``__underlying_type(type)``: Retrieves the underlying type for a given
- ``enum`` type. This trait is required to implement the C++11 standard
- library.
- * ``__is_trivially_assignable(totype, fromtype)``: Determines whether a value
- of type ``totype`` can be assigned to from a value of type ``fromtype`` such
- that no non-trivial functions are called as part of that assignment. This
- trait is required to implement the C++11 standard library.
- * ``__is_trivially_constructible(type, argtypes...)``: Determines whether a
- value of type ``type`` can be direct-initialized with arguments of types
- ``argtypes...`` such that no non-trivial functions are called as part of
- that initialization. This trait is required to implement the C++11 standard
- library.
- * ``__is_destructible`` (MSVC 2013): partially implemented
- * ``__is_nothrow_destructible`` (MSVC 2013): partially implemented
- * ``__is_nothrow_assignable`` (MSVC 2013, clang)
- * ``__is_constructible`` (MSVC 2013, clang)
- * ``__is_nothrow_constructible`` (MSVC 2013, clang)
- Blocks
- ======
- The syntax and high level language feature description is in
- :doc:`BlockLanguageSpec<BlockLanguageSpec>`. Implementation and ABI details for
- the clang implementation are in :doc:`Block-ABI-Apple<Block-ABI-Apple>`.
- Query for this feature with ``__has_extension(blocks)``.
- Objective-C Features
- ====================
- Related result types
- --------------------
- According to Cocoa conventions, Objective-C methods with certain names
- ("``init``", "``alloc``", etc.) always return objects that are an instance of
- the receiving class's type. Such methods are said to have a "related result
- type", meaning that a message send to one of these methods will have the same
- static type as an instance of the receiver class. For example, given the
- following classes:
- .. code-block:: objc
- @interface NSObject
- + (id)alloc;
- - (id)init;
- @end
- @interface NSArray : NSObject
- @end
- and this common initialization pattern
- .. code-block:: objc
- NSArray *array = [[NSArray alloc] init];
- the type of the expression ``[NSArray alloc]`` is ``NSArray*`` because
- ``alloc`` implicitly has a related result type. Similarly, the type of the
- expression ``[[NSArray alloc] init]`` is ``NSArray*``, since ``init`` has a
- related result type and its receiver is known to have the type ``NSArray *``.
- If neither ``alloc`` nor ``init`` had a related result type, the expressions
- would have had type ``id``, as declared in the method signature.
- A method with a related result type can be declared by using the type
- ``instancetype`` as its result type. ``instancetype`` is a contextual keyword
- that is only permitted in the result type of an Objective-C method, e.g.
- .. code-block:: objc
- @interface A
- + (instancetype)constructAnA;
- @end
- The related result type can also be inferred for some methods. To determine
- whether a method has an inferred related result type, the first word in the
- camel-case selector (e.g., "``init``" in "``initWithObjects``") is considered,
- and the method will have a related result type if its return type is compatible
- with the type of its class and if:
- * the first word is "``alloc``" or "``new``", and the method is a class method,
- or
- * the first word is "``autorelease``", "``init``", "``retain``", or "``self``",
- and the method is an instance method.
- If a method with a related result type is overridden by a subclass method, the
- subclass method must also return a type that is compatible with the subclass
- type. For example:
- .. code-block:: objc
- @interface NSString : NSObject
- - (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
- @end
- Related result types only affect the type of a message send or property access
- via the given method. In all other respects, a method with a related result
- type is treated the same way as method that returns ``id``.
- Use ``__has_feature(objc_instancetype)`` to determine whether the
- ``instancetype`` contextual keyword is available.
- Enumerations with a fixed underlying type
- -----------------------------------------
- Clang provides support for C++11 enumerations with a fixed underlying type
- within Objective-C. For example, one can write an enumeration type as:
- .. code-block:: c++
- typedef enum : unsigned char { Red, Green, Blue } Color;
- This specifies that the underlying type, which is used to store the enumeration
- value, is ``unsigned char``.
- Use ``__has_feature(objc_fixed_enum)`` to determine whether support for fixed
- underlying types is available in Objective-C.
- Interoperability with C++11 lambdas
- -----------------------------------
- Clang provides interoperability between C++11 lambdas and blocks-based APIs, by
- permitting a lambda to be implicitly converted to a block pointer with the
- corresponding signature. For example, consider an API such as ``NSArray``'s
- array-sorting method:
- .. code-block:: objc
- - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr;
- ``NSComparator`` is simply a typedef for the block pointer ``NSComparisonResult
- (^)(id, id)``, and parameters of this type are generally provided with block
- literals as arguments. However, one can also use a C++11 lambda so long as it
- provides the same signature (in this case, accepting two parameters of type
- ``id`` and returning an ``NSComparisonResult``):
- .. code-block:: objc
- NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
- @"String 02"];
- const NSStringCompareOptions comparisonOptions
- = NSCaseInsensitiveSearch | NSNumericSearch |
- NSWidthInsensitiveSearch | NSForcedOrderingSearch;
- NSLocale *currentLocale = [NSLocale currentLocale];
- NSArray *sorted
- = [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult {
- NSRange string1Range = NSMakeRange(0, [s1 length]);
- return [s1 compare:s2 options:comparisonOptions
- range:string1Range locale:currentLocale];
- }];
- NSLog(@"sorted: %@", sorted);
- This code relies on an implicit conversion from the type of the lambda
- expression (an unnamed, local class type called the *closure type*) to the
- corresponding block pointer type. The conversion itself is expressed by a
- conversion operator in that closure type that produces a block pointer with the
- same signature as the lambda itself, e.g.,
- .. code-block:: objc
- operator NSComparisonResult (^)(id, id)() const;
- This conversion function returns a new block that simply forwards the two
- parameters to the lambda object (which it captures by copy), then returns the
- result. The returned block is first copied (with ``Block_copy``) and then
- autoreleased. As an optimization, if a lambda expression is immediately
- converted to a block pointer (as in the first example, above), then the block
- is not copied and autoreleased: rather, it is given the same lifetime as a
- block literal written at that point in the program, which avoids the overhead
- of copying a block to the heap in the common case.
- The conversion from a lambda to a block pointer is only available in
- Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory
- management (autorelease).
- Initializer lists for complex numbers in C
- ==========================================
- clang supports an extension which allows the following in C:
- .. code-block:: c++
- #include <math.h>
- #include <complex.h>
- complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)
- This construct is useful because there is no way to separately initialize the
- real and imaginary parts of a complex variable in standard C, given that clang
- does not support ``_Imaginary``. (Clang also supports the ``__real__`` and
- ``__imag__`` extensions from gcc, which help in some cases, but are not usable
- in static initializers.)
- Note that this extension does not allow eliding the braces; the meaning of the
- following two lines is different:
- .. code-block:: c++
- complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
- complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)
- This extension also works in C++ mode, as far as that goes, but does not apply
- to the C++ ``std::complex``. (In C++11, list initialization allows the same
- syntax to be used with ``std::complex`` with the same meaning.)
- Builtin Functions
- =================
- Clang supports a number of builtin library functions with the same syntax as
- GCC, including things like ``__builtin_nan``, ``__builtin_constant_p``,
- ``__builtin_choose_expr``, ``__builtin_types_compatible_p``,
- ``__builtin_assume_aligned``, ``__sync_fetch_and_add``, etc. In addition to
- the GCC builtins, Clang supports a number of builtins that GCC does not, which
- are listed here.
- Please note that Clang does not and will not support all of the GCC builtins
- for vector operations. Instead of using builtins, you should use the functions
- defined in target-specific header files like ``<xmmintrin.h>``, which define
- portable wrappers for these. Many of the Clang versions of these functions are
- implemented directly in terms of :ref:`extended vector support
- <langext-vectors>` instead of builtins, in order to reduce the number of
- builtins that we need to implement.
- ``__builtin_assume``
- ------------------------------
- ``__builtin_assume`` is used to provide the optimizer with a boolean
- invariant that is defined to be true.
- **Syntax**:
- .. code-block:: c++
- __builtin_assume(bool)
- **Example of Use**:
- .. code-block:: c++
- int foo(int x) {
- __builtin_assume(x != 0);
- // The optimizer may short-circuit this check using the invariant.
- if (x == 0)
- return do_something();
- return do_something_else();
- }
- **Description**:
- The boolean argument to this function is defined to be true. The optimizer may
- analyze the form of the expression provided as the argument and deduce from
- that information used to optimize the program. If the condition is violated
- during execution, the behavior is undefined. The argument itself is never
- evaluated, so any side effects of the expression will be discarded.
- Query for this feature with ``__has_builtin(__builtin_assume)``.
- ``__builtin_readcyclecounter``
- ------------------------------
- ``__builtin_readcyclecounter`` is used to access the cycle counter register (or
- a similar low-latency, high-accuracy clock) on those targets that support it.
- **Syntax**:
- .. code-block:: c++
- __builtin_readcyclecounter()
- **Example of Use**:
- .. code-block:: c++
- unsigned long long t0 = __builtin_readcyclecounter();
- do_something();
- unsigned long long t1 = __builtin_readcyclecounter();
- unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow
- **Description**:
- The ``__builtin_readcyclecounter()`` builtin returns the cycle counter value,
- which may be either global or process/thread-specific depending on the target.
- As the backing counters often overflow quickly (on the order of seconds) this
- should only be used for timing small intervals. When not supported by the
- target, the return value is always zero. This builtin takes no arguments and
- produces an unsigned long long result.
- Query for this feature with ``__has_builtin(__builtin_readcyclecounter)``. Note
- that even if present, its use may depend on run-time privilege or other OS
- controlled state.
- .. _langext-__builtin_shufflevector:
- ``__builtin_shufflevector``
- ---------------------------
- ``__builtin_shufflevector`` is used to express generic vector
- permutation/shuffle/swizzle operations. This builtin is also very important
- for the implementation of various target-specific header files like
- ``<xmmintrin.h>``.
- **Syntax**:
- .. code-block:: c++
- __builtin_shufflevector(vec1, vec2, index1, index2, ...)
- **Examples**:
- .. code-block:: c++
- // identity operation - return 4-element vector v1.
- __builtin_shufflevector(v1, v1, 0, 1, 2, 3)
- // "Splat" element 0 of V1 into a 4-element result.
- __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
- // Reverse 4-element vector V1.
- __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
- // Concatenate every other element of 4-element vectors V1 and V2.
- __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
- // Concatenate every other element of 8-element vectors V1 and V2.
- __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
- // Shuffle v1 with some elements being undefined
- __builtin_shufflevector(v1, v1, 3, -1, 1, -1)
- **Description**:
- The first two arguments to ``__builtin_shufflevector`` are vectors that have
- the same element type. The remaining arguments are a list of integers that
- specify the elements indices of the first two vectors that should be extracted
- and returned in a new vector. These element indices are numbered sequentially
- starting with the first vector, continuing into the second vector. Thus, if
- ``vec1`` is a 4-element vector, index 5 would refer to the second element of
- ``vec2``. An index of -1 can be used to indicate that the corresponding element
- in the returned vector is a don't care and can be optimized by the backend.
- The result of ``__builtin_shufflevector`` is a vector with the same element
- type as ``vec1``/``vec2`` but that has an element count equal to the number of
- indices specified.
- Query for this feature with ``__has_builtin(__builtin_shufflevector)``.
- .. _langext-__builtin_convertvector:
- ``__builtin_convertvector``
- ---------------------------
- ``__builtin_convertvector`` is used to express generic vector
- type-conversion operations. The input vector and the output vector
- type must have the same number of elements.
- **Syntax**:
- .. code-block:: c++
- __builtin_convertvector(src_vec, dst_vec_type)
- **Examples**:
- .. code-block:: c++
- typedef double vector4double __attribute__((__vector_size__(32)));
- typedef float vector4float __attribute__((__vector_size__(16)));
- typedef short vector4short __attribute__((__vector_size__(8)));
- vector4float vf; vector4short vs;
- // convert from a vector of 4 floats to a vector of 4 doubles.
- __builtin_convertvector(vf, vector4double)
- // equivalent to:
- (vector4double) { (double) vf[0], (double) vf[1], (double) vf[2], (double) vf[3] }
- // convert from a vector of 4 shorts to a vector of 4 floats.
- __builtin_convertvector(vs, vector4float)
- // equivalent to:
- (vector4float) { (float) vs[0], (float) vs[1], (float) vs[2], (float) vs[3] }
- **Description**:
- The first argument to ``__builtin_convertvector`` is a vector, and the second
- argument is a vector type with the same number of elements as the first
- argument.
- The result of ``__builtin_convertvector`` is a vector with the same element
- type as the second argument, with a value defined in terms of the action of a
- C-style cast applied to each element of the first argument.
- Query for this feature with ``__has_builtin(__builtin_convertvector)``.
- ``__builtin_unreachable``
- -------------------------
- ``__builtin_unreachable`` is used to indicate that a specific point in the
- program cannot be reached, even if the compiler might otherwise think it can.
- This is useful to improve optimization and eliminates certain warnings. For
- example, without the ``__builtin_unreachable`` in the example below, the
- compiler assumes that the inline asm can fall through and prints a "function
- declared '``noreturn``' should not return" warning.
- **Syntax**:
- .. code-block:: c++
- __builtin_unreachable()
- **Example of use**:
- .. code-block:: c++
- void myabort(void) __attribute__((noreturn));
- void myabort(void) {
- asm("int3");
- __builtin_unreachable();
- }
- **Description**:
- The ``__builtin_unreachable()`` builtin has completely undefined behavior.
- Since it has undefined behavior, it is a statement that it is never reached and
- the optimizer can take advantage of this to produce better code. This builtin
- takes no arguments and produces a void result.
- Query for this feature with ``__has_builtin(__builtin_unreachable)``.
- ``__sync_swap``
- ---------------
- ``__sync_swap`` is used to atomically swap integers or pointers in memory.
- **Syntax**:
- .. code-block:: c++
- type __sync_swap(type *ptr, type value, ...)
- **Example of Use**:
- .. code-block:: c++
- int old_value = __sync_swap(&value, new_value);
- **Description**:
- The ``__sync_swap()`` builtin extends the existing ``__sync_*()`` family of
- atomic intrinsics to allow code to atomically swap the current value with the
- new value. More importantly, it helps developers write more efficient and
- correct code by avoiding expensive loops around
- ``__sync_bool_compare_and_swap()`` or relying on the platform specific
- implementation details of ``__sync_lock_test_and_set()``. The
- ``__sync_swap()`` builtin is a full barrier.
- ``__builtin_addressof``
- -----------------------
- ``__builtin_addressof`` performs the functionality of the built-in ``&``
- operator, ignoring any ``operator&`` overload. This is useful in constant
- expressions in C++11, where there is no other way to take the address of an
- object that overloads ``operator&``.
- **Example of use**:
- .. code-block:: c++
- template<typename T> constexpr T *addressof(T &value) {
- return __builtin_addressof(value);
- }
- ``__builtin_operator_new`` and ``__builtin_operator_delete``
- ------------------------------------------------------------
- ``__builtin_operator_new`` allocates memory just like a non-placement non-class
- *new-expression*. This is exactly like directly calling the normal
- non-placement ``::operator new``, except that it allows certain optimizations
- that the C++ standard does not permit for a direct function call to
- ``::operator new`` (in particular, removing ``new`` / ``delete`` pairs and
- merging allocations).
- Likewise, ``__builtin_operator_delete`` deallocates memory just like a
- non-class *delete-expression*, and is exactly like directly calling the normal
- ``::operator delete``, except that it permits optimizations. Only the unsized
- form of ``__builtin_operator_delete`` is currently available.
- These builtins are intended for use in the implementation of ``std::allocator``
- and other similar allocation libraries, and are only available in C++.
- Multiprecision Arithmetic Builtins
- ----------------------------------
- Clang provides a set of builtins which expose multiprecision arithmetic in a
- manner amenable to C. They all have the following form:
- .. code-block:: c
- unsigned x = ..., y = ..., carryin = ..., carryout;
- unsigned sum = __builtin_addc(x, y, carryin, &carryout);
- Thus one can form a multiprecision addition chain in the following manner:
- .. code-block:: c
- unsigned *x, *y, *z, carryin=0, carryout;
- z[0] = __builtin_addc(x[0], y[0], carryin, &carryout);
- carryin = carryout;
- z[1] = __builtin_addc(x[1], y[1], carryin, &carryout);
- carryin = carryout;
- z[2] = __builtin_addc(x[2], y[2], carryin, &carryout);
- carryin = carryout;
- z[3] = __builtin_addc(x[3], y[3], carryin, &carryout);
- The complete list of builtins are:
- .. code-block:: c
- unsigned char __builtin_addcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
- unsigned short __builtin_addcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
- unsigned __builtin_addc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
- unsigned long __builtin_addcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
- unsigned long long __builtin_addcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
- unsigned char __builtin_subcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
- unsigned short __builtin_subcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
- unsigned __builtin_subc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
- unsigned long __builtin_subcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
- unsigned long long __builtin_subcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
- Checked Arithmetic Builtins
- ---------------------------
- Clang provides a set of builtins that implement checked arithmetic for security
- critical applications in a manner that is fast and easily expressable in C. As
- an example of their usage:
- .. code-block:: c
- errorcode_t security_critical_application(...) {
- unsigned x, y, result;
- ...
- if (__builtin_umul_overflow(x, y, &result))
- return kErrorCodeHackers;
- ...
- use_multiply(result);
- ...
- }
- A complete enumeration of the builtins are:
- .. code-block:: c
- bool __builtin_uadd_overflow (unsigned x, unsigned y, unsigned *sum);
- bool __builtin_uaddl_overflow (unsigned long x, unsigned long y, unsigned long *sum);
- bool __builtin_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *sum);
- bool __builtin_usub_overflow (unsigned x, unsigned y, unsigned *diff);
- bool __builtin_usubl_overflow (unsigned long x, unsigned long y, unsigned long *diff);
- bool __builtin_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *diff);
- bool __builtin_umul_overflow (unsigned x, unsigned y, unsigned *prod);
- bool __builtin_umull_overflow (unsigned long x, unsigned long y, unsigned long *prod);
- bool __builtin_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *prod);
- bool __builtin_sadd_overflow (int x, int y, int *sum);
- bool __builtin_saddl_overflow (long x, long y, long *sum);
- bool __builtin_saddll_overflow(long long x, long long y, long long *sum);
- bool __builtin_ssub_overflow (int x, int y, int *diff);
- bool __builtin_ssubl_overflow (long x, long y, long *diff);
- bool __builtin_ssubll_overflow(long long x, long long y, long long *diff);
- bool __builtin_smul_overflow (int x, int y, int *prod);
- bool __builtin_smull_overflow (long x, long y, long *prod);
- bool __builtin_smulll_overflow(long long x, long long y, long long *prod);
- .. _langext-__c11_atomic:
- __c11_atomic builtins
- ---------------------
- Clang provides a set of builtins which are intended to be used to implement
- C11's ``<stdatomic.h>`` header. These builtins provide the semantics of the
- ``_explicit`` form of the corresponding C11 operation, and are named with a
- ``__c11_`` prefix. The supported operations, and the differences from
- the corresponding C11 operations, are:
- * ``__c11_atomic_init``
- * ``__c11_atomic_thread_fence``
- * ``__c11_atomic_signal_fence``
- * ``__c11_atomic_is_lock_free`` (The argument is the size of the
- ``_Atomic(...)`` object, instead of its address)
- * ``__c11_atomic_store``
- * ``__c11_atomic_load``
- * ``__c11_atomic_exchange``
- * ``__c11_atomic_compare_exchange_strong``
- * ``__c11_atomic_compare_exchange_weak``
- * ``__c11_atomic_fetch_add``
- * ``__c11_atomic_fetch_sub``
- * ``__c11_atomic_fetch_and``
- * ``__c11_atomic_fetch_or``
- * ``__c11_atomic_fetch_xor``
- The macros ``__ATOMIC_RELAXED``, ``__ATOMIC_CONSUME``, ``__ATOMIC_ACQUIRE``,
- ``__ATOMIC_RELEASE``, ``__ATOMIC_ACQ_REL``, and ``__ATOMIC_SEQ_CST`` are
- provided, with values corresponding to the enumerators of C11's
- ``memory_order`` enumeration.
- Low-level ARM exclusive memory builtins
- ---------------------------------------
- Clang provides overloaded builtins giving direct access to the three key ARM
- instructions for implementing atomic operations.
- .. code-block:: c
- T __builtin_arm_ldrex(const volatile T *addr);
- T __builtin_arm_ldaex(const volatile T *addr);
- int __builtin_arm_strex(T val, volatile T *addr);
- int __builtin_arm_stlex(T val, volatile T *addr);
- void __builtin_arm_clrex(void);
- The types ``T`` currently supported are:
- * Integer types with width at most 64 bits (or 128 bits on AArch64).
- * Floating-point types
- * Pointer types.
- Note that the compiler does not guarantee it will not insert stores which clear
- the exclusive monitor in between an ``ldrex`` type operation and its paired
- ``strex``. In practice this is only usually a risk when the extra store is on
- the same cache line as the variable being modified and Clang will only insert
- stack stores on its own, so it is best not to use these operations on variables
- with automatic storage duration.
- Also, loads and stores may be implicit in code written between the ``ldrex`` and
- ``strex``. Clang will not necessarily mitigate the effects of these either, so
- care should be exercised.
- For these reasons the higher level atomic primitives should be preferred where
- possible.
- Non-standard C++11 Attributes
- =============================
- Clang's non-standard C++11 attributes live in the ``clang`` attribute
- namespace.
- Clang supports GCC's ``gnu`` attribute namespace. All GCC attributes which
- are accepted with the ``__attribute__((foo))`` syntax are also accepted as
- ``[[gnu::foo]]``. This only extends to attributes which are specified by GCC
- (see the list of `GCC function attributes
- <http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_, `GCC variable
- attributes <http://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html>`_, and
- `GCC type attributes
- <http://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html>`_). As with the GCC
- implementation, these attributes must appertain to the *declarator-id* in a
- declaration, which means they must go either at the start of the declaration or
- immediately after the name being declared.
- For example, this applies the GNU ``unused`` attribute to ``a`` and ``f``, and
- also applies the GNU ``noreturn`` attribute to ``f``.
- .. code-block:: c++
- [[gnu::unused]] int a, f [[gnu::noreturn]] ();
- Target-Specific Extensions
- ==========================
- Clang supports some language features conditionally on some targets.
- ARM/AArch64 Language Extensions
- -------------------------------
- Memory Barrier Intrinsics
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- Clang implements the ``__dmb``, ``__dsb`` and ``__isb`` intrinsics as defined
- in the `ARM C Language Extensions Release 2.0
- <http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf>`_.
- Note that these intrinsics are implemented as motion barriers that block
- reordering of memory accesses and side effect instructions. Other instructions
- like simple arithmatic may be reordered around the intrinsic. If you expect to
- have no reordering at all, use inline assembly instead.
- X86/X86-64 Language Extensions
- ------------------------------
- The X86 backend has these language extensions:
- Memory references off the GS segment
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Annotating a pointer with address space #256 causes it to be code generated
- relative to the X86 GS segment register, and address space #257 causes it to be
- relative to the X86 FS segment. Note that this is a very very low-level
- feature that should only be used if you know what you're doing (for example in
- an OS kernel).
- Here is an example:
- .. code-block:: c++
- #define GS_RELATIVE __attribute__((address_space(256)))
- int foo(int GS_RELATIVE *P) {
- return *P;
- }
- Which compiles to (on X86-32):
- .. code-block:: gas
- _foo:
- movl 4(%esp), %eax
- movl %gs:(%eax), %eax
- ret
- Extensions for Static Analysis
- ==============================
- Clang supports additional attributes that are useful for documenting program
- invariants and rules for static analysis tools, such as the `Clang Static
- Analyzer <http://clang-analyzer.llvm.org/>`_. These attributes are documented
- in the analyzer's `list of source-level annotations
- <http://clang-analyzer.llvm.org/annotations.html>`_.
- Extensions for Dynamic Analysis
- ===============================
- Use ``__has_feature(address_sanitizer)`` to check if the code is being built
- with :doc:`AddressSanitizer`.
- Use ``__has_feature(thread_sanitizer)`` to check if the code is being built
- with :doc:`ThreadSanitizer`.
- Use ``__has_feature(memory_sanitizer)`` to check if the code is being built
- with :doc:`MemorySanitizer`.
- Use ``__has_feature(safe_stack)`` to check if the code is being built
- with :doc:`SafeStack`.
- Extensions for selectively disabling optimization
- =================================================
- Clang provides a mechanism for selectively disabling optimizations in functions
- and methods.
- To disable optimizations in a single function definition, the GNU-style or C++11
- non-standard attribute ``optnone`` can be used.
- .. code-block:: c++
- // The following functions will not be optimized.
- // GNU-style attribute
- __attribute__((optnone)) int foo() {
- // ... code
- }
- // C++11 attribute
- [[clang::optnone]] int bar() {
- // ... code
- }
- To facilitate disabling optimization for a range of function definitions, a
- range-based pragma is provided. Its syntax is ``#pragma clang optimize``
- followed by ``off`` or ``on``.
- All function definitions in the region between an ``off`` and the following
- ``on`` will be decorated with the ``optnone`` attribute unless doing so would
- conflict with explicit attributes already present on the function (e.g. the
- ones that control inlining).
- .. code-block:: c++
- #pragma clang optimize off
- // This function will be decorated with optnone.
- int foo() {
- // ... code
- }
- // optnone conflicts with always_inline, so bar() will not be decorated.
- __attribute__((always_inline)) int bar() {
- // ... code
- }
- #pragma clang optimize on
- If no ``on`` is found to close an ``off`` region, the end of the region is the
- end of the compilation unit.
- Note that a stray ``#pragma clang optimize on`` does not selectively enable
- additional optimizations when compiling at low optimization levels. This feature
- can only be used to selectively disable optimizations.
- The pragma has an effect on functions only at the point of their definition; for
- function templates, this means that the state of the pragma at the point of an
- instantiation is not necessarily relevant. Consider the following example:
- .. code-block:: c++
- template<typename T> T twice(T t) {
- return 2 * t;
- }
- #pragma clang optimize off
- template<typename T> T thrice(T t) {
- return 3 * t;
- }
- int container(int a, int b) {
- return twice(a) + thrice(b);
- }
- #pragma clang optimize on
- In this example, the definition of the template function ``twice`` is outside
- the pragma region, whereas the definition of ``thrice`` is inside the region.
- The ``container`` function is also in the region and will not be optimized, but
- it causes the instantiation of ``twice`` and ``thrice`` with an ``int`` type; of
- these two instantiations, ``twice`` will be optimized (because its definition
- was outside the region) and ``thrice`` will not be optimized.
- Extensions for loop hint optimizations
- ======================================
- The ``#pragma clang loop`` directive is used to specify hints for optimizing the
- subsequent for, while, do-while, or c++11 range-based for loop. The directive
- provides options for vectorization, interleaving, and unrolling. Loop hints can
- be specified before any loop and will be ignored if the optimization is not safe
- to apply.
- Vectorization and Interleaving
- ------------------------------
- A vectorized loop performs multiple iterations of the original loop
- in parallel using vector instructions. The instruction set of the target
- processor determines which vector instructions are available and their vector
- widths. This restricts the types of loops that can be vectorized. The vectorizer
- automatically determines if the loop is safe and profitable to vectorize. A
- vector instruction cost model is used to select the vector width.
- Interleaving multiple loop iterations allows modern processors to further
- improve instruction-level parallelism (ILP) using advanced hardware features,
- such as multiple execution units and out-of-order execution. The vectorizer uses
- a cost model that depends on the register pressure and generated code size to
- select the interleaving count.
- Vectorization is enabled by ``vectorize(enable)`` and interleaving is enabled
- by ``interleave(enable)``. This is useful when compiling with ``-Os`` to
- manually enable vectorization or interleaving.
- .. code-block:: c++
- #pragma clang loop vectorize(enable)
- #pragma clang loop interleave(enable)
- for(...) {
- ...
- }
- The vector width is specified by ``vectorize_width(_value_)`` and the interleave
- count is specified by ``interleave_count(_value_)``, where
- _value_ is a positive integer. This is useful for specifying the optimal
- width/count of the set of target architectures supported by your application.
- .. code-block:: c++
- #pragma clang loop vectorize_width(2)
- #pragma clang loop interleave_count(2)
- for(...) {
- ...
- }
- Specifying a width/count of 1 disables the optimization, and is equivalent to
- ``vectorize(disable)`` or ``interleave(disable)``.
- Loop Unrolling
- --------------
- Unrolling a loop reduces the loop control overhead and exposes more
- opportunities for ILP. Loops can be fully or partially unrolled. Full unrolling
- eliminates the loop and replaces it with an enumerated sequence of loop
- iterations. Full unrolling is only possible if the loop trip count is known at
- compile time. Partial unrolling replicates the loop body within the loop and
- reduces the trip count.
- If ``unroll(full)`` is specified the unroller will attempt to fully unroll the
- loop if the trip count is known at compile time. If the fully unrolled code size
- is greater than an internal limit the loop will be partially unrolled up to this
- limit. If the loop count is not known at compile time the loop will not be
- unrolled.
- .. code-block:: c++
- #pragma clang loop unroll(full)
- for(...) {
- ...
- }
- The unroll count can be specified explicitly with ``unroll_count(_value_)`` where
- _value_ is a positive integer. If this value is greater than the trip count the
- loop will be fully unrolled. Otherwise the loop is partially unrolled subject
- to the same code size limit as with ``unroll(full)``.
- .. code-block:: c++
- #pragma clang loop unroll_count(8)
- for(...) {
- ...
- }
- Unrolling of a loop can be prevented by specifying ``unroll(disable)``.
- Additional Information
- ----------------------
- For convenience multiple loop hints can be specified on a single line.
- .. code-block:: c++
- #pragma clang loop vectorize_width(4) interleave_count(8)
- for(...) {
- ...
- }
- If an optimization cannot be applied any hints that apply to it will be ignored.
- For example, the hint ``vectorize_width(4)`` is ignored if the loop is not
- proven safe to vectorize. To identify and diagnose optimization issues use
- `-Rpass`, `-Rpass-missed`, and `-Rpass-analysis` command line options. See the
- user guide for details.
|