12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346 |
- //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // These classes wrap the information about a call or function
- // definition used to handle ABI compliancy.
- //
- //===----------------------------------------------------------------------===//
- #include "TargetInfo.h"
- #include "ABIInfo.h"
- #include "CGCXXABI.h"
- #include "CGValue.h"
- #include "CodeGenFunction.h"
- #include "clang/AST/RecordLayout.h"
- #include "clang/CodeGen/CGFunctionInfo.h"
- #include "clang/Frontend/CodeGenOptions.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/ADT/Triple.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Type.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm> // std::sort
- using namespace clang;
- using namespace CodeGen;
- static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
- llvm::Value *Array,
- llvm::Value *Value,
- unsigned FirstIndex,
- unsigned LastIndex) {
- // Alternatively, we could emit this as a loop in the source.
- for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
- llvm::Value *Cell =
- Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
- Builder.CreateStore(Value, Cell);
- }
- }
- static bool isAggregateTypeForABI(QualType T) {
- return !CodeGenFunction::hasScalarEvaluationKind(T) ||
- T->isMemberFunctionPointerType();
- }
- ABIInfo::~ABIInfo() {}
- static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
- CGCXXABI &CXXABI) {
- const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
- if (!RD)
- return CGCXXABI::RAA_Default;
- return CXXABI.getRecordArgABI(RD);
- }
- static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
- CGCXXABI &CXXABI) {
- const RecordType *RT = T->getAs<RecordType>();
- if (!RT)
- return CGCXXABI::RAA_Default;
- return getRecordArgABI(RT, CXXABI);
- }
- /// Pass transparent unions as if they were the type of the first element. Sema
- /// should ensure that all elements of the union have the same "machine type".
- static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
- if (const RecordType *UT = Ty->getAsUnionType()) {
- const RecordDecl *UD = UT->getDecl();
- if (UD->hasAttr<TransparentUnionAttr>()) {
- assert(!UD->field_empty() && "sema created an empty transparent union");
- return UD->field_begin()->getType();
- }
- }
- return Ty;
- }
- CGCXXABI &ABIInfo::getCXXABI() const {
- return CGT.getCXXABI();
- }
- ASTContext &ABIInfo::getContext() const {
- return CGT.getContext();
- }
- llvm::LLVMContext &ABIInfo::getVMContext() const {
- return CGT.getLLVMContext();
- }
- const llvm::DataLayout &ABIInfo::getDataLayout() const {
- return CGT.getDataLayout();
- }
- const TargetInfo &ABIInfo::getTarget() const {
- return CGT.getTarget();
- }
- bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
- return false;
- }
- bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
- uint64_t Members) const {
- return false;
- }
- bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
- return false;
- }
- void ABIArgInfo::dump() const {
- raw_ostream &OS = llvm::errs();
- OS << "(ABIArgInfo Kind=";
- switch (TheKind) {
- case Direct:
- OS << "Direct Type=";
- if (llvm::Type *Ty = getCoerceToType())
- Ty->print(OS);
- else
- OS << "null";
- break;
- case Extend:
- OS << "Extend";
- break;
- case Ignore:
- OS << "Ignore";
- break;
- case InAlloca:
- OS << "InAlloca Offset=" << getInAllocaFieldIndex();
- break;
- case Indirect:
- OS << "Indirect Align=" << getIndirectAlign()
- << " ByVal=" << getIndirectByVal()
- << " Realign=" << getIndirectRealign();
- break;
- case Expand:
- OS << "Expand";
- break;
- }
- OS << ")\n";
- }
- TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
- // If someone can figure out a general rule for this, that would be great.
- // It's probably just doomed to be platform-dependent, though.
- unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
- // Verified for:
- // x86-64 FreeBSD, Linux, Darwin
- // x86-32 FreeBSD, Linux, Darwin
- // PowerPC Linux, Darwin
- // ARM Darwin (*not* EABI)
- // AArch64 Linux
- return 32;
- }
- bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
- const FunctionNoProtoType *fnType) const {
- // The following conventions are known to require this to be false:
- // x86_stdcall
- // MIPS
- // For everything else, we just prefer false unless we opt out.
- return false;
- }
- void
- TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
- llvm::SmallString<24> &Opt) const {
- // This assumes the user is passing a library name like "rt" instead of a
- // filename like "librt.a/so", and that they don't care whether it's static or
- // dynamic.
- Opt = "-l";
- Opt += Lib;
- }
- static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
- /// isEmptyField - Return true iff a the field is "empty", that is it
- /// is an unnamed bit-field or an (array of) empty record(s).
- static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
- bool AllowArrays) {
- if (FD->isUnnamedBitfield())
- return true;
- QualType FT = FD->getType();
- // Constant arrays of empty records count as empty, strip them off.
- // Constant arrays of zero length always count as empty.
- if (AllowArrays)
- while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
- if (AT->getSize() == 0)
- return true;
- FT = AT->getElementType();
- }
- const RecordType *RT = FT->getAs<RecordType>();
- if (!RT)
- return false;
- // C++ record fields are never empty, at least in the Itanium ABI.
- //
- // FIXME: We should use a predicate for whether this behavior is true in the
- // current ABI.
- if (isa<CXXRecordDecl>(RT->getDecl()))
- return false;
- return isEmptyRecord(Context, FT, AllowArrays);
- }
- /// isEmptyRecord - Return true iff a structure contains only empty
- /// fields. Note that a structure with a flexible array member is not
- /// considered empty.
- static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
- const RecordType *RT = T->getAs<RecordType>();
- if (!RT)
- return 0;
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return false;
- // If this is a C++ record, check the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
- for (const auto &I : CXXRD->bases())
- if (!isEmptyRecord(Context, I.getType(), true))
- return false;
- for (const auto *I : RD->fields())
- if (!isEmptyField(Context, I, AllowArrays))
- return false;
- return true;
- }
- /// isSingleElementStruct - Determine if a structure is a "single
- /// element struct", i.e. it has exactly one non-empty field or
- /// exactly one field which is itself a single element
- /// struct. Structures with flexible array members are never
- /// considered single element structs.
- ///
- /// \return The field declaration for the single non-empty field, if
- /// it exists.
- static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
- const RecordType *RT = T->getAs<RecordType>();
- if (!RT)
- return nullptr;
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return nullptr;
- const Type *Found = nullptr;
- // If this is a C++ record, check the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- for (const auto &I : CXXRD->bases()) {
- // Ignore empty records.
- if (isEmptyRecord(Context, I.getType(), true))
- continue;
- // If we already found an element then this isn't a single-element struct.
- if (Found)
- return nullptr;
- // If this is non-empty and not a single element struct, the composite
- // cannot be a single element struct.
- Found = isSingleElementStruct(I.getType(), Context);
- if (!Found)
- return nullptr;
- }
- }
- // Check for single element.
- for (const auto *FD : RD->fields()) {
- QualType FT = FD->getType();
- // Ignore empty fields.
- if (isEmptyField(Context, FD, true))
- continue;
- // If we already found an element then this isn't a single-element
- // struct.
- if (Found)
- return nullptr;
- // Treat single element arrays as the element.
- while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
- if (AT->getSize().getZExtValue() != 1)
- break;
- FT = AT->getElementType();
- }
- if (!isAggregateTypeForABI(FT)) {
- Found = FT.getTypePtr();
- } else {
- Found = isSingleElementStruct(FT, Context);
- if (!Found)
- return nullptr;
- }
- }
- // We don't consider a struct a single-element struct if it has
- // padding beyond the element type.
- if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
- return nullptr;
- return Found;
- }
- static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
- // Treat complex types as the element type.
- if (const ComplexType *CTy = Ty->getAs<ComplexType>())
- Ty = CTy->getElementType();
- // Check for a type which we know has a simple scalar argument-passing
- // convention without any padding. (We're specifically looking for 32
- // and 64-bit integer and integer-equivalents, float, and double.)
- if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
- !Ty->isEnumeralType() && !Ty->isBlockPointerType())
- return false;
- uint64_t Size = Context.getTypeSize(Ty);
- return Size == 32 || Size == 64;
- }
- /// canExpandIndirectArgument - Test whether an argument type which is to be
- /// passed indirectly (on the stack) would have the equivalent layout if it was
- /// expanded into separate arguments. If so, we prefer to do the latter to avoid
- /// inhibiting optimizations.
- ///
- // FIXME: This predicate is missing many cases, currently it just follows
- // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
- // should probably make this smarter, or better yet make the LLVM backend
- // capable of handling it.
- static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
- // We can only expand structure types.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (!RT)
- return false;
- // We can only expand (C) structures.
- //
- // FIXME: This needs to be generalized to handle classes as well.
- const RecordDecl *RD = RT->getDecl();
- if (!RD->isStruct())
- return false;
- // We try to expand CLike CXXRecordDecl.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- if (!CXXRD->isCLike())
- return false;
- }
- uint64_t Size = 0;
- for (const auto *FD : RD->fields()) {
- if (!is32Or64BitBasicType(FD->getType(), Context))
- return false;
- // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
- // how to expand them yet, and the predicate for telling if a bitfield still
- // counts as "basic" is more complicated than what we were doing previously.
- if (FD->isBitField())
- return false;
- Size += Context.getTypeSize(FD->getType());
- }
- // Make sure there are not any holes in the struct.
- if (Size != Context.getTypeSize(Ty))
- return false;
- return true;
- }
- namespace {
- /// DefaultABIInfo - The default implementation for ABI specific
- /// details. This implementation provides information which results in
- /// self-consistent and sensible LLVM IR generation, but does not
- /// conform to any particular ABI.
- class DefaultABIInfo : public ABIInfo {
- public:
- DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType RetTy) const;
- void computeInfo(CGFunctionInfo &FI) const override {
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (auto &I : FI.arguments())
- I.info = classifyArgumentType(I.type);
- }
- llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const override;
- };
- class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
- : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
- };
- llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- return nullptr;
- }
- ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
- Ty = useFirstFieldIfTransparentUnion(Ty);
- if (isAggregateTypeForABI(Ty)) {
- // Records with non-trivial destructors/copy-constructors should not be
- // passed by value.
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
- return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
- return ABIArgInfo::getIndirect(0);
- }
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- if (isAggregateTypeForABI(RetTy))
- return ABIArgInfo::getIndirect(0);
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- //===----------------------------------------------------------------------===//
- // le32/PNaCl bitcode ABI Implementation
- //
- // This is a simplified version of the x86_32 ABI. Arguments and return values
- // are always passed on the stack.
- //===----------------------------------------------------------------------===//
- class PNaClABIInfo : public ABIInfo {
- public:
- PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType RetTy) const;
- void computeInfo(CGFunctionInfo &FI) const override;
- llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const override;
- };
- class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
- : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
- };
- void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (auto &I : FI.arguments())
- I.info = classifyArgumentType(I.type);
- }
- llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- return nullptr;
- }
- /// \brief Classify argument of given type \p Ty.
- ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
- if (isAggregateTypeForABI(Ty)) {
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
- return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
- return ABIArgInfo::getIndirect(0);
- } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
- // Treat an enum type as its underlying type.
- Ty = EnumTy->getDecl()->getIntegerType();
- } else if (Ty->isFloatingType()) {
- // Floating-point types don't go inreg.
- return ABIArgInfo::getDirect();
- }
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- // In the PNaCl ABI we always return records/structures on the stack.
- if (isAggregateTypeForABI(RetTy))
- return ABIArgInfo::getIndirect(0);
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- /// IsX86_MMXType - Return true if this is an MMX type.
- bool IsX86_MMXType(llvm::Type *IRType) {
- // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
- return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
- cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
- IRType->getScalarSizeInBits() != 64;
- }
- static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
- StringRef Constraint,
- llvm::Type* Ty) {
- if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
- if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
- // Invalid MMX constraint
- return nullptr;
- }
- return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
- }
- // No operation needed
- return Ty;
- }
- /// Returns true if this type can be passed in SSE registers with the
- /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
- static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
- if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
- return true;
- } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
- // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
- // registers specially.
- unsigned VecSize = Context.getTypeSize(VT);
- if (VecSize == 128 || VecSize == 256 || VecSize == 512)
- return true;
- }
- return false;
- }
- /// Returns true if this aggregate is small enough to be passed in SSE registers
- /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
- static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
- return NumMembers <= 4;
- }
- //===----------------------------------------------------------------------===//
- // X86-32 ABI Implementation
- //===----------------------------------------------------------------------===//
- /// \brief Similar to llvm::CCState, but for Clang.
- struct CCState {
- CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
- unsigned CC;
- unsigned FreeRegs;
- unsigned FreeSSERegs;
- };
- /// X86_32ABIInfo - The X86-32 ABI information.
- class X86_32ABIInfo : public ABIInfo {
- enum Class {
- Integer,
- Float
- };
- static const unsigned MinABIStackAlignInBytes = 4;
- bool IsDarwinVectorABI;
- bool IsSmallStructInRegABI;
- bool IsWin32StructABI;
- unsigned DefaultNumRegisterParameters;
- static bool isRegisterSize(unsigned Size) {
- return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
- }
- bool isHomogeneousAggregateBaseType(QualType Ty) const override {
- // FIXME: Assumes vectorcall is in use.
- return isX86VectorTypeForVectorCall(getContext(), Ty);
- }
- bool isHomogeneousAggregateSmallEnough(const Type *Ty,
- uint64_t NumMembers) const override {
- // FIXME: Assumes vectorcall is in use.
- return isX86VectorCallAggregateSmallEnough(NumMembers);
- }
- bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
- /// getIndirectResult - Give a source type \arg Ty, return a suitable result
- /// such that the argument will be passed in memory.
- ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
- ABIArgInfo getIndirectReturnResult(CCState &State) const;
- /// \brief Return the alignment to use for the given type on the stack.
- unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
- Class classify(QualType Ty) const;
- ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
- ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
- bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
- /// \brief Rewrite the function info so that all memory arguments use
- /// inalloca.
- void rewriteWithInAlloca(CGFunctionInfo &FI) const;
- void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
- unsigned &StackOffset, ABIArgInfo &Info,
- QualType Type) const;
- public:
- void computeInfo(CGFunctionInfo &FI) const override;
- llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const override;
- X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
- unsigned r)
- : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
- IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
- };
- class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
- bool d, bool p, bool w, unsigned r)
- :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
- static bool isStructReturnInRegABI(
- const llvm::Triple &Triple, const CodeGenOptions &Opts);
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override;
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
- // Darwin uses different dwarf register numbers for EH.
- if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
- return 4;
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override;
- llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
- StringRef Constraint,
- llvm::Type* Ty) const override {
- return X86AdjustInlineAsmType(CGF, Constraint, Ty);
- }
- void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
- std::string &Constraints,
- std::vector<llvm::Type *> &ResultRegTypes,
- std::vector<llvm::Type *> &ResultTruncRegTypes,
- std::vector<LValue> &ResultRegDests,
- std::string &AsmString,
- unsigned NumOutputs) const override;
- llvm::Constant *
- getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
- unsigned Sig = (0xeb << 0) | // jmp rel8
- (0x06 << 8) | // .+0x08
- ('F' << 16) |
- ('T' << 24);
- return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
- }
- };
- }
- /// Rewrite input constraint references after adding some output constraints.
- /// In the case where there is one output and one input and we add one output,
- /// we need to replace all operand references greater than or equal to 1:
- /// mov $0, $1
- /// mov eax, $1
- /// The result will be:
- /// mov $0, $2
- /// mov eax, $2
- static void rewriteInputConstraintReferences(unsigned FirstIn,
- unsigned NumNewOuts,
- std::string &AsmString) {
- std::string Buf;
- llvm::raw_string_ostream OS(Buf);
- size_t Pos = 0;
- while (Pos < AsmString.size()) {
- size_t DollarStart = AsmString.find('$', Pos);
- if (DollarStart == std::string::npos)
- DollarStart = AsmString.size();
- size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
- if (DollarEnd == std::string::npos)
- DollarEnd = AsmString.size();
- OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
- Pos = DollarEnd;
- size_t NumDollars = DollarEnd - DollarStart;
- if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
- // We have an operand reference.
- size_t DigitStart = Pos;
- size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
- if (DigitEnd == std::string::npos)
- DigitEnd = AsmString.size();
- StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
- unsigned OperandIndex;
- if (!OperandStr.getAsInteger(10, OperandIndex)) {
- if (OperandIndex >= FirstIn)
- OperandIndex += NumNewOuts;
- OS << OperandIndex;
- } else {
- OS << OperandStr;
- }
- Pos = DigitEnd;
- }
- }
- AsmString = std::move(OS.str());
- }
- /// Add output constraints for EAX:EDX because they are return registers.
- void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
- CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
- std::vector<llvm::Type *> &ResultRegTypes,
- std::vector<llvm::Type *> &ResultTruncRegTypes,
- std::vector<LValue> &ResultRegDests, std::string &AsmString,
- unsigned NumOutputs) const {
- uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
- // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
- // larger.
- if (!Constraints.empty())
- Constraints += ',';
- if (RetWidth <= 32) {
- Constraints += "={eax}";
- ResultRegTypes.push_back(CGF.Int32Ty);
- } else {
- // Use the 'A' constraint for EAX:EDX.
- Constraints += "=A";
- ResultRegTypes.push_back(CGF.Int64Ty);
- }
- // Truncate EAX or EAX:EDX to an integer of the appropriate size.
- llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
- ResultTruncRegTypes.push_back(CoerceTy);
- // Coerce the integer by bitcasting the return slot pointer.
- ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
- CoerceTy->getPointerTo()));
- ResultRegDests.push_back(ReturnSlot);
- rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
- }
- /// shouldReturnTypeInRegister - Determine if the given type should be
- /// passed in a register (for the Darwin ABI).
- bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
- ASTContext &Context) const {
- uint64_t Size = Context.getTypeSize(Ty);
- // Type must be register sized.
- if (!isRegisterSize(Size))
- return false;
- if (Ty->isVectorType()) {
- // 64- and 128- bit vectors inside structures are not returned in
- // registers.
- if (Size == 64 || Size == 128)
- return false;
- return true;
- }
- // If this is a builtin, pointer, enum, complex type, member pointer, or
- // member function pointer it is ok.
- if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
- Ty->isAnyComplexType() || Ty->isEnumeralType() ||
- Ty->isBlockPointerType() || Ty->isMemberPointerType())
- return true;
- // Arrays are treated like records.
- if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
- return shouldReturnTypeInRegister(AT->getElementType(), Context);
- // Otherwise, it must be a record type.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (!RT) return false;
- // FIXME: Traverse bases here too.
- // Structure types are passed in register if all fields would be
- // passed in a register.
- for (const auto *FD : RT->getDecl()->fields()) {
- // Empty fields are ignored.
- if (isEmptyField(Context, FD, true))
- continue;
- // Check fields recursively.
- if (!shouldReturnTypeInRegister(FD->getType(), Context))
- return false;
- }
- return true;
- }
- ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
- // If the return value is indirect, then the hidden argument is consuming one
- // integer register.
- if (State.FreeRegs) {
- --State.FreeRegs;
- return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
- }
- return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
- }
- ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
- CCState &State) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- const Type *Base = nullptr;
- uint64_t NumElts = 0;
- if (State.CC == llvm::CallingConv::X86_VectorCall &&
- isHomogeneousAggregate(RetTy, Base, NumElts)) {
- // The LLVM struct type for such an aggregate should lower properly.
- return ABIArgInfo::getDirect();
- }
- if (const VectorType *VT = RetTy->getAs<VectorType>()) {
- // On Darwin, some vectors are returned in registers.
- if (IsDarwinVectorABI) {
- uint64_t Size = getContext().getTypeSize(RetTy);
- // 128-bit vectors are a special case; they are returned in
- // registers and we need to make sure to pick a type the LLVM
- // backend will like.
- if (Size == 128)
- return ABIArgInfo::getDirect(llvm::VectorType::get(
- llvm::Type::getInt64Ty(getVMContext()), 2));
- // Always return in register if it fits in a general purpose
- // register, or if it is 64 bits and has a single element.
- if ((Size == 8 || Size == 16 || Size == 32) ||
- (Size == 64 && VT->getNumElements() == 1))
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
- Size));
- return getIndirectReturnResult(State);
- }
- return ABIArgInfo::getDirect();
- }
- if (isAggregateTypeForABI(RetTy)) {
- if (const RecordType *RT = RetTy->getAs<RecordType>()) {
- // Structures with flexible arrays are always indirect.
- if (RT->getDecl()->hasFlexibleArrayMember())
- return getIndirectReturnResult(State);
- }
- // If specified, structs and unions are always indirect.
- if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
- return getIndirectReturnResult(State);
- // Small structures which are register sized are generally returned
- // in a register.
- if (shouldReturnTypeInRegister(RetTy, getContext())) {
- uint64_t Size = getContext().getTypeSize(RetTy);
- // As a special-case, if the struct is a "single-element" struct, and
- // the field is of type "float" or "double", return it in a
- // floating-point register. (MSVC does not apply this special case.)
- // We apply a similar transformation for pointer types to improve the
- // quality of the generated IR.
- if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
- if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
- || SeltTy->hasPointerRepresentation())
- return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
- // FIXME: We should be able to narrow this integer in cases with dead
- // padding.
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
- }
- return getIndirectReturnResult(State);
- }
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
- return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
- }
- static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
- const RecordType *RT = Ty->getAs<RecordType>();
- if (!RT)
- return 0;
- const RecordDecl *RD = RT->getDecl();
- // If this is a C++ record, check the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
- for (const auto &I : CXXRD->bases())
- if (!isRecordWithSSEVectorType(Context, I.getType()))
- return false;
- for (const auto *i : RD->fields()) {
- QualType FT = i->getType();
- if (isSSEVectorType(Context, FT))
- return true;
- if (isRecordWithSSEVectorType(Context, FT))
- return true;
- }
- return false;
- }
- unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
- unsigned Align) const {
- // Otherwise, if the alignment is less than or equal to the minimum ABI
- // alignment, just use the default; the backend will handle this.
- if (Align <= MinABIStackAlignInBytes)
- return 0; // Use default alignment.
- // On non-Darwin, the stack type alignment is always 4.
- if (!IsDarwinVectorABI) {
- // Set explicit alignment, since we may need to realign the top.
- return MinABIStackAlignInBytes;
- }
- // Otherwise, if the type contains an SSE vector type, the alignment is 16.
- if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
- isRecordWithSSEVectorType(getContext(), Ty)))
- return 16;
- return MinABIStackAlignInBytes;
- }
- ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
- CCState &State) const {
- if (!ByVal) {
- if (State.FreeRegs) {
- --State.FreeRegs; // Non-byval indirects just use one pointer.
- return ABIArgInfo::getIndirectInReg(0, false);
- }
- return ABIArgInfo::getIndirect(0, false);
- }
- // Compute the byval alignment.
- unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
- unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
- if (StackAlign == 0)
- return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
- // If the stack alignment is less than the type alignment, realign the
- // argument.
- bool Realign = TypeAlign > StackAlign;
- return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
- }
- X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
- const Type *T = isSingleElementStruct(Ty, getContext());
- if (!T)
- T = Ty.getTypePtr();
- if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
- BuiltinType::Kind K = BT->getKind();
- if (K == BuiltinType::Float || K == BuiltinType::Double)
- return Float;
- }
- return Integer;
- }
- bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
- bool &NeedsPadding) const {
- NeedsPadding = false;
- Class C = classify(Ty);
- if (C == Float)
- return false;
- unsigned Size = getContext().getTypeSize(Ty);
- unsigned SizeInRegs = (Size + 31) / 32;
- if (SizeInRegs == 0)
- return false;
- if (SizeInRegs > State.FreeRegs) {
- State.FreeRegs = 0;
- return false;
- }
- State.FreeRegs -= SizeInRegs;
- if (State.CC == llvm::CallingConv::X86_FastCall ||
- State.CC == llvm::CallingConv::X86_VectorCall) {
- if (Size > 32)
- return false;
- if (Ty->isIntegralOrEnumerationType())
- return true;
- if (Ty->isPointerType())
- return true;
- if (Ty->isReferenceType())
- return true;
- if (State.FreeRegs)
- NeedsPadding = true;
- return false;
- }
- return true;
- }
- ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
- CCState &State) const {
- // FIXME: Set alignment on indirect arguments.
- Ty = useFirstFieldIfTransparentUnion(Ty);
- // Check with the C++ ABI first.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (RT) {
- CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
- if (RAA == CGCXXABI::RAA_Indirect) {
- return getIndirectResult(Ty, false, State);
- } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
- // The field index doesn't matter, we'll fix it up later.
- return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
- }
- }
- // vectorcall adds the concept of a homogenous vector aggregate, similar
- // to other targets.
- const Type *Base = nullptr;
- uint64_t NumElts = 0;
- if (State.CC == llvm::CallingConv::X86_VectorCall &&
- isHomogeneousAggregate(Ty, Base, NumElts)) {
- if (State.FreeSSERegs >= NumElts) {
- State.FreeSSERegs -= NumElts;
- if (Ty->isBuiltinType() || Ty->isVectorType())
- return ABIArgInfo::getDirect();
- return ABIArgInfo::getExpand();
- }
- return getIndirectResult(Ty, /*ByVal=*/false, State);
- }
- if (isAggregateTypeForABI(Ty)) {
- if (RT) {
- // Structs are always byval on win32, regardless of what they contain.
- if (IsWin32StructABI)
- return getIndirectResult(Ty, true, State);
- // Structures with flexible arrays are always indirect.
- if (RT->getDecl()->hasFlexibleArrayMember())
- return getIndirectResult(Ty, true, State);
- }
- // Ignore empty structs/unions.
- if (isEmptyRecord(getContext(), Ty, true))
- return ABIArgInfo::getIgnore();
- llvm::LLVMContext &LLVMContext = getVMContext();
- llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
- bool NeedsPadding;
- if (shouldUseInReg(Ty, State, NeedsPadding)) {
- unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
- SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
- llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
- return ABIArgInfo::getDirectInReg(Result);
- }
- llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
- // Expand small (<= 128-bit) record types when we know that the stack layout
- // of those arguments will match the struct. This is important because the
- // LLVM backend isn't smart enough to remove byval, which inhibits many
- // optimizations.
- if (getContext().getTypeSize(Ty) <= 4*32 &&
- canExpandIndirectArgument(Ty, getContext()))
- return ABIArgInfo::getExpandWithPadding(
- State.CC == llvm::CallingConv::X86_FastCall ||
- State.CC == llvm::CallingConv::X86_VectorCall,
- PaddingType);
- return getIndirectResult(Ty, true, State);
- }
- if (const VectorType *VT = Ty->getAs<VectorType>()) {
- // On Darwin, some vectors are passed in memory, we handle this by passing
- // it as an i8/i16/i32/i64.
- if (IsDarwinVectorABI) {
- uint64_t Size = getContext().getTypeSize(Ty);
- if ((Size == 8 || Size == 16 || Size == 32) ||
- (Size == 64 && VT->getNumElements() == 1))
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
- Size));
- }
- if (IsX86_MMXType(CGT.ConvertType(Ty)))
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
- return ABIArgInfo::getDirect();
- }
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- bool NeedsPadding;
- bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
- if (Ty->isPromotableIntegerType()) {
- if (InReg)
- return ABIArgInfo::getExtendInReg();
- return ABIArgInfo::getExtend();
- }
- if (InReg)
- return ABIArgInfo::getDirectInReg();
- return ABIArgInfo::getDirect();
- }
- void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
- CCState State(FI.getCallingConvention());
- if (State.CC == llvm::CallingConv::X86_FastCall)
- State.FreeRegs = 2;
- else if (State.CC == llvm::CallingConv::X86_VectorCall) {
- State.FreeRegs = 2;
- State.FreeSSERegs = 6;
- } else if (FI.getHasRegParm())
- State.FreeRegs = FI.getRegParm();
- else
- State.FreeRegs = DefaultNumRegisterParameters;
- if (!getCXXABI().classifyReturnType(FI)) {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
- } else if (FI.getReturnInfo().isIndirect()) {
- // The C++ ABI is not aware of register usage, so we have to check if the
- // return value was sret and put it in a register ourselves if appropriate.
- if (State.FreeRegs) {
- --State.FreeRegs; // The sret parameter consumes a register.
- FI.getReturnInfo().setInReg(true);
- }
- }
- // The chain argument effectively gives us another free register.
- if (FI.isChainCall())
- ++State.FreeRegs;
- bool UsedInAlloca = false;
- for (auto &I : FI.arguments()) {
- I.info = classifyArgumentType(I.type, State);
- UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
- }
- // If we needed to use inalloca for any argument, do a second pass and rewrite
- // all the memory arguments to use inalloca.
- if (UsedInAlloca)
- rewriteWithInAlloca(FI);
- }
- void
- X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
- unsigned &StackOffset,
- ABIArgInfo &Info, QualType Type) const {
- assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
- Info = ABIArgInfo::getInAlloca(FrameFields.size());
- FrameFields.push_back(CGT.ConvertTypeForMem(Type));
- StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
- // Insert padding bytes to respect alignment. For x86_32, each argument is 4
- // byte aligned.
- if (StackOffset % 4U) {
- unsigned OldOffset = StackOffset;
- StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
- unsigned NumBytes = StackOffset - OldOffset;
- assert(NumBytes);
- llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
- Ty = llvm::ArrayType::get(Ty, NumBytes);
- FrameFields.push_back(Ty);
- }
- }
- static bool isArgInAlloca(const ABIArgInfo &Info) {
- // Leave ignored and inreg arguments alone.
- switch (Info.getKind()) {
- case ABIArgInfo::InAlloca:
- return true;
- case ABIArgInfo::Indirect:
- assert(Info.getIndirectByVal());
- return true;
- case ABIArgInfo::Ignore:
- return false;
- case ABIArgInfo::Direct:
- case ABIArgInfo::Extend:
- case ABIArgInfo::Expand:
- if (Info.getInReg())
- return false;
- return true;
- }
- llvm_unreachable("invalid enum");
- }
- void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
- assert(IsWin32StructABI && "inalloca only supported on win32");
- // Build a packed struct type for all of the arguments in memory.
- SmallVector<llvm::Type *, 6> FrameFields;
- unsigned StackOffset = 0;
- CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
- // Put 'this' into the struct before 'sret', if necessary.
- bool IsThisCall =
- FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
- ABIArgInfo &Ret = FI.getReturnInfo();
- if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
- isArgInAlloca(I->info)) {
- addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
- ++I;
- }
- // Put the sret parameter into the inalloca struct if it's in memory.
- if (Ret.isIndirect() && !Ret.getInReg()) {
- CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
- addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
- // On Windows, the hidden sret parameter is always returned in eax.
- Ret.setInAllocaSRet(IsWin32StructABI);
- }
- // Skip the 'this' parameter in ecx.
- if (IsThisCall)
- ++I;
- // Put arguments passed in memory into the struct.
- for (; I != E; ++I) {
- if (isArgInAlloca(I->info))
- addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
- }
- FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
- /*isPacked=*/true));
- }
- llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- llvm::Type *BPP = CGF.Int8PtrPtrTy;
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
- "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- // Compute if the address needs to be aligned
- unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
- Align = getTypeStackAlignInBytes(Ty, Align);
- Align = std::max(Align, 4U);
- if (Align > 4) {
- // addr = (addr + align - 1) & -align;
- llvm::Value *Offset =
- llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
- Addr = CGF.Builder.CreateGEP(Addr, Offset);
- llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
- CGF.Int32Ty);
- llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
- Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
- Addr->getType(),
- "ap.cur.aligned");
- }
- llvm::Type *PTy =
- llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
- uint64_t Offset =
- llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
- llvm::Value *NextAddr =
- Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
- "ap.next");
- Builder.CreateStore(NextAddr, VAListAddrAsBPP);
- return AddrTyped;
- }
- bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
- const llvm::Triple &Triple, const CodeGenOptions &Opts) {
- assert(Triple.getArch() == llvm::Triple::x86);
- switch (Opts.getStructReturnConvention()) {
- case CodeGenOptions::SRCK_Default:
- break;
- case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
- return false;
- case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
- return true;
- }
- if (Triple.isOSDarwin())
- return true;
- switch (Triple.getOS()) {
- case llvm::Triple::DragonFly:
- case llvm::Triple::FreeBSD:
- case llvm::Triple::OpenBSD:
- case llvm::Triple::Bitrig:
- case llvm::Triple::Win32:
- return true;
- default:
- return false;
- }
- }
- void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
- llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const {
- if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
- if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
- // Get the LLVM function.
- llvm::Function *Fn = cast<llvm::Function>(GV);
- // Now add the 'alignstack' attribute with a value of 16.
- llvm::AttrBuilder B;
- B.addStackAlignmentAttr(16);
- Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
- llvm::AttributeSet::get(CGM.getLLVMContext(),
- llvm::AttributeSet::FunctionIndex,
- B));
- }
- }
- }
- bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
- CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- CodeGen::CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
- // 0-7 are the eight integer registers; the order is different
- // on Darwin (for EH), but the range is the same.
- // 8 is %eip.
- AssignToArrayRange(Builder, Address, Four8, 0, 8);
- if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
- // 12-16 are st(0..4). Not sure why we stop at 4.
- // These have size 16, which is sizeof(long double) on
- // platforms with 8-byte alignment for that type.
- llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
- AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
- } else {
- // 9 is %eflags, which doesn't get a size on Darwin for some
- // reason.
- Builder.CreateStore(
- Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9));
- // 11-16 are st(0..5). Not sure why we stop at 5.
- // These have size 12, which is sizeof(long double) on
- // platforms with 4-byte alignment for that type.
- llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
- AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
- }
- return false;
- }
- //===----------------------------------------------------------------------===//
- // X86-64 ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- /// The AVX ABI level for X86 targets.
- enum class X86AVXABILevel {
- None,
- AVX,
- AVX512
- };
- /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
- static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
- switch (AVXLevel) {
- case X86AVXABILevel::AVX512:
- return 512;
- case X86AVXABILevel::AVX:
- return 256;
- case X86AVXABILevel::None:
- return 128;
- }
- llvm_unreachable("Unknown AVXLevel");
- }
- /// X86_64ABIInfo - The X86_64 ABI information.
- class X86_64ABIInfo : public ABIInfo {
- enum Class {
- Integer = 0,
- SSE,
- SSEUp,
- X87,
- X87Up,
- ComplexX87,
- NoClass,
- Memory
- };
- /// merge - Implement the X86_64 ABI merging algorithm.
- ///
- /// Merge an accumulating classification \arg Accum with a field
- /// classification \arg Field.
- ///
- /// \param Accum - The accumulating classification. This should
- /// always be either NoClass or the result of a previous merge
- /// call. In addition, this should never be Memory (the caller
- /// should just return Memory for the aggregate).
- static Class merge(Class Accum, Class Field);
- /// postMerge - Implement the X86_64 ABI post merging algorithm.
- ///
- /// Post merger cleanup, reduces a malformed Hi and Lo pair to
- /// final MEMORY or SSE classes when necessary.
- ///
- /// \param AggregateSize - The size of the current aggregate in
- /// the classification process.
- ///
- /// \param Lo - The classification for the parts of the type
- /// residing in the low word of the containing object.
- ///
- /// \param Hi - The classification for the parts of the type
- /// residing in the higher words of the containing object.
- ///
- void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
- /// classify - Determine the x86_64 register classes in which the
- /// given type T should be passed.
- ///
- /// \param Lo - The classification for the parts of the type
- /// residing in the low word of the containing object.
- ///
- /// \param Hi - The classification for the parts of the type
- /// residing in the high word of the containing object.
- ///
- /// \param OffsetBase - The bit offset of this type in the
- /// containing object. Some parameters are classified different
- /// depending on whether they straddle an eightbyte boundary.
- ///
- /// \param isNamedArg - Whether the argument in question is a "named"
- /// argument, as used in AMD64-ABI 3.5.7.
- ///
- /// If a word is unused its result will be NoClass; if a type should
- /// be passed in Memory then at least the classification of \arg Lo
- /// will be Memory.
- ///
- /// The \arg Lo class will be NoClass iff the argument is ignored.
- ///
- /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
- /// also be ComplexX87.
- void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
- bool isNamedArg) const;
- llvm::Type *GetByteVectorType(QualType Ty) const;
- llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
- unsigned IROffset, QualType SourceTy,
- unsigned SourceOffset) const;
- llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
- unsigned IROffset, QualType SourceTy,
- unsigned SourceOffset) const;
- /// getIndirectResult - Give a source type \arg Ty, return a suitable result
- /// such that the argument will be returned in memory.
- ABIArgInfo getIndirectReturnResult(QualType Ty) const;
- /// getIndirectResult - Give a source type \arg Ty, return a suitable result
- /// such that the argument will be passed in memory.
- ///
- /// \param freeIntRegs - The number of free integer registers remaining
- /// available.
- ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType Ty,
- unsigned freeIntRegs,
- unsigned &neededInt,
- unsigned &neededSSE,
- bool isNamedArg) const;
- bool IsIllegalVectorType(QualType Ty) const;
- /// The 0.98 ABI revision clarified a lot of ambiguities,
- /// unfortunately in ways that were not always consistent with
- /// certain previous compilers. In particular, platforms which
- /// required strict binary compatibility with older versions of GCC
- /// may need to exempt themselves.
- bool honorsRevision0_98() const {
- return !getTarget().getTriple().isOSDarwin();
- }
- X86AVXABILevel AVXLevel;
- // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
- // 64-bit hardware.
- bool Has64BitPointers;
- public:
- X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
- ABIInfo(CGT), AVXLevel(AVXLevel),
- Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
- }
- bool isPassedUsingAVXType(QualType type) const {
- unsigned neededInt, neededSSE;
- // The freeIntRegs argument doesn't matter here.
- ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
- /*isNamedArg*/true);
- if (info.isDirect()) {
- llvm::Type *ty = info.getCoerceToType();
- if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
- return (vectorTy->getBitWidth() > 128);
- }
- return false;
- }
- void computeInfo(CGFunctionInfo &FI) const override;
- llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const override;
- bool has64BitPointers() const {
- return Has64BitPointers;
- }
- };
- /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
- class WinX86_64ABIInfo : public ABIInfo {
- ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
- bool IsReturnType) const;
- public:
- WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
- void computeInfo(CGFunctionInfo &FI) const override;
- llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const override;
- bool isHomogeneousAggregateBaseType(QualType Ty) const override {
- // FIXME: Assumes vectorcall is in use.
- return isX86VectorTypeForVectorCall(getContext(), Ty);
- }
- bool isHomogeneousAggregateSmallEnough(const Type *Ty,
- uint64_t NumMembers) const override {
- // FIXME: Assumes vectorcall is in use.
- return isX86VectorCallAggregateSmallEnough(NumMembers);
- }
- };
- class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
- : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
- const X86_64ABIInfo &getABIInfo() const {
- return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
- }
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
- return 7;
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override {
- llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
- // 0-15 are the 16 integer registers.
- // 16 is %rip.
- AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
- return false;
- }
- llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
- StringRef Constraint,
- llvm::Type* Ty) const override {
- return X86AdjustInlineAsmType(CGF, Constraint, Ty);
- }
- bool isNoProtoCallVariadic(const CallArgList &args,
- const FunctionNoProtoType *fnType) const override {
- // The default CC on x86-64 sets %al to the number of SSA
- // registers used, and GCC sets this when calling an unprototyped
- // function, so we override the default behavior. However, don't do
- // that when AVX types are involved: the ABI explicitly states it is
- // undefined, and it doesn't work in practice because of how the ABI
- // defines varargs anyway.
- if (fnType->getCallConv() == CC_C) {
- bool HasAVXType = false;
- for (CallArgList::const_iterator
- it = args.begin(), ie = args.end(); it != ie; ++it) {
- if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
- HasAVXType = true;
- break;
- }
- }
- if (!HasAVXType)
- return true;
- }
- return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
- }
- llvm::Constant *
- getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
- unsigned Sig;
- if (getABIInfo().has64BitPointers())
- Sig = (0xeb << 0) | // jmp rel8
- (0x0a << 8) | // .+0x0c
- ('F' << 16) |
- ('T' << 24);
- else
- Sig = (0xeb << 0) | // jmp rel8
- (0x06 << 8) | // .+0x08
- ('F' << 16) |
- ('T' << 24);
- return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
- }
- };
- class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
- public:
- PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
- : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
- void getDependentLibraryOption(llvm::StringRef Lib,
- llvm::SmallString<24> &Opt) const override {
- Opt = "\01";
- Opt += Lib;
- }
- };
- static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
- // If the argument does not end in .lib, automatically add the suffix.
- // If the argument contains a space, enclose it in quotes.
- // This matches the behavior of MSVC.
- bool Quote = (Lib.find(" ") != StringRef::npos);
- std::string ArgStr = Quote ? "\"" : "";
- ArgStr += Lib;
- if (!Lib.endswith_lower(".lib"))
- ArgStr += ".lib";
- ArgStr += Quote ? "\"" : "";
- return ArgStr;
- }
- class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
- public:
- WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
- bool d, bool p, bool w, unsigned RegParms)
- : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override;
- void getDependentLibraryOption(llvm::StringRef Lib,
- llvm::SmallString<24> &Opt) const override {
- Opt = "/DEFAULTLIB:";
- Opt += qualifyWindowsLibrary(Lib);
- }
- void getDetectMismatchOption(llvm::StringRef Name,
- llvm::StringRef Value,
- llvm::SmallString<32> &Opt) const override {
- Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
- }
- };
- static void addStackProbeSizeTargetAttribute(const Decl *D,
- llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) {
- if (isa<FunctionDecl>(D)) {
- if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
- llvm::Function *Fn = cast<llvm::Function>(GV);
- Fn->addFnAttr("stack-probe-size",
- llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
- }
- }
- }
- void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
- llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const {
- X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
- addStackProbeSizeTargetAttribute(D, GV, CGM);
- }
- class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
- X86AVXABILevel AVXLevel)
- : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override;
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
- return 7;
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override {
- llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
- // 0-15 are the 16 integer registers.
- // 16 is %rip.
- AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
- return false;
- }
- void getDependentLibraryOption(llvm::StringRef Lib,
- llvm::SmallString<24> &Opt) const override {
- Opt = "/DEFAULTLIB:";
- Opt += qualifyWindowsLibrary(Lib);
- }
- void getDetectMismatchOption(llvm::StringRef Name,
- llvm::StringRef Value,
- llvm::SmallString<32> &Opt) const override {
- Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
- }
- };
- void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
- llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const {
- TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
- addStackProbeSizeTargetAttribute(D, GV, CGM);
- }
- }
- void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
- Class &Hi) const {
- // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
- //
- // (a) If one of the classes is Memory, the whole argument is passed in
- // memory.
- //
- // (b) If X87UP is not preceded by X87, the whole argument is passed in
- // memory.
- //
- // (c) If the size of the aggregate exceeds two eightbytes and the first
- // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
- // argument is passed in memory. NOTE: This is necessary to keep the
- // ABI working for processors that don't support the __m256 type.
- //
- // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
- //
- // Some of these are enforced by the merging logic. Others can arise
- // only with unions; for example:
- // union { _Complex double; unsigned; }
- //
- // Note that clauses (b) and (c) were added in 0.98.
- //
- if (Hi == Memory)
- Lo = Memory;
- if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
- Lo = Memory;
- if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
- Lo = Memory;
- if (Hi == SSEUp && Lo != SSE)
- Hi = SSE;
- }
- X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
- // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
- // classified recursively so that always two fields are
- // considered. The resulting class is calculated according to
- // the classes of the fields in the eightbyte:
- //
- // (a) If both classes are equal, this is the resulting class.
- //
- // (b) If one of the classes is NO_CLASS, the resulting class is
- // the other class.
- //
- // (c) If one of the classes is MEMORY, the result is the MEMORY
- // class.
- //
- // (d) If one of the classes is INTEGER, the result is the
- // INTEGER.
- //
- // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
- // MEMORY is used as class.
- //
- // (f) Otherwise class SSE is used.
- // Accum should never be memory (we should have returned) or
- // ComplexX87 (because this cannot be passed in a structure).
- assert((Accum != Memory && Accum != ComplexX87) &&
- "Invalid accumulated classification during merge.");
- if (Accum == Field || Field == NoClass)
- return Accum;
- if (Field == Memory)
- return Memory;
- if (Accum == NoClass)
- return Field;
- if (Accum == Integer || Field == Integer)
- return Integer;
- if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
- Accum == X87 || Accum == X87Up)
- return Memory;
- return SSE;
- }
- void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
- Class &Lo, Class &Hi, bool isNamedArg) const {
- // FIXME: This code can be simplified by introducing a simple value class for
- // Class pairs with appropriate constructor methods for the various
- // situations.
- // FIXME: Some of the split computations are wrong; unaligned vectors
- // shouldn't be passed in registers for example, so there is no chance they
- // can straddle an eightbyte. Verify & simplify.
- Lo = Hi = NoClass;
- Class &Current = OffsetBase < 64 ? Lo : Hi;
- Current = Memory;
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
- BuiltinType::Kind k = BT->getKind();
- if (k == BuiltinType::Void) {
- Current = NoClass;
- } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
- Lo = Integer;
- Hi = Integer;
- } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
- Current = Integer;
- } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
- Current = SSE;
- } else if (k == BuiltinType::LongDouble) {
- const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
- if (LDF == &llvm::APFloat::IEEEquad) {
- Lo = SSE;
- Hi = SSEUp;
- } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
- Lo = X87;
- Hi = X87Up;
- } else if (LDF == &llvm::APFloat::IEEEdouble) {
- Current = SSE;
- } else
- llvm_unreachable("unexpected long double representation!");
- }
- // FIXME: _Decimal32 and _Decimal64 are SSE.
- // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
- return;
- }
- if (const EnumType *ET = Ty->getAs<EnumType>()) {
- // Classify the underlying integer type.
- classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
- return;
- }
- if (Ty->hasPointerRepresentation()) {
- Current = Integer;
- return;
- }
- if (Ty->isMemberPointerType()) {
- if (Ty->isMemberFunctionPointerType()) {
- if (Has64BitPointers) {
- // If Has64BitPointers, this is an {i64, i64}, so classify both
- // Lo and Hi now.
- Lo = Hi = Integer;
- } else {
- // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
- // straddles an eightbyte boundary, Hi should be classified as well.
- uint64_t EB_FuncPtr = (OffsetBase) / 64;
- uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
- if (EB_FuncPtr != EB_ThisAdj) {
- Lo = Hi = Integer;
- } else {
- Current = Integer;
- }
- }
- } else {
- Current = Integer;
- }
- return;
- }
- if (const VectorType *VT = Ty->getAs<VectorType>()) {
- uint64_t Size = getContext().getTypeSize(VT);
- if (Size == 32) {
- // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
- // float> as integer.
- Current = Integer;
- // If this type crosses an eightbyte boundary, it should be
- // split.
- uint64_t EB_Real = (OffsetBase) / 64;
- uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
- if (EB_Real != EB_Imag)
- Hi = Lo;
- } else if (Size == 64) {
- // gcc passes <1 x double> in memory. :(
- if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
- return;
- // gcc passes <1 x long long> as INTEGER.
- if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
- VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
- VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
- VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
- Current = Integer;
- else
- Current = SSE;
- // If this type crosses an eightbyte boundary, it should be
- // split.
- if (OffsetBase && OffsetBase != 64)
- Hi = Lo;
- } else if (Size == 128 ||
- (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
- // Arguments of 256-bits are split into four eightbyte chunks. The
- // least significant one belongs to class SSE and all the others to class
- // SSEUP. The original Lo and Hi design considers that types can't be
- // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
- // This design isn't correct for 256-bits, but since there're no cases
- // where the upper parts would need to be inspected, avoid adding
- // complexity and just consider Hi to match the 64-256 part.
- //
- // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
- // registers if they are "named", i.e. not part of the "..." of a
- // variadic function.
- //
- // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
- // split into eight eightbyte chunks, one SSE and seven SSEUP.
- Lo = SSE;
- Hi = SSEUp;
- }
- return;
- }
- if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
- QualType ET = getContext().getCanonicalType(CT->getElementType());
- uint64_t Size = getContext().getTypeSize(Ty);
- if (ET->isIntegralOrEnumerationType()) {
- if (Size <= 64)
- Current = Integer;
- else if (Size <= 128)
- Lo = Hi = Integer;
- } else if (ET == getContext().FloatTy) {
- Current = SSE;
- } else if (ET == getContext().DoubleTy) {
- Lo = Hi = SSE;
- } else if (ET == getContext().LongDoubleTy) {
- const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
- if (LDF == &llvm::APFloat::IEEEquad)
- Current = Memory;
- else if (LDF == &llvm::APFloat::x87DoubleExtended)
- Current = ComplexX87;
- else if (LDF == &llvm::APFloat::IEEEdouble)
- Lo = Hi = SSE;
- else
- llvm_unreachable("unexpected long double representation!");
- }
- // If this complex type crosses an eightbyte boundary then it
- // should be split.
- uint64_t EB_Real = (OffsetBase) / 64;
- uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
- if (Hi == NoClass && EB_Real != EB_Imag)
- Hi = Lo;
- return;
- }
- if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
- // Arrays are treated like structures.
- uint64_t Size = getContext().getTypeSize(Ty);
- // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
- // than four eightbytes, ..., it has class MEMORY.
- if (Size > 256)
- return;
- // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
- // fields, it has class MEMORY.
- //
- // Only need to check alignment of array base.
- if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
- return;
- // Otherwise implement simplified merge. We could be smarter about
- // this, but it isn't worth it and would be harder to verify.
- Current = NoClass;
- uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
- uint64_t ArraySize = AT->getSize().getZExtValue();
- // The only case a 256-bit wide vector could be used is when the array
- // contains a single 256-bit element. Since Lo and Hi logic isn't extended
- // to work for sizes wider than 128, early check and fallback to memory.
- if (Size > 128 && EltSize != 256)
- return;
- for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
- Class FieldLo, FieldHi;
- classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
- Lo = merge(Lo, FieldLo);
- Hi = merge(Hi, FieldHi);
- if (Lo == Memory || Hi == Memory)
- break;
- }
- postMerge(Size, Lo, Hi);
- assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
- return;
- }
- if (const RecordType *RT = Ty->getAs<RecordType>()) {
- uint64_t Size = getContext().getTypeSize(Ty);
- // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
- // than four eightbytes, ..., it has class MEMORY.
- if (Size > 256)
- return;
- // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
- // copy constructor or a non-trivial destructor, it is passed by invisible
- // reference.
- if (getRecordArgABI(RT, getCXXABI()))
- return;
- const RecordDecl *RD = RT->getDecl();
- // Assume variable sized types are passed in memory.
- if (RD->hasFlexibleArrayMember())
- return;
- const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
- // Reset Lo class, this will be recomputed.
- Current = NoClass;
- // If this is a C++ record, classify the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- for (const auto &I : CXXRD->bases()) {
- assert(!I.isVirtual() && !I.getType()->isDependentType() &&
- "Unexpected base class!");
- const CXXRecordDecl *Base =
- cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
- // Classify this field.
- //
- // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
- // single eightbyte, each is classified separately. Each eightbyte gets
- // initialized to class NO_CLASS.
- Class FieldLo, FieldHi;
- uint64_t Offset =
- OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
- classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
- Lo = merge(Lo, FieldLo);
- Hi = merge(Hi, FieldHi);
- if (Lo == Memory || Hi == Memory) {
- postMerge(Size, Lo, Hi);
- return;
- }
- }
- }
- // Classify the fields one at a time, merging the results.
- unsigned idx = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i, ++idx) {
- uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
- bool BitField = i->isBitField();
- // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
- // four eightbytes, or it contains unaligned fields, it has class MEMORY.
- //
- // The only case a 256-bit wide vector could be used is when the struct
- // contains a single 256-bit element. Since Lo and Hi logic isn't extended
- // to work for sizes wider than 128, early check and fallback to memory.
- //
- if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
- Lo = Memory;
- postMerge(Size, Lo, Hi);
- return;
- }
- // Note, skip this test for bit-fields, see below.
- if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
- Lo = Memory;
- postMerge(Size, Lo, Hi);
- return;
- }
- // Classify this field.
- //
- // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
- // exceeds a single eightbyte, each is classified
- // separately. Each eightbyte gets initialized to class
- // NO_CLASS.
- Class FieldLo, FieldHi;
- // Bit-fields require special handling, they do not force the
- // structure to be passed in memory even if unaligned, and
- // therefore they can straddle an eightbyte.
- if (BitField) {
- // Ignore padding bit-fields.
- if (i->isUnnamedBitfield())
- continue;
- uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
- uint64_t Size = i->getBitWidthValue(getContext());
- uint64_t EB_Lo = Offset / 64;
- uint64_t EB_Hi = (Offset + Size - 1) / 64;
- if (EB_Lo) {
- assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
- FieldLo = NoClass;
- FieldHi = Integer;
- } else {
- FieldLo = Integer;
- FieldHi = EB_Hi ? Integer : NoClass;
- }
- } else
- classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
- Lo = merge(Lo, FieldLo);
- Hi = merge(Hi, FieldHi);
- if (Lo == Memory || Hi == Memory)
- break;
- }
- postMerge(Size, Lo, Hi);
- }
- }
- ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
- // If this is a scalar LLVM value then assume LLVM will pass it in the right
- // place naturally.
- if (!isAggregateTypeForABI(Ty)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- return ABIArgInfo::getIndirect(0);
- }
- bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
- if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
- uint64_t Size = getContext().getTypeSize(VecTy);
- unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
- if (Size <= 64 || Size > LargestVector)
- return true;
- }
- return false;
- }
- ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
- unsigned freeIntRegs) const {
- // If this is a scalar LLVM value then assume LLVM will pass it in the right
- // place naturally.
- //
- // This assumption is optimistic, as there could be free registers available
- // when we need to pass this argument in memory, and LLVM could try to pass
- // the argument in the free register. This does not seem to happen currently,
- // but this code would be much safer if we could mark the argument with
- // 'onstack'. See PR12193.
- if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
- return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
- // Compute the byval alignment. We specify the alignment of the byval in all
- // cases so that the mid-level optimizer knows the alignment of the byval.
- unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
- // Attempt to avoid passing indirect results using byval when possible. This
- // is important for good codegen.
- //
- // We do this by coercing the value into a scalar type which the backend can
- // handle naturally (i.e., without using byval).
- //
- // For simplicity, we currently only do this when we have exhausted all of the
- // free integer registers. Doing this when there are free integer registers
- // would require more care, as we would have to ensure that the coerced value
- // did not claim the unused register. That would require either reording the
- // arguments to the function (so that any subsequent inreg values came first),
- // or only doing this optimization when there were no following arguments that
- // might be inreg.
- //
- // We currently expect it to be rare (particularly in well written code) for
- // arguments to be passed on the stack when there are still free integer
- // registers available (this would typically imply large structs being passed
- // by value), so this seems like a fair tradeoff for now.
- //
- // We can revisit this if the backend grows support for 'onstack' parameter
- // attributes. See PR12193.
- if (freeIntRegs == 0) {
- uint64_t Size = getContext().getTypeSize(Ty);
- // If this type fits in an eightbyte, coerce it into the matching integral
- // type, which will end up on the stack (with alignment 8).
- if (Align == 8 && Size <= 64)
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
- Size));
- }
- return ABIArgInfo::getIndirect(Align);
- }
- /// The ABI specifies that a value should be passed in a full vector XMM/YMM
- /// register. Pick an LLVM IR type that will be passed as a vector register.
- llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
- // Wrapper structs/arrays that only contain vectors are passed just like
- // vectors; strip them off if present.
- if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
- Ty = QualType(InnerTy, 0);
- llvm::Type *IRType = CGT.ConvertType(Ty);
- if (isa<llvm::VectorType>(IRType) ||
- IRType->getTypeID() == llvm::Type::FP128TyID)
- return IRType;
- // We couldn't find the preferred IR vector type for 'Ty'.
- uint64_t Size = getContext().getTypeSize(Ty);
- assert((Size == 128 || Size == 256) && "Invalid type found!");
- // Return a LLVM IR vector type based on the size of 'Ty'.
- return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
- Size / 64);
- }
- /// BitsContainNoUserData - Return true if the specified [start,end) bit range
- /// is known to either be off the end of the specified type or being in
- /// alignment padding. The user type specified is known to be at most 128 bits
- /// in size, and have passed through X86_64ABIInfo::classify with a successful
- /// classification that put one of the two halves in the INTEGER class.
- ///
- /// It is conservatively correct to return false.
- static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
- unsigned EndBit, ASTContext &Context) {
- // If the bytes being queried are off the end of the type, there is no user
- // data hiding here. This handles analysis of builtins, vectors and other
- // types that don't contain interesting padding.
- unsigned TySize = (unsigned)Context.getTypeSize(Ty);
- if (TySize <= StartBit)
- return true;
- if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
- unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
- unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
- // Check each element to see if the element overlaps with the queried range.
- for (unsigned i = 0; i != NumElts; ++i) {
- // If the element is after the span we care about, then we're done..
- unsigned EltOffset = i*EltSize;
- if (EltOffset >= EndBit) break;
- unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
- if (!BitsContainNoUserData(AT->getElementType(), EltStart,
- EndBit-EltOffset, Context))
- return false;
- }
- // If it overlaps no elements, then it is safe to process as padding.
- return true;
- }
- if (const RecordType *RT = Ty->getAs<RecordType>()) {
- const RecordDecl *RD = RT->getDecl();
- const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
- // If this is a C++ record, check the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- for (const auto &I : CXXRD->bases()) {
- assert(!I.isVirtual() && !I.getType()->isDependentType() &&
- "Unexpected base class!");
- const CXXRecordDecl *Base =
- cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
- // If the base is after the span we care about, ignore it.
- unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
- if (BaseOffset >= EndBit) continue;
- unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
- if (!BitsContainNoUserData(I.getType(), BaseStart,
- EndBit-BaseOffset, Context))
- return false;
- }
- }
- // Verify that no field has data that overlaps the region of interest. Yes
- // this could be sped up a lot by being smarter about queried fields,
- // however we're only looking at structs up to 16 bytes, so we don't care
- // much.
- unsigned idx = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i, ++idx) {
- unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
- // If we found a field after the region we care about, then we're done.
- if (FieldOffset >= EndBit) break;
- unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
- if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
- Context))
- return false;
- }
- // If nothing in this record overlapped the area of interest, then we're
- // clean.
- return true;
- }
- return false;
- }
- /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
- /// float member at the specified offset. For example, {int,{float}} has a
- /// float at offset 4. It is conservatively correct for this routine to return
- /// false.
- static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
- const llvm::DataLayout &TD) {
- // Base case if we find a float.
- if (IROffset == 0 && IRType->isFloatTy())
- return true;
- // If this is a struct, recurse into the field at the specified offset.
- if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
- const llvm::StructLayout *SL = TD.getStructLayout(STy);
- unsigned Elt = SL->getElementContainingOffset(IROffset);
- IROffset -= SL->getElementOffset(Elt);
- return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
- }
- // If this is an array, recurse into the field at the specified offset.
- if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
- llvm::Type *EltTy = ATy->getElementType();
- unsigned EltSize = TD.getTypeAllocSize(EltTy);
- IROffset -= IROffset/EltSize*EltSize;
- return ContainsFloatAtOffset(EltTy, IROffset, TD);
- }
- return false;
- }
- /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
- /// low 8 bytes of an XMM register, corresponding to the SSE class.
- llvm::Type *X86_64ABIInfo::
- GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
- QualType SourceTy, unsigned SourceOffset) const {
- // The only three choices we have are either double, <2 x float>, or float. We
- // pass as float if the last 4 bytes is just padding. This happens for
- // structs that contain 3 floats.
- if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
- SourceOffset*8+64, getContext()))
- return llvm::Type::getFloatTy(getVMContext());
- // We want to pass as <2 x float> if the LLVM IR type contains a float at
- // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
- // case.
- if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
- ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
- return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
- return llvm::Type::getDoubleTy(getVMContext());
- }
- /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
- /// an 8-byte GPR. This means that we either have a scalar or we are talking
- /// about the high or low part of an up-to-16-byte struct. This routine picks
- /// the best LLVM IR type to represent this, which may be i64 or may be anything
- /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
- /// etc).
- ///
- /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
- /// the source type. IROffset is an offset in bytes into the LLVM IR type that
- /// the 8-byte value references. PrefType may be null.
- ///
- /// SourceTy is the source-level type for the entire argument. SourceOffset is
- /// an offset into this that we're processing (which is always either 0 or 8).
- ///
- llvm::Type *X86_64ABIInfo::
- GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
- QualType SourceTy, unsigned SourceOffset) const {
- // If we're dealing with an un-offset LLVM IR type, then it means that we're
- // returning an 8-byte unit starting with it. See if we can safely use it.
- if (IROffset == 0) {
- // Pointers and int64's always fill the 8-byte unit.
- if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
- IRType->isIntegerTy(64))
- return IRType;
- // If we have a 1/2/4-byte integer, we can use it only if the rest of the
- // goodness in the source type is just tail padding. This is allowed to
- // kick in for struct {double,int} on the int, but not on
- // struct{double,int,int} because we wouldn't return the second int. We
- // have to do this analysis on the source type because we can't depend on
- // unions being lowered a specific way etc.
- if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
- IRType->isIntegerTy(32) ||
- (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
- unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
- cast<llvm::IntegerType>(IRType)->getBitWidth();
- if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
- SourceOffset*8+64, getContext()))
- return IRType;
- }
- }
- if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
- // If this is a struct, recurse into the field at the specified offset.
- const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
- if (IROffset < SL->getSizeInBytes()) {
- unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
- IROffset -= SL->getElementOffset(FieldIdx);
- return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
- SourceTy, SourceOffset);
- }
- }
- if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
- llvm::Type *EltTy = ATy->getElementType();
- unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
- unsigned EltOffset = IROffset/EltSize*EltSize;
- return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
- SourceOffset);
- }
- // Okay, we don't have any better idea of what to pass, so we pass this in an
- // integer register that isn't too big to fit the rest of the struct.
- unsigned TySizeInBytes =
- (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
- assert(TySizeInBytes != SourceOffset && "Empty field?");
- // It is always safe to classify this as an integer type up to i64 that
- // isn't larger than the structure.
- return llvm::IntegerType::get(getVMContext(),
- std::min(TySizeInBytes-SourceOffset, 8U)*8);
- }
- /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
- /// be used as elements of a two register pair to pass or return, return a
- /// first class aggregate to represent them. For example, if the low part of
- /// a by-value argument should be passed as i32* and the high part as float,
- /// return {i32*, float}.
- static llvm::Type *
- GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
- const llvm::DataLayout &TD) {
- // In order to correctly satisfy the ABI, we need to the high part to start
- // at offset 8. If the high and low parts we inferred are both 4-byte types
- // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
- // the second element at offset 8. Check for this:
- unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
- unsigned HiAlign = TD.getABITypeAlignment(Hi);
- unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
- assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
- // To handle this, we have to increase the size of the low part so that the
- // second element will start at an 8 byte offset. We can't increase the size
- // of the second element because it might make us access off the end of the
- // struct.
- if (HiStart != 8) {
- // There are usually two sorts of types the ABI generation code can produce
- // for the low part of a pair that aren't 8 bytes in size: float or
- // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and
- // NaCl).
- // Promote these to a larger type.
- if (Lo->isFloatTy())
- Lo = llvm::Type::getDoubleTy(Lo->getContext());
- else {
- assert((Lo->isIntegerTy() || Lo->isPointerTy())
- && "Invalid/unknown lo type");
- Lo = llvm::Type::getInt64Ty(Lo->getContext());
- }
- }
- llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
- // Verify that the second element is at an 8-byte offset.
- assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
- "Invalid x86-64 argument pair!");
- return Result;
- }
- ABIArgInfo X86_64ABIInfo::
- classifyReturnType(QualType RetTy) const {
- // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
- // classification algorithm.
- X86_64ABIInfo::Class Lo, Hi;
- classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
- // Check some invariants.
- assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
- assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
- llvm::Type *ResType = nullptr;
- switch (Lo) {
- case NoClass:
- if (Hi == NoClass)
- return ABIArgInfo::getIgnore();
- // If the low part is just padding, it takes no register, leave ResType
- // null.
- assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
- "Unknown missing lo part");
- break;
- case SSEUp:
- case X87Up:
- llvm_unreachable("Invalid classification for lo word.");
- // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
- // hidden argument.
- case Memory:
- return getIndirectReturnResult(RetTy);
- // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
- // available register of the sequence %rax, %rdx is used.
- case Integer:
- ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
- // If we have a sign or zero extended integer, make sure to return Extend
- // so that the parameter gets the right LLVM IR attributes.
- if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- if (RetTy->isIntegralOrEnumerationType() &&
- RetTy->isPromotableIntegerType())
- return ABIArgInfo::getExtend();
- }
- break;
- // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
- // available SSE register of the sequence %xmm0, %xmm1 is used.
- case SSE:
- ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
- break;
- // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
- // returned on the X87 stack in %st0 as 80-bit x87 number.
- case X87:
- ResType = llvm::Type::getX86_FP80Ty(getVMContext());
- break;
- // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
- // part of the value is returned in %st0 and the imaginary part in
- // %st1.
- case ComplexX87:
- assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
- ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
- llvm::Type::getX86_FP80Ty(getVMContext()),
- nullptr);
- break;
- }
- llvm::Type *HighPart = nullptr;
- switch (Hi) {
- // Memory was handled previously and X87 should
- // never occur as a hi class.
- case Memory:
- case X87:
- llvm_unreachable("Invalid classification for hi word.");
- case ComplexX87: // Previously handled.
- case NoClass:
- break;
- case Integer:
- HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
- if (Lo == NoClass) // Return HighPart at offset 8 in memory.
- return ABIArgInfo::getDirect(HighPart, 8);
- break;
- case SSE:
- HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
- if (Lo == NoClass) // Return HighPart at offset 8 in memory.
- return ABIArgInfo::getDirect(HighPart, 8);
- break;
- // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
- // is passed in the next available eightbyte chunk if the last used
- // vector register.
- //
- // SSEUP should always be preceded by SSE, just widen.
- case SSEUp:
- assert(Lo == SSE && "Unexpected SSEUp classification.");
- ResType = GetByteVectorType(RetTy);
- break;
- // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
- // returned together with the previous X87 value in %st0.
- case X87Up:
- // If X87Up is preceded by X87, we don't need to do
- // anything. However, in some cases with unions it may not be
- // preceded by X87. In such situations we follow gcc and pass the
- // extra bits in an SSE reg.
- if (Lo != X87) {
- HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
- if (Lo == NoClass) // Return HighPart at offset 8 in memory.
- return ABIArgInfo::getDirect(HighPart, 8);
- }
- break;
- }
- // If a high part was specified, merge it together with the low part. It is
- // known to pass in the high eightbyte of the result. We do this by forming a
- // first class struct aggregate with the high and low part: {low, high}
- if (HighPart)
- ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
- return ABIArgInfo::getDirect(ResType);
- }
- ABIArgInfo X86_64ABIInfo::classifyArgumentType(
- QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
- bool isNamedArg)
- const
- {
- Ty = useFirstFieldIfTransparentUnion(Ty);
- X86_64ABIInfo::Class Lo, Hi;
- classify(Ty, 0, Lo, Hi, isNamedArg);
- // Check some invariants.
- // FIXME: Enforce these by construction.
- assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
- assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
- neededInt = 0;
- neededSSE = 0;
- llvm::Type *ResType = nullptr;
- switch (Lo) {
- case NoClass:
- if (Hi == NoClass)
- return ABIArgInfo::getIgnore();
- // If the low part is just padding, it takes no register, leave ResType
- // null.
- assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
- "Unknown missing lo part");
- break;
- // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
- // on the stack.
- case Memory:
- // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
- // COMPLEX_X87, it is passed in memory.
- case X87:
- case ComplexX87:
- if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
- ++neededInt;
- return getIndirectResult(Ty, freeIntRegs);
- case SSEUp:
- case X87Up:
- llvm_unreachable("Invalid classification for lo word.");
- // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
- // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
- // and %r9 is used.
- case Integer:
- ++neededInt;
- // Pick an 8-byte type based on the preferred type.
- ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
- // If we have a sign or zero extended integer, make sure to return Extend
- // so that the parameter gets the right LLVM IR attributes.
- if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- if (Ty->isIntegralOrEnumerationType() &&
- Ty->isPromotableIntegerType())
- return ABIArgInfo::getExtend();
- }
- break;
- // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
- // available SSE register is used, the registers are taken in the
- // order from %xmm0 to %xmm7.
- case SSE: {
- llvm::Type *IRType = CGT.ConvertType(Ty);
- ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
- ++neededSSE;
- break;
- }
- }
- llvm::Type *HighPart = nullptr;
- switch (Hi) {
- // Memory was handled previously, ComplexX87 and X87 should
- // never occur as hi classes, and X87Up must be preceded by X87,
- // which is passed in memory.
- case Memory:
- case X87:
- case ComplexX87:
- llvm_unreachable("Invalid classification for hi word.");
- case NoClass: break;
- case Integer:
- ++neededInt;
- // Pick an 8-byte type based on the preferred type.
- HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
- if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
- return ABIArgInfo::getDirect(HighPart, 8);
- break;
- // X87Up generally doesn't occur here (long double is passed in
- // memory), except in situations involving unions.
- case X87Up:
- case SSE:
- HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
- if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
- return ABIArgInfo::getDirect(HighPart, 8);
- ++neededSSE;
- break;
- // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
- // eightbyte is passed in the upper half of the last used SSE
- // register. This only happens when 128-bit vectors are passed.
- case SSEUp:
- assert(Lo == SSE && "Unexpected SSEUp classification");
- ResType = GetByteVectorType(Ty);
- break;
- }
- // If a high part was specified, merge it together with the low part. It is
- // known to pass in the high eightbyte of the result. We do this by forming a
- // first class struct aggregate with the high and low part: {low, high}
- if (HighPart)
- ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
- return ABIArgInfo::getDirect(ResType);
- }
- void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- // Keep track of the number of assigned registers.
- unsigned freeIntRegs = 6, freeSSERegs = 8;
- // If the return value is indirect, then the hidden argument is consuming one
- // integer register.
- if (FI.getReturnInfo().isIndirect())
- --freeIntRegs;
- // The chain argument effectively gives us another free register.
- if (FI.isChainCall())
- ++freeIntRegs;
- unsigned NumRequiredArgs = FI.getNumRequiredArgs();
- // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
- // get assigned (in left-to-right order) for passing as follows...
- unsigned ArgNo = 0;
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it, ++ArgNo) {
- bool IsNamedArg = ArgNo < NumRequiredArgs;
- unsigned neededInt, neededSSE;
- it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
- neededSSE, IsNamedArg);
- // AMD64-ABI 3.2.3p3: If there are no registers available for any
- // eightbyte of an argument, the whole argument is passed on the
- // stack. If registers have already been assigned for some
- // eightbytes of such an argument, the assignments get reverted.
- if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
- freeIntRegs -= neededInt;
- freeSSERegs -= neededSSE;
- } else {
- it->info = getIndirectResult(it->type, freeIntRegs);
- }
- }
- }
- static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
- QualType Ty,
- CodeGenFunction &CGF) {
- llvm::Value *overflow_arg_area_p = CGF.Builder.CreateStructGEP(
- nullptr, VAListAddr, 2, "overflow_arg_area_p");
- llvm::Value *overflow_arg_area =
- CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
- // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
- // byte boundary if alignment needed by type exceeds 8 byte boundary.
- // It isn't stated explicitly in the standard, but in practice we use
- // alignment greater than 16 where necessary.
- uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
- if (Align > 8) {
- // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
- llvm::Value *Offset =
- llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
- overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
- llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
- CGF.Int64Ty);
- llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
- overflow_arg_area =
- CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
- overflow_arg_area->getType(),
- "overflow_arg_area.align");
- }
- // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
- llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
- llvm::Value *Res =
- CGF.Builder.CreateBitCast(overflow_arg_area,
- llvm::PointerType::getUnqual(LTy));
- // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
- // l->overflow_arg_area + sizeof(type).
- // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
- // an 8 byte boundary.
- uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
- llvm::Value *Offset =
- llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
- overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
- "overflow_arg_area.next");
- CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
- // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
- return Res;
- }
- llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- // Assume that va_list type is correct; should be pointer to LLVM type:
- // struct {
- // i32 gp_offset;
- // i32 fp_offset;
- // i8* overflow_arg_area;
- // i8* reg_save_area;
- // };
- unsigned neededInt, neededSSE;
- Ty = CGF.getContext().getCanonicalType(Ty);
- ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
- /*isNamedArg*/false);
- // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
- // in the registers. If not go to step 7.
- if (!neededInt && !neededSSE)
- return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
- // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
- // general purpose registers needed to pass type and num_fp to hold
- // the number of floating point registers needed.
- // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
- // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
- // l->fp_offset > 304 - num_fp * 16 go to step 7.
- //
- // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
- // register save space).
- llvm::Value *InRegs = nullptr;
- llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
- llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
- if (neededInt) {
- gp_offset_p =
- CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "gp_offset_p");
- gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
- InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
- InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
- }
- if (neededSSE) {
- fp_offset_p =
- CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 1, "fp_offset_p");
- fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
- llvm::Value *FitsInFP =
- llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
- FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
- InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
- }
- llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
- llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
- CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
- // Emit code to load the value if it was passed in registers.
- CGF.EmitBlock(InRegBlock);
- // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
- // an offset of l->gp_offset and/or l->fp_offset. This may require
- // copying to a temporary location in case the parameter is passed
- // in different register classes or requires an alignment greater
- // than 8 for general purpose registers and 16 for XMM registers.
- //
- // FIXME: This really results in shameful code when we end up needing to
- // collect arguments from different places; often what should result in a
- // simple assembling of a structure from scattered addresses has many more
- // loads than necessary. Can we clean this up?
- llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
- llvm::Value *RegAddr = CGF.Builder.CreateLoad(
- CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3), "reg_save_area");
- if (neededInt && neededSSE) {
- // FIXME: Cleanup.
- assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
- llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
- llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
- Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
- assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
- llvm::Type *TyLo = ST->getElementType(0);
- llvm::Type *TyHi = ST->getElementType(1);
- assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
- "Unexpected ABI info for mixed regs");
- llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
- llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
- llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
- llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
- llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
- llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
- llvm::Value *V =
- CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0));
- V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1));
- RegAddr = CGF.Builder.CreateBitCast(Tmp,
- llvm::PointerType::getUnqual(LTy));
- } else if (neededInt) {
- RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
- RegAddr = CGF.Builder.CreateBitCast(RegAddr,
- llvm::PointerType::getUnqual(LTy));
- // Copy to a temporary if necessary to ensure the appropriate alignment.
- std::pair<CharUnits, CharUnits> SizeAlign =
- CGF.getContext().getTypeInfoInChars(Ty);
- uint64_t TySize = SizeAlign.first.getQuantity();
- unsigned TyAlign = SizeAlign.second.getQuantity();
- if (TyAlign > 8) {
- llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
- CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
- RegAddr = Tmp;
- }
- } else if (neededSSE == 1) {
- RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
- RegAddr = CGF.Builder.CreateBitCast(RegAddr,
- llvm::PointerType::getUnqual(LTy));
- } else {
- assert(neededSSE == 2 && "Invalid number of needed registers!");
- // SSE registers are spaced 16 bytes apart in the register save
- // area, we need to collect the two eightbytes together.
- llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
- llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
- llvm::Type *DoubleTy = CGF.DoubleTy;
- llvm::Type *DblPtrTy =
- llvm::PointerType::getUnqual(DoubleTy);
- llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
- llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
- Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
- V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
- DblPtrTy));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0));
- V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
- DblPtrTy));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1));
- RegAddr = CGF.Builder.CreateBitCast(Tmp,
- llvm::PointerType::getUnqual(LTy));
- }
- // AMD64-ABI 3.5.7p5: Step 5. Set:
- // l->gp_offset = l->gp_offset + num_gp * 8
- // l->fp_offset = l->fp_offset + num_fp * 16.
- if (neededInt) {
- llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
- CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
- gp_offset_p);
- }
- if (neededSSE) {
- llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
- CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
- fp_offset_p);
- }
- CGF.EmitBranch(ContBlock);
- // Emit code to load the value if it was passed in memory.
- CGF.EmitBlock(InMemBlock);
- llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
- // Return the appropriate result.
- CGF.EmitBlock(ContBlock);
- llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
- "vaarg.addr");
- ResAddr->addIncoming(RegAddr, InRegBlock);
- ResAddr->addIncoming(MemAddr, InMemBlock);
- return ResAddr;
- }
- ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
- bool IsReturnType) const {
- if (Ty->isVoidType())
- return ABIArgInfo::getIgnore();
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- TypeInfo Info = getContext().getTypeInfo(Ty);
- uint64_t Width = Info.Width;
- unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity();
- const RecordType *RT = Ty->getAs<RecordType>();
- if (RT) {
- if (!IsReturnType) {
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
- return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
- }
- if (RT->getDecl()->hasFlexibleArrayMember())
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- // FIXME: mingw-w64-gcc emits 128-bit struct as i128
- if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
- Width));
- }
- // vectorcall adds the concept of a homogenous vector aggregate, similar to
- // other targets.
- const Type *Base = nullptr;
- uint64_t NumElts = 0;
- if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
- if (FreeSSERegs >= NumElts) {
- FreeSSERegs -= NumElts;
- if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
- return ABIArgInfo::getDirect();
- return ABIArgInfo::getExpand();
- }
- return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
- }
- if (Ty->isMemberPointerType()) {
- // If the member pointer is represented by an LLVM int or ptr, pass it
- // directly.
- llvm::Type *LLTy = CGT.ConvertType(Ty);
- if (LLTy->isPointerTy() || LLTy->isIntegerTy())
- return ABIArgInfo::getDirect();
- }
- if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
- // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
- // not 1, 2, 4, or 8 bytes, must be passed by reference."
- if (Width > 64 || !llvm::isPowerOf2_64(Width))
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- // Otherwise, coerce it to a small integer.
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
- }
- // Bool type is always extended to the ABI, other builtin types are not
- // extended.
- const BuiltinType *BT = Ty->getAs<BuiltinType>();
- if (BT && BT->getKind() == BuiltinType::Bool)
- return ABIArgInfo::getExtend();
- return ABIArgInfo::getDirect();
- }
- void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
- bool IsVectorCall =
- FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
- // We can use up to 4 SSE return registers with vectorcall.
- unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
- // We can use up to 6 SSE register parameters with vectorcall.
- FreeSSERegs = IsVectorCall ? 6 : 0;
- for (auto &I : FI.arguments())
- I.info = classify(I.type, FreeSSERegs, false);
- }
- llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- llvm::Type *BPP = CGF.Int8PtrPtrTy;
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
- "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- llvm::Type *PTy =
- llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
- uint64_t Offset =
- llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
- llvm::Value *NextAddr =
- Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
- "ap.next");
- Builder.CreateStore(NextAddr, VAListAddrAsBPP);
- return AddrTyped;
- }
- // PowerPC-32
- namespace {
- /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
- class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
- public:
- PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
- llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const override;
- };
- class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- PPC32TargetCodeGenInfo(CodeGenTypes &CGT)
- : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
- // This is recovered from gcc output.
- return 1; // r1 is the dedicated stack pointer
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override;
- };
- }
- llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
- QualType Ty,
- CodeGenFunction &CGF) const {
- if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
- // TODO: Implement this. For now ignore.
- (void)CTy;
- return nullptr;
- }
- bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
- bool isInt =
- Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
- llvm::Type *CharPtr = CGF.Int8PtrTy;
- llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy;
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr");
- llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty);
- llvm::Value *FPRPtrAsInt =
- Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1));
- llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr);
- llvm::Value *OverflowAreaPtrAsInt =
- Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3));
- llvm::Value *OverflowAreaPtr =
- Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr);
- llvm::Value *RegsaveAreaPtrAsInt =
- Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4));
- llvm::Value *RegsaveAreaPtr =
- Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr);
- llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr");
- // Align GPR when TY is i64.
- if (isI64) {
- llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1));
- llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1));
- llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1));
- GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR);
- }
- llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr");
- llvm::Value *OverflowArea =
- Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area");
- llvm::Value *OverflowAreaAsInt =
- Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty);
- llvm::Value *RegsaveArea =
- Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area");
- llvm::Value *RegsaveAreaAsInt =
- Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty);
- llvm::Value *CC =
- Builder.CreateICmpULT(isInt ? GPR : FPR, Builder.getInt8(8), "cond");
- llvm::Value *RegConstant =
- Builder.CreateMul(isInt ? GPR : FPR, Builder.getInt8(isInt ? 4 : 8));
- llvm::Value *OurReg = Builder.CreateAdd(
- RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty));
- if (Ty->isFloatingType())
- OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32));
- llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
- llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
- llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
- Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
- CGF.EmitBlock(UsingRegs);
- llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy);
- // Increase the GPR/FPR indexes.
- if (isInt) {
- GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1));
- Builder.CreateStore(GPR, GPRPtr);
- } else {
- FPR = Builder.CreateAdd(FPR, Builder.getInt8(1));
- Builder.CreateStore(FPR, FPRPtr);
- }
- CGF.EmitBranch(Cont);
- CGF.EmitBlock(UsingOverflow);
- // Increase the overflow area.
- llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy);
- OverflowAreaAsInt =
- Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8));
- Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr),
- OverflowAreaPtr);
- CGF.EmitBranch(Cont);
- CGF.EmitBlock(Cont);
- llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr");
- Result->addIncoming(Result1, UsingRegs);
- Result->addIncoming(Result2, UsingOverflow);
- if (Ty->isAggregateType()) {
- llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr");
- return Builder.CreateLoad(AGGPtr, false, "aggr");
- }
- return Result;
- }
- bool
- PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- // This is calculated from the LLVM and GCC tables and verified
- // against gcc output. AFAIK all ABIs use the same encoding.
- CodeGen::CGBuilderTy &Builder = CGF.Builder;
- llvm::IntegerType *i8 = CGF.Int8Ty;
- llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
- llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
- llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
- // 0-31: r0-31, the 4-byte general-purpose registers
- AssignToArrayRange(Builder, Address, Four8, 0, 31);
- // 32-63: fp0-31, the 8-byte floating-point registers
- AssignToArrayRange(Builder, Address, Eight8, 32, 63);
- // 64-76 are various 4-byte special-purpose registers:
- // 64: mq
- // 65: lr
- // 66: ctr
- // 67: ap
- // 68-75 cr0-7
- // 76: xer
- AssignToArrayRange(Builder, Address, Four8, 64, 76);
- // 77-108: v0-31, the 16-byte vector registers
- AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
- // 109: vrsave
- // 110: vscr
- // 111: spe_acc
- // 112: spefscr
- // 113: sfp
- AssignToArrayRange(Builder, Address, Four8, 109, 113);
- return false;
- }
- // PowerPC-64
- namespace {
- /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
- class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
- public:
- enum ABIKind {
- ELFv1 = 0,
- ELFv2
- };
- private:
- static const unsigned GPRBits = 64;
- ABIKind Kind;
- bool HasQPX;
- // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
- // will be passed in a QPX register.
- bool IsQPXVectorTy(const Type *Ty) const {
- if (!HasQPX)
- return false;
- if (const VectorType *VT = Ty->getAs<VectorType>()) {
- unsigned NumElements = VT->getNumElements();
- if (NumElements == 1)
- return false;
- if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
- if (getContext().getTypeSize(Ty) <= 256)
- return true;
- } else if (VT->getElementType()->
- isSpecificBuiltinType(BuiltinType::Float)) {
- if (getContext().getTypeSize(Ty) <= 128)
- return true;
- }
- }
- return false;
- }
- bool IsQPXVectorTy(QualType Ty) const {
- return IsQPXVectorTy(Ty.getTypePtr());
- }
- public:
- PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
- : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
- bool isPromotableTypeForABI(QualType Ty) const;
- bool isAlignedParamType(QualType Ty, bool &Align32) const;
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType Ty) const;
- bool isHomogeneousAggregateBaseType(QualType Ty) const override;
- bool isHomogeneousAggregateSmallEnough(const Type *Ty,
- uint64_t Members) const override;
- // TODO: We can add more logic to computeInfo to improve performance.
- // Example: For aggregate arguments that fit in a register, we could
- // use getDirectInReg (as is done below for structs containing a single
- // floating-point value) to avoid pushing them to memory on function
- // entry. This would require changing the logic in PPCISelLowering
- // when lowering the parameters in the caller and args in the callee.
- void computeInfo(CGFunctionInfo &FI) const override {
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (auto &I : FI.arguments()) {
- // We rely on the default argument classification for the most part.
- // One exception: An aggregate containing a single floating-point
- // or vector item must be passed in a register if one is available.
- const Type *T = isSingleElementStruct(I.type, getContext());
- if (T) {
- const BuiltinType *BT = T->getAs<BuiltinType>();
- if (IsQPXVectorTy(T) ||
- (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
- (BT && BT->isFloatingPoint())) {
- QualType QT(T, 0);
- I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
- continue;
- }
- }
- I.info = classifyArgumentType(I.type);
- }
- }
- llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const override;
- };
- class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
- PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
- : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
- // This is recovered from gcc output.
- return 1; // r1 is the dedicated stack pointer
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override;
- };
- class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
- public:
- PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
- // This is recovered from gcc output.
- return 1; // r1 is the dedicated stack pointer
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override;
- };
- }
- // Return true if the ABI requires Ty to be passed sign- or zero-
- // extended to 64 bits.
- bool
- PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- // Promotable integer types are required to be promoted by the ABI.
- if (Ty->isPromotableIntegerType())
- return true;
- // In addition to the usual promotable integer types, we also need to
- // extend all 32-bit types, since the ABI requires promotion to 64 bits.
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
- switch (BT->getKind()) {
- case BuiltinType::Int:
- case BuiltinType::UInt:
- return true;
- default:
- break;
- }
- return false;
- }
- /// isAlignedParamType - Determine whether a type requires 16-byte
- /// alignment in the parameter area.
- bool
- PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty, bool &Align32) const {
- Align32 = false;
- // Complex types are passed just like their elements.
- if (const ComplexType *CTy = Ty->getAs<ComplexType>())
- Ty = CTy->getElementType();
- // Only vector types of size 16 bytes need alignment (larger types are
- // passed via reference, smaller types are not aligned).
- if (IsQPXVectorTy(Ty)) {
- if (getContext().getTypeSize(Ty) > 128)
- Align32 = true;
- return true;
- } else if (Ty->isVectorType()) {
- return getContext().getTypeSize(Ty) == 128;
- }
- // For single-element float/vector structs, we consider the whole type
- // to have the same alignment requirements as its single element.
- const Type *AlignAsType = nullptr;
- const Type *EltType = isSingleElementStruct(Ty, getContext());
- if (EltType) {
- const BuiltinType *BT = EltType->getAs<BuiltinType>();
- if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
- getContext().getTypeSize(EltType) == 128) ||
- (BT && BT->isFloatingPoint()))
- AlignAsType = EltType;
- }
- // Likewise for ELFv2 homogeneous aggregates.
- const Type *Base = nullptr;
- uint64_t Members = 0;
- if (!AlignAsType && Kind == ELFv2 &&
- isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
- AlignAsType = Base;
- // With special case aggregates, only vector base types need alignment.
- if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
- if (getContext().getTypeSize(AlignAsType) > 128)
- Align32 = true;
- return true;
- } else if (AlignAsType) {
- return AlignAsType->isVectorType();
- }
- // Otherwise, we only need alignment for any aggregate type that
- // has an alignment requirement of >= 16 bytes.
- if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
- if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
- Align32 = true;
- return true;
- }
- return false;
- }
- /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
- /// aggregate. Base is set to the base element type, and Members is set
- /// to the number of base elements.
- bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
- uint64_t &Members) const {
- if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
- uint64_t NElements = AT->getSize().getZExtValue();
- if (NElements == 0)
- return false;
- if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
- return false;
- Members *= NElements;
- } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return false;
- Members = 0;
- // If this is a C++ record, check the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- for (const auto &I : CXXRD->bases()) {
- // Ignore empty records.
- if (isEmptyRecord(getContext(), I.getType(), true))
- continue;
- uint64_t FldMembers;
- if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
- return false;
- Members += FldMembers;
- }
- }
- for (const auto *FD : RD->fields()) {
- // Ignore (non-zero arrays of) empty records.
- QualType FT = FD->getType();
- while (const ConstantArrayType *AT =
- getContext().getAsConstantArrayType(FT)) {
- if (AT->getSize().getZExtValue() == 0)
- return false;
- FT = AT->getElementType();
- }
- if (isEmptyRecord(getContext(), FT, true))
- continue;
- // For compatibility with GCC, ignore empty bitfields in C++ mode.
- if (getContext().getLangOpts().CPlusPlus &&
- FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
- continue;
- uint64_t FldMembers;
- if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
- return false;
- Members = (RD->isUnion() ?
- std::max(Members, FldMembers) : Members + FldMembers);
- }
- if (!Base)
- return false;
- // Ensure there is no padding.
- if (getContext().getTypeSize(Base) * Members !=
- getContext().getTypeSize(Ty))
- return false;
- } else {
- Members = 1;
- if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
- Members = 2;
- Ty = CT->getElementType();
- }
- // Most ABIs only support float, double, and some vector type widths.
- if (!isHomogeneousAggregateBaseType(Ty))
- return false;
- // The base type must be the same for all members. Types that
- // agree in both total size and mode (float vs. vector) are
- // treated as being equivalent here.
- const Type *TyPtr = Ty.getTypePtr();
- if (!Base)
- Base = TyPtr;
- if (Base->isVectorType() != TyPtr->isVectorType() ||
- getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
- return false;
- }
- return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
- }
- bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
- // Homogeneous aggregates for ELFv2 must have base types of float,
- // double, long double, or 128-bit vectors.
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
- if (BT->getKind() == BuiltinType::Float ||
- BT->getKind() == BuiltinType::Double ||
- BT->getKind() == BuiltinType::LongDouble)
- return true;
- }
- if (const VectorType *VT = Ty->getAs<VectorType>()) {
- if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
- return true;
- }
- return false;
- }
- bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
- const Type *Base, uint64_t Members) const {
- // Vector types require one register, floating point types require one
- // or two registers depending on their size.
- uint32_t NumRegs =
- Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
- // Homogeneous Aggregates may occupy at most 8 registers.
- return Members * NumRegs <= 8;
- }
- ABIArgInfo
- PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
- Ty = useFirstFieldIfTransparentUnion(Ty);
- if (Ty->isAnyComplexType())
- return ABIArgInfo::getDirect();
- // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
- // or via reference (larger than 16 bytes).
- if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
- uint64_t Size = getContext().getTypeSize(Ty);
- if (Size > 128)
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- else if (Size < 128) {
- llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
- return ABIArgInfo::getDirect(CoerceTy);
- }
- }
- if (isAggregateTypeForABI(Ty)) {
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
- return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
- bool Align32;
- uint64_t ABIAlign = isAlignedParamType(Ty, Align32) ?
- (Align32 ? 32 : 16) : 8;
- uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
- // ELFv2 homogeneous aggregates are passed as array types.
- const Type *Base = nullptr;
- uint64_t Members = 0;
- if (Kind == ELFv2 &&
- isHomogeneousAggregate(Ty, Base, Members)) {
- llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
- llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
- return ABIArgInfo::getDirect(CoerceTy);
- }
- // If an aggregate may end up fully in registers, we do not
- // use the ByVal method, but pass the aggregate as array.
- // This is usually beneficial since we avoid forcing the
- // back-end to store the argument to memory.
- uint64_t Bits = getContext().getTypeSize(Ty);
- if (Bits > 0 && Bits <= 8 * GPRBits) {
- llvm::Type *CoerceTy;
- // Types up to 8 bytes are passed as integer type (which will be
- // properly aligned in the argument save area doubleword).
- if (Bits <= GPRBits)
- CoerceTy = llvm::IntegerType::get(getVMContext(),
- llvm::RoundUpToAlignment(Bits, 8));
- // Larger types are passed as arrays, with the base type selected
- // according to the required alignment in the save area.
- else {
- uint64_t RegBits = ABIAlign * 8;
- uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
- llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
- CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
- }
- return ABIArgInfo::getDirect(CoerceTy);
- }
- // All other aggregates are passed ByVal.
- return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
- /*Realign=*/TyAlign > ABIAlign);
- }
- return (isPromotableTypeForABI(Ty) ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- ABIArgInfo
- PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- if (RetTy->isAnyComplexType())
- return ABIArgInfo::getDirect();
- // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
- // or via reference (larger than 16 bytes).
- if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
- uint64_t Size = getContext().getTypeSize(RetTy);
- if (Size > 128)
- return ABIArgInfo::getIndirect(0);
- else if (Size < 128) {
- llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
- return ABIArgInfo::getDirect(CoerceTy);
- }
- }
- if (isAggregateTypeForABI(RetTy)) {
- // ELFv2 homogeneous aggregates are returned as array types.
- const Type *Base = nullptr;
- uint64_t Members = 0;
- if (Kind == ELFv2 &&
- isHomogeneousAggregate(RetTy, Base, Members)) {
- llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
- llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
- return ABIArgInfo::getDirect(CoerceTy);
- }
- // ELFv2 small aggregates are returned in up to two registers.
- uint64_t Bits = getContext().getTypeSize(RetTy);
- if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
- if (Bits == 0)
- return ABIArgInfo::getIgnore();
- llvm::Type *CoerceTy;
- if (Bits > GPRBits) {
- CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
- CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
- } else
- CoerceTy = llvm::IntegerType::get(getVMContext(),
- llvm::RoundUpToAlignment(Bits, 8));
- return ABIArgInfo::getDirect(CoerceTy);
- }
- // All other aggregates are returned indirectly.
- return ABIArgInfo::getIndirect(0);
- }
- return (isPromotableTypeForABI(RetTy) ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
- llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
- QualType Ty,
- CodeGenFunction &CGF) const {
- llvm::Type *BP = CGF.Int8PtrTy;
- llvm::Type *BPP = CGF.Int8PtrPtrTy;
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- // Handle types that require 16-byte alignment in the parameter save area.
- bool Align32;
- if (isAlignedParamType(Ty, Align32)) {
- llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
- AddrAsInt = Builder.CreateAdd(AddrAsInt,
- Builder.getInt64(Align32 ? 31 : 15));
- AddrAsInt = Builder.CreateAnd(AddrAsInt,
- Builder.getInt64(Align32 ? -32 : -16));
- Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
- }
- // Update the va_list pointer. The pointer should be bumped by the
- // size of the object. We can trust getTypeSize() except for a complex
- // type whose base type is smaller than a doubleword. For these, the
- // size of the object is 16 bytes; see below for further explanation.
- unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
- QualType BaseTy;
- unsigned CplxBaseSize = 0;
- if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
- BaseTy = CTy->getElementType();
- CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
- if (CplxBaseSize < 8)
- SizeInBytes = 16;
- }
- unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
- llvm::Value *NextAddr =
- Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
- "ap.next");
- Builder.CreateStore(NextAddr, VAListAddrAsBPP);
- // If we have a complex type and the base type is smaller than 8 bytes,
- // the ABI calls for the real and imaginary parts to be right-adjusted
- // in separate doublewords. However, Clang expects us to produce a
- // pointer to a structure with the two parts packed tightly. So generate
- // loads of the real and imaginary parts relative to the va_list pointer,
- // and store them to a temporary structure.
- if (CplxBaseSize && CplxBaseSize < 8) {
- llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
- llvm::Value *ImagAddr = RealAddr;
- if (CGF.CGM.getDataLayout().isBigEndian()) {
- RealAddr =
- Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
- ImagAddr =
- Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
- } else {
- ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
- }
- llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
- RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
- ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
- llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
- llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
- llvm::AllocaInst *Ptr =
- CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), "vacplx");
- llvm::Value *RealPtr =
- Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 0, ".real");
- llvm::Value *ImagPtr =
- Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 1, ".imag");
- Builder.CreateStore(Real, RealPtr, false);
- Builder.CreateStore(Imag, ImagPtr, false);
- return Ptr;
- }
- // If the argument is smaller than 8 bytes, it is right-adjusted in
- // its doubleword slot. Adjust the pointer to pick it up from the
- // correct offset.
- if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
- llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
- AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
- Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
- }
- llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- return Builder.CreateBitCast(Addr, PTy);
- }
- static bool
- PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) {
- // This is calculated from the LLVM and GCC tables and verified
- // against gcc output. AFAIK all ABIs use the same encoding.
- CodeGen::CGBuilderTy &Builder = CGF.Builder;
- llvm::IntegerType *i8 = CGF.Int8Ty;
- llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
- llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
- llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
- // 0-31: r0-31, the 8-byte general-purpose registers
- AssignToArrayRange(Builder, Address, Eight8, 0, 31);
- // 32-63: fp0-31, the 8-byte floating-point registers
- AssignToArrayRange(Builder, Address, Eight8, 32, 63);
- // 64-76 are various 4-byte special-purpose registers:
- // 64: mq
- // 65: lr
- // 66: ctr
- // 67: ap
- // 68-75 cr0-7
- // 76: xer
- AssignToArrayRange(Builder, Address, Four8, 64, 76);
- // 77-108: v0-31, the 16-byte vector registers
- AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
- // 109: vrsave
- // 110: vscr
- // 111: spe_acc
- // 112: spefscr
- // 113: sfp
- AssignToArrayRange(Builder, Address, Four8, 109, 113);
- return false;
- }
- bool
- PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
- CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- return PPC64_initDwarfEHRegSizeTable(CGF, Address);
- }
- bool
- PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- return PPC64_initDwarfEHRegSizeTable(CGF, Address);
- }
- //===----------------------------------------------------------------------===//
- // AArch64 ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class AArch64ABIInfo : public ABIInfo {
- public:
- enum ABIKind {
- AAPCS = 0,
- DarwinPCS
- };
- private:
- ABIKind Kind;
- public:
- AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
- private:
- ABIKind getABIKind() const { return Kind; }
- bool isDarwinPCS() const { return Kind == DarwinPCS; }
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType RetTy) const;
- bool isHomogeneousAggregateBaseType(QualType Ty) const override;
- bool isHomogeneousAggregateSmallEnough(const Type *Ty,
- uint64_t Members) const override;
- bool isIllegalVectorType(QualType Ty) const;
- void computeInfo(CGFunctionInfo &FI) const override {
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (auto &it : FI.arguments())
- it.info = classifyArgumentType(it.type);
- }
- llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
- llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
- llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const override {
- return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
- : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
- }
- };
- class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
- : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
- StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
- return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
- }
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
- return 31;
- }
- bool doesReturnSlotInterfereWithArgs() const override { return false; }
- };
- }
- ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
- Ty = useFirstFieldIfTransparentUnion(Ty);
- // Handle illegal vector types here.
- if (isIllegalVectorType(Ty)) {
- uint64_t Size = getContext().getTypeSize(Ty);
- if (Size <= 32) {
- llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
- return ABIArgInfo::getDirect(ResType);
- }
- if (Size == 64) {
- llvm::Type *ResType =
- llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
- return ABIArgInfo::getDirect(ResType);
- }
- if (Size == 128) {
- llvm::Type *ResType =
- llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
- return ABIArgInfo::getDirect(ResType);
- }
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- }
- if (!isAggregateTypeForABI(Ty)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- return (Ty->isPromotableIntegerType() && isDarwinPCS()
- ? ABIArgInfo::getExtend()
- : ABIArgInfo::getDirect());
- }
- // Structures with either a non-trivial destructor or a non-trivial
- // copy constructor are always indirect.
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
- return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
- CGCXXABI::RAA_DirectInMemory);
- }
- // Empty records are always ignored on Darwin, but actually passed in C++ mode
- // elsewhere for GNU compatibility.
- if (isEmptyRecord(getContext(), Ty, true)) {
- if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
- return ABIArgInfo::getIgnore();
- return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
- }
- // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
- const Type *Base = nullptr;
- uint64_t Members = 0;
- if (isHomogeneousAggregate(Ty, Base, Members)) {
- return ABIArgInfo::getDirect(
- llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
- }
- // Aggregates <= 16 bytes are passed directly in registers or on the stack.
- uint64_t Size = getContext().getTypeSize(Ty);
- if (Size <= 128) {
- unsigned Alignment = getContext().getTypeAlign(Ty);
- Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
- // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
- // For aggregates with 16-byte alignment, we use i128.
- if (Alignment < 128 && Size == 128) {
- llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
- return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
- }
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
- }
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- }
- ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- // Large vector types should be returned via memory.
- if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
- return ABIArgInfo::getIndirect(0);
- if (!isAggregateTypeForABI(RetTy)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() && isDarwinPCS()
- ? ABIArgInfo::getExtend()
- : ABIArgInfo::getDirect());
- }
- if (isEmptyRecord(getContext(), RetTy, true))
- return ABIArgInfo::getIgnore();
- const Type *Base = nullptr;
- uint64_t Members = 0;
- if (isHomogeneousAggregate(RetTy, Base, Members))
- // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
- return ABIArgInfo::getDirect();
- // Aggregates <= 16 bytes are returned directly in registers or on the stack.
- uint64_t Size = getContext().getTypeSize(RetTy);
- if (Size <= 128) {
- unsigned Alignment = getContext().getTypeAlign(RetTy);
- Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
- // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
- // For aggregates with 16-byte alignment, we use i128.
- if (Alignment < 128 && Size == 128) {
- llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
- return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
- }
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
- }
- return ABIArgInfo::getIndirect(0);
- }
- /// isIllegalVectorType - check whether the vector type is legal for AArch64.
- bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
- if (const VectorType *VT = Ty->getAs<VectorType>()) {
- // Check whether VT is legal.
- unsigned NumElements = VT->getNumElements();
- uint64_t Size = getContext().getTypeSize(VT);
- // NumElements should be power of 2 between 1 and 16.
- if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
- return true;
- return Size != 64 && (Size != 128 || NumElements == 1);
- }
- return false;
- }
- bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
- // Homogeneous aggregates for AAPCS64 must have base types of a floating
- // point type or a short-vector type. This is the same as the 32-bit ABI,
- // but with the difference that any floating-point type is allowed,
- // including __fp16.
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
- if (BT->isFloatingPoint())
- return true;
- } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
- unsigned VecSize = getContext().getTypeSize(VT);
- if (VecSize == 64 || VecSize == 128)
- return true;
- }
- return false;
- }
- bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
- uint64_t Members) const {
- return Members <= 4;
- }
- llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr,
- QualType Ty,
- CodeGenFunction &CGF) const {
- ABIArgInfo AI = classifyArgumentType(Ty);
- bool IsIndirect = AI.isIndirect();
- llvm::Type *BaseTy = CGF.ConvertType(Ty);
- if (IsIndirect)
- BaseTy = llvm::PointerType::getUnqual(BaseTy);
- else if (AI.getCoerceToType())
- BaseTy = AI.getCoerceToType();
- unsigned NumRegs = 1;
- if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
- BaseTy = ArrTy->getElementType();
- NumRegs = ArrTy->getNumElements();
- }
- bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
- // The AArch64 va_list type and handling is specified in the Procedure Call
- // Standard, section B.4:
- //
- // struct {
- // void *__stack;
- // void *__gr_top;
- // void *__vr_top;
- // int __gr_offs;
- // int __vr_offs;
- // };
- llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
- llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
- llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
- auto &Ctx = CGF.getContext();
- llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
- int reg_top_index;
- int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8;
- if (!IsFPR) {
- // 3 is the field number of __gr_offs
- reg_offs_p =
- CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "gr_offs_p");
- reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
- reg_top_index = 1; // field number for __gr_top
- RegSize = llvm::RoundUpToAlignment(RegSize, 8);
- } else {
- // 4 is the field number of __vr_offs.
- reg_offs_p =
- CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 4, "vr_offs_p");
- reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
- reg_top_index = 2; // field number for __vr_top
- RegSize = 16 * NumRegs;
- }
- //=======================================
- // Find out where argument was passed
- //=======================================
- // If reg_offs >= 0 we're already using the stack for this type of
- // argument. We don't want to keep updating reg_offs (in case it overflows,
- // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
- // whatever they get).
- llvm::Value *UsingStack = nullptr;
- UsingStack = CGF.Builder.CreateICmpSGE(
- reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
- CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
- // Otherwise, at least some kind of argument could go in these registers, the
- // question is whether this particular type is too big.
- CGF.EmitBlock(MaybeRegBlock);
- // Integer arguments may need to correct register alignment (for example a
- // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
- // align __gr_offs to calculate the potential address.
- if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
- int Align = Ctx.getTypeAlign(Ty) / 8;
- reg_offs = CGF.Builder.CreateAdd(
- reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
- "align_regoffs");
- reg_offs = CGF.Builder.CreateAnd(
- reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
- "aligned_regoffs");
- }
- // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
- llvm::Value *NewOffset = nullptr;
- NewOffset = CGF.Builder.CreateAdd(
- reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
- CGF.Builder.CreateStore(NewOffset, reg_offs_p);
- // Now we're in a position to decide whether this argument really was in
- // registers or not.
- llvm::Value *InRegs = nullptr;
- InRegs = CGF.Builder.CreateICmpSLE(
- NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
- CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
- //=======================================
- // Argument was in registers
- //=======================================
- // Now we emit the code for if the argument was originally passed in
- // registers. First start the appropriate block:
- CGF.EmitBlock(InRegBlock);
- llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
- reg_top_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, reg_top_index,
- "reg_top_p");
- reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
- llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
- llvm::Value *RegAddr = nullptr;
- llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
- if (IsIndirect) {
- // If it's been passed indirectly (actually a struct), whatever we find from
- // stored registers or on the stack will actually be a struct **.
- MemTy = llvm::PointerType::getUnqual(MemTy);
- }
- const Type *Base = nullptr;
- uint64_t NumMembers = 0;
- bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
- if (IsHFA && NumMembers > 1) {
- // Homogeneous aggregates passed in registers will have their elements split
- // and stored 16-bytes apart regardless of size (they're notionally in qN,
- // qN+1, ...). We reload and store into a temporary local variable
- // contiguously.
- assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
- llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
- llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
- llvm::AllocaInst *Tmp = CGF.CreateTempAlloca(HFATy);
- int Offset = 0;
- if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
- Offset = 16 - Ctx.getTypeSize(Base) / 8;
- for (unsigned i = 0; i < NumMembers; ++i) {
- llvm::Value *BaseOffset =
- llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
- llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
- LoadAddr = CGF.Builder.CreateBitCast(
- LoadAddr, llvm::PointerType::getUnqual(BaseTy));
- llvm::Value *StoreAddr =
- CGF.Builder.CreateStructGEP(Tmp->getAllocatedType(), Tmp, i);
- llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
- CGF.Builder.CreateStore(Elem, StoreAddr);
- }
- RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
- } else {
- // Otherwise the object is contiguous in memory
- unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
- if (CGF.CGM.getDataLayout().isBigEndian() &&
- (IsHFA || !isAggregateTypeForABI(Ty)) &&
- Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
- int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
- BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
- BaseAddr = CGF.Builder.CreateAdd(
- BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
- BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
- }
- RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
- }
- CGF.EmitBranch(ContBlock);
- //=======================================
- // Argument was on the stack
- //=======================================
- CGF.EmitBlock(OnStackBlock);
- llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
- stack_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "stack_p");
- OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
- // Again, stack arguments may need realigmnent. In this case both integer and
- // floating-point ones might be affected.
- if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
- int Align = Ctx.getTypeAlign(Ty) / 8;
- OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
- OnStackAddr = CGF.Builder.CreateAdd(
- OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
- "align_stack");
- OnStackAddr = CGF.Builder.CreateAnd(
- OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
- "align_stack");
- OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
- }
- uint64_t StackSize;
- if (IsIndirect)
- StackSize = 8;
- else
- StackSize = Ctx.getTypeSize(Ty) / 8;
- // All stack slots are 8 bytes
- StackSize = llvm::RoundUpToAlignment(StackSize, 8);
- llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
- llvm::Value *NewStack =
- CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
- // Write the new value of __stack for the next call to va_arg
- CGF.Builder.CreateStore(NewStack, stack_p);
- if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
- Ctx.getTypeSize(Ty) < 64) {
- int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
- OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
- OnStackAddr = CGF.Builder.CreateAdd(
- OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
- OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
- }
- OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
- CGF.EmitBranch(ContBlock);
- //=======================================
- // Tidy up
- //=======================================
- CGF.EmitBlock(ContBlock);
- llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
- ResAddr->addIncoming(RegAddr, InRegBlock);
- ResAddr->addIncoming(OnStackAddr, OnStackBlock);
- if (IsIndirect)
- return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
- return ResAddr;
- }
- llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr,
- QualType Ty,
- CodeGenFunction &CGF) const {
- // We do not support va_arg for aggregates or illegal vector types.
- // Lower VAArg here for these cases and use the LLVM va_arg instruction for
- // other cases.
- if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
- return nullptr;
- uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
- uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
- const Type *Base = nullptr;
- uint64_t Members = 0;
- bool isHA = isHomogeneousAggregate(Ty, Base, Members);
- bool isIndirect = false;
- // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
- // be passed indirectly.
- if (Size > 16 && !isHA) {
- isIndirect = true;
- Size = 8;
- Align = 8;
- }
- llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
- llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- if (isEmptyRecord(getContext(), Ty, true)) {
- // These are ignored for parameter passing purposes.
- llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- return Builder.CreateBitCast(Addr, PTy);
- }
- const uint64_t MinABIAlign = 8;
- if (Align > MinABIAlign) {
- llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
- Addr = Builder.CreateGEP(Addr, Offset);
- llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
- llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
- llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
- Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
- }
- uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
- llvm::Value *NextAddr = Builder.CreateGEP(
- Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
- Builder.CreateStore(NextAddr, VAListAddrAsBPP);
- if (isIndirect)
- Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
- llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
- return AddrTyped;
- }
- //===----------------------------------------------------------------------===//
- // ARM ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class ARMABIInfo : public ABIInfo {
- public:
- enum ABIKind {
- APCS = 0,
- AAPCS = 1,
- AAPCS_VFP
- };
- private:
- ABIKind Kind;
- public:
- ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
- setCCs();
- }
- bool isEABI() const {
- switch (getTarget().getTriple().getEnvironment()) {
- case llvm::Triple::Android:
- case llvm::Triple::EABI:
- case llvm::Triple::EABIHF:
- case llvm::Triple::GNUEABI:
- case llvm::Triple::GNUEABIHF:
- return true;
- default:
- return false;
- }
- }
- bool isEABIHF() const {
- switch (getTarget().getTriple().getEnvironment()) {
- case llvm::Triple::EABIHF:
- case llvm::Triple::GNUEABIHF:
- return true;
- default:
- return false;
- }
- }
- ABIKind getABIKind() const { return Kind; }
- private:
- ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
- ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
- bool isIllegalVectorType(QualType Ty) const;
- bool isHomogeneousAggregateBaseType(QualType Ty) const override;
- bool isHomogeneousAggregateSmallEnough(const Type *Ty,
- uint64_t Members) const override;
- void computeInfo(CGFunctionInfo &FI) const override;
- llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const override;
- llvm::CallingConv::ID getLLVMDefaultCC() const;
- llvm::CallingConv::ID getABIDefaultCC() const;
- void setCCs();
- };
- class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
- :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
- const ARMABIInfo &getABIInfo() const {
- return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
- }
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
- return 13;
- }
- StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
- return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override {
- llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
- // 0-15 are the 16 integer registers.
- AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
- return false;
- }
- unsigned getSizeOfUnwindException() const override {
- if (getABIInfo().isEABI()) return 88;
- return TargetCodeGenInfo::getSizeOfUnwindException();
- }
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override {
- const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
- if (!FD)
- return;
- const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
- if (!Attr)
- return;
- const char *Kind;
- switch (Attr->getInterrupt()) {
- case ARMInterruptAttr::Generic: Kind = ""; break;
- case ARMInterruptAttr::IRQ: Kind = "IRQ"; break;
- case ARMInterruptAttr::FIQ: Kind = "FIQ"; break;
- case ARMInterruptAttr::SWI: Kind = "SWI"; break;
- case ARMInterruptAttr::ABORT: Kind = "ABORT"; break;
- case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break;
- }
- llvm::Function *Fn = cast<llvm::Function>(GV);
- Fn->addFnAttr("interrupt", Kind);
- if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
- return;
- // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
- // however this is not necessarily true on taking any interrupt. Instruct
- // the backend to perform a realignment as part of the function prologue.
- llvm::AttrBuilder B;
- B.addStackAlignmentAttr(8);
- Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
- llvm::AttributeSet::get(CGM.getLLVMContext(),
- llvm::AttributeSet::FunctionIndex,
- B));
- }
- };
- class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
- void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const;
- public:
- WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
- : ARMTargetCodeGenInfo(CGT, K) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override;
- };
- void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
- const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
- if (!isa<FunctionDecl>(D))
- return;
- if (CGM.getCodeGenOpts().StackProbeSize == 4096)
- return;
- llvm::Function *F = cast<llvm::Function>(GV);
- F->addFnAttr("stack-probe-size",
- llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
- }
- void WindowsARMTargetCodeGenInfo::setTargetAttributes(
- const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
- ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
- addStackProbeSizeTargetAttribute(D, GV, CGM);
- }
- }
- void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() =
- classifyReturnType(FI.getReturnType(), FI.isVariadic());
- for (auto &I : FI.arguments())
- I.info = classifyArgumentType(I.type, FI.isVariadic());
- // Always honor user-specified calling convention.
- if (FI.getCallingConvention() != llvm::CallingConv::C)
- return;
- llvm::CallingConv::ID cc = getRuntimeCC();
- if (cc != llvm::CallingConv::C)
- FI.setEffectiveCallingConvention(cc);
- }
- /// Return the default calling convention that LLVM will use.
- llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
- // The default calling convention that LLVM will infer.
- if (isEABIHF())
- return llvm::CallingConv::ARM_AAPCS_VFP;
- else if (isEABI())
- return llvm::CallingConv::ARM_AAPCS;
- else
- return llvm::CallingConv::ARM_APCS;
- }
- /// Return the calling convention that our ABI would like us to use
- /// as the C calling convention.
- llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
- switch (getABIKind()) {
- case APCS: return llvm::CallingConv::ARM_APCS;
- case AAPCS: return llvm::CallingConv::ARM_AAPCS;
- case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
- }
- llvm_unreachable("bad ABI kind");
- }
- void ARMABIInfo::setCCs() {
- assert(getRuntimeCC() == llvm::CallingConv::C);
- // Don't muddy up the IR with a ton of explicit annotations if
- // they'd just match what LLVM will infer from the triple.
- llvm::CallingConv::ID abiCC = getABIDefaultCC();
- if (abiCC != getLLVMDefaultCC())
- RuntimeCC = abiCC;
- BuiltinCC = (getABIKind() == APCS ?
- llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS);
- }
- ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
- bool isVariadic) const {
- // 6.1.2.1 The following argument types are VFP CPRCs:
- // A single-precision floating-point type (including promoted
- // half-precision types); A double-precision floating-point type;
- // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
- // with a Base Type of a single- or double-precision floating-point type,
- // 64-bit containerized vectors or 128-bit containerized vectors with one
- // to four Elements.
- bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
- Ty = useFirstFieldIfTransparentUnion(Ty);
- // Handle illegal vector types here.
- if (isIllegalVectorType(Ty)) {
- uint64_t Size = getContext().getTypeSize(Ty);
- if (Size <= 32) {
- llvm::Type *ResType =
- llvm::Type::getInt32Ty(getVMContext());
- return ABIArgInfo::getDirect(ResType);
- }
- if (Size == 64) {
- llvm::Type *ResType = llvm::VectorType::get(
- llvm::Type::getInt32Ty(getVMContext()), 2);
- return ABIArgInfo::getDirect(ResType);
- }
- if (Size == 128) {
- llvm::Type *ResType = llvm::VectorType::get(
- llvm::Type::getInt32Ty(getVMContext()), 4);
- return ABIArgInfo::getDirect(ResType);
- }
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- }
- if (!isAggregateTypeForABI(Ty)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
- Ty = EnumTy->getDecl()->getIntegerType();
- }
- return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
- : ABIArgInfo::getDirect());
- }
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
- return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
- }
- // Ignore empty records.
- if (isEmptyRecord(getContext(), Ty, true))
- return ABIArgInfo::getIgnore();
- if (IsEffectivelyAAPCS_VFP) {
- // Homogeneous Aggregates need to be expanded when we can fit the aggregate
- // into VFP registers.
- const Type *Base = nullptr;
- uint64_t Members = 0;
- if (isHomogeneousAggregate(Ty, Base, Members)) {
- assert(Base && "Base class should be set for homogeneous aggregate");
- // Base can be a floating-point or a vector.
- return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
- }
- }
- // Support byval for ARM.
- // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
- // most 8-byte. We realign the indirect argument if type alignment is bigger
- // than ABI alignment.
- uint64_t ABIAlign = 4;
- uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
- if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
- getABIKind() == ARMABIInfo::AAPCS)
- ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
- if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
- return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
- /*Realign=*/TyAlign > ABIAlign);
- }
- // Otherwise, pass by coercing to a structure of the appropriate size.
- llvm::Type* ElemTy;
- unsigned SizeRegs;
- // FIXME: Try to match the types of the arguments more accurately where
- // we can.
- if (getContext().getTypeAlign(Ty) <= 32) {
- ElemTy = llvm::Type::getInt32Ty(getVMContext());
- SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
- } else {
- ElemTy = llvm::Type::getInt64Ty(getVMContext());
- SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
- }
- return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
- }
- static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
- llvm::LLVMContext &VMContext) {
- // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
- // is called integer-like if its size is less than or equal to one word, and
- // the offset of each of its addressable sub-fields is zero.
- uint64_t Size = Context.getTypeSize(Ty);
- // Check that the type fits in a word.
- if (Size > 32)
- return false;
- // FIXME: Handle vector types!
- if (Ty->isVectorType())
- return false;
- // Float types are never treated as "integer like".
- if (Ty->isRealFloatingType())
- return false;
- // If this is a builtin or pointer type then it is ok.
- if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
- return true;
- // Small complex integer types are "integer like".
- if (const ComplexType *CT = Ty->getAs<ComplexType>())
- return isIntegerLikeType(CT->getElementType(), Context, VMContext);
- // Single element and zero sized arrays should be allowed, by the definition
- // above, but they are not.
- // Otherwise, it must be a record type.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (!RT) return false;
- // Ignore records with flexible arrays.
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return false;
- // Check that all sub-fields are at offset 0, and are themselves "integer
- // like".
- const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
- bool HadField = false;
- unsigned idx = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i, ++idx) {
- const FieldDecl *FD = *i;
- // Bit-fields are not addressable, we only need to verify they are "integer
- // like". We still have to disallow a subsequent non-bitfield, for example:
- // struct { int : 0; int x }
- // is non-integer like according to gcc.
- if (FD->isBitField()) {
- if (!RD->isUnion())
- HadField = true;
- if (!isIntegerLikeType(FD->getType(), Context, VMContext))
- return false;
- continue;
- }
- // Check if this field is at offset 0.
- if (Layout.getFieldOffset(idx) != 0)
- return false;
- if (!isIntegerLikeType(FD->getType(), Context, VMContext))
- return false;
- // Only allow at most one field in a structure. This doesn't match the
- // wording above, but follows gcc in situations with a field following an
- // empty structure.
- if (!RD->isUnion()) {
- if (HadField)
- return false;
- HadField = true;
- }
- }
- return true;
- }
- ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
- bool isVariadic) const {
- bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- // Large vector types should be returned via memory.
- if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
- return ABIArgInfo::getIndirect(0);
- }
- if (!isAggregateTypeForABI(RetTy)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
- : ABIArgInfo::getDirect();
- }
- // Are we following APCS?
- if (getABIKind() == APCS) {
- if (isEmptyRecord(getContext(), RetTy, false))
- return ABIArgInfo::getIgnore();
- // Complex types are all returned as packed integers.
- //
- // FIXME: Consider using 2 x vector types if the back end handles them
- // correctly.
- if (RetTy->isAnyComplexType())
- return ABIArgInfo::getDirect(llvm::IntegerType::get(
- getVMContext(), getContext().getTypeSize(RetTy)));
- // Integer like structures are returned in r0.
- if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
- // Return in the smallest viable integer type.
- uint64_t Size = getContext().getTypeSize(RetTy);
- if (Size <= 8)
- return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
- if (Size <= 16)
- return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
- return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
- }
- // Otherwise return in memory.
- return ABIArgInfo::getIndirect(0);
- }
- // Otherwise this is an AAPCS variant.
- if (isEmptyRecord(getContext(), RetTy, true))
- return ABIArgInfo::getIgnore();
- // Check for homogeneous aggregates with AAPCS-VFP.
- if (IsEffectivelyAAPCS_VFP) {
- const Type *Base = nullptr;
- uint64_t Members;
- if (isHomogeneousAggregate(RetTy, Base, Members)) {
- assert(Base && "Base class should be set for homogeneous aggregate");
- // Homogeneous Aggregates are returned directly.
- return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
- }
- }
- // Aggregates <= 4 bytes are returned in r0; other aggregates
- // are returned indirectly.
- uint64_t Size = getContext().getTypeSize(RetTy);
- if (Size <= 32) {
- if (getDataLayout().isBigEndian())
- // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
- return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
- // Return in the smallest viable integer type.
- if (Size <= 8)
- return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
- if (Size <= 16)
- return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
- return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
- }
- return ABIArgInfo::getIndirect(0);
- }
- /// isIllegalVector - check whether Ty is an illegal vector type.
- bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
- if (const VectorType *VT = Ty->getAs<VectorType>()) {
- // Check whether VT is legal.
- unsigned NumElements = VT->getNumElements();
- uint64_t Size = getContext().getTypeSize(VT);
- // NumElements should be power of 2.
- if ((NumElements & (NumElements - 1)) != 0)
- return true;
- // Size should be greater than 32 bits.
- return Size <= 32;
- }
- return false;
- }
- bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
- // Homogeneous aggregates for AAPCS-VFP must have base types of float,
- // double, or 64-bit or 128-bit vectors.
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
- if (BT->getKind() == BuiltinType::Float ||
- BT->getKind() == BuiltinType::Double ||
- BT->getKind() == BuiltinType::LongDouble)
- return true;
- } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
- unsigned VecSize = getContext().getTypeSize(VT);
- if (VecSize == 64 || VecSize == 128)
- return true;
- }
- return false;
- }
- bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
- uint64_t Members) const {
- return Members <= 4;
- }
- llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- llvm::Type *BP = CGF.Int8PtrTy;
- llvm::Type *BPP = CGF.Int8PtrPtrTy;
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- if (isEmptyRecord(getContext(), Ty, true)) {
- // These are ignored for parameter passing purposes.
- llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- return Builder.CreateBitCast(Addr, PTy);
- }
- uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
- uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
- bool IsIndirect = false;
- // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
- // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
- if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
- getABIKind() == ARMABIInfo::AAPCS)
- TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
- else
- TyAlign = 4;
- // Use indirect if size of the illegal vector is bigger than 16 bytes.
- if (isIllegalVectorType(Ty) && Size > 16) {
- IsIndirect = true;
- Size = 4;
- TyAlign = 4;
- }
- // Handle address alignment for ABI alignment > 4 bytes.
- if (TyAlign > 4) {
- assert((TyAlign & (TyAlign - 1)) == 0 &&
- "Alignment is not power of 2!");
- llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
- AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
- AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
- Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
- }
- uint64_t Offset =
- llvm::RoundUpToAlignment(Size, 4);
- llvm::Value *NextAddr =
- Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
- "ap.next");
- Builder.CreateStore(NextAddr, VAListAddrAsBPP);
- if (IsIndirect)
- Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
- else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
- // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
- // may not be correctly aligned for the vector type. We create an aligned
- // temporary space and copy the content over from ap.cur to the temporary
- // space. This is necessary if the natural alignment of the type is greater
- // than the ABI alignment.
- llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
- CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
- llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
- "var.align");
- llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
- llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
- Builder.CreateMemCpy(Dst, Src,
- llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
- TyAlign, false);
- Addr = AlignedTemp; //The content is in aligned location.
- }
- llvm::Type *PTy =
- llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
- return AddrTyped;
- }
- //===----------------------------------------------------------------------===//
- // NVPTX ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class NVPTXABIInfo : public ABIInfo {
- public:
- NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType Ty) const;
- void computeInfo(CGFunctionInfo &FI) const override;
- llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CFG) const override;
- };
- class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
- : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const override;
- private:
- // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
- // resulting MDNode to the nvvm.annotations MDNode.
- static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
- };
- ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- // note: this is different from default ABI
- if (!RetTy->isScalarType())
- return ABIArgInfo::getDirect();
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- // Return aggregates type as indirect by value
- if (isAggregateTypeForABI(Ty))
- return ABIArgInfo::getIndirect(0, /* byval */ true);
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (auto &I : FI.arguments())
- I.info = classifyArgumentType(I.type);
- // Always honor user-specified calling convention.
- if (FI.getCallingConvention() != llvm::CallingConv::C)
- return;
- FI.setEffectiveCallingConvention(getRuntimeCC());
- }
- llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CFG) const {
- llvm_unreachable("NVPTX does not support varargs");
- }
- void NVPTXTargetCodeGenInfo::
- setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const{
- const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
- if (!FD) return;
- llvm::Function *F = cast<llvm::Function>(GV);
- // Perform special handling in OpenCL mode
- if (M.getLangOpts().OpenCL) {
- // Use OpenCL function attributes to check for kernel functions
- // By default, all functions are device functions
- if (FD->hasAttr<OpenCLKernelAttr>()) {
- // OpenCL __kernel functions get kernel metadata
- // Create !{<func-ref>, metadata !"kernel", i32 1} node
- addNVVMMetadata(F, "kernel", 1);
- // And kernel functions are not subject to inlining
- F->addFnAttr(llvm::Attribute::NoInline);
- }
- }
- // Perform special handling in CUDA mode.
- if (M.getLangOpts().CUDA) {
- // CUDA __global__ functions get a kernel metadata entry. Since
- // __global__ functions cannot be called from the device, we do not
- // need to set the noinline attribute.
- if (FD->hasAttr<CUDAGlobalAttr>()) {
- // Create !{<func-ref>, metadata !"kernel", i32 1} node
- addNVVMMetadata(F, "kernel", 1);
- }
- if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
- // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
- llvm::APSInt MaxThreads(32);
- MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
- if (MaxThreads > 0)
- addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
- // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
- // not specified in __launch_bounds__ or if the user specified a 0 value,
- // we don't have to add a PTX directive.
- if (Attr->getMinBlocks()) {
- llvm::APSInt MinBlocks(32);
- MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
- if (MinBlocks > 0)
- // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
- addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
- }
- }
- }
- }
- void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
- int Operand) {
- llvm::Module *M = F->getParent();
- llvm::LLVMContext &Ctx = M->getContext();
- // Get "nvvm.annotations" metadata node
- llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
- llvm::Metadata *MDVals[] = {
- llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
- llvm::ConstantAsMetadata::get(
- llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
- // Append metadata to nvvm.annotations
- MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
- }
- }
- //===----------------------------------------------------------------------===//
- // SystemZ ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class SystemZABIInfo : public ABIInfo {
- bool HasVector;
- public:
- SystemZABIInfo(CodeGenTypes &CGT, bool HV)
- : ABIInfo(CGT), HasVector(HV) {}
- bool isPromotableIntegerType(QualType Ty) const;
- bool isCompoundType(QualType Ty) const;
- bool isVectorArgumentType(QualType Ty) const;
- bool isFPArgumentType(QualType Ty) const;
- QualType GetSingleElementType(QualType Ty) const;
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType ArgTy) const;
- void computeInfo(CGFunctionInfo &FI) const override {
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (auto &I : FI.arguments())
- I.info = classifyArgumentType(I.type);
- }
- llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const override;
- };
- class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
- : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
- };
- }
- bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- // Promotable integer types are required to be promoted by the ABI.
- if (Ty->isPromotableIntegerType())
- return true;
- // 32-bit values must also be promoted.
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
- switch (BT->getKind()) {
- case BuiltinType::Int:
- case BuiltinType::UInt:
- return true;
- default:
- return false;
- }
- return false;
- }
- bool SystemZABIInfo::isCompoundType(QualType Ty) const {
- return (Ty->isAnyComplexType() ||
- Ty->isVectorType() ||
- isAggregateTypeForABI(Ty));
- }
- bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
- return (HasVector &&
- Ty->isVectorType() &&
- getContext().getTypeSize(Ty) <= 128);
- }
- bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
- switch (BT->getKind()) {
- case BuiltinType::Float:
- case BuiltinType::Double:
- return true;
- default:
- return false;
- }
- return false;
- }
- QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
- if (const RecordType *RT = Ty->getAsStructureType()) {
- const RecordDecl *RD = RT->getDecl();
- QualType Found;
- // If this is a C++ record, check the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
- for (const auto &I : CXXRD->bases()) {
- QualType Base = I.getType();
- // Empty bases don't affect things either way.
- if (isEmptyRecord(getContext(), Base, true))
- continue;
- if (!Found.isNull())
- return Ty;
- Found = GetSingleElementType(Base);
- }
- // Check the fields.
- for (const auto *FD : RD->fields()) {
- // For compatibility with GCC, ignore empty bitfields in C++ mode.
- // Unlike isSingleElementStruct(), empty structure and array fields
- // do count. So do anonymous bitfields that aren't zero-sized.
- if (getContext().getLangOpts().CPlusPlus &&
- FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
- continue;
- // Unlike isSingleElementStruct(), arrays do not count.
- // Nested structures still do though.
- if (!Found.isNull())
- return Ty;
- Found = GetSingleElementType(FD->getType());
- }
- // Unlike isSingleElementStruct(), trailing padding is allowed.
- // An 8-byte aligned struct s { float f; } is passed as a double.
- if (!Found.isNull())
- return Found;
- }
- return Ty;
- }
- llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- // Assume that va_list type is correct; should be pointer to LLVM type:
- // struct {
- // i64 __gpr;
- // i64 __fpr;
- // i8 *__overflow_arg_area;
- // i8 *__reg_save_area;
- // };
- // Every non-vector argument occupies 8 bytes and is passed by preference
- // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are
- // always passed on the stack.
- Ty = CGF.getContext().getCanonicalType(Ty);
- llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
- llvm::Type *APTy = llvm::PointerType::getUnqual(ArgTy);
- ABIArgInfo AI = classifyArgumentType(Ty);
- bool IsIndirect = AI.isIndirect();
- bool InFPRs = false;
- bool IsVector = false;
- unsigned UnpaddedBitSize;
- if (IsIndirect) {
- APTy = llvm::PointerType::getUnqual(APTy);
- UnpaddedBitSize = 64;
- } else {
- if (AI.getCoerceToType())
- ArgTy = AI.getCoerceToType();
- InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
- IsVector = ArgTy->isVectorTy();
- UnpaddedBitSize = getContext().getTypeSize(Ty);
- }
- unsigned PaddedBitSize = (IsVector && UnpaddedBitSize > 64) ? 128 : 64;
- assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
- unsigned PaddedSize = PaddedBitSize / 8;
- unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
- llvm::Type *IndexTy = CGF.Int64Ty;
- llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
- if (IsVector) {
- // Work out the address of a vector argument on the stack.
- // Vector arguments are always passed in the high bits of a
- // single (8 byte) or double (16 byte) stack slot.
- llvm::Value *OverflowArgAreaPtr =
- CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 2,
- "overflow_arg_area_ptr");
- llvm::Value *OverflowArgArea =
- CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
- llvm::Value *MemAddr =
- CGF.Builder.CreateBitCast(OverflowArgArea, APTy, "mem_addr");
- // Update overflow_arg_area_ptr pointer
- llvm::Value *NewOverflowArgArea =
- CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
- CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
- return MemAddr;
- }
- unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
- if (InFPRs) {
- MaxRegs = 4; // Maximum of 4 FPR arguments
- RegCountField = 1; // __fpr
- RegSaveIndex = 16; // save offset for f0
- RegPadding = 0; // floats are passed in the high bits of an FPR
- } else {
- MaxRegs = 5; // Maximum of 5 GPR arguments
- RegCountField = 0; // __gpr
- RegSaveIndex = 2; // save offset for r2
- RegPadding = Padding; // values are passed in the low bits of a GPR
- }
- llvm::Value *RegCountPtr = CGF.Builder.CreateStructGEP(
- nullptr, VAListAddr, RegCountField, "reg_count_ptr");
- llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
- llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
- llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
- "fits_in_regs");
- llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
- llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
- CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
- // Emit code to load the value if it was passed in registers.
- CGF.EmitBlock(InRegBlock);
- // Work out the address of an argument register.
- llvm::Value *ScaledRegCount =
- CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
- llvm::Value *RegBase =
- llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
- llvm::Value *RegOffset =
- CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
- llvm::Value *RegSaveAreaPtr =
- CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "reg_save_area_ptr");
- llvm::Value *RegSaveArea =
- CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
- llvm::Value *RawRegAddr =
- CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
- llvm::Value *RegAddr =
- CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
- // Update the register count
- llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
- llvm::Value *NewRegCount =
- CGF.Builder.CreateAdd(RegCount, One, "reg_count");
- CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
- CGF.EmitBranch(ContBlock);
- // Emit code to load the value if it was passed in memory.
- CGF.EmitBlock(InMemBlock);
- // Work out the address of a stack argument.
- llvm::Value *OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
- nullptr, VAListAddr, 2, "overflow_arg_area_ptr");
- llvm::Value *OverflowArgArea =
- CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
- llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
- llvm::Value *RawMemAddr =
- CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
- llvm::Value *MemAddr =
- CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
- // Update overflow_arg_area_ptr pointer
- llvm::Value *NewOverflowArgArea =
- CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
- CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
- CGF.EmitBranch(ContBlock);
- // Return the appropriate result.
- CGF.EmitBlock(ContBlock);
- llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
- ResAddr->addIncoming(RegAddr, InRegBlock);
- ResAddr->addIncoming(MemAddr, InMemBlock);
- if (IsIndirect)
- return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
- return ResAddr;
- }
- ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- if (isVectorArgumentType(RetTy))
- return ABIArgInfo::getDirect();
- if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
- return ABIArgInfo::getIndirect(0);
- return (isPromotableIntegerType(RetTy) ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
- // Handle the generic C++ ABI.
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
- return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
- // Integers and enums are extended to full register width.
- if (isPromotableIntegerType(Ty))
- return ABIArgInfo::getExtend();
- // Handle vector types and vector-like structure types. Note that
- // as opposed to float-like structure types, we do not allow any
- // padding for vector-like structures, so verify the sizes match.
- uint64_t Size = getContext().getTypeSize(Ty);
- QualType SingleElementTy = GetSingleElementType(Ty);
- if (isVectorArgumentType(SingleElementTy) &&
- getContext().getTypeSize(SingleElementTy) == Size)
- return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
- // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
- if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- // Handle small structures.
- if (const RecordType *RT = Ty->getAs<RecordType>()) {
- // Structures with flexible arrays have variable length, so really
- // fail the size test above.
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- // The structure is passed as an unextended integer, a float, or a double.
- llvm::Type *PassTy;
- if (isFPArgumentType(SingleElementTy)) {
- assert(Size == 32 || Size == 64);
- if (Size == 32)
- PassTy = llvm::Type::getFloatTy(getVMContext());
- else
- PassTy = llvm::Type::getDoubleTy(getVMContext());
- } else
- PassTy = llvm::IntegerType::get(getVMContext(), Size);
- return ABIArgInfo::getDirect(PassTy);
- }
- // Non-structure compounds are passed indirectly.
- if (isCompoundType(Ty))
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- return ABIArgInfo::getDirect(nullptr);
- }
- //===----------------------------------------------------------------------===//
- // MSP430 ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
- : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const override;
- };
- }
- void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
- llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const {
- if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
- if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
- // Handle 'interrupt' attribute:
- llvm::Function *F = cast<llvm::Function>(GV);
- // Step 1: Set ISR calling convention.
- F->setCallingConv(llvm::CallingConv::MSP430_INTR);
- // Step 2: Add attributes goodness.
- F->addFnAttr(llvm::Attribute::NoInline);
- // Step 3: Emit ISR vector alias.
- unsigned Num = attr->getNumber() / 2;
- llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
- "__isr_" + Twine(Num), F);
- }
- }
- }
- //===----------------------------------------------------------------------===//
- // MIPS ABI Implementation. This works for both little-endian and
- // big-endian variants.
- //===----------------------------------------------------------------------===//
- namespace {
- class MipsABIInfo : public ABIInfo {
- bool IsO32;
- unsigned MinABIStackAlignInBytes, StackAlignInBytes;
- void CoerceToIntArgs(uint64_t TySize,
- SmallVectorImpl<llvm::Type *> &ArgList) const;
- llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
- llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
- llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
- public:
- MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
- ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
- StackAlignInBytes(IsO32 ? 8 : 16) {}
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
- void computeInfo(CGFunctionInfo &FI) const override;
- llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const override;
- bool shouldSignExtUnsignedType(QualType Ty) const override;
- };
- class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
- unsigned SizeOfUnwindException;
- public:
- MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
- : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
- SizeOfUnwindException(IsO32 ? 24 : 32) {}
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
- return 29;
- }
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override {
- const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
- if (!FD) return;
- llvm::Function *Fn = cast<llvm::Function>(GV);
- if (FD->hasAttr<Mips16Attr>()) {
- Fn->addFnAttr("mips16");
- }
- else if (FD->hasAttr<NoMips16Attr>()) {
- Fn->addFnAttr("nomips16");
- }
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override;
- unsigned getSizeOfUnwindException() const override {
- return SizeOfUnwindException;
- }
- };
- }
- void MipsABIInfo::CoerceToIntArgs(
- uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
- llvm::IntegerType *IntTy =
- llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
- // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
- for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
- ArgList.push_back(IntTy);
- // If necessary, add one more integer type to ArgList.
- unsigned R = TySize % (MinABIStackAlignInBytes * 8);
- if (R)
- ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
- }
- // In N32/64, an aligned double precision floating point field is passed in
- // a register.
- llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
- SmallVector<llvm::Type*, 8> ArgList, IntArgList;
- if (IsO32) {
- CoerceToIntArgs(TySize, ArgList);
- return llvm::StructType::get(getVMContext(), ArgList);
- }
- if (Ty->isComplexType())
- return CGT.ConvertType(Ty);
- const RecordType *RT = Ty->getAs<RecordType>();
- // Unions/vectors are passed in integer registers.
- if (!RT || !RT->isStructureOrClassType()) {
- CoerceToIntArgs(TySize, ArgList);
- return llvm::StructType::get(getVMContext(), ArgList);
- }
- const RecordDecl *RD = RT->getDecl();
- const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
- assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
- uint64_t LastOffset = 0;
- unsigned idx = 0;
- llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
- // Iterate over fields in the struct/class and check if there are any aligned
- // double fields.
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i, ++idx) {
- const QualType Ty = i->getType();
- const BuiltinType *BT = Ty->getAs<BuiltinType>();
- if (!BT || BT->getKind() != BuiltinType::Double)
- continue;
- uint64_t Offset = Layout.getFieldOffset(idx);
- if (Offset % 64) // Ignore doubles that are not aligned.
- continue;
- // Add ((Offset - LastOffset) / 64) args of type i64.
- for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
- ArgList.push_back(I64);
- // Add double type.
- ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
- LastOffset = Offset + 64;
- }
- CoerceToIntArgs(TySize - LastOffset, IntArgList);
- ArgList.append(IntArgList.begin(), IntArgList.end());
- return llvm::StructType::get(getVMContext(), ArgList);
- }
- llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
- uint64_t Offset) const {
- if (OrigOffset + MinABIStackAlignInBytes > Offset)
- return nullptr;
- return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
- }
- ABIArgInfo
- MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
- Ty = useFirstFieldIfTransparentUnion(Ty);
- uint64_t OrigOffset = Offset;
- uint64_t TySize = getContext().getTypeSize(Ty);
- uint64_t Align = getContext().getTypeAlign(Ty) / 8;
- Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
- (uint64_t)StackAlignInBytes);
- unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
- Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
- if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
- // Ignore empty aggregates.
- if (TySize == 0)
- return ABIArgInfo::getIgnore();
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
- Offset = OrigOffset + MinABIStackAlignInBytes;
- return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
- }
- // If we have reached here, aggregates are passed directly by coercing to
- // another structure type. Padding is inserted if the offset of the
- // aggregate is unaligned.
- ABIArgInfo ArgInfo =
- ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
- getPaddingType(OrigOffset, CurrOffset));
- ArgInfo.setInReg(true);
- return ArgInfo;
- }
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- // All integral types are promoted to the GPR width.
- if (Ty->isIntegralOrEnumerationType())
- return ABIArgInfo::getExtend();
- return ABIArgInfo::getDirect(
- nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
- }
- llvm::Type*
- MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
- const RecordType *RT = RetTy->getAs<RecordType>();
- SmallVector<llvm::Type*, 8> RTList;
- if (RT && RT->isStructureOrClassType()) {
- const RecordDecl *RD = RT->getDecl();
- const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
- unsigned FieldCnt = Layout.getFieldCount();
- // N32/64 returns struct/classes in floating point registers if the
- // following conditions are met:
- // 1. The size of the struct/class is no larger than 128-bit.
- // 2. The struct/class has one or two fields all of which are floating
- // point types.
- // 3. The offset of the first field is zero (this follows what gcc does).
- //
- // Any other composite results are returned in integer registers.
- //
- if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
- RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
- for (; b != e; ++b) {
- const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
- if (!BT || !BT->isFloatingPoint())
- break;
- RTList.push_back(CGT.ConvertType(b->getType()));
- }
- if (b == e)
- return llvm::StructType::get(getVMContext(), RTList,
- RD->hasAttr<PackedAttr>());
- RTList.clear();
- }
- }
- CoerceToIntArgs(Size, RTList);
- return llvm::StructType::get(getVMContext(), RTList);
- }
- ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
- uint64_t Size = getContext().getTypeSize(RetTy);
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- // O32 doesn't treat zero-sized structs differently from other structs.
- // However, N32/N64 ignores zero sized return values.
- if (!IsO32 && Size == 0)
- return ABIArgInfo::getIgnore();
- if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
- if (Size <= 128) {
- if (RetTy->isAnyComplexType())
- return ABIArgInfo::getDirect();
- // O32 returns integer vectors in registers and N32/N64 returns all small
- // aggregates in registers.
- if (!IsO32 ||
- (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
- ABIArgInfo ArgInfo =
- ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
- ArgInfo.setInReg(true);
- return ArgInfo;
- }
- }
- return ABIArgInfo::getIndirect(0);
- }
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
- ABIArgInfo &RetInfo = FI.getReturnInfo();
- if (!getCXXABI().classifyReturnType(FI))
- RetInfo = classifyReturnType(FI.getReturnType());
- // Check if a pointer to an aggregate is passed as a hidden argument.
- uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
- for (auto &I : FI.arguments())
- I.info = classifyArgumentType(I.type, Offset);
- }
- llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- llvm::Type *BP = CGF.Int8PtrTy;
- llvm::Type *BPP = CGF.Int8PtrPtrTy;
- // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
- // Pointers are also promoted in the same way but this only matters for N32.
- unsigned SlotSizeInBits = IsO32 ? 32 : 64;
- unsigned PtrWidth = getTarget().getPointerWidth(0);
- if ((Ty->isIntegerType() &&
- CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) ||
- (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
- Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits,
- Ty->isSignedIntegerType());
- }
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- int64_t TypeAlign =
- std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes);
- llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- llvm::Value *AddrTyped;
- llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
- if (TypeAlign > MinABIStackAlignInBytes) {
- llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
- llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
- llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
- llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
- llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
- AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
- }
- else
- AddrTyped = Builder.CreateBitCast(Addr, PTy);
- llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
- TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
- unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty);
- uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign);
- llvm::Value *NextAddr =
- Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
- "ap.next");
- Builder.CreateStore(NextAddr, VAListAddrAsBPP);
- return AddrTyped;
- }
- bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
- int TySize = getContext().getTypeSize(Ty);
- // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
- if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
- return true;
- return false;
- }
- bool
- MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- // This information comes from gcc's implementation, which seems to
- // as canonical as it gets.
- // Everything on MIPS is 4 bytes. Double-precision FP registers
- // are aliased to pairs of single-precision FP registers.
- llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
- // 0-31 are the general purpose registers, $0 - $31.
- // 32-63 are the floating-point registers, $f0 - $f31.
- // 64 and 65 are the multiply/divide registers, $hi and $lo.
- // 66 is the (notional, I think) register for signal-handler return.
- AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
- // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
- // They are one bit wide and ignored here.
- // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
- // (coprocessor 1 is the FP unit)
- // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
- // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
- // 176-181 are the DSP accumulator registers.
- AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
- return false;
- }
- //===----------------------------------------------------------------------===//
- // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
- // Currently subclassed only to implement custom OpenCL C function attribute
- // handling.
- //===----------------------------------------------------------------------===//
- namespace {
- class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
- public:
- TCETargetCodeGenInfo(CodeGenTypes &CGT)
- : DefaultTargetCodeGenInfo(CGT) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const override;
- };
- void TCETargetCodeGenInfo::setTargetAttributes(
- const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
- const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
- if (!FD) return;
- llvm::Function *F = cast<llvm::Function>(GV);
- if (M.getLangOpts().OpenCL) {
- if (FD->hasAttr<OpenCLKernelAttr>()) {
- // OpenCL C Kernel functions are not subject to inlining
- F->addFnAttr(llvm::Attribute::NoInline);
- const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
- if (Attr) {
- // Convert the reqd_work_group_size() attributes to metadata.
- llvm::LLVMContext &Context = F->getContext();
- llvm::NamedMDNode *OpenCLMetadata =
- M.getModule().getOrInsertNamedMetadata(
- "opencl.kernel_wg_size_info");
- SmallVector<llvm::Metadata *, 5> Operands;
- Operands.push_back(llvm::ConstantAsMetadata::get(F));
- Operands.push_back(
- llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
- M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
- Operands.push_back(
- llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
- M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
- Operands.push_back(
- llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
- M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
- // Add a boolean constant operand for "required" (true) or "hint"
- // (false) for implementing the work_group_size_hint attr later.
- // Currently always true as the hint is not yet implemented.
- Operands.push_back(
- llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
- OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
- }
- }
- }
- }
- }
- //===----------------------------------------------------------------------===//
- // Hexagon ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class HexagonABIInfo : public ABIInfo {
- public:
- HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
- private:
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType RetTy) const;
- void computeInfo(CGFunctionInfo &FI) const override;
- llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const override;
- };
- class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
- :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
- return 29;
- }
- };
- }
- void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (auto &I : FI.arguments())
- I.info = classifyArgumentType(I.type);
- }
- ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
- if (!isAggregateTypeForABI(Ty)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- // Ignore empty records.
- if (isEmptyRecord(getContext(), Ty, true))
- return ABIArgInfo::getIgnore();
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
- return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
- uint64_t Size = getContext().getTypeSize(Ty);
- if (Size > 64)
- return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
- // Pass in the smallest viable integer type.
- else if (Size > 32)
- return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
- else if (Size > 16)
- return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
- else if (Size > 8)
- return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
- else
- return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
- }
- ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- // Large vector types should be returned via memory.
- if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
- return ABIArgInfo::getIndirect(0);
- if (!isAggregateTypeForABI(RetTy)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- if (isEmptyRecord(getContext(), RetTy, true))
- return ABIArgInfo::getIgnore();
- // Aggregates <= 8 bytes are returned in r0; other aggregates
- // are returned indirectly.
- uint64_t Size = getContext().getTypeSize(RetTy);
- if (Size <= 64) {
- // Return in the smallest viable integer type.
- if (Size <= 8)
- return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
- if (Size <= 16)
- return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
- if (Size <= 32)
- return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
- return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
- }
- return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
- }
- llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- // FIXME: Need to handle alignment
- llvm::Type *BPP = CGF.Int8PtrPtrTy;
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
- "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- llvm::Type *PTy =
- llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
- uint64_t Offset =
- llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
- llvm::Value *NextAddr =
- Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
- "ap.next");
- Builder.CreateStore(NextAddr, VAListAddrAsBPP);
- return AddrTyped;
- }
- //===----------------------------------------------------------------------===//
- // AMDGPU ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
- : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const override;
- };
- }
- void AMDGPUTargetCodeGenInfo::setTargetAttributes(
- const Decl *D,
- llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const {
- const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
- if (!FD)
- return;
- if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
- llvm::Function *F = cast<llvm::Function>(GV);
- uint32_t NumVGPR = Attr->getNumVGPR();
- if (NumVGPR != 0)
- F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
- }
- if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
- llvm::Function *F = cast<llvm::Function>(GV);
- unsigned NumSGPR = Attr->getNumSGPR();
- if (NumSGPR != 0)
- F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
- }
- }
- // HLSL Change Begins
- //===----------------------------------------------------------------------===//
- // MSDXIL ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class MSDXILABIInfo : public ABIInfo {
- public:
- MSDXILABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
- ABIArgInfo classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- if (isAggregateTypeForABI(RetTy))
- return ABIArgInfo::getIndirect(0);
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- // do not use extend for hlsl.
- return ABIArgInfo::getDirect(CGT.ConvertType(RetTy));
- }
- ABIArgInfo classifyArgumentType(QualType Ty) const;
- void computeInfo(CGFunctionInfo &FI) const override;
- llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CFG) const override;
- };
- class MSDXILTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- MSDXILTargetCodeGenInfo(CodeGenTypes &CGT)
- : TargetCodeGenInfo(new MSDXILABIInfo(CGT)) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const override;
- private:
- };
- ABIArgInfo MSDXILABIInfo::classifyArgumentType(QualType Ty) const {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- // Return aggregates type as indirect by ref.
- // By val not work for out param.
- if (isAggregateTypeForABI(Ty))
- return ABIArgInfo::getIndirect(0, /* byval */ false);
- return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
- : ABIArgInfo::getDirect());
- }
- void MSDXILABIInfo::computeInfo(CGFunctionInfo &FI) const {
- QualType RetTy = FI.getReturnType();
- if (RetTy->isVoidType()) {
- FI.getReturnInfo() = ABIArgInfo::getIgnore();
- } else if (isAggregateTypeForABI(RetTy)) {
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(RetTy);
- } else {
- // Make vector and matrix direct ret.
- FI.getReturnInfo() = classifyReturnType(RetTy);
- }
- for (auto &I : FI.arguments()) {
- I.info = classifyArgumentType(I.type);
- // Do not flat matrix
- if (hlsl::IsHLSLMatType(I.type))
- I.info.setCanBeFlattened(false);
- }
- // TODO: set calling convention
- // Every function call will be inlined for now.
- FI.setEffectiveCallingConvention(getRuntimeCC());
- }
- llvm::Value *MSDXILABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CFG) const {
- // TODO: support vaarg
- llvm_unreachable("Not support printf yet");
- }
- void MSDXILTargetCodeGenInfo::setTargetAttributes(
- const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
- const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
- if (!FD)
- return;
- // llvm::Function *F = cast<llvm::Function>(GV);
- // TODO: add dxil attributes
- }
- }
- // HLSL Change Ends
- //===----------------------------------------------------------------------===//
- // SPARC v9 ABI Implementation.
- // Based on the SPARC Compliance Definition version 2.4.1.
- //
- // Function arguments a mapped to a nominal "parameter array" and promoted to
- // registers depending on their type. Each argument occupies 8 or 16 bytes in
- // the array, structs larger than 16 bytes are passed indirectly.
- //
- // One case requires special care:
- //
- // struct mixed {
- // int i;
- // float f;
- // };
- //
- // When a struct mixed is passed by value, it only occupies 8 bytes in the
- // parameter array, but the int is passed in an integer register, and the float
- // is passed in a floating point register. This is represented as two arguments
- // with the LLVM IR inreg attribute:
- //
- // declare void f(i32 inreg %i, float inreg %f)
- //
- // The code generator will only allocate 4 bytes from the parameter array for
- // the inreg arguments. All other arguments are allocated a multiple of 8
- // bytes.
- //
- namespace {
- class SparcV9ABIInfo : public ABIInfo {
- public:
- SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
- private:
- ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
- void computeInfo(CGFunctionInfo &FI) const override;
- llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const override;
- // Coercion type builder for structs passed in registers. The coercion type
- // serves two purposes:
- //
- // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
- // in registers.
- // 2. Expose aligned floating point elements as first-level elements, so the
- // code generator knows to pass them in floating point registers.
- //
- // We also compute the InReg flag which indicates that the struct contains
- // aligned 32-bit floats.
- //
- struct CoerceBuilder {
- llvm::LLVMContext &Context;
- const llvm::DataLayout &DL;
- SmallVector<llvm::Type*, 8> Elems;
- uint64_t Size;
- bool InReg;
- CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
- : Context(c), DL(dl), Size(0), InReg(false) {}
- // Pad Elems with integers until Size is ToSize.
- void pad(uint64_t ToSize) {
- assert(ToSize >= Size && "Cannot remove elements");
- if (ToSize == Size)
- return;
- // Finish the current 64-bit word.
- uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
- if (Aligned > Size && Aligned <= ToSize) {
- Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
- Size = Aligned;
- }
- // Add whole 64-bit words.
- while (Size + 64 <= ToSize) {
- Elems.push_back(llvm::Type::getInt64Ty(Context));
- Size += 64;
- }
- // Final in-word padding.
- if (Size < ToSize) {
- Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
- Size = ToSize;
- }
- }
- // Add a floating point element at Offset.
- void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
- // Unaligned floats are treated as integers.
- if (Offset % Bits)
- return;
- // The InReg flag is only required if there are any floats < 64 bits.
- if (Bits < 64)
- InReg = true;
- pad(Offset);
- Elems.push_back(Ty);
- Size = Offset + Bits;
- }
- // Add a struct type to the coercion type, starting at Offset (in bits).
- void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
- const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
- for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
- llvm::Type *ElemTy = StrTy->getElementType(i);
- uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
- switch (ElemTy->getTypeID()) {
- case llvm::Type::StructTyID:
- addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
- break;
- case llvm::Type::FloatTyID:
- addFloat(ElemOffset, ElemTy, 32);
- break;
- case llvm::Type::DoubleTyID:
- addFloat(ElemOffset, ElemTy, 64);
- break;
- case llvm::Type::FP128TyID:
- addFloat(ElemOffset, ElemTy, 128);
- break;
- case llvm::Type::PointerTyID:
- if (ElemOffset % 64 == 0) {
- pad(ElemOffset);
- Elems.push_back(ElemTy);
- Size += 64;
- }
- break;
- default:
- break;
- }
- }
- }
- // Check if Ty is a usable substitute for the coercion type.
- bool isUsableType(llvm::StructType *Ty) const {
- return llvm::makeArrayRef(Elems) == Ty->elements();
- }
- // Get the coercion type as a literal struct type.
- llvm::Type *getType() const {
- if (Elems.size() == 1)
- return Elems.front();
- else
- return llvm::StructType::get(Context, Elems);
- }
- };
- };
- } // end anonymous namespace
- ABIArgInfo
- SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
- if (Ty->isVoidType())
- return ABIArgInfo::getIgnore();
- uint64_t Size = getContext().getTypeSize(Ty);
- // Anything too big to fit in registers is passed with an explicit indirect
- // pointer / sret pointer.
- if (Size > SizeLimit)
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- // Integer types smaller than a register are extended.
- if (Size < 64 && Ty->isIntegerType())
- return ABIArgInfo::getExtend();
- // Other non-aggregates go in registers.
- if (!isAggregateTypeForABI(Ty))
- return ABIArgInfo::getDirect();
- // If a C++ object has either a non-trivial copy constructor or a non-trivial
- // destructor, it is passed with an explicit indirect pointer / sret pointer.
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
- return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
- // This is a small aggregate type that should be passed in registers.
- // Build a coercion type from the LLVM struct type.
- llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
- if (!StrTy)
- return ABIArgInfo::getDirect();
- CoerceBuilder CB(getVMContext(), getDataLayout());
- CB.addStruct(0, StrTy);
- CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
- // Try to use the original type for coercion.
- llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
- if (CB.InReg)
- return ABIArgInfo::getDirectInReg(CoerceTy);
- else
- return ABIArgInfo::getDirect(CoerceTy);
- }
- llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- ABIArgInfo AI = classifyType(Ty, 16 * 8);
- llvm::Type *ArgTy = CGT.ConvertType(Ty);
- if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
- AI.setCoerceToType(ArgTy);
- llvm::Type *BPP = CGF.Int8PtrPtrTy;
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
- llvm::Value *ArgAddr;
- unsigned Stride;
- switch (AI.getKind()) {
- case ABIArgInfo::Expand:
- case ABIArgInfo::InAlloca:
- llvm_unreachable("Unsupported ABI kind for va_arg");
- case ABIArgInfo::Extend:
- Stride = 8;
- ArgAddr = Builder
- .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
- "extend");
- break;
- case ABIArgInfo::Direct:
- Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
- ArgAddr = Addr;
- break;
- case ABIArgInfo::Indirect:
- Stride = 8;
- ArgAddr = Builder.CreateBitCast(Addr,
- llvm::PointerType::getUnqual(ArgPtrTy),
- "indirect");
- ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
- break;
- case ABIArgInfo::Ignore:
- return llvm::UndefValue::get(ArgPtrTy);
- }
- // Update VAList.
- Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
- Builder.CreateStore(Addr, VAListAddrAsBPP);
- return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
- }
- void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
- FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
- for (auto &I : FI.arguments())
- I.info = classifyType(I.type, 16 * 8);
- }
- namespace {
- class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
- : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
- return 14;
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override;
- };
- } // end anonymous namespace
- bool
- SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- // This is calculated from the LLVM and GCC tables and verified
- // against gcc output. AFAIK all ABIs use the same encoding.
- CodeGen::CGBuilderTy &Builder = CGF.Builder;
- llvm::IntegerType *i8 = CGF.Int8Ty;
- llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
- llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
- // 0-31: the 8-byte general-purpose registers
- AssignToArrayRange(Builder, Address, Eight8, 0, 31);
- // 32-63: f0-31, the 4-byte floating-point registers
- AssignToArrayRange(Builder, Address, Four8, 32, 63);
- // Y = 64
- // PSR = 65
- // WIM = 66
- // TBR = 67
- // PC = 68
- // NPC = 69
- // FSR = 70
- // CSR = 71
- AssignToArrayRange(Builder, Address, Eight8, 64, 71);
- // 72-87: d0-15, the 8-byte floating-point registers
- AssignToArrayRange(Builder, Address, Eight8, 72, 87);
- return false;
- }
- //===----------------------------------------------------------------------===//
- // XCore ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- /// A SmallStringEnc instance is used to build up the TypeString by passing
- /// it by reference between functions that append to it.
- typedef llvm::SmallString<128> SmallStringEnc;
- /// TypeStringCache caches the meta encodings of Types.
- ///
- /// The reason for caching TypeStrings is two fold:
- /// 1. To cache a type's encoding for later uses;
- /// 2. As a means to break recursive member type inclusion.
- ///
- /// A cache Entry can have a Status of:
- /// NonRecursive: The type encoding is not recursive;
- /// Recursive: The type encoding is recursive;
- /// Incomplete: An incomplete TypeString;
- /// IncompleteUsed: An incomplete TypeString that has been used in a
- /// Recursive type encoding.
- ///
- /// A NonRecursive entry will have all of its sub-members expanded as fully
- /// as possible. Whilst it may contain types which are recursive, the type
- /// itself is not recursive and thus its encoding may be safely used whenever
- /// the type is encountered.
- ///
- /// A Recursive entry will have all of its sub-members expanded as fully as
- /// possible. The type itself is recursive and it may contain other types which
- /// are recursive. The Recursive encoding must not be used during the expansion
- /// of a recursive type's recursive branch. For simplicity the code uses
- /// IncompleteCount to reject all usage of Recursive encodings for member types.
- ///
- /// An Incomplete entry is always a RecordType and only encodes its
- /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
- /// are placed into the cache during type expansion as a means to identify and
- /// handle recursive inclusion of types as sub-members. If there is recursion
- /// the entry becomes IncompleteUsed.
- ///
- /// During the expansion of a RecordType's members:
- ///
- /// If the cache contains a NonRecursive encoding for the member type, the
- /// cached encoding is used;
- ///
- /// If the cache contains a Recursive encoding for the member type, the
- /// cached encoding is 'Swapped' out, as it may be incorrect, and...
- ///
- /// If the member is a RecordType, an Incomplete encoding is placed into the
- /// cache to break potential recursive inclusion of itself as a sub-member;
- ///
- /// Once a member RecordType has been expanded, its temporary incomplete
- /// entry is removed from the cache. If a Recursive encoding was swapped out
- /// it is swapped back in;
- ///
- /// If an incomplete entry is used to expand a sub-member, the incomplete
- /// entry is marked as IncompleteUsed. The cache keeps count of how many
- /// IncompleteUsed entries it currently contains in IncompleteUsedCount;
- ///
- /// If a member's encoding is found to be a NonRecursive or Recursive viz:
- /// IncompleteUsedCount==0, the member's encoding is added to the cache.
- /// Else the member is part of a recursive type and thus the recursion has
- /// been exited too soon for the encoding to be correct for the member.
- ///
- class TypeStringCache {
- enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
- struct Entry {
- std::string Str; // The encoded TypeString for the type.
- enum Status State; // Information about the encoding in 'Str'.
- std::string Swapped; // A temporary place holder for a Recursive encoding
- // during the expansion of RecordType's members.
- };
- std::map<const IdentifierInfo *, struct Entry> Map;
- unsigned IncompleteCount; // Number of Incomplete entries in the Map.
- unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
- public:
- TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {};
- void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
- bool removeIncomplete(const IdentifierInfo *ID);
- void addIfComplete(const IdentifierInfo *ID, StringRef Str,
- bool IsRecursive);
- StringRef lookupStr(const IdentifierInfo *ID);
- };
- /// TypeString encodings for enum & union fields must be order.
- /// FieldEncoding is a helper for this ordering process.
- class FieldEncoding {
- bool HasName;
- std::string Enc;
- public:
- FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
- StringRef str() {return Enc.c_str();};
- bool operator<(const FieldEncoding &rhs) const {
- if (HasName != rhs.HasName) return HasName;
- return Enc < rhs.Enc;
- }
- };
- class XCoreABIInfo : public DefaultABIInfo {
- public:
- XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
- llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const override;
- };
- class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
- mutable TypeStringCache TSC;
- public:
- XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
- :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
- void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const override;
- };
- } // End anonymous namespace.
- llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- CGBuilderTy &Builder = CGF.Builder;
- // Get the VAList.
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
- CGF.Int8PtrPtrTy);
- llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
- // Handle the argument.
- ABIArgInfo AI = classifyArgumentType(Ty);
- llvm::Type *ArgTy = CGT.ConvertType(Ty);
- if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
- AI.setCoerceToType(ArgTy);
- llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
- llvm::Value *Val;
- uint64_t ArgSize = 0;
- switch (AI.getKind()) {
- case ABIArgInfo::Expand:
- case ABIArgInfo::InAlloca:
- default: // HLSL Change - fix warning for uninitialized memory later on for unreachable cases
- llvm_unreachable("Unsupported ABI kind for va_arg");
- case ABIArgInfo::Ignore:
- Val = llvm::UndefValue::get(ArgPtrTy);
- ArgSize = 0;
- break;
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct:
- Val = Builder.CreatePointerCast(AP, ArgPtrTy);
- ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
- if (ArgSize < 4)
- ArgSize = 4;
- break;
- case ABIArgInfo::Indirect:
- llvm::Value *ArgAddr;
- ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
- ArgAddr = Builder.CreateLoad(ArgAddr);
- Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
- ArgSize = 4;
- break;
- }
- // Increment the VAList.
- if (ArgSize) {
- llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
- Builder.CreateStore(APN, VAListAddrAsBPP);
- }
- return Val;
- }
- /// During the expansion of a RecordType, an incomplete TypeString is placed
- /// into the cache as a means to identify and break recursion.
- /// If there is a Recursive encoding in the cache, it is swapped out and will
- /// be reinserted by removeIncomplete().
- /// All other types of encoding should have been used rather than arriving here.
- void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
- std::string StubEnc) {
- if (!ID)
- return;
- Entry &E = Map[ID];
- assert( (E.Str.empty() || E.State == Recursive) &&
- "Incorrectly use of addIncomplete");
- assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
- E.Swapped.swap(E.Str); // swap out the Recursive
- E.Str.swap(StubEnc);
- E.State = Incomplete;
- ++IncompleteCount;
- }
- /// Once the RecordType has been expanded, the temporary incomplete TypeString
- /// must be removed from the cache.
- /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
- /// Returns true if the RecordType was defined recursively.
- bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
- if (!ID)
- return false;
- auto I = Map.find(ID);
- assert(I != Map.end() && "Entry not present");
- Entry &E = I->second;
- assert( (E.State == Incomplete ||
- E.State == IncompleteUsed) &&
- "Entry must be an incomplete type");
- bool IsRecursive = false;
- if (E.State == IncompleteUsed) {
- // We made use of our Incomplete encoding, thus we are recursive.
- IsRecursive = true;
- --IncompleteUsedCount;
- }
- if (E.Swapped.empty())
- Map.erase(I);
- else {
- // Swap the Recursive back.
- E.Swapped.swap(E.Str);
- E.Swapped.clear();
- E.State = Recursive;
- }
- --IncompleteCount;
- return IsRecursive;
- }
- /// Add the encoded TypeString to the cache only if it is NonRecursive or
- /// Recursive (viz: all sub-members were expanded as fully as possible).
- void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
- bool IsRecursive) {
- if (!ID || IncompleteUsedCount)
- return; // No key or it is is an incomplete sub-type so don't add.
- Entry &E = Map[ID];
- if (IsRecursive && !E.Str.empty()) {
- assert(E.State==Recursive && E.Str.size() == Str.size() &&
- "This is not the same Recursive entry");
- // The parent container was not recursive after all, so we could have used
- // this Recursive sub-member entry after all, but we assumed the worse when
- // we started viz: IncompleteCount!=0.
- return;
- }
- assert(E.Str.empty() && "Entry already present");
- E.Str = Str.str();
- E.State = IsRecursive? Recursive : NonRecursive;
- }
- /// Return a cached TypeString encoding for the ID. If there isn't one, or we
- /// are recursively expanding a type (IncompleteCount != 0) and the cached
- /// encoding is Recursive, return an empty StringRef.
- StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
- if (!ID)
- return StringRef(); // We have no key.
- auto I = Map.find(ID);
- if (I == Map.end())
- return StringRef(); // We have no encoding.
- Entry &E = I->second;
- if (E.State == Recursive && IncompleteCount)
- return StringRef(); // We don't use Recursive encodings for member types.
- if (E.State == Incomplete) {
- // The incomplete type is being used to break out of recursion.
- E.State = IncompleteUsed;
- ++IncompleteUsedCount;
- }
- return E.Str.c_str();
- }
- /// The XCore ABI includes a type information section that communicates symbol
- /// type information to the linker. The linker uses this information to verify
- /// safety/correctness of things such as array bound and pointers et al.
- /// The ABI only requires C (and XC) language modules to emit TypeStrings.
- /// This type information (TypeString) is emitted into meta data for all global
- /// symbols: definitions, declarations, functions & variables.
- ///
- /// The TypeString carries type, qualifier, name, size & value details.
- /// Please see 'Tools Development Guide' section 2.16.2 for format details:
- /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
- /// The output is tested by test/CodeGen/xcore-stringtype.c.
- ///
- static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
- CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
- /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
- void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const {
- SmallStringEnc Enc;
- if (getTypeString(Enc, D, CGM, TSC)) {
- llvm::LLVMContext &Ctx = CGM.getModule().getContext();
- llvm::SmallVector<llvm::Metadata *, 2> MDVals;
- MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
- MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
- llvm::NamedMDNode *MD =
- CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
- MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
- }
- }
- static bool appendType(SmallStringEnc &Enc, QualType QType,
- const CodeGen::CodeGenModule &CGM,
- TypeStringCache &TSC);
- /// Helper function for appendRecordType().
- /// Builds a SmallVector containing the encoded field types in declaration
- /// order.
- static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
- const RecordDecl *RD,
- const CodeGen::CodeGenModule &CGM,
- TypeStringCache &TSC) {
- for (const auto *Field : RD->fields()) {
- SmallStringEnc Enc;
- Enc += "m(";
- Enc += Field->getName();
- Enc += "){";
- if (Field->isBitField()) {
- Enc += "b(";
- llvm::raw_svector_ostream OS(Enc);
- OS.resync();
- OS << Field->getBitWidthValue(CGM.getContext());
- OS.flush();
- Enc += ':';
- }
- if (!appendType(Enc, Field->getType(), CGM, TSC))
- return false;
- if (Field->isBitField())
- Enc += ')';
- Enc += '}';
- FE.emplace_back(!Field->getName().empty(), Enc);
- }
- return true;
- }
- /// Appends structure and union types to Enc and adds encoding to cache.
- /// Recursively calls appendType (via extractFieldType) for each field.
- /// Union types have their fields ordered according to the ABI.
- static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
- const CodeGen::CodeGenModule &CGM,
- TypeStringCache &TSC, const IdentifierInfo *ID) {
- // Append the cached TypeString if we have one.
- StringRef TypeString = TSC.lookupStr(ID);
- if (!TypeString.empty()) {
- Enc += TypeString;
- return true;
- }
- // Start to emit an incomplete TypeString.
- size_t Start = Enc.size();
- Enc += (RT->isUnionType()? 'u' : 's');
- Enc += '(';
- if (ID)
- Enc += ID->getName();
- Enc += "){";
- // We collect all encoded fields and order as necessary.
- bool IsRecursive = false;
- const RecordDecl *RD = RT->getDecl()->getDefinition();
- if (RD && !RD->field_empty()) {
- // An incomplete TypeString stub is placed in the cache for this RecordType
- // so that recursive calls to this RecordType will use it whilst building a
- // complete TypeString for this RecordType.
- SmallVector<FieldEncoding, 16> FE;
- std::string StubEnc(Enc.substr(Start).str());
- StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString.
- TSC.addIncomplete(ID, std::move(StubEnc));
- if (!extractFieldType(FE, RD, CGM, TSC)) {
- (void) TSC.removeIncomplete(ID);
- return false;
- }
- IsRecursive = TSC.removeIncomplete(ID);
- // The ABI requires unions to be sorted but not structures.
- // See FieldEncoding::operator< for sort algorithm.
- if (RT->isUnionType())
- std::sort(FE.begin(), FE.end());
- // We can now complete the TypeString.
- unsigned E = FE.size();
- for (unsigned I = 0; I != E; ++I) {
- if (I)
- Enc += ',';
- Enc += FE[I].str();
- }
- }
- Enc += '}';
- TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
- return true;
- }
- /// Appends enum types to Enc and adds the encoding to the cache.
- static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
- TypeStringCache &TSC,
- const IdentifierInfo *ID) {
- // Append the cached TypeString if we have one.
- StringRef TypeString = TSC.lookupStr(ID);
- if (!TypeString.empty()) {
- Enc += TypeString;
- return true;
- }
- size_t Start = Enc.size();
- Enc += "e(";
- if (ID)
- Enc += ID->getName();
- Enc += "){";
- // We collect all encoded enumerations and order them alphanumerically.
- if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
- SmallVector<FieldEncoding, 16> FE;
- for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
- ++I) {
- SmallStringEnc EnumEnc;
- EnumEnc += "m(";
- EnumEnc += I->getName();
- EnumEnc += "){";
- I->getInitVal().toString(EnumEnc);
- EnumEnc += '}';
- FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
- }
- std::sort(FE.begin(), FE.end());
- unsigned E = FE.size();
- for (unsigned I = 0; I != E; ++I) {
- if (I)
- Enc += ',';
- Enc += FE[I].str();
- }
- }
- Enc += '}';
- TSC.addIfComplete(ID, Enc.substr(Start), false);
- return true;
- }
- /// Appends type's qualifier to Enc.
- /// This is done prior to appending the type's encoding.
- static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
- // Qualifiers are emitted in alphabetical order.
- static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
- int Lookup = 0;
- if (QT.isConstQualified())
- Lookup += 1<<0;
- if (QT.isRestrictQualified())
- Lookup += 1<<1;
- if (QT.isVolatileQualified())
- Lookup += 1<<2;
- Enc += Table[Lookup];
- }
- /// Appends built-in types to Enc.
- static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
- const char *EncType;
- switch (BT->getKind()) {
- case BuiltinType::Void:
- EncType = "0";
- break;
- case BuiltinType::Bool:
- EncType = "b";
- break;
- case BuiltinType::Char_U:
- EncType = "uc";
- break;
- case BuiltinType::UChar:
- EncType = "uc";
- break;
- case BuiltinType::SChar:
- EncType = "sc";
- break;
- case BuiltinType::UShort:
- EncType = "us";
- break;
- case BuiltinType::Short:
- EncType = "ss";
- break;
- case BuiltinType::UInt:
- EncType = "ui";
- break;
- case BuiltinType::Int:
- EncType = "si";
- break;
- case BuiltinType::ULong:
- EncType = "ul";
- break;
- case BuiltinType::Long:
- EncType = "sl";
- break;
- case BuiltinType::ULongLong:
- EncType = "ull";
- break;
- case BuiltinType::LongLong:
- EncType = "sll";
- break;
- case BuiltinType::Float:
- EncType = "ft";
- break;
- case BuiltinType::Double:
- EncType = "d";
- break;
- case BuiltinType::LongDouble:
- EncType = "ld";
- break;
- default:
- return false;
- }
- Enc += EncType;
- return true;
- }
- /// Appends a pointer encoding to Enc before calling appendType for the pointee.
- static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
- const CodeGen::CodeGenModule &CGM,
- TypeStringCache &TSC) {
- Enc += "p(";
- if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
- return false;
- Enc += ')';
- return true;
- }
- /// Appends array encoding to Enc before calling appendType for the element.
- static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
- const ArrayType *AT,
- const CodeGen::CodeGenModule &CGM,
- TypeStringCache &TSC, StringRef NoSizeEnc) {
- if (AT->getSizeModifier() != ArrayType::Normal)
- return false;
- Enc += "a(";
- if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
- CAT->getSize().toStringUnsigned(Enc);
- else
- Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
- Enc += ':';
- // The Qualifiers should be attached to the type rather than the array.
- appendQualifier(Enc, QT);
- if (!appendType(Enc, AT->getElementType(), CGM, TSC))
- return false;
- Enc += ')';
- return true;
- }
- /// Appends a function encoding to Enc, calling appendType for the return type
- /// and the arguments.
- static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
- const CodeGen::CodeGenModule &CGM,
- TypeStringCache &TSC) {
- Enc += "f{";
- if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
- return false;
- Enc += "}(";
- if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
- // N.B. we are only interested in the adjusted param types.
- auto I = FPT->param_type_begin();
- auto E = FPT->param_type_end();
- if (I != E) {
- do {
- if (!appendType(Enc, *I, CGM, TSC))
- return false;
- ++I;
- if (I != E)
- Enc += ',';
- } while (I != E);
- if (FPT->isVariadic())
- Enc += ",va";
- } else {
- if (FPT->isVariadic())
- Enc += "va";
- else
- Enc += '0';
- }
- }
- Enc += ')';
- return true;
- }
- /// Handles the type's qualifier before dispatching a call to handle specific
- /// type encodings.
- static bool appendType(SmallStringEnc &Enc, QualType QType,
- const CodeGen::CodeGenModule &CGM,
- TypeStringCache &TSC) {
- QualType QT = QType.getCanonicalType();
- if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
- // The Qualifiers should be attached to the type rather than the array.
- // Thus we don't call appendQualifier() here.
- return appendArrayType(Enc, QT, AT, CGM, TSC, "");
- appendQualifier(Enc, QT);
- if (const BuiltinType *BT = QT->getAs<BuiltinType>())
- return appendBuiltinType(Enc, BT);
- if (const PointerType *PT = QT->getAs<PointerType>())
- return appendPointerType(Enc, PT, CGM, TSC);
- if (const EnumType *ET = QT->getAs<EnumType>())
- return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
- if (const RecordType *RT = QT->getAsStructureType())
- return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
- if (const RecordType *RT = QT->getAsUnionType())
- return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
- if (const FunctionType *FT = QT->getAs<FunctionType>())
- return appendFunctionType(Enc, FT, CGM, TSC);
- return false;
- }
- static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
- CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
- if (!D)
- return false;
- if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
- if (FD->getLanguageLinkage() != CLanguageLinkage)
- return false;
- return appendType(Enc, FD->getType(), CGM, TSC);
- }
- if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
- if (VD->getLanguageLinkage() != CLanguageLinkage)
- return false;
- QualType QT = VD->getType().getCanonicalType();
- if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
- // Global ArrayTypes are given a size of '*' if the size is unknown.
- // The Qualifiers should be attached to the type rather than the array.
- // Thus we don't call appendQualifier() here.
- return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
- }
- return appendType(Enc, QT, CGM, TSC);
- }
- return false;
- }
- //===----------------------------------------------------------------------===//
- // Driver code
- //===----------------------------------------------------------------------===//
- const llvm::Triple &CodeGenModule::getTriple() const {
- return getTarget().getTriple();
- }
- bool CodeGenModule::supportsCOMDAT() const {
- return !getTriple().isOSBinFormatMachO();
- }
- const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
- if (TheTargetCodeGenInfo)
- return *TheTargetCodeGenInfo;
- const llvm::Triple &Triple = getTarget().getTriple();
- switch (Triple.getArch()) {
- default:
- TheTargetCodeGenInfo.reset(new DefaultTargetCodeGenInfo(Types)); break; // HLSL Change - reset
- #if 0 // HLSL Change Starts
- case llvm::Triple::le32:
- return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
- case llvm::Triple::mips:
- case llvm::Triple::mipsel:
- if (Triple.getOS() == llvm::Triple::NaCl)
- return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
- return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
- case llvm::Triple::mips64:
- case llvm::Triple::mips64el:
- return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
- case llvm::Triple::aarch64:
- case llvm::Triple::aarch64_be: {
- AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
- if (getTarget().getABI() == "darwinpcs")
- Kind = AArch64ABIInfo::DarwinPCS;
- return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
- }
- case llvm::Triple::arm:
- case llvm::Triple::armeb:
- case llvm::Triple::thumb:
- case llvm::Triple::thumbeb:
- {
- if (Triple.getOS() == llvm::Triple::Win32) {
- TheTargetCodeGenInfo =
- new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
- return *TheTargetCodeGenInfo;
- }
- ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
- if (getTarget().getABI() == "apcs-gnu")
- Kind = ARMABIInfo::APCS;
- else if (CodeGenOpts.FloatABI == "hard" ||
- (CodeGenOpts.FloatABI != "soft" &&
- Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
- Kind = ARMABIInfo::AAPCS_VFP;
- return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
- }
- case llvm::Triple::ppc:
- return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
- case llvm::Triple::ppc64:
- if (Triple.isOSBinFormatELF()) {
- PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
- if (getTarget().getABI() == "elfv2")
- Kind = PPC64_SVR4_ABIInfo::ELFv2;
- bool HasQPX = getTarget().getABI() == "elfv1-qpx";
- return *(TheTargetCodeGenInfo =
- new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
- } else
- return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
- case llvm::Triple::ppc64le: {
- assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
- PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
- if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
- Kind = PPC64_SVR4_ABIInfo::ELFv1;
- bool HasQPX = getTarget().getABI() == "elfv1-qpx";
- return *(TheTargetCodeGenInfo =
- new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
- }
- case llvm::Triple::nvptx:
- case llvm::Triple::nvptx64:
- return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
- case llvm::Triple::msp430:
- return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
- case llvm::Triple::systemz: {
- bool HasVector = getTarget().getABI() == "vector";
- return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types,
- HasVector));
- }
- case llvm::Triple::tce:
- return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
- case llvm::Triple::x86: {
- bool IsDarwinVectorABI = Triple.isOSDarwin();
- bool IsSmallStructInRegABI =
- X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
- bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
- if (Triple.getOS() == llvm::Triple::Win32) {
- return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo(
- Types, IsDarwinVectorABI, IsSmallStructInRegABI,
- IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
- } else {
- return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo(
- Types, IsDarwinVectorABI, IsSmallStructInRegABI,
- IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
- }
- }
- case llvm::Triple::x86_64: {
- StringRef ABI = getTarget().getABI();
- X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 :
- ABI == "avx" ? X86AVXABILevel::AVX :
- X86AVXABILevel::None);
- switch (Triple.getOS()) {
- case llvm::Triple::Win32:
- return *(TheTargetCodeGenInfo =
- new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
- case llvm::Triple::PS4:
- return *(TheTargetCodeGenInfo =
- new PS4TargetCodeGenInfo(Types, AVXLevel));
- default:
- return *(TheTargetCodeGenInfo =
- new X86_64TargetCodeGenInfo(Types, AVXLevel));
- }
- }
- case llvm::Triple::hexagon:
- return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
- case llvm::Triple::r600:
- return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
- case llvm::Triple::amdgcn:
- return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
- case llvm::Triple::sparcv9:
- return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
- case llvm::Triple::xcore:
- return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
- #endif // HLSL Change Ends
- // HLSL Change Begins
- case llvm::Triple::dxil:
- case llvm::Triple::dxil64:
- TheTargetCodeGenInfo.reset(new MSDXILTargetCodeGenInfo(Types));
- break;
- // HLSL Change Ends
- }
- return *(TheTargetCodeGenInfo.get());
- }
|