Expr.cpp 155 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422
  1. //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // This file implements the Expr class and subclasses.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "clang/AST/APValue.h"
  14. #include "clang/AST/ASTContext.h"
  15. #include "clang/AST/Attr.h"
  16. #include "clang/AST/DeclCXX.h"
  17. #include "clang/AST/DeclObjC.h"
  18. #include "clang/AST/DeclTemplate.h"
  19. #include "clang/AST/EvaluatedExprVisitor.h"
  20. #include "clang/AST/Expr.h"
  21. #include "clang/AST/ExprCXX.h"
  22. #include "clang/AST/Mangle.h"
  23. #include "clang/AST/RecordLayout.h"
  24. #include "clang/AST/StmtVisitor.h"
  25. #include "clang/Basic/Builtins.h"
  26. #include "clang/Basic/CharInfo.h"
  27. #include "clang/Basic/SourceManager.h"
  28. #include "clang/Basic/TargetInfo.h"
  29. #include "clang/Lex/Lexer.h"
  30. #include "clang/Lex/LiteralSupport.h"
  31. #include "clang/Sema/SemaDiagnostic.h"
  32. #include "llvm/Support/ErrorHandling.h"
  33. #include "llvm/Support/raw_ostream.h"
  34. #include <algorithm>
  35. #include <cstring>
  36. using namespace clang;
  37. const CXXRecordDecl *Expr::getBestDynamicClassType() const {
  38. const Expr *E = ignoreParenBaseCasts();
  39. QualType DerivedType = E->getType();
  40. if (const PointerType *PTy = DerivedType->getAs<PointerType>())
  41. DerivedType = PTy->getPointeeType();
  42. if (DerivedType->isDependentType())
  43. return nullptr;
  44. const RecordType *Ty = DerivedType->castAs<RecordType>();
  45. Decl *D = Ty->getDecl();
  46. return cast<CXXRecordDecl>(D);
  47. }
  48. const Expr *Expr::skipRValueSubobjectAdjustments(
  49. SmallVectorImpl<const Expr *> &CommaLHSs,
  50. SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
  51. const Expr *E = this;
  52. while (true) {
  53. E = E->IgnoreParens();
  54. if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
  55. if ((CE->getCastKind() == CK_DerivedToBase ||
  56. CE->getCastKind() == CK_UncheckedDerivedToBase) &&
  57. E->getType()->isRecordType()) {
  58. E = CE->getSubExpr();
  59. CXXRecordDecl *Derived
  60. = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
  61. Adjustments.push_back(SubobjectAdjustment(CE, Derived));
  62. continue;
  63. }
  64. if (CE->getCastKind() == CK_NoOp) {
  65. E = CE->getSubExpr();
  66. continue;
  67. }
  68. } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
  69. if (!ME->isArrow()) {
  70. assert(ME->getBase()->getType()->isRecordType());
  71. if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
  72. if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
  73. E = ME->getBase();
  74. Adjustments.push_back(SubobjectAdjustment(Field));
  75. continue;
  76. }
  77. }
  78. }
  79. } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
  80. if (BO->isPtrMemOp()) {
  81. assert(BO->getRHS()->isRValue());
  82. E = BO->getLHS();
  83. const MemberPointerType *MPT =
  84. BO->getRHS()->getType()->getAs<MemberPointerType>();
  85. Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
  86. continue;
  87. } else if (BO->getOpcode() == BO_Comma) {
  88. CommaLHSs.push_back(BO->getLHS());
  89. E = BO->getRHS();
  90. continue;
  91. }
  92. }
  93. // Nothing changed.
  94. break;
  95. }
  96. return E;
  97. }
  98. /// isKnownToHaveBooleanValue - Return true if this is an integer expression
  99. /// that is known to return 0 or 1. This happens for _Bool/bool expressions
  100. /// but also int expressions which are produced by things like comparisons in
  101. /// C.
  102. bool Expr::isKnownToHaveBooleanValue() const {
  103. const Expr *E = IgnoreParens();
  104. // If this value has _Bool type, it is obvious 0/1.
  105. if (E->getType()->isBooleanType()) return true;
  106. // If this is a non-scalar-integer type, we don't care enough to try.
  107. if (!E->getType()->isIntegralOrEnumerationType()) return false;
  108. if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
  109. switch (UO->getOpcode()) {
  110. case UO_Plus:
  111. return UO->getSubExpr()->isKnownToHaveBooleanValue();
  112. case UO_LNot:
  113. return true;
  114. default:
  115. return false;
  116. }
  117. }
  118. // Only look through implicit casts. If the user writes
  119. // '(int) (a && b)' treat it as an arbitrary int.
  120. if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
  121. return CE->getSubExpr()->isKnownToHaveBooleanValue();
  122. if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
  123. switch (BO->getOpcode()) {
  124. default: return false;
  125. case BO_LT: // Relational operators.
  126. case BO_GT:
  127. case BO_LE:
  128. case BO_GE:
  129. case BO_EQ: // Equality operators.
  130. case BO_NE:
  131. case BO_LAnd: // AND operator.
  132. case BO_LOr: // Logical OR operator.
  133. return true;
  134. case BO_And: // Bitwise AND operator.
  135. case BO_Xor: // Bitwise XOR operator.
  136. case BO_Or: // Bitwise OR operator.
  137. // Handle things like (x==2)|(y==12).
  138. return BO->getLHS()->isKnownToHaveBooleanValue() &&
  139. BO->getRHS()->isKnownToHaveBooleanValue();
  140. case BO_Comma:
  141. case BO_Assign:
  142. return BO->getRHS()->isKnownToHaveBooleanValue();
  143. }
  144. }
  145. if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
  146. return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
  147. CO->getFalseExpr()->isKnownToHaveBooleanValue();
  148. return false;
  149. }
  150. // Amusing macro metaprogramming hack: check whether a class provides
  151. // a more specific implementation of getExprLoc().
  152. //
  153. // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
  154. namespace {
  155. /// This implementation is used when a class provides a custom
  156. /// implementation of getExprLoc.
  157. template <class E, class T>
  158. SourceLocation getExprLocImpl(const Expr *expr,
  159. SourceLocation (T::*v)() const) {
  160. return static_cast<const E*>(expr)->getExprLoc();
  161. }
  162. /// This implementation is used when a class doesn't provide
  163. /// a custom implementation of getExprLoc. Overload resolution
  164. /// should pick it over the implementation above because it's
  165. /// more specialized according to function template partial ordering.
  166. template <class E>
  167. SourceLocation getExprLocImpl(const Expr *expr,
  168. SourceLocation (Expr::*v)() const) {
  169. return static_cast<const E*>(expr)->getLocStart();
  170. }
  171. }
  172. SourceLocation Expr::getExprLoc() const {
  173. switch (getStmtClass()) {
  174. case Stmt::NoStmtClass: llvm_unreachable("statement without class");
  175. #define ABSTRACT_STMT(type)
  176. #define STMT(type, base) \
  177. case Stmt::type##Class: break;
  178. #define EXPR(type, base) \
  179. case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
  180. #include "clang/AST/StmtNodes.inc"
  181. }
  182. llvm_unreachable("unknown expression kind");
  183. }
  184. //===----------------------------------------------------------------------===//
  185. // Primary Expressions.
  186. //===----------------------------------------------------------------------===//
  187. /// \brief Compute the type-, value-, and instantiation-dependence of a
  188. /// declaration reference
  189. /// based on the declaration being referenced.
  190. static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
  191. QualType T, bool &TypeDependent,
  192. bool &ValueDependent,
  193. bool &InstantiationDependent) {
  194. TypeDependent = false;
  195. ValueDependent = false;
  196. InstantiationDependent = false;
  197. // (TD) C++ [temp.dep.expr]p3:
  198. // An id-expression is type-dependent if it contains:
  199. //
  200. // and
  201. //
  202. // (VD) C++ [temp.dep.constexpr]p2:
  203. // An identifier is value-dependent if it is:
  204. // (TD) - an identifier that was declared with dependent type
  205. // (VD) - a name declared with a dependent type,
  206. if (T->isDependentType()) {
  207. TypeDependent = true;
  208. ValueDependent = true;
  209. InstantiationDependent = true;
  210. return;
  211. } else if (T->isInstantiationDependentType()) {
  212. InstantiationDependent = true;
  213. }
  214. // (TD) - a conversion-function-id that specifies a dependent type
  215. if (D->getDeclName().getNameKind()
  216. == DeclarationName::CXXConversionFunctionName) {
  217. QualType T = D->getDeclName().getCXXNameType();
  218. if (T->isDependentType()) {
  219. TypeDependent = true;
  220. ValueDependent = true;
  221. InstantiationDependent = true;
  222. return;
  223. }
  224. if (T->isInstantiationDependentType())
  225. InstantiationDependent = true;
  226. }
  227. // (VD) - the name of a non-type template parameter,
  228. if (isa<NonTypeTemplateParmDecl>(D)) {
  229. ValueDependent = true;
  230. InstantiationDependent = true;
  231. return;
  232. }
  233. // (VD) - a constant with integral or enumeration type and is
  234. // initialized with an expression that is value-dependent.
  235. // (VD) - a constant with literal type and is initialized with an
  236. // expression that is value-dependent [C++11].
  237. // (VD) - FIXME: Missing from the standard:
  238. // - an entity with reference type and is initialized with an
  239. // expression that is value-dependent [C++11]
  240. if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
  241. if ((Ctx.getLangOpts().CPlusPlus11 ?
  242. Var->getType()->isLiteralType(Ctx) :
  243. Var->getType()->isIntegralOrEnumerationType()) &&
  244. (Var->getType().isConstQualified() ||
  245. Var->getType()->isReferenceType())) {
  246. if (const Expr *Init = Var->getAnyInitializer())
  247. if (Init->isValueDependent()) {
  248. ValueDependent = true;
  249. InstantiationDependent = true;
  250. }
  251. }
  252. // (VD) - FIXME: Missing from the standard:
  253. // - a member function or a static data member of the current
  254. // instantiation
  255. if (Var->isStaticDataMember() &&
  256. Var->getDeclContext()->isDependentContext()) {
  257. ValueDependent = true;
  258. InstantiationDependent = true;
  259. TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
  260. if (TInfo->getType()->isIncompleteArrayType())
  261. TypeDependent = true;
  262. }
  263. return;
  264. }
  265. // (VD) - FIXME: Missing from the standard:
  266. // - a member function or a static data member of the current
  267. // instantiation
  268. if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
  269. ValueDependent = true;
  270. InstantiationDependent = true;
  271. }
  272. }
  273. void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
  274. bool TypeDependent = false;
  275. bool ValueDependent = false;
  276. bool InstantiationDependent = false;
  277. computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
  278. ValueDependent, InstantiationDependent);
  279. ExprBits.TypeDependent |= TypeDependent;
  280. ExprBits.ValueDependent |= ValueDependent;
  281. ExprBits.InstantiationDependent |= InstantiationDependent;
  282. // Is the declaration a parameter pack?
  283. if (getDecl()->isParameterPack())
  284. ExprBits.ContainsUnexpandedParameterPack = true;
  285. }
  286. DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
  287. NestedNameSpecifierLoc QualifierLoc,
  288. SourceLocation TemplateKWLoc,
  289. ValueDecl *D, bool RefersToEnclosingVariableOrCapture,
  290. const DeclarationNameInfo &NameInfo,
  291. NamedDecl *FoundD,
  292. const TemplateArgumentListInfo *TemplateArgs,
  293. QualType T, ExprValueKind VK)
  294. : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
  295. D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
  296. DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
  297. if (QualifierLoc) {
  298. getInternalQualifierLoc() = QualifierLoc;
  299. auto *NNS = QualifierLoc.getNestedNameSpecifier();
  300. if (NNS->isInstantiationDependent())
  301. ExprBits.InstantiationDependent = true;
  302. if (NNS->containsUnexpandedParameterPack())
  303. ExprBits.ContainsUnexpandedParameterPack = true;
  304. }
  305. DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
  306. if (FoundD)
  307. getInternalFoundDecl() = FoundD;
  308. DeclRefExprBits.HasTemplateKWAndArgsInfo
  309. = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
  310. DeclRefExprBits.RefersToEnclosingVariableOrCapture =
  311. RefersToEnclosingVariableOrCapture;
  312. if (TemplateArgs) {
  313. bool Dependent = false;
  314. bool InstantiationDependent = false;
  315. bool ContainsUnexpandedParameterPack = false;
  316. getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
  317. Dependent,
  318. InstantiationDependent,
  319. ContainsUnexpandedParameterPack);
  320. assert(!Dependent && "built a DeclRefExpr with dependent template args");
  321. ExprBits.InstantiationDependent |= InstantiationDependent;
  322. ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
  323. } else if (TemplateKWLoc.isValid()) {
  324. getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
  325. }
  326. DeclRefExprBits.HadMultipleCandidates = 0;
  327. computeDependence(Ctx);
  328. }
  329. DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
  330. NestedNameSpecifierLoc QualifierLoc,
  331. SourceLocation TemplateKWLoc,
  332. ValueDecl *D,
  333. bool RefersToEnclosingVariableOrCapture,
  334. SourceLocation NameLoc,
  335. QualType T,
  336. ExprValueKind VK,
  337. NamedDecl *FoundD,
  338. const TemplateArgumentListInfo *TemplateArgs) {
  339. return Create(Context, QualifierLoc, TemplateKWLoc, D,
  340. RefersToEnclosingVariableOrCapture,
  341. DeclarationNameInfo(D->getDeclName(), NameLoc),
  342. T, VK, FoundD, TemplateArgs);
  343. }
  344. DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
  345. NestedNameSpecifierLoc QualifierLoc,
  346. SourceLocation TemplateKWLoc,
  347. ValueDecl *D,
  348. bool RefersToEnclosingVariableOrCapture,
  349. const DeclarationNameInfo &NameInfo,
  350. QualType T,
  351. ExprValueKind VK,
  352. NamedDecl *FoundD,
  353. const TemplateArgumentListInfo *TemplateArgs) {
  354. // Filter out cases where the found Decl is the same as the value refenenced.
  355. if (D == FoundD)
  356. FoundD = nullptr;
  357. std::size_t Size = sizeof(DeclRefExpr);
  358. if (QualifierLoc)
  359. Size += sizeof(NestedNameSpecifierLoc);
  360. if (FoundD)
  361. Size += sizeof(NamedDecl *);
  362. if (TemplateArgs)
  363. Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
  364. else if (TemplateKWLoc.isValid())
  365. Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
  366. void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
  367. return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
  368. RefersToEnclosingVariableOrCapture,
  369. NameInfo, FoundD, TemplateArgs, T, VK);
  370. }
  371. DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
  372. bool HasQualifier,
  373. bool HasFoundDecl,
  374. bool HasTemplateKWAndArgsInfo,
  375. unsigned NumTemplateArgs) {
  376. std::size_t Size = sizeof(DeclRefExpr);
  377. if (HasQualifier)
  378. Size += sizeof(NestedNameSpecifierLoc);
  379. if (HasFoundDecl)
  380. Size += sizeof(NamedDecl *);
  381. if (HasTemplateKWAndArgsInfo)
  382. Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
  383. void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
  384. return new (Mem) DeclRefExpr(EmptyShell());
  385. }
  386. SourceLocation DeclRefExpr::getLocStart() const {
  387. if (hasQualifier())
  388. return getQualifierLoc().getBeginLoc();
  389. return getNameInfo().getLocStart();
  390. }
  391. SourceLocation DeclRefExpr::getLocEnd() const {
  392. if (hasExplicitTemplateArgs())
  393. return getRAngleLoc();
  394. return getNameInfo().getLocEnd();
  395. }
  396. PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
  397. StringLiteral *SL)
  398. : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
  399. FNTy->isDependentType(), FNTy->isDependentType(),
  400. FNTy->isInstantiationDependentType(),
  401. /*ContainsUnexpandedParameterPack=*/false),
  402. Loc(L), Type(IT), FnName(SL) {}
  403. StringLiteral *PredefinedExpr::getFunctionName() {
  404. return cast_or_null<StringLiteral>(FnName);
  405. }
  406. StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) {
  407. switch (IT) {
  408. case Func:
  409. return "__func__";
  410. case Function:
  411. return "__FUNCTION__";
  412. case FuncDName:
  413. return "__FUNCDNAME__";
  414. case LFunction:
  415. return "L__FUNCTION__";
  416. case PrettyFunction:
  417. return "__PRETTY_FUNCTION__";
  418. case FuncSig:
  419. return "__FUNCSIG__";
  420. case PrettyFunctionNoVirtual:
  421. break;
  422. }
  423. llvm_unreachable("Unknown ident type for PredefinedExpr");
  424. }
  425. // FIXME: Maybe this should use DeclPrinter with a special "print predefined
  426. // expr" policy instead.
  427. std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
  428. ASTContext &Context = CurrentDecl->getASTContext();
  429. if (IT == PredefinedExpr::FuncDName) {
  430. if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
  431. std::unique_ptr<MangleContext> MC;
  432. MC.reset(Context.createMangleContext());
  433. if (MC->shouldMangleDeclName(ND)) {
  434. SmallString<256> Buffer;
  435. llvm::raw_svector_ostream Out(Buffer);
  436. if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
  437. MC->mangleCXXCtor(CD, Ctor_Base, Out);
  438. else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
  439. MC->mangleCXXDtor(DD, Dtor_Base, Out);
  440. else
  441. MC->mangleName(ND, Out);
  442. Out.flush();
  443. if (!Buffer.empty() && Buffer.front() == '\01')
  444. return Buffer.substr(1);
  445. return Buffer.str();
  446. } else
  447. return ND->getIdentifier()->getName();
  448. }
  449. return "";
  450. }
  451. if (auto *BD = dyn_cast<BlockDecl>(CurrentDecl)) {
  452. std::unique_ptr<MangleContext> MC;
  453. MC.reset(Context.createMangleContext());
  454. SmallString<256> Buffer;
  455. llvm::raw_svector_ostream Out(Buffer);
  456. auto DC = CurrentDecl->getDeclContext();
  457. if (DC->isFileContext())
  458. MC->mangleGlobalBlock(BD, /*ID*/ nullptr, Out);
  459. else if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
  460. MC->mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out);
  461. else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
  462. MC->mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out);
  463. else
  464. MC->mangleBlock(DC, BD, Out);
  465. return Out.str();
  466. }
  467. if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
  468. if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig)
  469. return FD->getNameAsString();
  470. SmallString<256> Name;
  471. llvm::raw_svector_ostream Out(Name);
  472. if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
  473. if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
  474. Out << "virtual ";
  475. if (MD->isStatic())
  476. Out << "static ";
  477. }
  478. PrintingPolicy Policy(Context.getLangOpts());
  479. std::string Proto;
  480. llvm::raw_string_ostream POut(Proto);
  481. const FunctionDecl *Decl = FD;
  482. if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
  483. Decl = Pattern;
  484. const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
  485. const FunctionProtoType *FT = nullptr;
  486. if (FD->hasWrittenPrototype())
  487. FT = dyn_cast<FunctionProtoType>(AFT);
  488. if (IT == FuncSig) {
  489. switch (FT->getCallConv()) {
  490. case CC_C: POut << "__cdecl "; break;
  491. case CC_X86StdCall: POut << "__stdcall "; break;
  492. case CC_X86FastCall: POut << "__fastcall "; break;
  493. case CC_X86ThisCall: POut << "__thiscall "; break;
  494. case CC_X86VectorCall: POut << "__vectorcall "; break;
  495. // Only bother printing the conventions that MSVC knows about.
  496. default: break;
  497. }
  498. }
  499. FD->printQualifiedName(POut, Policy);
  500. POut << "(";
  501. if (FT) {
  502. for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
  503. if (i) POut << ", ";
  504. POut << Decl->getParamDecl(i)->getType().stream(Policy);
  505. }
  506. if (FT->isVariadic()) {
  507. if (FD->getNumParams()) POut << ", ";
  508. POut << "...";
  509. }
  510. }
  511. POut << ")";
  512. if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
  513. const FunctionType *FT = MD->getType()->castAs<FunctionType>();
  514. if (FT->isConst())
  515. POut << " const";
  516. if (FT->isVolatile())
  517. POut << " volatile";
  518. RefQualifierKind Ref = MD->getRefQualifier();
  519. if (Ref == RQ_LValue)
  520. POut << " &";
  521. else if (Ref == RQ_RValue)
  522. POut << " &&";
  523. }
  524. typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
  525. SpecsTy Specs;
  526. const DeclContext *Ctx = FD->getDeclContext();
  527. while (Ctx && isa<NamedDecl>(Ctx)) {
  528. const ClassTemplateSpecializationDecl *Spec
  529. = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
  530. if (Spec && !Spec->isExplicitSpecialization())
  531. Specs.push_back(Spec);
  532. Ctx = Ctx->getParent();
  533. }
  534. std::string TemplateParams;
  535. llvm::raw_string_ostream TOut(TemplateParams);
  536. for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
  537. I != E; ++I) {
  538. const TemplateParameterList *Params
  539. = (*I)->getSpecializedTemplate()->getTemplateParameters();
  540. const TemplateArgumentList &Args = (*I)->getTemplateArgs();
  541. assert(Params->size() == Args.size());
  542. for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
  543. StringRef Param = Params->getParam(i)->getName();
  544. if (Param.empty()) continue;
  545. TOut << Param << " = ";
  546. Args.get(i).print(Policy, TOut);
  547. TOut << ", ";
  548. }
  549. }
  550. FunctionTemplateSpecializationInfo *FSI
  551. = FD->getTemplateSpecializationInfo();
  552. if (FSI && !FSI->isExplicitSpecialization()) {
  553. const TemplateParameterList* Params
  554. = FSI->getTemplate()->getTemplateParameters();
  555. const TemplateArgumentList* Args = FSI->TemplateArguments;
  556. assert(Params->size() == Args->size());
  557. for (unsigned i = 0, e = Params->size(); i != e; ++i) {
  558. StringRef Param = Params->getParam(i)->getName();
  559. if (Param.empty()) continue;
  560. TOut << Param << " = ";
  561. Args->get(i).print(Policy, TOut);
  562. TOut << ", ";
  563. }
  564. }
  565. TOut.flush();
  566. if (!TemplateParams.empty()) {
  567. // remove the trailing comma and space
  568. TemplateParams.resize(TemplateParams.size() - 2);
  569. POut << " [" << TemplateParams << "]";
  570. }
  571. POut.flush();
  572. // Print "auto" for all deduced return types. This includes C++1y return
  573. // type deduction and lambdas. For trailing return types resolve the
  574. // decltype expression. Otherwise print the real type when this is
  575. // not a constructor or destructor.
  576. if (isa<CXXMethodDecl>(FD) &&
  577. cast<CXXMethodDecl>(FD)->getParent()->isLambda())
  578. Proto = "auto " + Proto;
  579. else if (FT && FT->getReturnType()->getAs<DecltypeType>())
  580. FT->getReturnType()
  581. ->getAs<DecltypeType>()
  582. ->getUnderlyingType()
  583. .getAsStringInternal(Proto, Policy);
  584. else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
  585. AFT->getReturnType().getAsStringInternal(Proto, Policy);
  586. Out << Proto;
  587. Out.flush();
  588. return Name.str().str();
  589. }
  590. if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
  591. for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
  592. // Skip to its enclosing function or method, but not its enclosing
  593. // CapturedDecl.
  594. if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
  595. const Decl *D = Decl::castFromDeclContext(DC);
  596. return ComputeName(IT, D);
  597. }
  598. llvm_unreachable("CapturedDecl not inside a function or method");
  599. }
  600. if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
  601. SmallString<256> Name;
  602. llvm::raw_svector_ostream Out(Name);
  603. Out << (MD->isInstanceMethod() ? '-' : '+');
  604. Out << '[';
  605. // For incorrect code, there might not be an ObjCInterfaceDecl. Do
  606. // a null check to avoid a crash.
  607. if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
  608. Out << *ID;
  609. if (const ObjCCategoryImplDecl *CID =
  610. dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
  611. Out << '(' << *CID << ')';
  612. Out << ' ';
  613. MD->getSelector().print(Out);
  614. Out << ']';
  615. Out.flush();
  616. return Name.str().str();
  617. }
  618. if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
  619. // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
  620. return "top level";
  621. }
  622. return "";
  623. }
  624. void APNumericStorage::setIntValue(const ASTContext &C,
  625. const llvm::APInt &Val) {
  626. if (hasAllocation())
  627. C.Deallocate(pVal);
  628. BitWidth = Val.getBitWidth();
  629. unsigned NumWords = Val.getNumWords();
  630. const uint64_t* Words = Val.getRawData();
  631. if (NumWords > 1) {
  632. pVal = new (C) uint64_t[NumWords];
  633. std::copy(Words, Words + NumWords, pVal);
  634. } else if (NumWords == 1)
  635. VAL = Words[0];
  636. else
  637. VAL = 0;
  638. }
  639. IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
  640. QualType type, SourceLocation l)
  641. : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
  642. false, false),
  643. Loc(l) {
  644. assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
  645. assert(V.getBitWidth() == C.getIntWidth(type) &&
  646. "Integer type is not the correct size for constant.");
  647. setValue(C, V);
  648. }
  649. IntegerLiteral *
  650. IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
  651. QualType type, SourceLocation l) {
  652. return new (C) IntegerLiteral(C, V, type, l);
  653. }
  654. IntegerLiteral *
  655. IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
  656. return new (C) IntegerLiteral(Empty);
  657. }
  658. FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
  659. bool isexact, QualType Type, SourceLocation L)
  660. : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
  661. false, false), Loc(L) {
  662. setSemantics(V.getSemantics());
  663. FloatingLiteralBits.IsExact = isexact;
  664. setValue(C, V);
  665. }
  666. FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
  667. : Expr(FloatingLiteralClass, Empty) {
  668. setRawSemantics(IEEEhalf);
  669. FloatingLiteralBits.IsExact = false;
  670. }
  671. FloatingLiteral *
  672. FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
  673. bool isexact, QualType Type, SourceLocation L) {
  674. return new (C) FloatingLiteral(C, V, isexact, Type, L);
  675. }
  676. FloatingLiteral *
  677. FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
  678. return new (C) FloatingLiteral(C, Empty);
  679. }
  680. const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
  681. switch(FloatingLiteralBits.Semantics) {
  682. case IEEEhalf:
  683. return llvm::APFloat::IEEEhalf;
  684. case IEEEsingle:
  685. return llvm::APFloat::IEEEsingle;
  686. case IEEEdouble:
  687. return llvm::APFloat::IEEEdouble;
  688. case x87DoubleExtended:
  689. return llvm::APFloat::x87DoubleExtended;
  690. case IEEEquad:
  691. return llvm::APFloat::IEEEquad;
  692. case PPCDoubleDouble:
  693. return llvm::APFloat::PPCDoubleDouble;
  694. }
  695. llvm_unreachable("Unrecognised floating semantics");
  696. }
  697. void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
  698. if (&Sem == &llvm::APFloat::IEEEhalf)
  699. FloatingLiteralBits.Semantics = IEEEhalf;
  700. else if (&Sem == &llvm::APFloat::IEEEsingle)
  701. FloatingLiteralBits.Semantics = IEEEsingle;
  702. else if (&Sem == &llvm::APFloat::IEEEdouble)
  703. FloatingLiteralBits.Semantics = IEEEdouble;
  704. else if (&Sem == &llvm::APFloat::x87DoubleExtended)
  705. FloatingLiteralBits.Semantics = x87DoubleExtended;
  706. else if (&Sem == &llvm::APFloat::IEEEquad)
  707. FloatingLiteralBits.Semantics = IEEEquad;
  708. else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
  709. FloatingLiteralBits.Semantics = PPCDoubleDouble;
  710. else
  711. llvm_unreachable("Unknown floating semantics");
  712. }
  713. /// getValueAsApproximateDouble - This returns the value as an inaccurate
  714. /// double. Note that this may cause loss of precision, but is useful for
  715. /// debugging dumps, etc.
  716. double FloatingLiteral::getValueAsApproximateDouble() const {
  717. llvm::APFloat V = getValue();
  718. bool ignored;
  719. V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
  720. &ignored);
  721. return V.convertToDouble();
  722. }
  723. int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
  724. int CharByteWidth = 0;
  725. switch(k) {
  726. case Ascii:
  727. case UTF8:
  728. CharByteWidth = target.getCharWidth();
  729. break;
  730. case Wide:
  731. CharByteWidth = target.getWCharWidth();
  732. break;
  733. case UTF16:
  734. CharByteWidth = target.getChar16Width();
  735. break;
  736. case UTF32:
  737. CharByteWidth = target.getChar32Width();
  738. break;
  739. }
  740. assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
  741. CharByteWidth /= 8;
  742. assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
  743. && "character byte widths supported are 1, 2, and 4 only");
  744. return CharByteWidth;
  745. }
  746. StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
  747. StringKind Kind, bool Pascal, QualType Ty,
  748. const SourceLocation *Loc,
  749. unsigned NumStrs) {
  750. assert(C.getAsConstantArrayType(Ty) &&
  751. "StringLiteral must be of constant array type!");
  752. // Allocate enough space for the StringLiteral plus an array of locations for
  753. // any concatenated string tokens.
  754. void *Mem = C.Allocate(sizeof(StringLiteral)+
  755. sizeof(SourceLocation)*(NumStrs-1),
  756. llvm::alignOf<StringLiteral>());
  757. StringLiteral *SL = new (Mem) StringLiteral(Ty);
  758. // OPTIMIZE: could allocate this appended to the StringLiteral.
  759. SL->setString(C,Str,Kind,Pascal);
  760. SL->TokLocs[0] = Loc[0];
  761. SL->NumConcatenated = NumStrs;
  762. if (NumStrs != 1)
  763. memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
  764. return SL;
  765. }
  766. StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
  767. unsigned NumStrs) {
  768. void *Mem = C.Allocate(sizeof(StringLiteral)+
  769. sizeof(SourceLocation)*(NumStrs-1),
  770. llvm::alignOf<StringLiteral>());
  771. StringLiteral *SL = new (Mem) StringLiteral(QualType());
  772. SL->CharByteWidth = 0;
  773. SL->Length = 0;
  774. SL->NumConcatenated = NumStrs;
  775. return SL;
  776. }
  777. void StringLiteral::outputString(raw_ostream &OS) const {
  778. switch (getKind()) {
  779. case Ascii: break; // no prefix.
  780. case Wide: OS << 'L'; break;
  781. case UTF8: OS << "u8"; break;
  782. case UTF16: OS << 'u'; break;
  783. case UTF32: OS << 'U'; break;
  784. }
  785. OS << '"';
  786. static const char Hex[] = "0123456789ABCDEF";
  787. unsigned LastSlashX = getLength();
  788. for (unsigned I = 0, N = getLength(); I != N; ++I) {
  789. switch (uint32_t Char = getCodeUnit(I)) {
  790. default:
  791. // FIXME: Convert UTF-8 back to codepoints before rendering.
  792. // Convert UTF-16 surrogate pairs back to codepoints before rendering.
  793. // Leave invalid surrogates alone; we'll use \x for those.
  794. if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
  795. Char <= 0xdbff) {
  796. uint32_t Trail = getCodeUnit(I + 1);
  797. if (Trail >= 0xdc00 && Trail <= 0xdfff) {
  798. Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
  799. ++I;
  800. }
  801. }
  802. if (Char > 0xff) {
  803. // If this is a wide string, output characters over 0xff using \x
  804. // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
  805. // codepoint: use \x escapes for invalid codepoints.
  806. if (getKind() == Wide ||
  807. (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
  808. // FIXME: Is this the best way to print wchar_t?
  809. OS << "\\x";
  810. int Shift = 28;
  811. while ((Char >> Shift) == 0)
  812. Shift -= 4;
  813. for (/**/; Shift >= 0; Shift -= 4)
  814. OS << Hex[(Char >> Shift) & 15];
  815. LastSlashX = I;
  816. break;
  817. }
  818. if (Char > 0xffff)
  819. OS << "\\U00"
  820. << Hex[(Char >> 20) & 15]
  821. << Hex[(Char >> 16) & 15];
  822. else
  823. OS << "\\u";
  824. OS << Hex[(Char >> 12) & 15]
  825. << Hex[(Char >> 8) & 15]
  826. << Hex[(Char >> 4) & 15]
  827. << Hex[(Char >> 0) & 15];
  828. break;
  829. }
  830. // If we used \x... for the previous character, and this character is a
  831. // hexadecimal digit, prevent it being slurped as part of the \x.
  832. if (LastSlashX + 1 == I) {
  833. switch (Char) {
  834. case '0': case '1': case '2': case '3': case '4':
  835. case '5': case '6': case '7': case '8': case '9':
  836. case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
  837. case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
  838. OS << "\"\"";
  839. }
  840. }
  841. assert(Char <= 0xff &&
  842. "Characters above 0xff should already have been handled.");
  843. if (isPrintable(Char))
  844. OS << (char)Char;
  845. else // Output anything hard as an octal escape.
  846. OS << '\\'
  847. << (char)('0' + ((Char >> 6) & 7))
  848. << (char)('0' + ((Char >> 3) & 7))
  849. << (char)('0' + ((Char >> 0) & 7));
  850. break;
  851. // Handle some common non-printable cases to make dumps prettier.
  852. case '\\': OS << "\\\\"; break;
  853. case '"': OS << "\\\""; break;
  854. case '\n': OS << "\\n"; break;
  855. case '\t': OS << "\\t"; break;
  856. case '\a': OS << "\\a"; break;
  857. case '\b': OS << "\\b"; break;
  858. }
  859. }
  860. OS << '"';
  861. }
  862. void StringLiteral::setString(const ASTContext &C, StringRef Str,
  863. StringKind Kind, bool IsPascal) {
  864. //FIXME: we assume that the string data comes from a target that uses the same
  865. // code unit size and endianess for the type of string.
  866. this->Kind = Kind;
  867. this->IsPascal = IsPascal;
  868. CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
  869. assert((Str.size()%CharByteWidth == 0)
  870. && "size of data must be multiple of CharByteWidth");
  871. Length = Str.size()/CharByteWidth;
  872. switch(CharByteWidth) {
  873. case 1: {
  874. char *AStrData = new (C) char[Length];
  875. std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
  876. StrData.asChar = AStrData;
  877. break;
  878. }
  879. case 2: {
  880. uint16_t *AStrData = new (C) uint16_t[Length];
  881. std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
  882. StrData.asUInt16 = AStrData;
  883. break;
  884. }
  885. case 4: {
  886. uint32_t *AStrData = new (C) uint32_t[Length];
  887. std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
  888. StrData.asUInt32 = AStrData;
  889. break;
  890. }
  891. default:
  892. assert(false && "unsupported CharByteWidth");
  893. }
  894. }
  895. /// getLocationOfByte - Return a source location that points to the specified
  896. /// byte of this string literal.
  897. ///
  898. /// Strings are amazingly complex. They can be formed from multiple tokens and
  899. /// can have escape sequences in them in addition to the usual trigraph and
  900. /// escaped newline business. This routine handles this complexity.
  901. ///
  902. SourceLocation StringLiteral::
  903. getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
  904. const LangOptions &Features, const TargetInfo &Target) const {
  905. assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
  906. "Only narrow string literals are currently supported");
  907. // Loop over all of the tokens in this string until we find the one that
  908. // contains the byte we're looking for.
  909. unsigned TokNo = 0;
  910. while (1) {
  911. assert(TokNo < getNumConcatenated() && "Invalid byte number!");
  912. SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
  913. // Get the spelling of the string so that we can get the data that makes up
  914. // the string literal, not the identifier for the macro it is potentially
  915. // expanded through.
  916. SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
  917. // Re-lex the token to get its length and original spelling.
  918. std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
  919. bool Invalid = false;
  920. StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
  921. if (Invalid)
  922. return StrTokSpellingLoc;
  923. const char *StrData = Buffer.data()+LocInfo.second;
  924. // Create a lexer starting at the beginning of this token.
  925. Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
  926. Buffer.begin(), StrData, Buffer.end());
  927. Token TheTok;
  928. TheLexer.LexFromRawLexer(TheTok);
  929. // Use the StringLiteralParser to compute the length of the string in bytes.
  930. StringLiteralParser SLP(TheTok, SM, Features, Target);
  931. unsigned TokNumBytes = SLP.GetStringLength();
  932. // If the byte is in this token, return the location of the byte.
  933. if (ByteNo < TokNumBytes ||
  934. (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
  935. unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
  936. // Now that we know the offset of the token in the spelling, use the
  937. // preprocessor to get the offset in the original source.
  938. return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
  939. }
  940. // Move to the next string token.
  941. ++TokNo;
  942. ByteNo -= TokNumBytes;
  943. }
  944. }
  945. /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
  946. /// corresponds to, e.g. "sizeof" or "[pre]++".
  947. StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
  948. switch (Op) {
  949. case UO_PostInc: return "++";
  950. case UO_PostDec: return "--";
  951. case UO_PreInc: return "++";
  952. case UO_PreDec: return "--";
  953. case UO_AddrOf: return "&";
  954. case UO_Deref: return "*";
  955. case UO_Plus: return "+";
  956. case UO_Minus: return "-";
  957. case UO_Not: return "~";
  958. case UO_LNot: return "!";
  959. case UO_Real: return "__real";
  960. case UO_Imag: return "__imag";
  961. case UO_Extension: return "__extension__";
  962. }
  963. llvm_unreachable("Unknown unary operator");
  964. }
  965. UnaryOperatorKind
  966. UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
  967. switch (OO) {
  968. default: llvm_unreachable("No unary operator for overloaded function");
  969. case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
  970. case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
  971. case OO_Amp: return UO_AddrOf;
  972. case OO_Star: return UO_Deref;
  973. case OO_Plus: return UO_Plus;
  974. case OO_Minus: return UO_Minus;
  975. case OO_Tilde: return UO_Not;
  976. case OO_Exclaim: return UO_LNot;
  977. }
  978. }
  979. OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
  980. switch (Opc) {
  981. case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
  982. case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
  983. case UO_AddrOf: return OO_Amp;
  984. case UO_Deref: return OO_Star;
  985. case UO_Plus: return OO_Plus;
  986. case UO_Minus: return OO_Minus;
  987. case UO_Not: return OO_Tilde;
  988. case UO_LNot: return OO_Exclaim;
  989. default: return OO_None;
  990. }
  991. }
  992. //===----------------------------------------------------------------------===//
  993. // Postfix Operators.
  994. //===----------------------------------------------------------------------===//
  995. CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn,
  996. unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t,
  997. ExprValueKind VK, SourceLocation rparenloc)
  998. : Expr(SC, t, VK, OK_Ordinary,
  999. fn->isTypeDependent(),
  1000. fn->isValueDependent(),
  1001. fn->isInstantiationDependent(),
  1002. fn->containsUnexpandedParameterPack()),
  1003. NumArgs(args.size()) {
  1004. SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
  1005. SubExprs[FN] = fn;
  1006. for (unsigned i = 0; i != args.size(); ++i) {
  1007. if (args[i]->isTypeDependent())
  1008. ExprBits.TypeDependent = true;
  1009. if (args[i]->isValueDependent())
  1010. ExprBits.ValueDependent = true;
  1011. if (args[i]->isInstantiationDependent())
  1012. ExprBits.InstantiationDependent = true;
  1013. if (args[i]->containsUnexpandedParameterPack())
  1014. ExprBits.ContainsUnexpandedParameterPack = true;
  1015. SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
  1016. }
  1017. CallExprBits.NumPreArgs = NumPreArgs;
  1018. RParenLoc = rparenloc;
  1019. }
  1020. CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args,
  1021. QualType t, ExprValueKind VK, SourceLocation rparenloc)
  1022. : CallExpr(C, CallExprClass, fn, /*NumPreArgs=*/0, args, t, VK, rparenloc) {
  1023. }
  1024. CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
  1025. : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {}
  1026. CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
  1027. EmptyShell Empty)
  1028. : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
  1029. // FIXME: Why do we allocate this?
  1030. SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
  1031. CallExprBits.NumPreArgs = NumPreArgs;
  1032. }
  1033. Decl *CallExpr::getCalleeDecl() {
  1034. Expr *CEE = getCallee()->IgnoreParenImpCasts();
  1035. while (SubstNonTypeTemplateParmExpr *NTTP
  1036. = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
  1037. CEE = NTTP->getReplacement()->IgnoreParenCasts();
  1038. }
  1039. // If we're calling a dereference, look at the pointer instead.
  1040. if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
  1041. if (BO->isPtrMemOp())
  1042. CEE = BO->getRHS()->IgnoreParenCasts();
  1043. } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
  1044. if (UO->getOpcode() == UO_Deref)
  1045. CEE = UO->getSubExpr()->IgnoreParenCasts();
  1046. }
  1047. if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
  1048. return DRE->getDecl();
  1049. if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
  1050. return ME->getMemberDecl();
  1051. return nullptr;
  1052. }
  1053. FunctionDecl *CallExpr::getDirectCallee() {
  1054. return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
  1055. }
  1056. /// setNumArgs - This changes the number of arguments present in this call.
  1057. /// Any orphaned expressions are deleted by this, and any new operands are set
  1058. /// to null.
  1059. void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
  1060. // No change, just return.
  1061. if (NumArgs == getNumArgs()) return;
  1062. // If shrinking # arguments, just delete the extras and forgot them.
  1063. if (NumArgs < getNumArgs()) {
  1064. this->NumArgs = NumArgs;
  1065. return;
  1066. }
  1067. // Otherwise, we are growing the # arguments. New an bigger argument array.
  1068. unsigned NumPreArgs = getNumPreArgs();
  1069. Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
  1070. // Copy over args.
  1071. for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
  1072. NewSubExprs[i] = SubExprs[i];
  1073. // Null out new args.
  1074. for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
  1075. i != NumArgs+PREARGS_START+NumPreArgs; ++i)
  1076. NewSubExprs[i] = nullptr;
  1077. if (SubExprs) C.Deallocate(SubExprs);
  1078. SubExprs = NewSubExprs;
  1079. this->NumArgs = NumArgs;
  1080. }
  1081. /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
  1082. /// not, return 0.
  1083. unsigned CallExpr::getBuiltinCallee() const {
  1084. // All simple function calls (e.g. func()) are implicitly cast to pointer to
  1085. // function. As a result, we try and obtain the DeclRefExpr from the
  1086. // ImplicitCastExpr.
  1087. const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
  1088. if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
  1089. return 0;
  1090. const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
  1091. if (!DRE)
  1092. return 0;
  1093. const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
  1094. if (!FDecl)
  1095. return 0;
  1096. if (!FDecl->getIdentifier())
  1097. return 0;
  1098. return FDecl->getBuiltinID();
  1099. }
  1100. bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
  1101. if (unsigned BI = getBuiltinCallee())
  1102. return Ctx.BuiltinInfo.isUnevaluated(BI);
  1103. return false;
  1104. }
  1105. QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
  1106. const Expr *Callee = getCallee();
  1107. QualType CalleeType = Callee->getType();
  1108. if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
  1109. CalleeType = FnTypePtr->getPointeeType();
  1110. } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
  1111. CalleeType = BPT->getPointeeType();
  1112. } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
  1113. if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
  1114. return Ctx.VoidTy;
  1115. // This should never be overloaded and so should never return null.
  1116. CalleeType = Expr::findBoundMemberType(Callee);
  1117. }
  1118. const FunctionType *FnType = CalleeType->castAs<FunctionType>();
  1119. return FnType->getReturnType();
  1120. }
  1121. SourceLocation CallExpr::getLocStart() const {
  1122. if (isa<CXXOperatorCallExpr>(this))
  1123. return cast<CXXOperatorCallExpr>(this)->getLocStart();
  1124. SourceLocation begin = getCallee()->getLocStart();
  1125. if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
  1126. begin = getArg(0)->getLocStart();
  1127. return begin;
  1128. }
  1129. SourceLocation CallExpr::getLocEnd() const {
  1130. if (isa<CXXOperatorCallExpr>(this))
  1131. return cast<CXXOperatorCallExpr>(this)->getLocEnd();
  1132. SourceLocation end = getRParenLoc();
  1133. if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
  1134. end = getArg(getNumArgs() - 1)->getLocEnd();
  1135. return end;
  1136. }
  1137. OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
  1138. SourceLocation OperatorLoc,
  1139. TypeSourceInfo *tsi,
  1140. ArrayRef<OffsetOfNode> comps,
  1141. ArrayRef<Expr*> exprs,
  1142. SourceLocation RParenLoc) {
  1143. void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
  1144. sizeof(OffsetOfNode) * comps.size() +
  1145. sizeof(Expr*) * exprs.size());
  1146. return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
  1147. RParenLoc);
  1148. }
  1149. OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
  1150. unsigned numComps, unsigned numExprs) {
  1151. void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
  1152. sizeof(OffsetOfNode) * numComps +
  1153. sizeof(Expr*) * numExprs);
  1154. return new (Mem) OffsetOfExpr(numComps, numExprs);
  1155. }
  1156. OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
  1157. SourceLocation OperatorLoc, TypeSourceInfo *tsi,
  1158. ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
  1159. SourceLocation RParenLoc)
  1160. : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
  1161. /*TypeDependent=*/false,
  1162. /*ValueDependent=*/tsi->getType()->isDependentType(),
  1163. tsi->getType()->isInstantiationDependentType(),
  1164. tsi->getType()->containsUnexpandedParameterPack()),
  1165. OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
  1166. NumComps(comps.size()), NumExprs(exprs.size())
  1167. {
  1168. for (unsigned i = 0; i != comps.size(); ++i) {
  1169. setComponent(i, comps[i]);
  1170. }
  1171. for (unsigned i = 0; i != exprs.size(); ++i) {
  1172. if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
  1173. ExprBits.ValueDependent = true;
  1174. if (exprs[i]->containsUnexpandedParameterPack())
  1175. ExprBits.ContainsUnexpandedParameterPack = true;
  1176. setIndexExpr(i, exprs[i]);
  1177. }
  1178. }
  1179. IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
  1180. assert(getKind() == Field || getKind() == Identifier);
  1181. if (getKind() == Field)
  1182. return getField()->getIdentifier();
  1183. return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
  1184. }
  1185. UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
  1186. UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
  1187. SourceLocation op, SourceLocation rp)
  1188. : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
  1189. false, // Never type-dependent (C++ [temp.dep.expr]p3).
  1190. // Value-dependent if the argument is type-dependent.
  1191. E->isTypeDependent(), E->isInstantiationDependent(),
  1192. E->containsUnexpandedParameterPack()),
  1193. OpLoc(op), RParenLoc(rp) {
  1194. UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
  1195. UnaryExprOrTypeTraitExprBits.IsType = false;
  1196. Argument.Ex = E;
  1197. // Check to see if we are in the situation where alignof(decl) should be
  1198. // dependent because decl's alignment is dependent.
  1199. if (ExprKind == UETT_AlignOf) {
  1200. if (!isValueDependent() || !isInstantiationDependent()) {
  1201. E = E->IgnoreParens();
  1202. const ValueDecl *D = nullptr;
  1203. if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
  1204. D = DRE->getDecl();
  1205. else if (const auto *ME = dyn_cast<MemberExpr>(E))
  1206. D = ME->getMemberDecl();
  1207. if (D) {
  1208. for (const auto *I : D->specific_attrs<AlignedAttr>()) {
  1209. if (I->isAlignmentDependent()) {
  1210. setValueDependent(true);
  1211. setInstantiationDependent(true);
  1212. break;
  1213. }
  1214. }
  1215. }
  1216. }
  1217. }
  1218. }
  1219. MemberExpr *MemberExpr::Create(
  1220. const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc,
  1221. NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
  1222. ValueDecl *memberdecl, DeclAccessPair founddecl,
  1223. DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs,
  1224. QualType ty, ExprValueKind vk, ExprObjectKind ok) {
  1225. std::size_t Size = sizeof(MemberExpr);
  1226. bool hasQualOrFound = (QualifierLoc ||
  1227. founddecl.getDecl() != memberdecl ||
  1228. founddecl.getAccess() != memberdecl->getAccess());
  1229. if (hasQualOrFound)
  1230. Size += sizeof(MemberNameQualifier);
  1231. if (targs)
  1232. Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
  1233. else if (TemplateKWLoc.isValid())
  1234. Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
  1235. void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
  1236. MemberExpr *E = new (Mem)
  1237. MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok);
  1238. if (hasQualOrFound) {
  1239. // FIXME: Wrong. We should be looking at the member declaration we found.
  1240. if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
  1241. E->setValueDependent(true);
  1242. E->setTypeDependent(true);
  1243. E->setInstantiationDependent(true);
  1244. }
  1245. else if (QualifierLoc &&
  1246. QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
  1247. E->setInstantiationDependent(true);
  1248. E->HasQualifierOrFoundDecl = true;
  1249. MemberNameQualifier *NQ = E->getMemberQualifier();
  1250. NQ->QualifierLoc = QualifierLoc;
  1251. NQ->FoundDecl = founddecl;
  1252. }
  1253. E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
  1254. if (targs) {
  1255. bool Dependent = false;
  1256. bool InstantiationDependent = false;
  1257. bool ContainsUnexpandedParameterPack = false;
  1258. E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
  1259. Dependent,
  1260. InstantiationDependent,
  1261. ContainsUnexpandedParameterPack);
  1262. if (InstantiationDependent)
  1263. E->setInstantiationDependent(true);
  1264. } else if (TemplateKWLoc.isValid()) {
  1265. E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
  1266. }
  1267. return E;
  1268. }
  1269. SourceLocation MemberExpr::getLocStart() const {
  1270. if (isImplicitAccess()) {
  1271. if (hasQualifier())
  1272. return getQualifierLoc().getBeginLoc();
  1273. return MemberLoc;
  1274. }
  1275. // FIXME: We don't want this to happen. Rather, we should be able to
  1276. // detect all kinds of implicit accesses more cleanly.
  1277. SourceLocation BaseStartLoc = getBase()->getLocStart();
  1278. if (BaseStartLoc.isValid())
  1279. return BaseStartLoc;
  1280. return MemberLoc;
  1281. }
  1282. SourceLocation MemberExpr::getLocEnd() const {
  1283. SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
  1284. if (hasExplicitTemplateArgs())
  1285. EndLoc = getRAngleLoc();
  1286. else if (EndLoc.isInvalid())
  1287. EndLoc = getBase()->getLocEnd();
  1288. return EndLoc;
  1289. }
  1290. bool CastExpr::CastConsistency() const {
  1291. switch (getCastKind()) {
  1292. case CK_DerivedToBase:
  1293. case CK_UncheckedDerivedToBase:
  1294. case CK_DerivedToBaseMemberPointer:
  1295. case CK_BaseToDerived:
  1296. case CK_BaseToDerivedMemberPointer:
  1297. assert(!path_empty() && "Cast kind should have a base path!");
  1298. break;
  1299. case CK_CPointerToObjCPointerCast:
  1300. assert(getType()->isObjCObjectPointerType());
  1301. assert(getSubExpr()->getType()->isPointerType());
  1302. goto CheckNoBasePath;
  1303. case CK_BlockPointerToObjCPointerCast:
  1304. assert(getType()->isObjCObjectPointerType());
  1305. assert(getSubExpr()->getType()->isBlockPointerType());
  1306. goto CheckNoBasePath;
  1307. case CK_ReinterpretMemberPointer:
  1308. assert(getType()->isMemberPointerType());
  1309. assert(getSubExpr()->getType()->isMemberPointerType());
  1310. goto CheckNoBasePath;
  1311. case CK_BitCast:
  1312. // Arbitrary casts to C pointer types count as bitcasts.
  1313. // Otherwise, we should only have block and ObjC pointer casts
  1314. // here if they stay within the type kind.
  1315. if (!getType()->isPointerType()) {
  1316. assert(getType()->isObjCObjectPointerType() ==
  1317. getSubExpr()->getType()->isObjCObjectPointerType());
  1318. assert(getType()->isBlockPointerType() ==
  1319. getSubExpr()->getType()->isBlockPointerType());
  1320. }
  1321. goto CheckNoBasePath;
  1322. case CK_AnyPointerToBlockPointerCast:
  1323. assert(getType()->isBlockPointerType());
  1324. assert(getSubExpr()->getType()->isAnyPointerType() &&
  1325. !getSubExpr()->getType()->isBlockPointerType());
  1326. goto CheckNoBasePath;
  1327. case CK_CopyAndAutoreleaseBlockObject:
  1328. assert(getType()->isBlockPointerType());
  1329. assert(getSubExpr()->getType()->isBlockPointerType());
  1330. goto CheckNoBasePath;
  1331. case CK_FunctionToPointerDecay:
  1332. assert(getType()->isPointerType());
  1333. assert(getSubExpr()->getType()->isFunctionType());
  1334. goto CheckNoBasePath;
  1335. case CK_AddressSpaceConversion:
  1336. assert(getType()->isPointerType());
  1337. assert(getSubExpr()->getType()->isPointerType());
  1338. assert(getType()->getPointeeType().getAddressSpace() !=
  1339. getSubExpr()->getType()->getPointeeType().getAddressSpace());
  1340. // These should not have an inheritance path.
  1341. case CK_Dynamic:
  1342. case CK_ToUnion:
  1343. case CK_ArrayToPointerDecay:
  1344. case CK_NullToMemberPointer:
  1345. case CK_NullToPointer:
  1346. case CK_ConstructorConversion:
  1347. case CK_IntegralToPointer:
  1348. case CK_PointerToIntegral:
  1349. case CK_ToVoid:
  1350. case CK_VectorSplat:
  1351. case CK_IntegralCast:
  1352. case CK_IntegralToFloating:
  1353. case CK_FloatingToIntegral:
  1354. case CK_FloatingCast:
  1355. case CK_ObjCObjectLValueCast:
  1356. case CK_FloatingRealToComplex:
  1357. case CK_FloatingComplexToReal:
  1358. case CK_FloatingComplexCast:
  1359. case CK_FloatingComplexToIntegralComplex:
  1360. case CK_IntegralRealToComplex:
  1361. case CK_IntegralComplexToReal:
  1362. case CK_IntegralComplexCast:
  1363. case CK_IntegralComplexToFloatingComplex:
  1364. case CK_ARCProduceObject:
  1365. case CK_ARCConsumeObject:
  1366. case CK_ARCReclaimReturnedObject:
  1367. case CK_ARCExtendBlockObject:
  1368. case CK_ZeroToOCLEvent:
  1369. assert(!getType()->isBooleanType() && "unheralded conversion to bool");
  1370. goto CheckNoBasePath;
  1371. case CK_Dependent:
  1372. case CK_LValueToRValue:
  1373. case CK_NoOp:
  1374. case CK_AtomicToNonAtomic:
  1375. case CK_NonAtomicToAtomic:
  1376. case CK_PointerToBoolean:
  1377. case CK_IntegralToBoolean:
  1378. case CK_FloatingToBoolean:
  1379. case CK_MemberPointerToBoolean:
  1380. case CK_FloatingComplexToBoolean:
  1381. case CK_IntegralComplexToBoolean:
  1382. case CK_LValueBitCast: // -> bool&
  1383. case CK_UserDefinedConversion: // operator bool()
  1384. case CK_BuiltinFnToFnPtr:
  1385. CheckNoBasePath:
  1386. assert(path_empty() && "Cast kind should not have a base path!");
  1387. break;
  1388. }
  1389. return true;
  1390. }
  1391. const char *CastExpr::getCastKindName() const {
  1392. switch (getCastKind()) {
  1393. case CK_Dependent:
  1394. return "Dependent";
  1395. case CK_BitCast:
  1396. return "BitCast";
  1397. case CK_LValueBitCast:
  1398. return "LValueBitCast";
  1399. case CK_LValueToRValue:
  1400. return "LValueToRValue";
  1401. case CK_NoOp:
  1402. return "NoOp";
  1403. case CK_BaseToDerived:
  1404. return "BaseToDerived";
  1405. case CK_DerivedToBase:
  1406. return "DerivedToBase";
  1407. case CK_UncheckedDerivedToBase:
  1408. return "UncheckedDerivedToBase";
  1409. case CK_Dynamic:
  1410. return "Dynamic";
  1411. case CK_ToUnion:
  1412. return "ToUnion";
  1413. case CK_ArrayToPointerDecay:
  1414. return "ArrayToPointerDecay";
  1415. case CK_FunctionToPointerDecay:
  1416. return "FunctionToPointerDecay";
  1417. case CK_NullToMemberPointer:
  1418. return "NullToMemberPointer";
  1419. case CK_NullToPointer:
  1420. return "NullToPointer";
  1421. case CK_BaseToDerivedMemberPointer:
  1422. return "BaseToDerivedMemberPointer";
  1423. case CK_DerivedToBaseMemberPointer:
  1424. return "DerivedToBaseMemberPointer";
  1425. case CK_ReinterpretMemberPointer:
  1426. return "ReinterpretMemberPointer";
  1427. case CK_UserDefinedConversion:
  1428. return "UserDefinedConversion";
  1429. case CK_ConstructorConversion:
  1430. return "ConstructorConversion";
  1431. case CK_IntegralToPointer:
  1432. return "IntegralToPointer";
  1433. case CK_PointerToIntegral:
  1434. return "PointerToIntegral";
  1435. case CK_PointerToBoolean:
  1436. return "PointerToBoolean";
  1437. case CK_ToVoid:
  1438. return "ToVoid";
  1439. case CK_VectorSplat:
  1440. return "VectorSplat";
  1441. case CK_IntegralCast:
  1442. return "IntegralCast";
  1443. case CK_IntegralToBoolean:
  1444. return "IntegralToBoolean";
  1445. case CK_IntegralToFloating:
  1446. return "IntegralToFloating";
  1447. case CK_FloatingToIntegral:
  1448. return "FloatingToIntegral";
  1449. case CK_FloatingCast:
  1450. return "FloatingCast";
  1451. case CK_FloatingToBoolean:
  1452. return "FloatingToBoolean";
  1453. case CK_MemberPointerToBoolean:
  1454. return "MemberPointerToBoolean";
  1455. case CK_CPointerToObjCPointerCast:
  1456. return "CPointerToObjCPointerCast";
  1457. case CK_BlockPointerToObjCPointerCast:
  1458. return "BlockPointerToObjCPointerCast";
  1459. case CK_AnyPointerToBlockPointerCast:
  1460. return "AnyPointerToBlockPointerCast";
  1461. case CK_ObjCObjectLValueCast:
  1462. return "ObjCObjectLValueCast";
  1463. case CK_FloatingRealToComplex:
  1464. return "FloatingRealToComplex";
  1465. case CK_FloatingComplexToReal:
  1466. return "FloatingComplexToReal";
  1467. case CK_FloatingComplexToBoolean:
  1468. return "FloatingComplexToBoolean";
  1469. case CK_FloatingComplexCast:
  1470. return "FloatingComplexCast";
  1471. case CK_FloatingComplexToIntegralComplex:
  1472. return "FloatingComplexToIntegralComplex";
  1473. case CK_IntegralRealToComplex:
  1474. return "IntegralRealToComplex";
  1475. case CK_IntegralComplexToReal:
  1476. return "IntegralComplexToReal";
  1477. case CK_IntegralComplexToBoolean:
  1478. return "IntegralComplexToBoolean";
  1479. case CK_IntegralComplexCast:
  1480. return "IntegralComplexCast";
  1481. case CK_IntegralComplexToFloatingComplex:
  1482. return "IntegralComplexToFloatingComplex";
  1483. case CK_ARCConsumeObject:
  1484. return "ARCConsumeObject";
  1485. case CK_ARCProduceObject:
  1486. return "ARCProduceObject";
  1487. case CK_ARCReclaimReturnedObject:
  1488. return "ARCReclaimReturnedObject";
  1489. case CK_ARCExtendBlockObject:
  1490. return "ARCExtendBlockObject";
  1491. case CK_AtomicToNonAtomic:
  1492. return "AtomicToNonAtomic";
  1493. case CK_NonAtomicToAtomic:
  1494. return "NonAtomicToAtomic";
  1495. case CK_CopyAndAutoreleaseBlockObject:
  1496. return "CopyAndAutoreleaseBlockObject";
  1497. case CK_BuiltinFnToFnPtr:
  1498. return "BuiltinFnToFnPtr";
  1499. case CK_ZeroToOCLEvent:
  1500. return "ZeroToOCLEvent";
  1501. case CK_AddressSpaceConversion:
  1502. return "AddressSpaceConversion";
  1503. // HLSL Change Starts
  1504. case CK_FlatConversion:
  1505. return "FlatConversion";
  1506. case CK_HLSLVectorSplat:
  1507. return "HLSLVectorSplat";
  1508. case CK_HLSLMatrixSplat:
  1509. return "HLSLMatrixSplat";
  1510. case CK_HLSLVectorToScalarCast:
  1511. return "HLSLVectorToScalarCast";
  1512. case CK_HLSLMatrixToScalarCast:
  1513. return "HLSLMatrixToScalarCast";
  1514. case CK_HLSLVectorTruncationCast:
  1515. return "HLSLVectorTruncationCast";
  1516. case CK_HLSLMatrixTruncationCast:
  1517. return "HLSLMatrixTruncationCast";
  1518. case CK_HLSLVectorToMatrixCast:
  1519. return "HLSLVectorToMatrixCast";
  1520. case CK_HLSLMatrixToVectorCast:
  1521. return "HLSLMatrixToVectorCast";
  1522. case CK_HLSLDerivedToBase:
  1523. return "HLSLDerivedToBase";
  1524. case CK_HLSLCC_IntegralCast:
  1525. return "HLSLCC_IntegralCast";
  1526. case CK_HLSLCC_IntegralToBoolean:
  1527. return "HLSLCC_IntegralToBoolean";
  1528. case CK_HLSLCC_IntegralToFloating:
  1529. return "HLSLCC_IntegralToFloating";
  1530. case CK_HLSLCC_FloatingToIntegral:
  1531. return "HLSLCC_FloatingToIntegral";
  1532. case CK_HLSLCC_FloatingToBoolean:
  1533. return "HLSLCC_FloatingToBoolean";
  1534. case CK_HLSLCC_FloatingCast:
  1535. return "HLSLCC_FloatingCast";
  1536. // HLSL Change Ends
  1537. }
  1538. llvm_unreachable("Unhandled cast kind!");
  1539. }
  1540. Expr *CastExpr::getSubExprAsWritten() {
  1541. Expr *SubExpr = nullptr;
  1542. CastExpr *E = this;
  1543. do {
  1544. SubExpr = E->getSubExpr();
  1545. // Skip through reference binding to temporary.
  1546. if (MaterializeTemporaryExpr *Materialize
  1547. = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
  1548. SubExpr = Materialize->GetTemporaryExpr();
  1549. // Skip any temporary bindings; they're implicit.
  1550. if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
  1551. SubExpr = Binder->getSubExpr();
  1552. // Conversions by constructor and conversion functions have a
  1553. // subexpression describing the call; strip it off.
  1554. if (E->getCastKind() == CK_ConstructorConversion)
  1555. SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
  1556. else if (E->getCastKind() == CK_UserDefinedConversion)
  1557. SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
  1558. // If the subexpression we're left with is an implicit cast, look
  1559. // through that, too.
  1560. } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
  1561. return SubExpr;
  1562. }
  1563. CXXBaseSpecifier **CastExpr::path_buffer() {
  1564. switch (getStmtClass()) {
  1565. #define ABSTRACT_STMT(x)
  1566. #define CASTEXPR(Type, Base) \
  1567. case Stmt::Type##Class: \
  1568. return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
  1569. #define STMT(Type, Base)
  1570. #include "clang/AST/StmtNodes.inc"
  1571. default:
  1572. llvm_unreachable("non-cast expressions not possible here");
  1573. }
  1574. }
  1575. void CastExpr::setCastPath(const CXXCastPath &Path) {
  1576. assert(Path.size() == path_size());
  1577. memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
  1578. }
  1579. ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
  1580. CastKind Kind, Expr *Operand,
  1581. const CXXCastPath *BasePath,
  1582. ExprValueKind VK) {
  1583. unsigned PathSize = (BasePath ? BasePath->size() : 0);
  1584. void *Buffer =
  1585. C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
  1586. ImplicitCastExpr *E =
  1587. new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
  1588. if (PathSize) E->setCastPath(*BasePath);
  1589. return E;
  1590. }
  1591. ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
  1592. unsigned PathSize) {
  1593. void *Buffer =
  1594. C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
  1595. return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
  1596. }
  1597. CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
  1598. ExprValueKind VK, CastKind K, Expr *Op,
  1599. const CXXCastPath *BasePath,
  1600. TypeSourceInfo *WrittenTy,
  1601. SourceLocation L, SourceLocation R) {
  1602. unsigned PathSize = (BasePath ? BasePath->size() : 0);
  1603. void *Buffer =
  1604. C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
  1605. CStyleCastExpr *E =
  1606. new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
  1607. if (PathSize) E->setCastPath(*BasePath);
  1608. return E;
  1609. }
  1610. CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
  1611. unsigned PathSize) {
  1612. void *Buffer =
  1613. C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
  1614. return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
  1615. }
  1616. /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
  1617. /// corresponds to, e.g. "<<=".
  1618. StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
  1619. switch (Op) {
  1620. case BO_PtrMemD: return ".*";
  1621. case BO_PtrMemI: return "->*";
  1622. case BO_Mul: return "*";
  1623. case BO_Div: return "/";
  1624. case BO_Rem: return "%";
  1625. case BO_Add: return "+";
  1626. case BO_Sub: return "-";
  1627. case BO_Shl: return "<<";
  1628. case BO_Shr: return ">>";
  1629. case BO_LT: return "<";
  1630. case BO_GT: return ">";
  1631. case BO_LE: return "<=";
  1632. case BO_GE: return ">=";
  1633. case BO_EQ: return "==";
  1634. case BO_NE: return "!=";
  1635. case BO_And: return "&";
  1636. case BO_Xor: return "^";
  1637. case BO_Or: return "|";
  1638. case BO_LAnd: return "&&";
  1639. case BO_LOr: return "||";
  1640. case BO_Assign: return "=";
  1641. case BO_MulAssign: return "*=";
  1642. case BO_DivAssign: return "/=";
  1643. case BO_RemAssign: return "%=";
  1644. case BO_AddAssign: return "+=";
  1645. case BO_SubAssign: return "-=";
  1646. case BO_ShlAssign: return "<<=";
  1647. case BO_ShrAssign: return ">>=";
  1648. case BO_AndAssign: return "&=";
  1649. case BO_XorAssign: return "^=";
  1650. case BO_OrAssign: return "|=";
  1651. case BO_Comma: return ",";
  1652. }
  1653. llvm_unreachable("Invalid OpCode!");
  1654. }
  1655. BinaryOperatorKind
  1656. BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
  1657. switch (OO) {
  1658. default: llvm_unreachable("Not an overloadable binary operator");
  1659. case OO_Plus: return BO_Add;
  1660. case OO_Minus: return BO_Sub;
  1661. case OO_Star: return BO_Mul;
  1662. case OO_Slash: return BO_Div;
  1663. case OO_Percent: return BO_Rem;
  1664. case OO_Caret: return BO_Xor;
  1665. case OO_Amp: return BO_And;
  1666. case OO_Pipe: return BO_Or;
  1667. case OO_Equal: return BO_Assign;
  1668. case OO_Less: return BO_LT;
  1669. case OO_Greater: return BO_GT;
  1670. case OO_PlusEqual: return BO_AddAssign;
  1671. case OO_MinusEqual: return BO_SubAssign;
  1672. case OO_StarEqual: return BO_MulAssign;
  1673. case OO_SlashEqual: return BO_DivAssign;
  1674. case OO_PercentEqual: return BO_RemAssign;
  1675. case OO_CaretEqual: return BO_XorAssign;
  1676. case OO_AmpEqual: return BO_AndAssign;
  1677. case OO_PipeEqual: return BO_OrAssign;
  1678. case OO_LessLess: return BO_Shl;
  1679. case OO_GreaterGreater: return BO_Shr;
  1680. case OO_LessLessEqual: return BO_ShlAssign;
  1681. case OO_GreaterGreaterEqual: return BO_ShrAssign;
  1682. case OO_EqualEqual: return BO_EQ;
  1683. case OO_ExclaimEqual: return BO_NE;
  1684. case OO_LessEqual: return BO_LE;
  1685. case OO_GreaterEqual: return BO_GE;
  1686. case OO_AmpAmp: return BO_LAnd;
  1687. case OO_PipePipe: return BO_LOr;
  1688. case OO_Comma: return BO_Comma;
  1689. case OO_ArrowStar: return BO_PtrMemI;
  1690. }
  1691. }
  1692. OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
  1693. static const OverloadedOperatorKind OverOps[] = {
  1694. /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
  1695. OO_Star, OO_Slash, OO_Percent,
  1696. OO_Plus, OO_Minus,
  1697. OO_LessLess, OO_GreaterGreater,
  1698. OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
  1699. OO_EqualEqual, OO_ExclaimEqual,
  1700. OO_Amp,
  1701. OO_Caret,
  1702. OO_Pipe,
  1703. OO_AmpAmp,
  1704. OO_PipePipe,
  1705. OO_Equal, OO_StarEqual,
  1706. OO_SlashEqual, OO_PercentEqual,
  1707. OO_PlusEqual, OO_MinusEqual,
  1708. OO_LessLessEqual, OO_GreaterGreaterEqual,
  1709. OO_AmpEqual, OO_CaretEqual,
  1710. OO_PipeEqual,
  1711. OO_Comma
  1712. };
  1713. return OverOps[Opc];
  1714. }
  1715. InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
  1716. ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
  1717. : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
  1718. false, false),
  1719. InitExprs(C, initExprs.size()),
  1720. LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
  1721. {
  1722. sawArrayRangeDesignator(false);
  1723. for (unsigned I = 0; I != initExprs.size(); ++I) {
  1724. if (initExprs[I]->isTypeDependent())
  1725. ExprBits.TypeDependent = true;
  1726. if (initExprs[I]->isValueDependent())
  1727. ExprBits.ValueDependent = true;
  1728. if (initExprs[I]->isInstantiationDependent())
  1729. ExprBits.InstantiationDependent = true;
  1730. if (initExprs[I]->containsUnexpandedParameterPack())
  1731. ExprBits.ContainsUnexpandedParameterPack = true;
  1732. }
  1733. InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
  1734. }
  1735. void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
  1736. if (NumInits > InitExprs.size())
  1737. InitExprs.reserve(C, NumInits);
  1738. }
  1739. void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
  1740. InitExprs.resize(C, NumInits, nullptr);
  1741. }
  1742. Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
  1743. if (Init >= InitExprs.size()) {
  1744. InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
  1745. setInit(Init, expr);
  1746. return nullptr;
  1747. }
  1748. Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
  1749. setInit(Init, expr);
  1750. return Result;
  1751. }
  1752. void InitListExpr::setArrayFiller(Expr *filler) {
  1753. assert(!hasArrayFiller() && "Filler already set!");
  1754. ArrayFillerOrUnionFieldInit = filler;
  1755. // Fill out any "holes" in the array due to designated initializers.
  1756. Expr **inits = getInits();
  1757. for (unsigned i = 0, e = getNumInits(); i != e; ++i)
  1758. if (inits[i] == nullptr)
  1759. inits[i] = filler;
  1760. }
  1761. bool InitListExpr::isStringLiteralInit() const {
  1762. if (getNumInits() != 1)
  1763. return false;
  1764. const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
  1765. if (!AT || !AT->getElementType()->isIntegerType())
  1766. return false;
  1767. // It is possible for getInit() to return null.
  1768. const Expr *Init = getInit(0);
  1769. if (!Init)
  1770. return false;
  1771. Init = Init->IgnoreParens();
  1772. return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
  1773. }
  1774. SourceLocation InitListExpr::getLocStart() const {
  1775. if (InitListExpr *SyntacticForm = getSyntacticForm())
  1776. return SyntacticForm->getLocStart();
  1777. SourceLocation Beg = LBraceLoc;
  1778. if (Beg.isInvalid()) {
  1779. // Find the first non-null initializer.
  1780. for (InitExprsTy::const_iterator I = InitExprs.begin(),
  1781. E = InitExprs.end();
  1782. I != E; ++I) {
  1783. if (Stmt *S = *I) {
  1784. Beg = S->getLocStart();
  1785. break;
  1786. }
  1787. }
  1788. }
  1789. return Beg;
  1790. }
  1791. SourceLocation InitListExpr::getLocEnd() const {
  1792. if (InitListExpr *SyntacticForm = getSyntacticForm())
  1793. return SyntacticForm->getLocEnd();
  1794. SourceLocation End = RBraceLoc;
  1795. if (End.isInvalid()) {
  1796. // Find the first non-null initializer from the end.
  1797. for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
  1798. E = InitExprs.rend();
  1799. I != E; ++I) {
  1800. if (Stmt *S = *I) {
  1801. End = S->getLocEnd();
  1802. break;
  1803. }
  1804. }
  1805. }
  1806. return End;
  1807. }
  1808. /// getFunctionType - Return the underlying function type for this block.
  1809. ///
  1810. const FunctionProtoType *BlockExpr::getFunctionType() const {
  1811. // The block pointer is never sugared, but the function type might be.
  1812. return cast<BlockPointerType>(getType())
  1813. ->getPointeeType()->castAs<FunctionProtoType>();
  1814. }
  1815. SourceLocation BlockExpr::getCaretLocation() const {
  1816. return TheBlock->getCaretLocation();
  1817. }
  1818. const Stmt *BlockExpr::getBody() const {
  1819. return TheBlock->getBody();
  1820. }
  1821. Stmt *BlockExpr::getBody() {
  1822. return TheBlock->getBody();
  1823. }
  1824. //===----------------------------------------------------------------------===//
  1825. // Generic Expression Routines
  1826. //===----------------------------------------------------------------------===//
  1827. /// isUnusedResultAWarning - Return true if this immediate expression should
  1828. /// be warned about if the result is unused. If so, fill in Loc and Ranges
  1829. /// with location to warn on and the source range[s] to report with the
  1830. /// warning.
  1831. bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
  1832. SourceRange &R1, SourceRange &R2,
  1833. ASTContext &Ctx) const {
  1834. // Don't warn if the expr is type dependent. The type could end up
  1835. // instantiating to void.
  1836. if (isTypeDependent())
  1837. return false;
  1838. switch (getStmtClass()) {
  1839. default:
  1840. if (getType()->isVoidType())
  1841. return false;
  1842. WarnE = this;
  1843. Loc = getExprLoc();
  1844. R1 = getSourceRange();
  1845. return true;
  1846. case ParenExprClass:
  1847. return cast<ParenExpr>(this)->getSubExpr()->
  1848. isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  1849. case GenericSelectionExprClass:
  1850. return cast<GenericSelectionExpr>(this)->getResultExpr()->
  1851. isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  1852. case ChooseExprClass:
  1853. return cast<ChooseExpr>(this)->getChosenSubExpr()->
  1854. isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  1855. case UnaryOperatorClass: {
  1856. const UnaryOperator *UO = cast<UnaryOperator>(this);
  1857. switch (UO->getOpcode()) {
  1858. case UO_Plus:
  1859. case UO_Minus:
  1860. case UO_AddrOf:
  1861. case UO_Not:
  1862. case UO_LNot:
  1863. case UO_Deref:
  1864. break;
  1865. case UO_PostInc:
  1866. case UO_PostDec:
  1867. case UO_PreInc:
  1868. case UO_PreDec: // ++/--
  1869. return false; // Not a warning.
  1870. case UO_Real:
  1871. case UO_Imag:
  1872. // accessing a piece of a volatile complex is a side-effect.
  1873. if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
  1874. .isVolatileQualified())
  1875. return false;
  1876. break;
  1877. case UO_Extension:
  1878. return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  1879. }
  1880. WarnE = this;
  1881. Loc = UO->getOperatorLoc();
  1882. R1 = UO->getSubExpr()->getSourceRange();
  1883. return true;
  1884. }
  1885. case BinaryOperatorClass: {
  1886. const BinaryOperator *BO = cast<BinaryOperator>(this);
  1887. switch (BO->getOpcode()) {
  1888. default:
  1889. break;
  1890. // Consider the RHS of comma for side effects. LHS was checked by
  1891. // Sema::CheckCommaOperands.
  1892. case BO_Comma:
  1893. // ((foo = <blah>), 0) is an idiom for hiding the result (and
  1894. // lvalue-ness) of an assignment written in a macro.
  1895. if (IntegerLiteral *IE =
  1896. dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
  1897. if (IE->getValue() == 0)
  1898. return false;
  1899. return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  1900. // Consider '||', '&&' to have side effects if the LHS or RHS does.
  1901. case BO_LAnd:
  1902. case BO_LOr:
  1903. if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
  1904. !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
  1905. return false;
  1906. break;
  1907. }
  1908. if (BO->isAssignmentOp())
  1909. return false;
  1910. WarnE = this;
  1911. Loc = BO->getOperatorLoc();
  1912. R1 = BO->getLHS()->getSourceRange();
  1913. R2 = BO->getRHS()->getSourceRange();
  1914. return true;
  1915. }
  1916. case CompoundAssignOperatorClass:
  1917. case VAArgExprClass:
  1918. case AtomicExprClass:
  1919. return false;
  1920. case ConditionalOperatorClass: {
  1921. // If only one of the LHS or RHS is a warning, the operator might
  1922. // be being used for control flow. Only warn if both the LHS and
  1923. // RHS are warnings.
  1924. const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
  1925. if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
  1926. return false;
  1927. if (!Exp->getLHS())
  1928. return true;
  1929. return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  1930. }
  1931. case MemberExprClass:
  1932. WarnE = this;
  1933. Loc = cast<MemberExpr>(this)->getMemberLoc();
  1934. R1 = SourceRange(Loc, Loc);
  1935. R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
  1936. return true;
  1937. case ArraySubscriptExprClass:
  1938. WarnE = this;
  1939. Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
  1940. R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
  1941. R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
  1942. return true;
  1943. case CXXOperatorCallExprClass: {
  1944. // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
  1945. // overloads as there is no reasonable way to define these such that they
  1946. // have non-trivial, desirable side-effects. See the -Wunused-comparison
  1947. // warning: operators == and != are commonly typo'ed, and so warning on them
  1948. // provides additional value as well. If this list is updated,
  1949. // DiagnoseUnusedComparison should be as well.
  1950. const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
  1951. switch (Op->getOperator()) {
  1952. default:
  1953. break;
  1954. case OO_EqualEqual:
  1955. case OO_ExclaimEqual:
  1956. case OO_Less:
  1957. case OO_Greater:
  1958. case OO_GreaterEqual:
  1959. case OO_LessEqual:
  1960. if (Op->getCallReturnType(Ctx)->isReferenceType() ||
  1961. Op->getCallReturnType(Ctx)->isVoidType())
  1962. break;
  1963. WarnE = this;
  1964. Loc = Op->getOperatorLoc();
  1965. R1 = Op->getSourceRange();
  1966. return true;
  1967. }
  1968. // Fallthrough for generic call handling.
  1969. }
  1970. case CallExprClass:
  1971. case CXXMemberCallExprClass:
  1972. case UserDefinedLiteralClass: {
  1973. // If this is a direct call, get the callee.
  1974. const CallExpr *CE = cast<CallExpr>(this);
  1975. if (const Decl *FD = CE->getCalleeDecl()) {
  1976. const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
  1977. bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr()
  1978. : FD->hasAttr<WarnUnusedResultAttr>();
  1979. // If the callee has attribute pure, const, or warn_unused_result, warn
  1980. // about it. void foo() { strlen("bar"); } should warn.
  1981. //
  1982. // Note: If new cases are added here, DiagnoseUnusedExprResult should be
  1983. // updated to match for QoI.
  1984. if (HasWarnUnusedResultAttr ||
  1985. FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
  1986. WarnE = this;
  1987. Loc = CE->getCallee()->getLocStart();
  1988. R1 = CE->getCallee()->getSourceRange();
  1989. if (unsigned NumArgs = CE->getNumArgs())
  1990. R2 = SourceRange(CE->getArg(0)->getLocStart(),
  1991. CE->getArg(NumArgs-1)->getLocEnd());
  1992. return true;
  1993. }
  1994. }
  1995. return false;
  1996. }
  1997. // If we don't know precisely what we're looking at, let's not warn.
  1998. case UnresolvedLookupExprClass:
  1999. case CXXUnresolvedConstructExprClass:
  2000. return false;
  2001. case CXXTemporaryObjectExprClass:
  2002. case CXXConstructExprClass: {
  2003. if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
  2004. if (Type->hasAttr<WarnUnusedAttr>()) {
  2005. WarnE = this;
  2006. Loc = getLocStart();
  2007. R1 = getSourceRange();
  2008. return true;
  2009. }
  2010. }
  2011. return false;
  2012. }
  2013. case ObjCMessageExprClass: {
  2014. const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
  2015. if (Ctx.getLangOpts().ObjCAutoRefCount &&
  2016. ME->isInstanceMessage() &&
  2017. !ME->getType()->isVoidType() &&
  2018. ME->getMethodFamily() == OMF_init) {
  2019. WarnE = this;
  2020. Loc = getExprLoc();
  2021. R1 = ME->getSourceRange();
  2022. return true;
  2023. }
  2024. if (const ObjCMethodDecl *MD = ME->getMethodDecl())
  2025. if (MD->hasAttr<WarnUnusedResultAttr>()) {
  2026. WarnE = this;
  2027. Loc = getExprLoc();
  2028. return true;
  2029. }
  2030. return false;
  2031. }
  2032. case ObjCPropertyRefExprClass:
  2033. WarnE = this;
  2034. Loc = getExprLoc();
  2035. R1 = getSourceRange();
  2036. return true;
  2037. case PseudoObjectExprClass: {
  2038. const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
  2039. // Only complain about things that have the form of a getter.
  2040. if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
  2041. isa<BinaryOperator>(PO->getSyntacticForm()))
  2042. return false;
  2043. WarnE = this;
  2044. Loc = getExprLoc();
  2045. R1 = getSourceRange();
  2046. return true;
  2047. }
  2048. case StmtExprClass: {
  2049. // Statement exprs don't logically have side effects themselves, but are
  2050. // sometimes used in macros in ways that give them a type that is unused.
  2051. // For example ({ blah; foo(); }) will end up with a type if foo has a type.
  2052. // however, if the result of the stmt expr is dead, we don't want to emit a
  2053. // warning.
  2054. const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
  2055. if (!CS->body_empty()) {
  2056. if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
  2057. return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2058. if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
  2059. if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
  2060. return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2061. }
  2062. if (getType()->isVoidType())
  2063. return false;
  2064. WarnE = this;
  2065. Loc = cast<StmtExpr>(this)->getLParenLoc();
  2066. R1 = getSourceRange();
  2067. return true;
  2068. }
  2069. case CXXFunctionalCastExprClass:
  2070. case CStyleCastExprClass: {
  2071. // Ignore an explicit cast to void unless the operand is a non-trivial
  2072. // volatile lvalue.
  2073. const CastExpr *CE = cast<CastExpr>(this);
  2074. if (CE->getCastKind() == CK_ToVoid) {
  2075. if (CE->getSubExpr()->isGLValue() &&
  2076. CE->getSubExpr()->getType().isVolatileQualified()) {
  2077. const DeclRefExpr *DRE =
  2078. dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
  2079. if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
  2080. cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
  2081. return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
  2082. R1, R2, Ctx);
  2083. }
  2084. }
  2085. return false;
  2086. }
  2087. // If this is a cast to a constructor conversion, check the operand.
  2088. // Otherwise, the result of the cast is unused.
  2089. if (CE->getCastKind() == CK_ConstructorConversion)
  2090. return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2091. WarnE = this;
  2092. if (const CXXFunctionalCastExpr *CXXCE =
  2093. dyn_cast<CXXFunctionalCastExpr>(this)) {
  2094. Loc = CXXCE->getLocStart();
  2095. R1 = CXXCE->getSubExpr()->getSourceRange();
  2096. } else {
  2097. const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
  2098. Loc = CStyleCE->getLParenLoc();
  2099. R1 = CStyleCE->getSubExpr()->getSourceRange();
  2100. }
  2101. return true;
  2102. }
  2103. case ImplicitCastExprClass: {
  2104. const CastExpr *ICE = cast<ImplicitCastExpr>(this);
  2105. // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
  2106. if (ICE->getCastKind() == CK_LValueToRValue &&
  2107. ICE->getSubExpr()->getType().isVolatileQualified())
  2108. return false;
  2109. return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2110. }
  2111. case CXXDefaultArgExprClass:
  2112. return (cast<CXXDefaultArgExpr>(this)
  2113. ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
  2114. case CXXDefaultInitExprClass:
  2115. return (cast<CXXDefaultInitExpr>(this)
  2116. ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
  2117. case CXXNewExprClass:
  2118. // FIXME: In theory, there might be new expressions that don't have side
  2119. // effects (e.g. a placement new with an uninitialized POD).
  2120. case CXXDeleteExprClass:
  2121. return false;
  2122. case CXXBindTemporaryExprClass:
  2123. return (cast<CXXBindTemporaryExpr>(this)
  2124. ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
  2125. case ExprWithCleanupsClass:
  2126. return (cast<ExprWithCleanups>(this)
  2127. ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
  2128. }
  2129. }
  2130. /// isOBJCGCCandidate - Check if an expression is objc gc'able.
  2131. /// returns true, if it is; false otherwise.
  2132. bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
  2133. const Expr *E = IgnoreParens();
  2134. switch (E->getStmtClass()) {
  2135. default:
  2136. return false;
  2137. case ObjCIvarRefExprClass:
  2138. return true;
  2139. case Expr::UnaryOperatorClass:
  2140. return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  2141. case ImplicitCastExprClass:
  2142. return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  2143. case MaterializeTemporaryExprClass:
  2144. return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
  2145. ->isOBJCGCCandidate(Ctx);
  2146. case CStyleCastExprClass:
  2147. return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  2148. case DeclRefExprClass: {
  2149. const Decl *D = cast<DeclRefExpr>(E)->getDecl();
  2150. if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
  2151. if (VD->hasGlobalStorage())
  2152. return true;
  2153. QualType T = VD->getType();
  2154. // dereferencing to a pointer is always a gc'able candidate,
  2155. // unless it is __weak.
  2156. return T->isPointerType() &&
  2157. (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
  2158. }
  2159. return false;
  2160. }
  2161. case MemberExprClass: {
  2162. const MemberExpr *M = cast<MemberExpr>(E);
  2163. return M->getBase()->isOBJCGCCandidate(Ctx);
  2164. }
  2165. case ArraySubscriptExprClass:
  2166. return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
  2167. }
  2168. }
  2169. bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
  2170. if (isTypeDependent())
  2171. return false;
  2172. return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
  2173. }
  2174. QualType Expr::findBoundMemberType(const Expr *expr) {
  2175. assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
  2176. // Bound member expressions are always one of these possibilities:
  2177. // x->m x.m x->*y x.*y
  2178. // (possibly parenthesized)
  2179. expr = expr->IgnoreParens();
  2180. if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
  2181. assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
  2182. return mem->getMemberDecl()->getType();
  2183. }
  2184. if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
  2185. QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
  2186. ->getPointeeType();
  2187. assert(type->isFunctionType());
  2188. return type;
  2189. }
  2190. assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
  2191. return QualType();
  2192. }
  2193. Expr* Expr::IgnoreParens() {
  2194. Expr* E = this;
  2195. while (true) {
  2196. if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
  2197. E = P->getSubExpr();
  2198. continue;
  2199. }
  2200. if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
  2201. if (P->getOpcode() == UO_Extension) {
  2202. E = P->getSubExpr();
  2203. continue;
  2204. }
  2205. }
  2206. if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
  2207. if (!P->isResultDependent()) {
  2208. E = P->getResultExpr();
  2209. continue;
  2210. }
  2211. }
  2212. if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
  2213. if (!P->isConditionDependent()) {
  2214. E = P->getChosenSubExpr();
  2215. continue;
  2216. }
  2217. }
  2218. return E;
  2219. }
  2220. }
  2221. /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
  2222. /// or CastExprs or ImplicitCastExprs, returning their operand.
  2223. Expr *Expr::IgnoreParenCasts() {
  2224. Expr *E = this;
  2225. while (true) {
  2226. E = E->IgnoreParens();
  2227. if (CastExpr *P = dyn_cast<CastExpr>(E)) {
  2228. E = P->getSubExpr();
  2229. continue;
  2230. }
  2231. if (MaterializeTemporaryExpr *Materialize
  2232. = dyn_cast<MaterializeTemporaryExpr>(E)) {
  2233. E = Materialize->GetTemporaryExpr();
  2234. continue;
  2235. }
  2236. if (SubstNonTypeTemplateParmExpr *NTTP
  2237. = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
  2238. E = NTTP->getReplacement();
  2239. continue;
  2240. }
  2241. return E;
  2242. }
  2243. }
  2244. Expr *Expr::IgnoreCasts() {
  2245. Expr *E = this;
  2246. while (true) {
  2247. if (CastExpr *P = dyn_cast<CastExpr>(E)) {
  2248. E = P->getSubExpr();
  2249. continue;
  2250. }
  2251. if (MaterializeTemporaryExpr *Materialize
  2252. = dyn_cast<MaterializeTemporaryExpr>(E)) {
  2253. E = Materialize->GetTemporaryExpr();
  2254. continue;
  2255. }
  2256. if (SubstNonTypeTemplateParmExpr *NTTP
  2257. = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
  2258. E = NTTP->getReplacement();
  2259. continue;
  2260. }
  2261. return E;
  2262. }
  2263. }
  2264. /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
  2265. /// casts. This is intended purely as a temporary workaround for code
  2266. /// that hasn't yet been rewritten to do the right thing about those
  2267. /// casts, and may disappear along with the last internal use.
  2268. Expr *Expr::IgnoreParenLValueCasts() {
  2269. Expr *E = this;
  2270. while (true) {
  2271. E = E->IgnoreParens();
  2272. if (CastExpr *P = dyn_cast<CastExpr>(E)) {
  2273. if (P->getCastKind() == CK_LValueToRValue) {
  2274. E = P->getSubExpr();
  2275. continue;
  2276. }
  2277. } else if (MaterializeTemporaryExpr *Materialize
  2278. = dyn_cast<MaterializeTemporaryExpr>(E)) {
  2279. E = Materialize->GetTemporaryExpr();
  2280. continue;
  2281. } else if (SubstNonTypeTemplateParmExpr *NTTP
  2282. = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
  2283. E = NTTP->getReplacement();
  2284. continue;
  2285. }
  2286. break;
  2287. }
  2288. return E;
  2289. }
  2290. Expr *Expr::ignoreParenBaseCasts() {
  2291. Expr *E = this;
  2292. while (true) {
  2293. E = E->IgnoreParens();
  2294. if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
  2295. if (CE->getCastKind() == CK_DerivedToBase ||
  2296. CE->getCastKind() == CK_UncheckedDerivedToBase ||
  2297. CE->getCastKind() == CK_NoOp) {
  2298. E = CE->getSubExpr();
  2299. continue;
  2300. }
  2301. }
  2302. return E;
  2303. }
  2304. }
  2305. Expr *Expr::IgnoreParenImpCasts() {
  2306. Expr *E = this;
  2307. while (true) {
  2308. E = E->IgnoreParens();
  2309. if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
  2310. E = P->getSubExpr();
  2311. continue;
  2312. }
  2313. if (MaterializeTemporaryExpr *Materialize
  2314. = dyn_cast<MaterializeTemporaryExpr>(E)) {
  2315. E = Materialize->GetTemporaryExpr();
  2316. continue;
  2317. }
  2318. if (SubstNonTypeTemplateParmExpr *NTTP
  2319. = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
  2320. E = NTTP->getReplacement();
  2321. continue;
  2322. }
  2323. return E;
  2324. }
  2325. }
  2326. Expr *Expr::IgnoreConversionOperator() {
  2327. if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
  2328. if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
  2329. return MCE->getImplicitObjectArgument();
  2330. }
  2331. return this;
  2332. }
  2333. /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
  2334. /// value (including ptr->int casts of the same size). Strip off any
  2335. /// ParenExpr or CastExprs, returning their operand.
  2336. Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
  2337. Expr *E = this;
  2338. while (true) {
  2339. E = E->IgnoreParens();
  2340. if (CastExpr *P = dyn_cast<CastExpr>(E)) {
  2341. // We ignore integer <-> casts that are of the same width, ptr<->ptr and
  2342. // ptr<->int casts of the same width. We also ignore all identity casts.
  2343. Expr *SE = P->getSubExpr();
  2344. if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
  2345. E = SE;
  2346. continue;
  2347. }
  2348. if ((E->getType()->isPointerType() ||
  2349. E->getType()->isIntegralType(Ctx)) &&
  2350. (SE->getType()->isPointerType() ||
  2351. SE->getType()->isIntegralType(Ctx)) &&
  2352. Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
  2353. E = SE;
  2354. continue;
  2355. }
  2356. }
  2357. if (SubstNonTypeTemplateParmExpr *NTTP
  2358. = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
  2359. E = NTTP->getReplacement();
  2360. continue;
  2361. }
  2362. return E;
  2363. }
  2364. }
  2365. bool Expr::isDefaultArgument() const {
  2366. const Expr *E = this;
  2367. if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
  2368. E = M->GetTemporaryExpr();
  2369. while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
  2370. E = ICE->getSubExprAsWritten();
  2371. return isa<CXXDefaultArgExpr>(E);
  2372. }
  2373. /// \brief Skip over any no-op casts and any temporary-binding
  2374. /// expressions.
  2375. static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
  2376. if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
  2377. E = M->GetTemporaryExpr();
  2378. while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  2379. if (ICE->getCastKind() == CK_NoOp)
  2380. E = ICE->getSubExpr();
  2381. else
  2382. break;
  2383. }
  2384. while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
  2385. E = BE->getSubExpr();
  2386. while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  2387. if (ICE->getCastKind() == CK_NoOp)
  2388. E = ICE->getSubExpr();
  2389. else
  2390. break;
  2391. }
  2392. return E->IgnoreParens();
  2393. }
  2394. /// isTemporaryObject - Determines if this expression produces a
  2395. /// temporary of the given class type.
  2396. bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
  2397. if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
  2398. return false;
  2399. const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
  2400. // Temporaries are by definition pr-values of class type.
  2401. if (!E->Classify(C).isPRValue()) {
  2402. // In this context, property reference is a message call and is pr-value.
  2403. if (!isa<ObjCPropertyRefExpr>(E))
  2404. return false;
  2405. }
  2406. // Black-list a few cases which yield pr-values of class type that don't
  2407. // refer to temporaries of that type:
  2408. // - implicit derived-to-base conversions
  2409. if (isa<ImplicitCastExpr>(E)) {
  2410. switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
  2411. case CK_DerivedToBase:
  2412. case CK_UncheckedDerivedToBase:
  2413. return false;
  2414. default:
  2415. break;
  2416. }
  2417. }
  2418. // - member expressions (all)
  2419. if (isa<MemberExpr>(E))
  2420. return false;
  2421. if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
  2422. if (BO->isPtrMemOp())
  2423. return false;
  2424. // - opaque values (all)
  2425. if (isa<OpaqueValueExpr>(E))
  2426. return false;
  2427. return true;
  2428. }
  2429. bool Expr::isImplicitCXXThis() const {
  2430. const Expr *E = this;
  2431. // Strip away parentheses and casts we don't care about.
  2432. while (true) {
  2433. if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
  2434. E = Paren->getSubExpr();
  2435. continue;
  2436. }
  2437. if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  2438. if (ICE->getCastKind() == CK_NoOp ||
  2439. ICE->getCastKind() == CK_LValueToRValue ||
  2440. ICE->getCastKind() == CK_DerivedToBase ||
  2441. ICE->getCastKind() == CK_UncheckedDerivedToBase) {
  2442. E = ICE->getSubExpr();
  2443. continue;
  2444. }
  2445. }
  2446. if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
  2447. if (UnOp->getOpcode() == UO_Extension) {
  2448. E = UnOp->getSubExpr();
  2449. continue;
  2450. }
  2451. }
  2452. if (const MaterializeTemporaryExpr *M
  2453. = dyn_cast<MaterializeTemporaryExpr>(E)) {
  2454. E = M->GetTemporaryExpr();
  2455. continue;
  2456. }
  2457. break;
  2458. }
  2459. if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
  2460. return This->isImplicit();
  2461. return false;
  2462. }
  2463. /// hasAnyTypeDependentArguments - Determines if any of the expressions
  2464. /// in Exprs is type-dependent.
  2465. bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
  2466. for (unsigned I = 0; I < Exprs.size(); ++I)
  2467. if (Exprs[I]->isTypeDependent())
  2468. return true;
  2469. return false;
  2470. }
  2471. bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
  2472. const Expr **Culprit) const {
  2473. // This function is attempting whether an expression is an initializer
  2474. // which can be evaluated at compile-time. It very closely parallels
  2475. // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
  2476. // will lead to unexpected results. Like ConstExprEmitter, it falls back
  2477. // to isEvaluatable most of the time.
  2478. //
  2479. // If we ever capture reference-binding directly in the AST, we can
  2480. // kill the second parameter.
  2481. if (IsForRef) {
  2482. EvalResult Result;
  2483. if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
  2484. return true;
  2485. if (Culprit)
  2486. *Culprit = this;
  2487. return false;
  2488. }
  2489. switch (getStmtClass()) {
  2490. default: break;
  2491. case StringLiteralClass:
  2492. case ObjCEncodeExprClass:
  2493. return true;
  2494. case CXXTemporaryObjectExprClass:
  2495. case CXXConstructExprClass: {
  2496. const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
  2497. if (CE->getConstructor()->isTrivial() &&
  2498. CE->getConstructor()->getParent()->hasTrivialDestructor()) {
  2499. // Trivial default constructor
  2500. if (!CE->getNumArgs()) return true;
  2501. // Trivial copy constructor
  2502. assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
  2503. return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
  2504. }
  2505. break;
  2506. }
  2507. case CompoundLiteralExprClass: {
  2508. // This handles gcc's extension that allows global initializers like
  2509. // "struct x {int x;} x = (struct x) {};".
  2510. // FIXME: This accepts other cases it shouldn't!
  2511. const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
  2512. return Exp->isConstantInitializer(Ctx, false, Culprit);
  2513. }
  2514. case DesignatedInitUpdateExprClass: {
  2515. const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
  2516. return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
  2517. DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
  2518. }
  2519. case InitListExprClass: {
  2520. const InitListExpr *ILE = cast<InitListExpr>(this);
  2521. if (ILE->getType()->isArrayType()) {
  2522. unsigned numInits = ILE->getNumInits();
  2523. for (unsigned i = 0; i < numInits; i++) {
  2524. if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
  2525. return false;
  2526. }
  2527. return true;
  2528. }
  2529. if (ILE->getType()->isRecordType()) {
  2530. unsigned ElementNo = 0;
  2531. RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
  2532. for (const auto *Field : RD->fields()) {
  2533. // If this is a union, skip all the fields that aren't being initialized.
  2534. if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
  2535. continue;
  2536. // Don't emit anonymous bitfields, they just affect layout.
  2537. if (Field->isUnnamedBitfield())
  2538. continue;
  2539. if (ElementNo < ILE->getNumInits()) {
  2540. const Expr *Elt = ILE->getInit(ElementNo++);
  2541. if (Field->isBitField()) {
  2542. // Bitfields have to evaluate to an integer.
  2543. llvm::APSInt ResultTmp;
  2544. if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) {
  2545. if (Culprit)
  2546. *Culprit = Elt;
  2547. return false;
  2548. }
  2549. } else {
  2550. bool RefType = Field->getType()->isReferenceType();
  2551. if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
  2552. return false;
  2553. }
  2554. }
  2555. }
  2556. return true;
  2557. }
  2558. break;
  2559. }
  2560. case ImplicitValueInitExprClass:
  2561. case NoInitExprClass:
  2562. return true;
  2563. case ParenExprClass:
  2564. return cast<ParenExpr>(this)->getSubExpr()
  2565. ->isConstantInitializer(Ctx, IsForRef, Culprit);
  2566. case GenericSelectionExprClass:
  2567. return cast<GenericSelectionExpr>(this)->getResultExpr()
  2568. ->isConstantInitializer(Ctx, IsForRef, Culprit);
  2569. case ChooseExprClass:
  2570. if (cast<ChooseExpr>(this)->isConditionDependent()) {
  2571. if (Culprit)
  2572. *Culprit = this;
  2573. return false;
  2574. }
  2575. return cast<ChooseExpr>(this)->getChosenSubExpr()
  2576. ->isConstantInitializer(Ctx, IsForRef, Culprit);
  2577. case UnaryOperatorClass: {
  2578. const UnaryOperator* Exp = cast<UnaryOperator>(this);
  2579. if (Exp->getOpcode() == UO_Extension)
  2580. return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
  2581. break;
  2582. }
  2583. case CXXFunctionalCastExprClass:
  2584. case CXXStaticCastExprClass:
  2585. case ImplicitCastExprClass:
  2586. case CStyleCastExprClass:
  2587. case ObjCBridgedCastExprClass:
  2588. case CXXDynamicCastExprClass:
  2589. case CXXReinterpretCastExprClass:
  2590. case CXXConstCastExprClass: {
  2591. const CastExpr *CE = cast<CastExpr>(this);
  2592. // Handle misc casts we want to ignore.
  2593. if (CE->getCastKind() == CK_NoOp ||
  2594. CE->getCastKind() == CK_LValueToRValue ||
  2595. CE->getCastKind() == CK_ToUnion ||
  2596. CE->getCastKind() == CK_ConstructorConversion ||
  2597. CE->getCastKind() == CK_NonAtomicToAtomic ||
  2598. CE->getCastKind() == CK_AtomicToNonAtomic)
  2599. return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
  2600. break;
  2601. }
  2602. case MaterializeTemporaryExprClass:
  2603. return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
  2604. ->isConstantInitializer(Ctx, false, Culprit);
  2605. case SubstNonTypeTemplateParmExprClass:
  2606. return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
  2607. ->isConstantInitializer(Ctx, false, Culprit);
  2608. case CXXDefaultArgExprClass:
  2609. return cast<CXXDefaultArgExpr>(this)->getExpr()
  2610. ->isConstantInitializer(Ctx, false, Culprit);
  2611. case CXXDefaultInitExprClass:
  2612. return cast<CXXDefaultInitExpr>(this)->getExpr()
  2613. ->isConstantInitializer(Ctx, false, Culprit);
  2614. }
  2615. if (isEvaluatable(Ctx))
  2616. return true;
  2617. if (Culprit)
  2618. *Culprit = this;
  2619. return false;
  2620. }
  2621. namespace {
  2622. /// \brief Look for any side effects within a Stmt.
  2623. class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
  2624. typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
  2625. const bool IncludePossibleEffects;
  2626. bool HasSideEffects;
  2627. public:
  2628. explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
  2629. : Inherited(Context),
  2630. IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
  2631. bool hasSideEffects() const { return HasSideEffects; }
  2632. void VisitExpr(const Expr *E) {
  2633. if (!HasSideEffects &&
  2634. E->HasSideEffects(Context, IncludePossibleEffects))
  2635. HasSideEffects = true;
  2636. }
  2637. };
  2638. }
  2639. bool Expr::HasSideEffects(const ASTContext &Ctx,
  2640. bool IncludePossibleEffects) const {
  2641. // In circumstances where we care about definite side effects instead of
  2642. // potential side effects, we want to ignore expressions that are part of a
  2643. // macro expansion as a potential side effect.
  2644. if (!IncludePossibleEffects && getExprLoc().isMacroID())
  2645. return false;
  2646. if (isInstantiationDependent())
  2647. return IncludePossibleEffects;
  2648. switch (getStmtClass()) {
  2649. case NoStmtClass:
  2650. #define ABSTRACT_STMT(Type)
  2651. #define STMT(Type, Base) case Type##Class:
  2652. #define EXPR(Type, Base)
  2653. #include "clang/AST/StmtNodes.inc"
  2654. llvm_unreachable("unexpected Expr kind");
  2655. case DependentScopeDeclRefExprClass:
  2656. case CXXUnresolvedConstructExprClass:
  2657. case CXXDependentScopeMemberExprClass:
  2658. case UnresolvedLookupExprClass:
  2659. case UnresolvedMemberExprClass:
  2660. case PackExpansionExprClass:
  2661. case SubstNonTypeTemplateParmPackExprClass:
  2662. case FunctionParmPackExprClass:
  2663. case TypoExprClass:
  2664. case CXXFoldExprClass:
  2665. llvm_unreachable("shouldn't see dependent / unresolved nodes here");
  2666. case DeclRefExprClass:
  2667. case ObjCIvarRefExprClass:
  2668. case PredefinedExprClass:
  2669. case IntegerLiteralClass:
  2670. case FloatingLiteralClass:
  2671. case ImaginaryLiteralClass:
  2672. case StringLiteralClass:
  2673. case CharacterLiteralClass:
  2674. case OffsetOfExprClass:
  2675. case ImplicitValueInitExprClass:
  2676. case UnaryExprOrTypeTraitExprClass:
  2677. case AddrLabelExprClass:
  2678. case GNUNullExprClass:
  2679. case NoInitExprClass:
  2680. case CXXBoolLiteralExprClass:
  2681. case CXXNullPtrLiteralExprClass:
  2682. case CXXThisExprClass:
  2683. case CXXScalarValueInitExprClass:
  2684. case TypeTraitExprClass:
  2685. case ArrayTypeTraitExprClass:
  2686. case ExpressionTraitExprClass:
  2687. case CXXNoexceptExprClass:
  2688. case SizeOfPackExprClass:
  2689. case ObjCStringLiteralClass:
  2690. case ObjCEncodeExprClass:
  2691. case ObjCBoolLiteralExprClass:
  2692. case CXXUuidofExprClass:
  2693. case OpaqueValueExprClass:
  2694. // These never have a side-effect.
  2695. return false;
  2696. case CallExprClass:
  2697. case CXXOperatorCallExprClass:
  2698. case CXXMemberCallExprClass:
  2699. case CUDAKernelCallExprClass:
  2700. case UserDefinedLiteralClass: {
  2701. // We don't know a call definitely has side effects, except for calls
  2702. // to pure/const functions that definitely don't.
  2703. // If the call itself is considered side-effect free, check the operands.
  2704. const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
  2705. bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
  2706. if (IsPure || !IncludePossibleEffects)
  2707. break;
  2708. return true;
  2709. }
  2710. case BlockExprClass:
  2711. case CXXBindTemporaryExprClass:
  2712. if (!IncludePossibleEffects)
  2713. break;
  2714. return true;
  2715. case MSPropertyRefExprClass:
  2716. case CompoundAssignOperatorClass:
  2717. case VAArgExprClass:
  2718. case AtomicExprClass:
  2719. case CXXThrowExprClass:
  2720. case CXXNewExprClass:
  2721. case CXXDeleteExprClass:
  2722. case ExprWithCleanupsClass:
  2723. // These always have a side-effect.
  2724. return true;
  2725. case StmtExprClass: {
  2726. // StmtExprs have a side-effect if any substatement does.
  2727. SideEffectFinder Finder(Ctx, IncludePossibleEffects);
  2728. Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
  2729. return Finder.hasSideEffects();
  2730. }
  2731. case ParenExprClass:
  2732. case ArraySubscriptExprClass:
  2733. case MemberExprClass:
  2734. case ConditionalOperatorClass:
  2735. case BinaryConditionalOperatorClass:
  2736. case CompoundLiteralExprClass:
  2737. case ExtVectorElementExprClass:
  2738. case ExtMatrixElementExprClass: // HLSL Change
  2739. case HLSLVectorElementExprClass: // HLSL Change
  2740. case DesignatedInitExprClass:
  2741. case DesignatedInitUpdateExprClass:
  2742. case ParenListExprClass:
  2743. case CXXPseudoDestructorExprClass:
  2744. case CXXStdInitializerListExprClass:
  2745. case SubstNonTypeTemplateParmExprClass:
  2746. case MaterializeTemporaryExprClass:
  2747. case ShuffleVectorExprClass:
  2748. case ConvertVectorExprClass:
  2749. case AsTypeExprClass:
  2750. // These have a side-effect if any subexpression does.
  2751. break;
  2752. case UnaryOperatorClass:
  2753. if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
  2754. return true;
  2755. break;
  2756. case BinaryOperatorClass:
  2757. if (cast<BinaryOperator>(this)->isAssignmentOp())
  2758. return true;
  2759. break;
  2760. case InitListExprClass:
  2761. // FIXME: The children for an InitListExpr doesn't include the array filler.
  2762. if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
  2763. if (E->HasSideEffects(Ctx, IncludePossibleEffects))
  2764. return true;
  2765. break;
  2766. case GenericSelectionExprClass:
  2767. return cast<GenericSelectionExpr>(this)->getResultExpr()->
  2768. HasSideEffects(Ctx, IncludePossibleEffects);
  2769. case ChooseExprClass:
  2770. return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
  2771. Ctx, IncludePossibleEffects);
  2772. case CXXDefaultArgExprClass:
  2773. return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
  2774. Ctx, IncludePossibleEffects);
  2775. case CXXDefaultInitExprClass: {
  2776. const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
  2777. if (const Expr *E = FD->getInClassInitializer())
  2778. return E->HasSideEffects(Ctx, IncludePossibleEffects);
  2779. // If we've not yet parsed the initializer, assume it has side-effects.
  2780. return true;
  2781. }
  2782. case CXXDynamicCastExprClass: {
  2783. // A dynamic_cast expression has side-effects if it can throw.
  2784. const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
  2785. if (DCE->getTypeAsWritten()->isReferenceType() &&
  2786. DCE->getCastKind() == CK_Dynamic)
  2787. return true;
  2788. } // Fall through.
  2789. case ImplicitCastExprClass:
  2790. case CStyleCastExprClass:
  2791. case CXXStaticCastExprClass:
  2792. case CXXReinterpretCastExprClass:
  2793. case CXXConstCastExprClass:
  2794. case CXXFunctionalCastExprClass: {
  2795. // While volatile reads are side-effecting in both C and C++, we treat them
  2796. // as having possible (not definite) side-effects. This allows idiomatic
  2797. // code to behave without warning, such as sizeof(*v) for a volatile-
  2798. // qualified pointer.
  2799. if (!IncludePossibleEffects)
  2800. break;
  2801. const CastExpr *CE = cast<CastExpr>(this);
  2802. if (CE->getCastKind() == CK_LValueToRValue &&
  2803. CE->getSubExpr()->getType().isVolatileQualified())
  2804. return true;
  2805. break;
  2806. }
  2807. case CXXTypeidExprClass:
  2808. // typeid might throw if its subexpression is potentially-evaluated, so has
  2809. // side-effects in that case whether or not its subexpression does.
  2810. return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
  2811. case CXXConstructExprClass:
  2812. case CXXTemporaryObjectExprClass: {
  2813. const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
  2814. if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
  2815. return true;
  2816. // A trivial constructor does not add any side-effects of its own. Just look
  2817. // at its arguments.
  2818. break;
  2819. }
  2820. case LambdaExprClass: {
  2821. const LambdaExpr *LE = cast<LambdaExpr>(this);
  2822. for (LambdaExpr::capture_iterator I = LE->capture_begin(),
  2823. E = LE->capture_end(); I != E; ++I)
  2824. if (I->getCaptureKind() == LCK_ByCopy)
  2825. // FIXME: Only has a side-effect if the variable is volatile or if
  2826. // the copy would invoke a non-trivial copy constructor.
  2827. return true;
  2828. return false;
  2829. }
  2830. case PseudoObjectExprClass: {
  2831. // Only look for side-effects in the semantic form, and look past
  2832. // OpaqueValueExpr bindings in that form.
  2833. const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
  2834. for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
  2835. E = PO->semantics_end();
  2836. I != E; ++I) {
  2837. const Expr *Subexpr = *I;
  2838. if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
  2839. Subexpr = OVE->getSourceExpr();
  2840. if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
  2841. return true;
  2842. }
  2843. return false;
  2844. }
  2845. case ObjCBoxedExprClass:
  2846. case ObjCArrayLiteralClass:
  2847. case ObjCDictionaryLiteralClass:
  2848. case ObjCSelectorExprClass:
  2849. case ObjCProtocolExprClass:
  2850. case ObjCIsaExprClass:
  2851. case ObjCIndirectCopyRestoreExprClass:
  2852. case ObjCSubscriptRefExprClass:
  2853. case ObjCBridgedCastExprClass:
  2854. case ObjCMessageExprClass:
  2855. case ObjCPropertyRefExprClass:
  2856. // FIXME: Classify these cases better.
  2857. if (IncludePossibleEffects)
  2858. return true;
  2859. break;
  2860. }
  2861. // Recurse to children.
  2862. for (const Stmt *SubStmt : children())
  2863. if (SubStmt &&
  2864. cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
  2865. return true;
  2866. return false;
  2867. }
  2868. namespace {
  2869. /// \brief Look for a call to a non-trivial function within an expression.
  2870. class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
  2871. {
  2872. typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
  2873. bool NonTrivial;
  2874. public:
  2875. explicit NonTrivialCallFinder(const ASTContext &Context)
  2876. : Inherited(Context), NonTrivial(false) { }
  2877. bool hasNonTrivialCall() const { return NonTrivial; }
  2878. void VisitCallExpr(const CallExpr *E) {
  2879. if (const CXXMethodDecl *Method
  2880. = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
  2881. if (Method->isTrivial()) {
  2882. // Recurse to children of the call.
  2883. Inherited::VisitStmt(E);
  2884. return;
  2885. }
  2886. }
  2887. NonTrivial = true;
  2888. }
  2889. void VisitCXXConstructExpr(const CXXConstructExpr *E) {
  2890. if (E->getConstructor()->isTrivial()) {
  2891. // Recurse to children of the call.
  2892. Inherited::VisitStmt(E);
  2893. return;
  2894. }
  2895. NonTrivial = true;
  2896. }
  2897. void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
  2898. if (E->getTemporary()->getDestructor()->isTrivial()) {
  2899. Inherited::VisitStmt(E);
  2900. return;
  2901. }
  2902. NonTrivial = true;
  2903. }
  2904. };
  2905. }
  2906. bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
  2907. NonTrivialCallFinder Finder(Ctx);
  2908. Finder.Visit(this);
  2909. return Finder.hasNonTrivialCall();
  2910. }
  2911. /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
  2912. /// pointer constant or not, as well as the specific kind of constant detected.
  2913. /// Null pointer constants can be integer constant expressions with the
  2914. /// value zero, casts of zero to void*, nullptr (C++0X), or __null
  2915. /// (a GNU extension).
  2916. Expr::NullPointerConstantKind
  2917. Expr::isNullPointerConstant(ASTContext &Ctx,
  2918. NullPointerConstantValueDependence NPC) const {
  2919. if (isValueDependent() &&
  2920. (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
  2921. switch (NPC) {
  2922. case NPC_NeverValueDependent:
  2923. llvm_unreachable("Unexpected value dependent expression!");
  2924. case NPC_ValueDependentIsNull:
  2925. if (isTypeDependent() || getType()->isIntegralType(Ctx))
  2926. return NPCK_ZeroExpression;
  2927. else
  2928. return NPCK_NotNull;
  2929. case NPC_ValueDependentIsNotNull:
  2930. return NPCK_NotNull;
  2931. }
  2932. }
  2933. // Strip off a cast to void*, if it exists. Except in C++.
  2934. if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
  2935. if (!Ctx.getLangOpts().CPlusPlus) {
  2936. // Check that it is a cast to void*.
  2937. if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
  2938. QualType Pointee = PT->getPointeeType();
  2939. if (!Pointee.hasQualifiers() &&
  2940. Pointee->isVoidType() && // to void*
  2941. CE->getSubExpr()->getType()->isIntegerType()) // from int.
  2942. return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  2943. }
  2944. }
  2945. } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
  2946. // Ignore the ImplicitCastExpr type entirely.
  2947. return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  2948. } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
  2949. // Accept ((void*)0) as a null pointer constant, as many other
  2950. // implementations do.
  2951. return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  2952. } else if (const GenericSelectionExpr *GE =
  2953. dyn_cast<GenericSelectionExpr>(this)) {
  2954. if (GE->isResultDependent())
  2955. return NPCK_NotNull;
  2956. return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
  2957. } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
  2958. if (CE->isConditionDependent())
  2959. return NPCK_NotNull;
  2960. return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
  2961. } else if (const CXXDefaultArgExpr *DefaultArg
  2962. = dyn_cast<CXXDefaultArgExpr>(this)) {
  2963. // See through default argument expressions.
  2964. return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
  2965. } else if (const CXXDefaultInitExpr *DefaultInit
  2966. = dyn_cast<CXXDefaultInitExpr>(this)) {
  2967. // See through default initializer expressions.
  2968. return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
  2969. } else if (isa<GNUNullExpr>(this)) {
  2970. // The GNU __null extension is always a null pointer constant.
  2971. return NPCK_GNUNull;
  2972. } else if (const MaterializeTemporaryExpr *M
  2973. = dyn_cast<MaterializeTemporaryExpr>(this)) {
  2974. return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
  2975. } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
  2976. if (const Expr *Source = OVE->getSourceExpr())
  2977. return Source->isNullPointerConstant(Ctx, NPC);
  2978. }
  2979. // C++11 nullptr_t is always a null pointer constant.
  2980. if (getType()->isNullPtrType())
  2981. return NPCK_CXX11_nullptr;
  2982. if (const RecordType *UT = getType()->getAsUnionType())
  2983. if (!Ctx.getLangOpts().CPlusPlus11 &&
  2984. UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
  2985. if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
  2986. const Expr *InitExpr = CLE->getInitializer();
  2987. if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
  2988. return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
  2989. }
  2990. // This expression must be an integer type.
  2991. if (!getType()->isIntegerType() ||
  2992. (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
  2993. return NPCK_NotNull;
  2994. // HLSL Change Begin -External variable is in cbuffer, cannot use as immediate.
  2995. if (getStmtClass() == Stmt::DeclRefExprClass && Ctx.getLangOpts().HLSL) {
  2996. const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(this);
  2997. const ValueDecl *VD = DRE->getDecl();
  2998. // External variable is in cbuffer, cannot use as immediate.
  2999. if (VD->hasExternalFormalLinkage() &&
  3000. !isa<EnumConstantDecl>(VD))
  3001. return NPCK_NotNull;
  3002. }
  3003. // HLSL Change End.
  3004. if (Ctx.getLangOpts().CPlusPlus11) {
  3005. // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
  3006. // value zero or a prvalue of type std::nullptr_t.
  3007. // Microsoft mode permits C++98 rules reflecting MSVC behavior.
  3008. const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
  3009. if (Lit && !Lit->getValue())
  3010. return NPCK_ZeroLiteral;
  3011. else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
  3012. return NPCK_NotNull;
  3013. } else {
  3014. // If we have an integer constant expression, we need to *evaluate* it and
  3015. // test for the value 0.
  3016. if (!isIntegerConstantExpr(Ctx))
  3017. return NPCK_NotNull;
  3018. }
  3019. if (EvaluateKnownConstInt(Ctx) != 0)
  3020. return NPCK_NotNull;
  3021. if (isa<IntegerLiteral>(this))
  3022. return NPCK_ZeroLiteral;
  3023. return NPCK_ZeroExpression;
  3024. }
  3025. /// \brief If this expression is an l-value for an Objective C
  3026. /// property, find the underlying property reference expression.
  3027. const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
  3028. const Expr *E = this;
  3029. while (true) {
  3030. assert((E->getValueKind() == VK_LValue &&
  3031. E->getObjectKind() == OK_ObjCProperty) &&
  3032. "expression is not a property reference");
  3033. E = E->IgnoreParenCasts();
  3034. if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
  3035. if (BO->getOpcode() == BO_Comma) {
  3036. E = BO->getRHS();
  3037. continue;
  3038. }
  3039. }
  3040. break;
  3041. }
  3042. return cast<ObjCPropertyRefExpr>(E);
  3043. }
  3044. bool Expr::isObjCSelfExpr() const {
  3045. const Expr *E = IgnoreParenImpCasts();
  3046. const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
  3047. if (!DRE)
  3048. return false;
  3049. const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
  3050. if (!Param)
  3051. return false;
  3052. const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
  3053. if (!M)
  3054. return false;
  3055. return M->getSelfDecl() == Param;
  3056. }
  3057. FieldDecl *Expr::getSourceBitField() {
  3058. Expr *E = this->IgnoreParens();
  3059. while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  3060. if (ICE->getCastKind() == CK_LValueToRValue ||
  3061. (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
  3062. E = ICE->getSubExpr()->IgnoreParens();
  3063. else
  3064. break;
  3065. }
  3066. if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
  3067. if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
  3068. if (Field->isBitField())
  3069. return Field;
  3070. if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
  3071. if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
  3072. if (Ivar->isBitField())
  3073. return Ivar;
  3074. if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
  3075. if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
  3076. if (Field->isBitField())
  3077. return Field;
  3078. if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
  3079. if (BinOp->isAssignmentOp() && BinOp->getLHS())
  3080. return BinOp->getLHS()->getSourceBitField();
  3081. if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
  3082. return BinOp->getRHS()->getSourceBitField();
  3083. }
  3084. if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
  3085. if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
  3086. return UnOp->getSubExpr()->getSourceBitField();
  3087. return nullptr;
  3088. }
  3089. bool Expr::refersToVectorElement() const {
  3090. const Expr *E = this->IgnoreParens();
  3091. while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  3092. if (ICE->getValueKind() != VK_RValue &&
  3093. ICE->getCastKind() == CK_NoOp)
  3094. E = ICE->getSubExpr()->IgnoreParens();
  3095. else
  3096. break;
  3097. }
  3098. if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
  3099. return ASE->getBase()->getType()->isVectorType();
  3100. if (isa<ExtVectorElementExpr>(E))
  3101. return true;
  3102. return false;
  3103. }
  3104. /// isArrow - Return true if the base expression is a pointer to vector,
  3105. /// return false if the base expression is a vector.
  3106. bool ExtVectorElementExpr::isArrow() const {
  3107. return getBase()->getType()->isPointerType();
  3108. }
  3109. unsigned ExtVectorElementExpr::getNumElements() const {
  3110. if (const VectorType *VT = getType()->getAs<VectorType>())
  3111. return VT->getNumElements();
  3112. return 1;
  3113. }
  3114. /// containsDuplicateElements - Return true if any element access is repeated.
  3115. bool ExtVectorElementExpr::containsDuplicateElements() const {
  3116. // FIXME: Refactor this code to an accessor on the AST node which returns the
  3117. // "type" of component access, and share with code below and in Sema.
  3118. StringRef Comp = Accessor->getName();
  3119. // Halving swizzles do not contain duplicate elements.
  3120. if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
  3121. return false;
  3122. // Advance past s-char prefix on hex swizzles.
  3123. if (Comp[0] == 's' || Comp[0] == 'S')
  3124. Comp = Comp.substr(1);
  3125. for (unsigned i = 0, e = Comp.size(); i != e; ++i)
  3126. if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
  3127. return true;
  3128. return false;
  3129. }
  3130. /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
  3131. void ExtVectorElementExpr::getEncodedElementAccess(
  3132. SmallVectorImpl<unsigned> &Elts) const {
  3133. StringRef Comp = Accessor->getName();
  3134. if (Comp[0] == 's' || Comp[0] == 'S')
  3135. Comp = Comp.substr(1);
  3136. bool isHi = Comp == "hi";
  3137. bool isLo = Comp == "lo";
  3138. bool isEven = Comp == "even";
  3139. bool isOdd = Comp == "odd";
  3140. for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
  3141. uint64_t Index;
  3142. if (isHi)
  3143. Index = e + i;
  3144. else if (isLo)
  3145. Index = i;
  3146. else if (isEven)
  3147. Index = 2 * i;
  3148. else if (isOdd)
  3149. Index = 2 * i + 1;
  3150. else
  3151. Index = ExtVectorType::getAccessorIdx(Comp[i]);
  3152. Elts.push_back(Index);
  3153. }
  3154. }
  3155. ObjCMessageExpr::ObjCMessageExpr(QualType T,
  3156. ExprValueKind VK,
  3157. SourceLocation LBracLoc,
  3158. SourceLocation SuperLoc,
  3159. bool IsInstanceSuper,
  3160. QualType SuperType,
  3161. Selector Sel,
  3162. ArrayRef<SourceLocation> SelLocs,
  3163. SelectorLocationsKind SelLocsK,
  3164. ObjCMethodDecl *Method,
  3165. ArrayRef<Expr *> Args,
  3166. SourceLocation RBracLoc,
  3167. bool isImplicit)
  3168. : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
  3169. /*TypeDependent=*/false, /*ValueDependent=*/false,
  3170. /*InstantiationDependent=*/false,
  3171. /*ContainsUnexpandedParameterPack=*/false),
  3172. SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
  3173. : Sel.getAsOpaquePtr())),
  3174. Kind(IsInstanceSuper? SuperInstance : SuperClass),
  3175. HasMethod(Method != nullptr), IsDelegateInitCall(false),
  3176. IsImplicit(isImplicit), SuperLoc(SuperLoc), LBracLoc(LBracLoc),
  3177. RBracLoc(RBracLoc)
  3178. {
  3179. initArgsAndSelLocs(Args, SelLocs, SelLocsK);
  3180. setReceiverPointer(SuperType.getAsOpaquePtr());
  3181. }
  3182. ObjCMessageExpr::ObjCMessageExpr(QualType T,
  3183. ExprValueKind VK,
  3184. SourceLocation LBracLoc,
  3185. TypeSourceInfo *Receiver,
  3186. Selector Sel,
  3187. ArrayRef<SourceLocation> SelLocs,
  3188. SelectorLocationsKind SelLocsK,
  3189. ObjCMethodDecl *Method,
  3190. ArrayRef<Expr *> Args,
  3191. SourceLocation RBracLoc,
  3192. bool isImplicit)
  3193. : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
  3194. T->isDependentType(), T->isInstantiationDependentType(),
  3195. T->containsUnexpandedParameterPack()),
  3196. SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
  3197. : Sel.getAsOpaquePtr())),
  3198. Kind(Class),
  3199. HasMethod(Method != nullptr), IsDelegateInitCall(false),
  3200. IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
  3201. {
  3202. initArgsAndSelLocs(Args, SelLocs, SelLocsK);
  3203. setReceiverPointer(Receiver);
  3204. }
  3205. ObjCMessageExpr::ObjCMessageExpr(QualType T,
  3206. ExprValueKind VK,
  3207. SourceLocation LBracLoc,
  3208. Expr *Receiver,
  3209. Selector Sel,
  3210. ArrayRef<SourceLocation> SelLocs,
  3211. SelectorLocationsKind SelLocsK,
  3212. ObjCMethodDecl *Method,
  3213. ArrayRef<Expr *> Args,
  3214. SourceLocation RBracLoc,
  3215. bool isImplicit)
  3216. : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
  3217. Receiver->isTypeDependent(),
  3218. Receiver->isInstantiationDependent(),
  3219. Receiver->containsUnexpandedParameterPack()),
  3220. SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
  3221. : Sel.getAsOpaquePtr())),
  3222. Kind(Instance),
  3223. HasMethod(Method != nullptr), IsDelegateInitCall(false),
  3224. IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
  3225. {
  3226. initArgsAndSelLocs(Args, SelLocs, SelLocsK);
  3227. setReceiverPointer(Receiver);
  3228. }
  3229. void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
  3230. ArrayRef<SourceLocation> SelLocs,
  3231. SelectorLocationsKind SelLocsK) {
  3232. setNumArgs(Args.size());
  3233. Expr **MyArgs = getArgs();
  3234. for (unsigned I = 0; I != Args.size(); ++I) {
  3235. if (Args[I]->isTypeDependent())
  3236. ExprBits.TypeDependent = true;
  3237. if (Args[I]->isValueDependent())
  3238. ExprBits.ValueDependent = true;
  3239. if (Args[I]->isInstantiationDependent())
  3240. ExprBits.InstantiationDependent = true;
  3241. if (Args[I]->containsUnexpandedParameterPack())
  3242. ExprBits.ContainsUnexpandedParameterPack = true;
  3243. MyArgs[I] = Args[I];
  3244. }
  3245. SelLocsKind = SelLocsK;
  3246. if (!isImplicit()) {
  3247. if (SelLocsK == SelLoc_NonStandard)
  3248. std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
  3249. }
  3250. }
  3251. ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
  3252. ExprValueKind VK,
  3253. SourceLocation LBracLoc,
  3254. SourceLocation SuperLoc,
  3255. bool IsInstanceSuper,
  3256. QualType SuperType,
  3257. Selector Sel,
  3258. ArrayRef<SourceLocation> SelLocs,
  3259. ObjCMethodDecl *Method,
  3260. ArrayRef<Expr *> Args,
  3261. SourceLocation RBracLoc,
  3262. bool isImplicit) {
  3263. assert((!SelLocs.empty() || isImplicit) &&
  3264. "No selector locs for non-implicit message");
  3265. ObjCMessageExpr *Mem;
  3266. SelectorLocationsKind SelLocsK = SelectorLocationsKind();
  3267. if (isImplicit)
  3268. Mem = alloc(Context, Args.size(), 0);
  3269. else
  3270. Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
  3271. return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
  3272. SuperType, Sel, SelLocs, SelLocsK,
  3273. Method, Args, RBracLoc, isImplicit);
  3274. }
  3275. ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
  3276. ExprValueKind VK,
  3277. SourceLocation LBracLoc,
  3278. TypeSourceInfo *Receiver,
  3279. Selector Sel,
  3280. ArrayRef<SourceLocation> SelLocs,
  3281. ObjCMethodDecl *Method,
  3282. ArrayRef<Expr *> Args,
  3283. SourceLocation RBracLoc,
  3284. bool isImplicit) {
  3285. assert((!SelLocs.empty() || isImplicit) &&
  3286. "No selector locs for non-implicit message");
  3287. ObjCMessageExpr *Mem;
  3288. SelectorLocationsKind SelLocsK = SelectorLocationsKind();
  3289. if (isImplicit)
  3290. Mem = alloc(Context, Args.size(), 0);
  3291. else
  3292. Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
  3293. return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
  3294. SelLocs, SelLocsK, Method, Args, RBracLoc,
  3295. isImplicit);
  3296. }
  3297. ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
  3298. ExprValueKind VK,
  3299. SourceLocation LBracLoc,
  3300. Expr *Receiver,
  3301. Selector Sel,
  3302. ArrayRef<SourceLocation> SelLocs,
  3303. ObjCMethodDecl *Method,
  3304. ArrayRef<Expr *> Args,
  3305. SourceLocation RBracLoc,
  3306. bool isImplicit) {
  3307. assert((!SelLocs.empty() || isImplicit) &&
  3308. "No selector locs for non-implicit message");
  3309. ObjCMessageExpr *Mem;
  3310. SelectorLocationsKind SelLocsK = SelectorLocationsKind();
  3311. if (isImplicit)
  3312. Mem = alloc(Context, Args.size(), 0);
  3313. else
  3314. Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
  3315. return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
  3316. SelLocs, SelLocsK, Method, Args, RBracLoc,
  3317. isImplicit);
  3318. }
  3319. ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(const ASTContext &Context,
  3320. unsigned NumArgs,
  3321. unsigned NumStoredSelLocs) {
  3322. ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
  3323. return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
  3324. }
  3325. ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
  3326. ArrayRef<Expr *> Args,
  3327. SourceLocation RBraceLoc,
  3328. ArrayRef<SourceLocation> SelLocs,
  3329. Selector Sel,
  3330. SelectorLocationsKind &SelLocsK) {
  3331. SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
  3332. unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
  3333. : 0;
  3334. return alloc(C, Args.size(), NumStoredSelLocs);
  3335. }
  3336. ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
  3337. unsigned NumArgs,
  3338. unsigned NumStoredSelLocs) {
  3339. unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
  3340. NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
  3341. return (ObjCMessageExpr *)C.Allocate(Size,
  3342. llvm::AlignOf<ObjCMessageExpr>::Alignment);
  3343. }
  3344. void ObjCMessageExpr::getSelectorLocs(
  3345. SmallVectorImpl<SourceLocation> &SelLocs) const {
  3346. for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
  3347. SelLocs.push_back(getSelectorLoc(i));
  3348. }
  3349. SourceRange ObjCMessageExpr::getReceiverRange() const {
  3350. switch (getReceiverKind()) {
  3351. case Instance:
  3352. return getInstanceReceiver()->getSourceRange();
  3353. case Class:
  3354. return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
  3355. case SuperInstance:
  3356. case SuperClass:
  3357. return getSuperLoc();
  3358. }
  3359. llvm_unreachable("Invalid ReceiverKind!");
  3360. }
  3361. Selector ObjCMessageExpr::getSelector() const {
  3362. if (HasMethod)
  3363. return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
  3364. ->getSelector();
  3365. return Selector(SelectorOrMethod);
  3366. }
  3367. QualType ObjCMessageExpr::getReceiverType() const {
  3368. switch (getReceiverKind()) {
  3369. case Instance:
  3370. return getInstanceReceiver()->getType();
  3371. case Class:
  3372. return getClassReceiver();
  3373. case SuperInstance:
  3374. case SuperClass:
  3375. return getSuperType();
  3376. }
  3377. llvm_unreachable("unexpected receiver kind");
  3378. }
  3379. ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
  3380. QualType T = getReceiverType();
  3381. if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
  3382. return Ptr->getInterfaceDecl();
  3383. if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
  3384. return Ty->getInterface();
  3385. return nullptr;
  3386. }
  3387. QualType ObjCPropertyRefExpr::getReceiverType(const ASTContext &ctx) const {
  3388. if (isClassReceiver())
  3389. return ctx.getObjCInterfaceType(getClassReceiver());
  3390. if (isSuperReceiver())
  3391. return getSuperReceiverType();
  3392. return getBase()->getType();
  3393. }
  3394. StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
  3395. switch (getBridgeKind()) {
  3396. case OBC_Bridge:
  3397. return "__bridge";
  3398. case OBC_BridgeTransfer:
  3399. return "__bridge_transfer";
  3400. case OBC_BridgeRetained:
  3401. return "__bridge_retained";
  3402. }
  3403. llvm_unreachable("Invalid BridgeKind!");
  3404. }
  3405. ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
  3406. QualType Type, SourceLocation BLoc,
  3407. SourceLocation RP)
  3408. : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
  3409. Type->isDependentType(), Type->isDependentType(),
  3410. Type->isInstantiationDependentType(),
  3411. Type->containsUnexpandedParameterPack()),
  3412. BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
  3413. {
  3414. SubExprs = new (C) Stmt*[args.size()];
  3415. for (unsigned i = 0; i != args.size(); i++) {
  3416. if (args[i]->isTypeDependent())
  3417. ExprBits.TypeDependent = true;
  3418. if (args[i]->isValueDependent())
  3419. ExprBits.ValueDependent = true;
  3420. if (args[i]->isInstantiationDependent())
  3421. ExprBits.InstantiationDependent = true;
  3422. if (args[i]->containsUnexpandedParameterPack())
  3423. ExprBits.ContainsUnexpandedParameterPack = true;
  3424. SubExprs[i] = args[i];
  3425. }
  3426. }
  3427. void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
  3428. if (SubExprs) C.Deallocate(SubExprs);
  3429. this->NumExprs = Exprs.size();
  3430. SubExprs = new (C) Stmt*[NumExprs];
  3431. memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
  3432. }
  3433. GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
  3434. SourceLocation GenericLoc, Expr *ControllingExpr,
  3435. ArrayRef<TypeSourceInfo*> AssocTypes,
  3436. ArrayRef<Expr*> AssocExprs,
  3437. SourceLocation DefaultLoc,
  3438. SourceLocation RParenLoc,
  3439. bool ContainsUnexpandedParameterPack,
  3440. unsigned ResultIndex)
  3441. : Expr(GenericSelectionExprClass,
  3442. AssocExprs[ResultIndex]->getType(),
  3443. AssocExprs[ResultIndex]->getValueKind(),
  3444. AssocExprs[ResultIndex]->getObjectKind(),
  3445. AssocExprs[ResultIndex]->isTypeDependent(),
  3446. AssocExprs[ResultIndex]->isValueDependent(),
  3447. AssocExprs[ResultIndex]->isInstantiationDependent(),
  3448. ContainsUnexpandedParameterPack),
  3449. AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
  3450. SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
  3451. NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
  3452. GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
  3453. SubExprs[CONTROLLING] = ControllingExpr;
  3454. assert(AssocTypes.size() == AssocExprs.size());
  3455. std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
  3456. std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
  3457. }
  3458. GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
  3459. SourceLocation GenericLoc, Expr *ControllingExpr,
  3460. ArrayRef<TypeSourceInfo*> AssocTypes,
  3461. ArrayRef<Expr*> AssocExprs,
  3462. SourceLocation DefaultLoc,
  3463. SourceLocation RParenLoc,
  3464. bool ContainsUnexpandedParameterPack)
  3465. : Expr(GenericSelectionExprClass,
  3466. Context.DependentTy,
  3467. VK_RValue,
  3468. OK_Ordinary,
  3469. /*isTypeDependent=*/true,
  3470. /*isValueDependent=*/true,
  3471. /*isInstantiationDependent=*/true,
  3472. ContainsUnexpandedParameterPack),
  3473. AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
  3474. SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
  3475. NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
  3476. DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
  3477. SubExprs[CONTROLLING] = ControllingExpr;
  3478. assert(AssocTypes.size() == AssocExprs.size());
  3479. std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
  3480. std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
  3481. }
  3482. //===----------------------------------------------------------------------===//
  3483. // DesignatedInitExpr
  3484. //===----------------------------------------------------------------------===//
  3485. IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
  3486. assert(Kind == FieldDesignator && "Only valid on a field designator");
  3487. if (Field.NameOrField & 0x01)
  3488. return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
  3489. else
  3490. return getField()->getIdentifier();
  3491. }
  3492. DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
  3493. unsigned NumDesignators,
  3494. const Designator *Designators,
  3495. SourceLocation EqualOrColonLoc,
  3496. bool GNUSyntax,
  3497. ArrayRef<Expr*> IndexExprs,
  3498. Expr *Init)
  3499. : Expr(DesignatedInitExprClass, Ty,
  3500. Init->getValueKind(), Init->getObjectKind(),
  3501. Init->isTypeDependent(), Init->isValueDependent(),
  3502. Init->isInstantiationDependent(),
  3503. Init->containsUnexpandedParameterPack()),
  3504. EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
  3505. NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
  3506. this->Designators = new (C) Designator[NumDesignators];
  3507. // Record the initializer itself.
  3508. child_range Child = children();
  3509. *Child++ = Init;
  3510. // Copy the designators and their subexpressions, computing
  3511. // value-dependence along the way.
  3512. unsigned IndexIdx = 0;
  3513. for (unsigned I = 0; I != NumDesignators; ++I) {
  3514. this->Designators[I] = Designators[I];
  3515. if (this->Designators[I].isArrayDesignator()) {
  3516. // Compute type- and value-dependence.
  3517. Expr *Index = IndexExprs[IndexIdx];
  3518. if (Index->isTypeDependent() || Index->isValueDependent())
  3519. ExprBits.TypeDependent = ExprBits.ValueDependent = true;
  3520. if (Index->isInstantiationDependent())
  3521. ExprBits.InstantiationDependent = true;
  3522. // Propagate unexpanded parameter packs.
  3523. if (Index->containsUnexpandedParameterPack())
  3524. ExprBits.ContainsUnexpandedParameterPack = true;
  3525. // Copy the index expressions into permanent storage.
  3526. *Child++ = IndexExprs[IndexIdx++];
  3527. } else if (this->Designators[I].isArrayRangeDesignator()) {
  3528. // Compute type- and value-dependence.
  3529. Expr *Start = IndexExprs[IndexIdx];
  3530. Expr *End = IndexExprs[IndexIdx + 1];
  3531. if (Start->isTypeDependent() || Start->isValueDependent() ||
  3532. End->isTypeDependent() || End->isValueDependent()) {
  3533. ExprBits.TypeDependent = ExprBits.ValueDependent = true;
  3534. ExprBits.InstantiationDependent = true;
  3535. } else if (Start->isInstantiationDependent() ||
  3536. End->isInstantiationDependent()) {
  3537. ExprBits.InstantiationDependent = true;
  3538. }
  3539. // Propagate unexpanded parameter packs.
  3540. if (Start->containsUnexpandedParameterPack() ||
  3541. End->containsUnexpandedParameterPack())
  3542. ExprBits.ContainsUnexpandedParameterPack = true;
  3543. // Copy the start/end expressions into permanent storage.
  3544. *Child++ = IndexExprs[IndexIdx++];
  3545. *Child++ = IndexExprs[IndexIdx++];
  3546. }
  3547. }
  3548. assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
  3549. }
  3550. DesignatedInitExpr *
  3551. DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators,
  3552. unsigned NumDesignators,
  3553. ArrayRef<Expr*> IndexExprs,
  3554. SourceLocation ColonOrEqualLoc,
  3555. bool UsesColonSyntax, Expr *Init) {
  3556. void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
  3557. sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
  3558. return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
  3559. ColonOrEqualLoc, UsesColonSyntax,
  3560. IndexExprs, Init);
  3561. }
  3562. DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
  3563. unsigned NumIndexExprs) {
  3564. void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
  3565. sizeof(Stmt *) * (NumIndexExprs + 1), 8);
  3566. return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
  3567. }
  3568. void DesignatedInitExpr::setDesignators(const ASTContext &C,
  3569. const Designator *Desigs,
  3570. unsigned NumDesigs) {
  3571. Designators = new (C) Designator[NumDesigs];
  3572. NumDesignators = NumDesigs;
  3573. for (unsigned I = 0; I != NumDesigs; ++I)
  3574. Designators[I] = Desigs[I];
  3575. }
  3576. SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
  3577. DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
  3578. if (size() == 1)
  3579. return DIE->getDesignator(0)->getSourceRange();
  3580. return SourceRange(DIE->getDesignator(0)->getLocStart(),
  3581. DIE->getDesignator(size()-1)->getLocEnd());
  3582. }
  3583. SourceLocation DesignatedInitExpr::getLocStart() const {
  3584. SourceLocation StartLoc;
  3585. Designator &First =
  3586. *const_cast<DesignatedInitExpr*>(this)->designators_begin();
  3587. if (First.isFieldDesignator()) {
  3588. if (GNUSyntax)
  3589. StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
  3590. else
  3591. StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
  3592. } else
  3593. StartLoc =
  3594. SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
  3595. return StartLoc;
  3596. }
  3597. SourceLocation DesignatedInitExpr::getLocEnd() const {
  3598. return getInit()->getLocEnd();
  3599. }
  3600. Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
  3601. assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
  3602. Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
  3603. return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
  3604. }
  3605. Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
  3606. assert(D.Kind == Designator::ArrayRangeDesignator &&
  3607. "Requires array range designator");
  3608. Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
  3609. return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
  3610. }
  3611. Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
  3612. assert(D.Kind == Designator::ArrayRangeDesignator &&
  3613. "Requires array range designator");
  3614. Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
  3615. return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
  3616. }
  3617. /// \brief Replaces the designator at index @p Idx with the series
  3618. /// of designators in [First, Last).
  3619. void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
  3620. const Designator *First,
  3621. const Designator *Last) {
  3622. unsigned NumNewDesignators = Last - First;
  3623. if (NumNewDesignators == 0) {
  3624. std::copy_backward(Designators + Idx + 1,
  3625. Designators + NumDesignators,
  3626. Designators + Idx);
  3627. --NumNewDesignators;
  3628. return;
  3629. } else if (NumNewDesignators == 1) {
  3630. Designators[Idx] = *First;
  3631. return;
  3632. }
  3633. Designator *NewDesignators
  3634. = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
  3635. std::copy(Designators, Designators + Idx, NewDesignators);
  3636. std::copy(First, Last, NewDesignators + Idx);
  3637. std::copy(Designators + Idx + 1, Designators + NumDesignators,
  3638. NewDesignators + Idx + NumNewDesignators);
  3639. Designators = NewDesignators;
  3640. NumDesignators = NumDesignators - 1 + NumNewDesignators;
  3641. }
  3642. DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
  3643. SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
  3644. : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
  3645. OK_Ordinary, false, false, false, false) {
  3646. BaseAndUpdaterExprs[0] = baseExpr;
  3647. InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
  3648. ILE->setType(baseExpr->getType());
  3649. BaseAndUpdaterExprs[1] = ILE;
  3650. }
  3651. SourceLocation DesignatedInitUpdateExpr::getLocStart() const {
  3652. return getBase()->getLocStart();
  3653. }
  3654. SourceLocation DesignatedInitUpdateExpr::getLocEnd() const {
  3655. return getBase()->getLocEnd();
  3656. }
  3657. ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
  3658. ArrayRef<Expr*> exprs,
  3659. SourceLocation rparenloc)
  3660. : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
  3661. false, false, false, false),
  3662. NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
  3663. Exprs = new (C) Stmt*[exprs.size()];
  3664. for (unsigned i = 0; i != exprs.size(); ++i) {
  3665. if (exprs[i]->isTypeDependent())
  3666. ExprBits.TypeDependent = true;
  3667. if (exprs[i]->isValueDependent())
  3668. ExprBits.ValueDependent = true;
  3669. if (exprs[i]->isInstantiationDependent())
  3670. ExprBits.InstantiationDependent = true;
  3671. if (exprs[i]->containsUnexpandedParameterPack())
  3672. ExprBits.ContainsUnexpandedParameterPack = true;
  3673. Exprs[i] = exprs[i];
  3674. }
  3675. }
  3676. const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
  3677. if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
  3678. e = ewc->getSubExpr();
  3679. if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
  3680. e = m->GetTemporaryExpr();
  3681. e = cast<CXXConstructExpr>(e)->getArg(0);
  3682. while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
  3683. e = ice->getSubExpr();
  3684. return cast<OpaqueValueExpr>(e);
  3685. }
  3686. PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
  3687. EmptyShell sh,
  3688. unsigned numSemanticExprs) {
  3689. void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
  3690. (1 + numSemanticExprs) * sizeof(Expr*),
  3691. llvm::alignOf<PseudoObjectExpr>());
  3692. return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
  3693. }
  3694. PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
  3695. : Expr(PseudoObjectExprClass, shell) {
  3696. PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
  3697. }
  3698. PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
  3699. ArrayRef<Expr*> semantics,
  3700. unsigned resultIndex) {
  3701. assert(syntax && "no syntactic expression!");
  3702. assert(semantics.size() && "no semantic expressions!");
  3703. QualType type;
  3704. ExprValueKind VK;
  3705. if (resultIndex == NoResult) {
  3706. type = C.VoidTy;
  3707. VK = VK_RValue;
  3708. } else {
  3709. assert(resultIndex < semantics.size());
  3710. type = semantics[resultIndex]->getType();
  3711. VK = semantics[resultIndex]->getValueKind();
  3712. assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
  3713. }
  3714. void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
  3715. (1 + semantics.size()) * sizeof(Expr*),
  3716. llvm::alignOf<PseudoObjectExpr>());
  3717. return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
  3718. resultIndex);
  3719. }
  3720. PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
  3721. Expr *syntax, ArrayRef<Expr*> semantics,
  3722. unsigned resultIndex)
  3723. : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
  3724. /*filled in at end of ctor*/ false, false, false, false) {
  3725. PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
  3726. PseudoObjectExprBits.ResultIndex = resultIndex + 1;
  3727. for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
  3728. Expr *E = (i == 0 ? syntax : semantics[i-1]);
  3729. getSubExprsBuffer()[i] = E;
  3730. if (E->isTypeDependent())
  3731. ExprBits.TypeDependent = true;
  3732. if (E->isValueDependent())
  3733. ExprBits.ValueDependent = true;
  3734. if (E->isInstantiationDependent())
  3735. ExprBits.InstantiationDependent = true;
  3736. if (E->containsUnexpandedParameterPack())
  3737. ExprBits.ContainsUnexpandedParameterPack = true;
  3738. if (isa<OpaqueValueExpr>(E))
  3739. assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
  3740. "opaque-value semantic expressions for pseudo-object "
  3741. "operations must have sources");
  3742. }
  3743. }
  3744. //===----------------------------------------------------------------------===//
  3745. // ExprIterator.
  3746. //===----------------------------------------------------------------------===//
  3747. Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
  3748. Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
  3749. Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
  3750. const Expr* ConstExprIterator::operator[](size_t idx) const {
  3751. return cast<Expr>(I[idx]);
  3752. }
  3753. const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
  3754. const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
  3755. //===----------------------------------------------------------------------===//
  3756. // Child Iterators for iterating over subexpressions/substatements
  3757. //===----------------------------------------------------------------------===//
  3758. // UnaryExprOrTypeTraitExpr
  3759. Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
  3760. // If this is of a type and the type is a VLA type (and not a typedef), the
  3761. // size expression of the VLA needs to be treated as an executable expression.
  3762. // Why isn't this weirdness documented better in StmtIterator?
  3763. if (isArgumentType()) {
  3764. if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
  3765. getArgumentType().getTypePtr()))
  3766. return child_range(child_iterator(T), child_iterator());
  3767. return child_range();
  3768. }
  3769. return child_range(&Argument.Ex, &Argument.Ex + 1);
  3770. }
  3771. // ObjCMessageExpr
  3772. Stmt::child_range ObjCMessageExpr::children() {
  3773. Stmt **begin;
  3774. if (getReceiverKind() == Instance)
  3775. begin = reinterpret_cast<Stmt **>(this + 1);
  3776. else
  3777. begin = reinterpret_cast<Stmt **>(getArgs());
  3778. return child_range(begin,
  3779. reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
  3780. }
  3781. ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements,
  3782. QualType T, ObjCMethodDecl *Method,
  3783. SourceRange SR)
  3784. : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
  3785. false, false, false, false),
  3786. NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
  3787. {
  3788. Expr **SaveElements = getElements();
  3789. for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
  3790. if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
  3791. ExprBits.ValueDependent = true;
  3792. if (Elements[I]->isInstantiationDependent())
  3793. ExprBits.InstantiationDependent = true;
  3794. if (Elements[I]->containsUnexpandedParameterPack())
  3795. ExprBits.ContainsUnexpandedParameterPack = true;
  3796. SaveElements[I] = Elements[I];
  3797. }
  3798. }
  3799. ObjCArrayLiteral *ObjCArrayLiteral::Create(const ASTContext &C,
  3800. ArrayRef<Expr *> Elements,
  3801. QualType T, ObjCMethodDecl * Method,
  3802. SourceRange SR) {
  3803. void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
  3804. + Elements.size() * sizeof(Expr *));
  3805. return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
  3806. }
  3807. ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(const ASTContext &C,
  3808. unsigned NumElements) {
  3809. void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
  3810. + NumElements * sizeof(Expr *));
  3811. return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
  3812. }
  3813. ObjCDictionaryLiteral::ObjCDictionaryLiteral(
  3814. ArrayRef<ObjCDictionaryElement> VK,
  3815. bool HasPackExpansions,
  3816. QualType T, ObjCMethodDecl *method,
  3817. SourceRange SR)
  3818. : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
  3819. false, false),
  3820. NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
  3821. DictWithObjectsMethod(method)
  3822. {
  3823. KeyValuePair *KeyValues = getKeyValues();
  3824. ExpansionData *Expansions = getExpansionData();
  3825. for (unsigned I = 0; I < NumElements; I++) {
  3826. if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
  3827. VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
  3828. ExprBits.ValueDependent = true;
  3829. if (VK[I].Key->isInstantiationDependent() ||
  3830. VK[I].Value->isInstantiationDependent())
  3831. ExprBits.InstantiationDependent = true;
  3832. if (VK[I].EllipsisLoc.isInvalid() &&
  3833. (VK[I].Key->containsUnexpandedParameterPack() ||
  3834. VK[I].Value->containsUnexpandedParameterPack()))
  3835. ExprBits.ContainsUnexpandedParameterPack = true;
  3836. KeyValues[I].Key = VK[I].Key;
  3837. KeyValues[I].Value = VK[I].Value;
  3838. if (Expansions) {
  3839. Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
  3840. if (VK[I].NumExpansions)
  3841. Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
  3842. else
  3843. Expansions[I].NumExpansionsPlusOne = 0;
  3844. }
  3845. }
  3846. }
  3847. ObjCDictionaryLiteral *
  3848. ObjCDictionaryLiteral::Create(const ASTContext &C,
  3849. ArrayRef<ObjCDictionaryElement> VK,
  3850. bool HasPackExpansions,
  3851. QualType T, ObjCMethodDecl *method,
  3852. SourceRange SR) {
  3853. unsigned ExpansionsSize = 0;
  3854. if (HasPackExpansions)
  3855. ExpansionsSize = sizeof(ExpansionData) * VK.size();
  3856. void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
  3857. sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
  3858. return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
  3859. }
  3860. ObjCDictionaryLiteral *
  3861. ObjCDictionaryLiteral::CreateEmpty(const ASTContext &C, unsigned NumElements,
  3862. bool HasPackExpansions) {
  3863. unsigned ExpansionsSize = 0;
  3864. if (HasPackExpansions)
  3865. ExpansionsSize = sizeof(ExpansionData) * NumElements;
  3866. void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
  3867. sizeof(KeyValuePair) * NumElements + ExpansionsSize);
  3868. return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
  3869. HasPackExpansions);
  3870. }
  3871. ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(const ASTContext &C,
  3872. Expr *base,
  3873. Expr *key, QualType T,
  3874. ObjCMethodDecl *getMethod,
  3875. ObjCMethodDecl *setMethod,
  3876. SourceLocation RB) {
  3877. void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
  3878. return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
  3879. OK_ObjCSubscript,
  3880. getMethod, setMethod, RB);
  3881. }
  3882. AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
  3883. QualType t, AtomicOp op, SourceLocation RP)
  3884. : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
  3885. false, false, false, false),
  3886. NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
  3887. {
  3888. assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
  3889. for (unsigned i = 0; i != args.size(); i++) {
  3890. if (args[i]->isTypeDependent())
  3891. ExprBits.TypeDependent = true;
  3892. if (args[i]->isValueDependent())
  3893. ExprBits.ValueDependent = true;
  3894. if (args[i]->isInstantiationDependent())
  3895. ExprBits.InstantiationDependent = true;
  3896. if (args[i]->containsUnexpandedParameterPack())
  3897. ExprBits.ContainsUnexpandedParameterPack = true;
  3898. SubExprs[i] = args[i];
  3899. }
  3900. }
  3901. unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
  3902. switch (Op) {
  3903. case AO__c11_atomic_init:
  3904. case AO__c11_atomic_load:
  3905. case AO__atomic_load_n:
  3906. return 2;
  3907. case AO__c11_atomic_store:
  3908. case AO__c11_atomic_exchange:
  3909. case AO__atomic_load:
  3910. case AO__atomic_store:
  3911. case AO__atomic_store_n:
  3912. case AO__atomic_exchange_n:
  3913. case AO__c11_atomic_fetch_add:
  3914. case AO__c11_atomic_fetch_sub:
  3915. case AO__c11_atomic_fetch_and:
  3916. case AO__c11_atomic_fetch_or:
  3917. case AO__c11_atomic_fetch_xor:
  3918. case AO__atomic_fetch_add:
  3919. case AO__atomic_fetch_sub:
  3920. case AO__atomic_fetch_and:
  3921. case AO__atomic_fetch_or:
  3922. case AO__atomic_fetch_xor:
  3923. case AO__atomic_fetch_nand:
  3924. case AO__atomic_add_fetch:
  3925. case AO__atomic_sub_fetch:
  3926. case AO__atomic_and_fetch:
  3927. case AO__atomic_or_fetch:
  3928. case AO__atomic_xor_fetch:
  3929. case AO__atomic_nand_fetch:
  3930. return 3;
  3931. case AO__atomic_exchange:
  3932. return 4;
  3933. case AO__c11_atomic_compare_exchange_strong:
  3934. case AO__c11_atomic_compare_exchange_weak:
  3935. return 5;
  3936. case AO__atomic_compare_exchange:
  3937. case AO__atomic_compare_exchange_n:
  3938. return 6;
  3939. }
  3940. llvm_unreachable("unknown atomic op");
  3941. }