CGExprScalar.cpp 151 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993
  1. //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "CodeGenFunction.h"
  14. #include "CGCXXABI.h"
  15. #include "CGDebugInfo.h"
  16. #include "CGObjCRuntime.h"
  17. #include "CGHLSLRuntime.h" // HLSL Change
  18. #include "CodeGenModule.h"
  19. #include "TargetInfo.h"
  20. #include "clang/AST/ASTContext.h"
  21. #include "clang/AST/DeclObjC.h"
  22. #include "clang/AST/RecordLayout.h"
  23. #include "clang/AST/StmtVisitor.h"
  24. #include "clang/Basic/TargetInfo.h"
  25. #include "clang/Frontend/CodeGenOptions.h"
  26. #include "llvm/IR/CFG.h"
  27. #include "llvm/IR/Constants.h"
  28. #include "llvm/IR/DataLayout.h"
  29. #include "llvm/IR/Function.h"
  30. #include "llvm/IR/GlobalVariable.h"
  31. #include "llvm/IR/Intrinsics.h"
  32. #include "llvm/IR/Module.h"
  33. #include <cstdarg>
  34. using namespace clang;
  35. using namespace CodeGen;
  36. using llvm::Value;
  37. //===----------------------------------------------------------------------===//
  38. // Scalar Expression Emitter
  39. //===----------------------------------------------------------------------===//
  40. namespace {
  41. struct BinOpInfo {
  42. Value *LHS;
  43. Value *RHS;
  44. QualType Ty; // Computation Type.
  45. BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
  46. bool FPContractable;
  47. const Expr *E; // Entire expr, for error unsupported. May not be binop.
  48. };
  49. static bool MustVisitNullValue(const Expr *E) {
  50. // If a null pointer expression's type is the C++0x nullptr_t, then
  51. // it's not necessarily a simple constant and it must be evaluated
  52. // for its potential side effects.
  53. return E->getType()->isNullPtrType();
  54. }
  55. class ScalarExprEmitter
  56. : public StmtVisitor<ScalarExprEmitter, Value*> {
  57. CodeGenFunction &CGF;
  58. CGBuilderTy &Builder;
  59. bool IgnoreResultAssign;
  60. llvm::LLVMContext &VMContext;
  61. public:
  62. ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
  63. : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
  64. VMContext(cgf.getLLVMContext()) {
  65. }
  66. //===--------------------------------------------------------------------===//
  67. // Utilities
  68. //===--------------------------------------------------------------------===//
  69. bool TestAndClearIgnoreResultAssign() {
  70. bool I = IgnoreResultAssign;
  71. IgnoreResultAssign = false;
  72. return I;
  73. }
  74. llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
  75. LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
  76. LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
  77. return CGF.EmitCheckedLValue(E, TCK);
  78. }
  79. void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
  80. const BinOpInfo &Info);
  81. Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
  82. return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
  83. }
  84. void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
  85. const AlignValueAttr *AVAttr = nullptr;
  86. if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
  87. const ValueDecl *VD = DRE->getDecl();
  88. if (VD->getType()->isReferenceType()) {
  89. if (const auto *TTy =
  90. dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
  91. AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
  92. } else {
  93. // Assumptions for function parameters are emitted at the start of the
  94. // function, so there is no need to repeat that here.
  95. if (isa<ParmVarDecl>(VD))
  96. return;
  97. AVAttr = VD->getAttr<AlignValueAttr>();
  98. }
  99. }
  100. if (!AVAttr)
  101. if (const auto *TTy =
  102. dyn_cast<TypedefType>(E->getType()))
  103. AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
  104. if (!AVAttr)
  105. return;
  106. Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
  107. llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
  108. CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
  109. }
  110. /// EmitLoadOfLValue - Given an expression with complex type that represents a
  111. /// value l-value, this method emits the address of the l-value, then loads
  112. /// and returns the result.
  113. Value *EmitLoadOfLValue(const Expr *E) {
  114. Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
  115. E->getExprLoc());
  116. EmitLValueAlignmentAssumption(E, V);
  117. return V;
  118. }
  119. /// EmitConversionToBool - Convert the specified expression value to a
  120. /// boolean (i1) truth value. This is equivalent to "Val != 0".
  121. Value *EmitConversionToBool(Value *Src, QualType DstTy);
  122. /// \brief Emit a check that a conversion to or from a floating-point type
  123. /// does not overflow.
  124. void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
  125. Value *Src, QualType SrcType,
  126. QualType DstType, llvm::Type *DstTy);
  127. /// EmitScalarConversion - Emit a conversion from the specified type to the
  128. /// specified destination type, both of which are LLVM scalar types.
  129. Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
  130. /// EmitComplexToScalarConversion - Emit a conversion from the specified
  131. /// complex type to the specified destination type, where the destination type
  132. /// is an LLVM scalar type.
  133. Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
  134. QualType SrcTy, QualType DstTy);
  135. /// EmitNullValue - Emit a value that corresponds to null for the given type.
  136. Value *EmitNullValue(QualType Ty);
  137. /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
  138. Value *EmitFloatToBoolConversion(Value *V) {
  139. // Compare against 0.0 for fp scalars.
  140. llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
  141. return Builder.CreateFCmpUNE(V, Zero, "tobool");
  142. }
  143. /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
  144. Value *EmitPointerToBoolConversion(Value *V) {
  145. Value *Zero = llvm::ConstantPointerNull::get(
  146. cast<llvm::PointerType>(V->getType()));
  147. return Builder.CreateICmpNE(V, Zero, "tobool");
  148. }
  149. Value *EmitIntToBoolConversion(Value *V) {
  150. // Because of the type rules of C, we often end up computing a
  151. // logical value, then zero extending it to int, then wanting it
  152. // as a logical value again. Optimize this common case.
  153. if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
  154. if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
  155. Value *Result = ZI->getOperand(0);
  156. // If there aren't any more uses, zap the instruction to save space.
  157. // Note that there can be more uses, for example if this
  158. // is the result of an assignment.
  159. if (ZI->use_empty())
  160. ZI->eraseFromParent();
  161. return Result;
  162. }
  163. }
  164. return Builder.CreateIsNotNull(V, "tobool");
  165. }
  166. //===--------------------------------------------------------------------===//
  167. // Visitor Methods
  168. //===--------------------------------------------------------------------===//
  169. Value *Visit(Expr *E) {
  170. ApplyDebugLocation DL(CGF, E);
  171. // HLSL Change Begins
  172. // generate matrix operations
  173. if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
  174. if (hlsl::IsHLSLMatType(E->getType()) ||
  175. hlsl::IsHLSLMatType(BinOp->getLHS()->getType())) {
  176. if (BinOp->getOpcode() != BO_Assign) {
  177. llvm::Value *LHS = CGF.EmitScalarExpr(BinOp->getLHS());
  178. llvm::Value *RHS = CGF.EmitScalarExpr(BinOp->getRHS());
  179. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
  180. CGF, E, ConvertType(E->getType()), { LHS, RHS });
  181. }
  182. else {
  183. LValue LHS = CGF.EmitLValue(BinOp->getLHS());
  184. llvm::Value *RHS = CGF.EmitScalarExpr(BinOp->getRHS());
  185. CGF.CGM.getHLSLRuntime().EmitHLSLMatrixStore(CGF, RHS, LHS.getAddress(), BinOp->getLHS()->getType());
  186. return RHS;
  187. }
  188. }
  189. } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
  190. if (hlsl::IsHLSLMatType(E->getType())) {
  191. llvm::Value *Oper = CGF.EmitScalarExpr(UnOp->getSubExpr());
  192. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
  193. CGF, E, Oper->getType(), {Oper});
  194. }
  195. }
  196. // HLSL Change Ends
  197. return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
  198. }
  199. Value *VisitStmt(Stmt *S) {
  200. S->dump(CGF.getContext().getSourceManager());
  201. llvm_unreachable("Stmt can't have complex result type!");
  202. }
  203. Value *VisitExpr(Expr *S);
  204. Value *VisitParenExpr(ParenExpr *PE) {
  205. return Visit(PE->getSubExpr());
  206. }
  207. Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
  208. return Visit(E->getReplacement());
  209. }
  210. Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
  211. return Visit(GE->getResultExpr());
  212. }
  213. // Leaves.
  214. Value *VisitIntegerLiteral(const IntegerLiteral *E) {
  215. return Builder.getInt(E->getValue());
  216. }
  217. Value *VisitFloatingLiteral(const FloatingLiteral *E) {
  218. return llvm::ConstantFP::get(VMContext, E->getValue());
  219. }
  220. Value *VisitCharacterLiteral(const CharacterLiteral *E) {
  221. return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  222. }
  223. // HLSL Change Start
  224. Value *VisitStringLiteral(const StringLiteral *E) {
  225. return CGF.CGM.GetConstantArrayFromStringLiteral(E);
  226. }
  227. // HLSL Change End
  228. Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
  229. return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  230. }
  231. Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
  232. return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  233. }
  234. Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
  235. return EmitNullValue(E->getType());
  236. }
  237. Value *VisitGNUNullExpr(const GNUNullExpr *E) {
  238. return EmitNullValue(E->getType());
  239. }
  240. Value *VisitOffsetOfExpr(OffsetOfExpr *E);
  241. Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
  242. Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
  243. llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
  244. return Builder.CreateBitCast(V, ConvertType(E->getType()));
  245. }
  246. Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
  247. return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
  248. }
  249. Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
  250. return CGF.EmitPseudoObjectRValue(E).getScalarVal();
  251. }
  252. Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
  253. if (E->isGLValue())
  254. return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
  255. // Otherwise, assume the mapping is the scalar directly.
  256. return CGF.getOpaqueRValueMapping(E).getScalarVal();
  257. }
  258. // l-values.
  259. Value *VisitDeclRefExpr(DeclRefExpr *E) {
  260. if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
  261. if (result.isReference())
  262. return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
  263. E->getExprLoc());
  264. return result.getValue();
  265. }
  266. return EmitLoadOfLValue(E);
  267. }
  268. Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
  269. return CGF.EmitObjCSelectorExpr(E);
  270. }
  271. Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
  272. return CGF.EmitObjCProtocolExpr(E);
  273. }
  274. Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
  275. return EmitLoadOfLValue(E);
  276. }
  277. Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
  278. if (E->getMethodDecl() &&
  279. E->getMethodDecl()->getReturnType()->isReferenceType())
  280. return EmitLoadOfLValue(E);
  281. return CGF.EmitObjCMessageExpr(E).getScalarVal();
  282. }
  283. Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
  284. LValue LV = CGF.EmitObjCIsaExpr(E);
  285. Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
  286. return V;
  287. }
  288. Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
  289. Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
  290. Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
  291. Value *VisitMemberExpr(MemberExpr *E);
  292. Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
  293. Value *VisitExtMatrixElementExpr(Expr *E) { return EmitLoadOfLValue(E); } // HLSL Change
  294. Value *VisitHLSLVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } // HLSL Change
  295. Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
  296. return EmitLoadOfLValue(E);
  297. }
  298. Value *VisitInitListExpr(InitListExpr *E);
  299. Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
  300. return EmitNullValue(E->getType());
  301. }
  302. Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
  303. if (E->getType()->isVariablyModifiedType())
  304. CGF.EmitVariablyModifiedType(E->getType());
  305. if (CGDebugInfo *DI = CGF.getDebugInfo())
  306. DI->EmitExplicitCastType(E->getType());
  307. return VisitCastExpr(E);
  308. }
  309. Value *VisitCastExpr(CastExpr *E);
  310. Value *VisitCallExpr(const CallExpr *E) {
  311. if (E->getCallReturnType(CGF.getContext())->isReferenceType())
  312. return EmitLoadOfLValue(E);
  313. // HLSL Change Starts
  314. if (CGF.getContext().getLangOpts().HLSL) {
  315. RValue RV = CGF.EmitCallExpr(E);
  316. Value *V = nullptr;
  317. if (RV.isScalar())
  318. V = RV.getScalarVal();
  319. else
  320. V = RV.getAggregateAddr();
  321. EmitLValueAlignmentAssumption(E, V);
  322. return V;
  323. }
  324. // HLSL Change Ends
  325. Value *V = CGF.EmitCallExpr(E).getScalarVal();
  326. EmitLValueAlignmentAssumption(E, V);
  327. return V;
  328. }
  329. Value *VisitStmtExpr(const StmtExpr *E);
  330. // Unary Operators.
  331. Value *VisitUnaryPostDec(const UnaryOperator *E) {
  332. LValue LV = EmitLValue(E->getSubExpr());
  333. return EmitScalarPrePostIncDec(E, LV, false, false);
  334. }
  335. Value *VisitUnaryPostInc(const UnaryOperator *E) {
  336. LValue LV = EmitLValue(E->getSubExpr());
  337. return EmitScalarPrePostIncDec(E, LV, true, false);
  338. }
  339. Value *VisitUnaryPreDec(const UnaryOperator *E) {
  340. LValue LV = EmitLValue(E->getSubExpr());
  341. return EmitScalarPrePostIncDec(E, LV, false, true);
  342. }
  343. Value *VisitUnaryPreInc(const UnaryOperator *E) {
  344. LValue LV = EmitLValue(E->getSubExpr());
  345. return EmitScalarPrePostIncDec(E, LV, true, true);
  346. }
  347. llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
  348. llvm::Value *InVal,
  349. bool IsInc);
  350. llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
  351. bool isInc, bool isPre);
  352. Value *VisitUnaryAddrOf(const UnaryOperator *E) {
  353. if (isa<MemberPointerType>(E->getType())) // never sugared
  354. return CGF.CGM.getMemberPointerConstant(E);
  355. return EmitLValue(E->getSubExpr()).getAddress();
  356. }
  357. Value *VisitUnaryDeref(const UnaryOperator *E) {
  358. if (E->getType()->isVoidType())
  359. return Visit(E->getSubExpr()); // the actual value should be unused
  360. return EmitLoadOfLValue(E);
  361. }
  362. Value *VisitUnaryPlus(const UnaryOperator *E) {
  363. // This differs from gcc, though, most likely due to a bug in gcc.
  364. TestAndClearIgnoreResultAssign();
  365. return Visit(E->getSubExpr());
  366. }
  367. Value *VisitUnaryMinus (const UnaryOperator *E);
  368. Value *VisitUnaryNot (const UnaryOperator *E);
  369. Value *VisitUnaryLNot (const UnaryOperator *E);
  370. Value *VisitUnaryReal (const UnaryOperator *E);
  371. Value *VisitUnaryImag (const UnaryOperator *E);
  372. Value *VisitUnaryExtension(const UnaryOperator *E) {
  373. return Visit(E->getSubExpr());
  374. }
  375. // C++
  376. Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
  377. return EmitLoadOfLValue(E);
  378. }
  379. Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
  380. return Visit(DAE->getExpr());
  381. }
  382. Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
  383. CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
  384. return Visit(DIE->getExpr());
  385. }
  386. Value *VisitCXXThisExpr(CXXThisExpr *TE) {
  387. return CGF.LoadCXXThis();
  388. }
  389. Value *VisitExprWithCleanups(ExprWithCleanups *E) {
  390. CGF.enterFullExpression(E);
  391. CodeGenFunction::RunCleanupsScope Scope(CGF);
  392. return Visit(E->getSubExpr());
  393. }
  394. Value *VisitCXXNewExpr(const CXXNewExpr *E) {
  395. return CGF.EmitCXXNewExpr(E);
  396. }
  397. Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
  398. CGF.EmitCXXDeleteExpr(E);
  399. return nullptr;
  400. }
  401. Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
  402. return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  403. }
  404. Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
  405. return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
  406. }
  407. Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
  408. return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
  409. }
  410. Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
  411. // C++ [expr.pseudo]p1:
  412. // The result shall only be used as the operand for the function call
  413. // operator (), and the result of such a call has type void. The only
  414. // effect is the evaluation of the postfix-expression before the dot or
  415. // arrow.
  416. CGF.EmitScalarExpr(E->getBase());
  417. return nullptr;
  418. }
  419. Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
  420. return EmitNullValue(E->getType());
  421. }
  422. Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
  423. CGF.EmitCXXThrowExpr(E);
  424. return nullptr;
  425. }
  426. Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
  427. return Builder.getInt1(E->getValue());
  428. }
  429. // Binary Operators.
  430. Value *EmitMul(const BinOpInfo &Ops) {
  431. if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
  432. switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
  433. case LangOptions::SOB_Defined:
  434. return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
  435. case LangOptions::SOB_Undefined:
  436. if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
  437. return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
  438. // Fall through.
  439. case LangOptions::SOB_Trapping:
  440. return EmitOverflowCheckedBinOp(Ops);
  441. }
  442. }
  443. if (Ops.Ty->isUnsignedIntegerType() &&
  444. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
  445. return EmitOverflowCheckedBinOp(Ops);
  446. if (Ops.LHS->getType()->isFPOrFPVectorTy())
  447. return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
  448. return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
  449. }
  450. /// Create a binary op that checks for overflow.
  451. /// Currently only supports +, - and *.
  452. Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
  453. // Check for undefined division and modulus behaviors.
  454. void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
  455. llvm::Value *Zero,bool isDiv);
  456. // Common helper for getting how wide LHS of shift is.
  457. static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
  458. Value *EmitDiv(const BinOpInfo &Ops);
  459. Value *EmitRem(const BinOpInfo &Ops);
  460. Value *EmitAdd(const BinOpInfo &Ops);
  461. Value *EmitSub(const BinOpInfo &Ops);
  462. Value *EmitShl(const BinOpInfo &Ops);
  463. Value *EmitShr(const BinOpInfo &Ops);
  464. Value *EmitAnd(const BinOpInfo &Ops) {
  465. return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
  466. }
  467. Value *EmitXor(const BinOpInfo &Ops) {
  468. return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
  469. }
  470. Value *EmitOr (const BinOpInfo &Ops) {
  471. return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
  472. }
  473. BinOpInfo EmitBinOps(const BinaryOperator *E);
  474. LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
  475. Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
  476. Value *&Result);
  477. Value *EmitCompoundAssign(const CompoundAssignOperator *E,
  478. Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
  479. // Binary operators and binary compound assignment operators.
  480. #define HANDLEBINOP(OP) \
  481. Value *VisitBin ## OP(const BinaryOperator *E) { \
  482. return Emit ## OP(EmitBinOps(E)); \
  483. } \
  484. Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
  485. return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
  486. }
  487. HANDLEBINOP(Mul)
  488. HANDLEBINOP(Div)
  489. HANDLEBINOP(Rem)
  490. HANDLEBINOP(Add)
  491. HANDLEBINOP(Sub)
  492. HANDLEBINOP(Shl)
  493. HANDLEBINOP(Shr)
  494. HANDLEBINOP(And)
  495. HANDLEBINOP(Xor)
  496. HANDLEBINOP(Or)
  497. #undef HANDLEBINOP
  498. // Comparisons.
  499. Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
  500. unsigned SICmpOpc, unsigned FCmpOpc);
  501. #define VISITCOMP(CODE, UI, SI, FP) \
  502. Value *VisitBin##CODE(const BinaryOperator *E) { \
  503. return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
  504. llvm::FCmpInst::FP); }
  505. VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
  506. VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
  507. VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
  508. VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
  509. VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
  510. VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
  511. #undef VISITCOMP
  512. Value *VisitBinAssign (const BinaryOperator *E);
  513. Value *VisitBinLAnd (const BinaryOperator *E);
  514. Value *VisitBinLOr (const BinaryOperator *E);
  515. Value *VisitBinComma (const BinaryOperator *E);
  516. Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
  517. Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
  518. // Other Operators.
  519. Value *VisitBlockExpr(const BlockExpr *BE);
  520. Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
  521. Value *VisitChooseExpr(ChooseExpr *CE);
  522. Value *VisitVAArgExpr(VAArgExpr *VE);
  523. Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
  524. return CGF.EmitObjCStringLiteral(E);
  525. }
  526. Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
  527. return CGF.EmitObjCBoxedExpr(E);
  528. }
  529. Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
  530. return CGF.EmitObjCArrayLiteral(E);
  531. }
  532. Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
  533. return CGF.EmitObjCDictionaryLiteral(E);
  534. }
  535. Value *VisitAsTypeExpr(AsTypeExpr *CE);
  536. Value *VisitAtomicExpr(AtomicExpr *AE);
  537. };
  538. } // end anonymous namespace.
  539. //===----------------------------------------------------------------------===//
  540. // Utilities
  541. //===----------------------------------------------------------------------===//
  542. /// EmitConversionToBool - Convert the specified expression value to a
  543. /// boolean (i1) truth value. This is equivalent to "Val != 0".
  544. Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
  545. assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
  546. if (SrcType->isRealFloatingType())
  547. return EmitFloatToBoolConversion(Src);
  548. if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
  549. return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
  550. assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
  551. "Unknown scalar type to convert");
  552. if (isa<llvm::IntegerType>(Src->getType()))
  553. return EmitIntToBoolConversion(Src);
  554. assert(isa<llvm::PointerType>(Src->getType()));
  555. return EmitPointerToBoolConversion(Src);
  556. }
  557. void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
  558. QualType OrigSrcType,
  559. Value *Src, QualType SrcType,
  560. QualType DstType,
  561. llvm::Type *DstTy) {
  562. CodeGenFunction::SanitizerScope SanScope(&CGF);
  563. using llvm::APFloat;
  564. using llvm::APSInt;
  565. llvm::Type *SrcTy = Src->getType();
  566. llvm::Value *Check = nullptr;
  567. if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
  568. // Integer to floating-point. This can fail for unsigned short -> __half
  569. // or unsigned __int128 -> float.
  570. assert(DstType->isFloatingType());
  571. bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
  572. APFloat LargestFloat =
  573. APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
  574. APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
  575. bool IsExact;
  576. if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
  577. &IsExact) != APFloat::opOK)
  578. // The range of representable values of this floating point type includes
  579. // all values of this integer type. Don't need an overflow check.
  580. return;
  581. llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
  582. if (SrcIsUnsigned)
  583. Check = Builder.CreateICmpULE(Src, Max);
  584. else {
  585. llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
  586. llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
  587. llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
  588. Check = Builder.CreateAnd(GE, LE);
  589. }
  590. } else {
  591. const llvm::fltSemantics &SrcSema =
  592. CGF.getContext().getFloatTypeSemantics(OrigSrcType);
  593. if (isa<llvm::IntegerType>(DstTy)) {
  594. // Floating-point to integer. This has undefined behavior if the source is
  595. // +-Inf, NaN, or doesn't fit into the destination type (after truncation
  596. // to an integer).
  597. unsigned Width = CGF.getContext().getIntWidth(DstType);
  598. bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
  599. APSInt Min = APSInt::getMinValue(Width, Unsigned);
  600. APFloat MinSrc(SrcSema, APFloat::uninitialized);
  601. if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
  602. APFloat::opOverflow)
  603. // Don't need an overflow check for lower bound. Just check for
  604. // -Inf/NaN.
  605. MinSrc = APFloat::getInf(SrcSema, true);
  606. else
  607. // Find the largest value which is too small to represent (before
  608. // truncation toward zero).
  609. MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
  610. APSInt Max = APSInt::getMaxValue(Width, Unsigned);
  611. APFloat MaxSrc(SrcSema, APFloat::uninitialized);
  612. if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
  613. APFloat::opOverflow)
  614. // Don't need an overflow check for upper bound. Just check for
  615. // +Inf/NaN.
  616. MaxSrc = APFloat::getInf(SrcSema, false);
  617. else
  618. // Find the smallest value which is too large to represent (before
  619. // truncation toward zero).
  620. MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
  621. // If we're converting from __half, convert the range to float to match
  622. // the type of src.
  623. if (OrigSrcType->isHalfType()) {
  624. const llvm::fltSemantics &Sema =
  625. CGF.getContext().getFloatTypeSemantics(SrcType);
  626. bool IsInexact;
  627. MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
  628. MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
  629. }
  630. llvm::Value *GE =
  631. Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
  632. llvm::Value *LE =
  633. Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
  634. Check = Builder.CreateAnd(GE, LE);
  635. } else {
  636. // FIXME: Maybe split this sanitizer out from float-cast-overflow.
  637. //
  638. // Floating-point to floating-point. This has undefined behavior if the
  639. // source is not in the range of representable values of the destination
  640. // type. The C and C++ standards are spectacularly unclear here. We
  641. // diagnose finite out-of-range conversions, but allow infinities and NaNs
  642. // to convert to the corresponding value in the smaller type.
  643. //
  644. // C11 Annex F gives all such conversions defined behavior for IEC 60559
  645. // conforming implementations. Unfortunately, LLVM's fptrunc instruction
  646. // does not.
  647. // Converting from a lower rank to a higher rank can never have
  648. // undefined behavior, since higher-rank types must have a superset
  649. // of values of lower-rank types.
  650. if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
  651. return;
  652. assert(!OrigSrcType->isHalfType() &&
  653. "should not check conversion from __half, it has the lowest rank");
  654. const llvm::fltSemantics &DstSema =
  655. CGF.getContext().getFloatTypeSemantics(DstType);
  656. APFloat MinBad = APFloat::getLargest(DstSema, false);
  657. APFloat MaxBad = APFloat::getInf(DstSema, false);
  658. bool IsInexact;
  659. MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
  660. MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
  661. Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
  662. CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
  663. llvm::Value *GE =
  664. Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
  665. llvm::Value *LE =
  666. Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
  667. Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
  668. }
  669. }
  670. // FIXME: Provide a SourceLocation.
  671. llvm::Constant *StaticArgs[] = {
  672. CGF.EmitCheckTypeDescriptor(OrigSrcType),
  673. CGF.EmitCheckTypeDescriptor(DstType)
  674. };
  675. CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
  676. "float_cast_overflow", StaticArgs, OrigSrc);
  677. }
  678. /// EmitScalarConversion - Emit a conversion from the specified type to the
  679. /// specified destination type, both of which are LLVM scalar types.
  680. Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
  681. QualType DstType) {
  682. SrcType = CGF.getContext().getCanonicalType(SrcType);
  683. DstType = CGF.getContext().getCanonicalType(DstType);
  684. if (SrcType == DstType) return Src;
  685. if (DstType->isVoidType()) return nullptr;
  686. llvm::Value *OrigSrc = Src;
  687. QualType OrigSrcType = SrcType;
  688. llvm::Type *SrcTy = Src->getType();
  689. // Handle conversions to bool first, they are special: comparisons against 0.
  690. if (DstType->isBooleanType())
  691. return EmitConversionToBool(Src, SrcType);
  692. llvm::Type *DstTy = ConvertType(DstType);
  693. // Cast from half through float if half isn't a native type.
  694. if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
  695. // Cast to FP using the intrinsic if the half type itself isn't supported.
  696. if (DstTy->isFloatingPointTy()) {
  697. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
  698. return Builder.CreateCall(
  699. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
  700. Src);
  701. } else {
  702. // Cast to other types through float, using either the intrinsic or FPExt,
  703. // depending on whether the half type itself is supported
  704. // (as opposed to operations on half, available with NativeHalfType).
  705. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
  706. Src = Builder.CreateCall(
  707. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
  708. CGF.CGM.FloatTy),
  709. Src);
  710. } else {
  711. Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
  712. }
  713. SrcType = CGF.getContext().FloatTy;
  714. SrcTy = CGF.FloatTy;
  715. }
  716. }
  717. // Ignore conversions like int -> uint.
  718. if (SrcTy == DstTy)
  719. return Src;
  720. // Handle pointer conversions next: pointers can only be converted to/from
  721. // other pointers and integers. Check for pointer types in terms of LLVM, as
  722. // some native types (like Obj-C id) may map to a pointer type.
  723. if (isa<llvm::PointerType>(DstTy)) {
  724. // The source value may be an integer, or a pointer.
  725. if (isa<llvm::PointerType>(SrcTy))
  726. return Builder.CreateBitCast(Src, DstTy, "conv");
  727. assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
  728. // First, convert to the correct width so that we control the kind of
  729. // extension.
  730. llvm::Type *MiddleTy = CGF.IntPtrTy;
  731. bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
  732. llvm::Value* IntResult =
  733. Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
  734. // Then, cast to pointer.
  735. return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
  736. }
  737. if (isa<llvm::PointerType>(SrcTy)) {
  738. // Must be an ptr to int cast.
  739. assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
  740. return Builder.CreatePtrToInt(Src, DstTy, "conv");
  741. }
  742. // A scalar can be splatted to an extended vector of the same element type
  743. if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
  744. // Cast the scalar to element type
  745. QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
  746. llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
  747. // Splat the element across to all elements
  748. unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
  749. return Builder.CreateVectorSplat(NumElements, Elt, "splat");
  750. }
  751. // HLSL Change Starts
  752. if (CGF.getContext().getLangOpts().HLSL) {
  753. // A scalar can be splatted to an extended vector of the same element type
  754. if (DstTy->isVectorTy() && !SrcTy->isVectorTy()) {
  755. // Cast the scalar to element type
  756. const ExtVectorType *DstVecType =
  757. hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(), DstType);
  758. QualType EltTy = DstVecType->getElementType();
  759. llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
  760. // Splat the element across to all elements
  761. unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
  762. return Builder.CreateVectorSplat(NumElements, Elt, "splat");
  763. }
  764. if (SrcTy->isVectorTy() && DstTy->isVectorTy()) {
  765. Value *Res = nullptr;
  766. const ExtVectorType *SrcVecType =
  767. hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(), SrcType);
  768. const ExtVectorType *DstVecType =
  769. hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(), DstType);
  770. const llvm::VectorType *SrcVecTy = cast<llvm::VectorType>(SrcTy);
  771. const llvm::VectorType *DstVecTy = cast<llvm::VectorType>(DstTy);
  772. if (SrcVecTy->getNumElements() != DstVecTy->getNumElements()) {
  773. if (SrcVecTy->getNumElements() == 1) {
  774. // Cast the scalar to element type
  775. const ExtVectorType *DstVecType =
  776. hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(),
  777. DstType);
  778. QualType EltTy = DstVecType->getElementType();
  779. llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
  780. // Splat the element across to all elements
  781. unsigned NumElements =
  782. cast<llvm::VectorType>(DstTy)->getNumElements();
  783. return Builder.CreateVectorSplat(NumElements, Elt, "splat");
  784. }
  785. }
  786. if (isa<llvm::IntegerType>(SrcVecTy->getElementType())) {
  787. bool InputSigned =
  788. SrcVecType->getElementType()->isSignedIntegerOrEnumerationType();
  789. if (isa<llvm::IntegerType>(DstVecTy->getElementType()))
  790. Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
  791. else if (InputSigned)
  792. Res = Builder.CreateSIToFP(Src, DstTy, "conv");
  793. else
  794. Res = Builder.CreateUIToFP(Src, DstTy, "conv");
  795. } else if (isa<llvm::IntegerType>(DstVecTy->getElementType())) {
  796. assert(SrcVecTy->getElementType()->isFloatingPointTy() &&
  797. "Unknown real conversion");
  798. if (DstVecType->getElementType()->isSignedIntegerOrEnumerationType())
  799. Res = Builder.CreateFPToSI(Src, DstTy, "conv");
  800. else
  801. Res = Builder.CreateFPToUI(Src, DstTy, "conv");
  802. } else {
  803. assert(SrcVecTy->getElementType()->isFloatingPointTy() &&
  804. DstVecTy->getElementType()->isFloatingPointTy() &&
  805. "Unknown real conversion");
  806. if (DstVecTy->getElementType()->getTypeID() <
  807. SrcVecTy->getElementType()->getTypeID())
  808. Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
  809. else
  810. Res = Builder.CreateFPExt(Src, DstTy, "conv");
  811. }
  812. return Res;
  813. }
  814. if (SrcTy->isVectorTy() && !DstTy->isVectorTy()) {
  815. return Builder.CreateExtractElement(Src, (uint64_t)0);
  816. }
  817. }
  818. // HLSL Change Ends
  819. // Allow bitcast from vector to integer/fp of the same size.
  820. if (isa<llvm::VectorType>(SrcTy) ||
  821. isa<llvm::VectorType>(DstTy))
  822. return Builder.CreateBitCast(Src, DstTy, "conv");
  823. // Finally, we have the arithmetic types: real int/float.
  824. Value *Res = nullptr;
  825. llvm::Type *ResTy = DstTy;
  826. // An overflowing conversion has undefined behavior if either the source type
  827. // or the destination type is a floating-point type.
  828. if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
  829. (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
  830. EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
  831. DstTy);
  832. // Cast to half through float if half isn't a native type.
  833. if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
  834. // Make sure we cast in a single step if from another FP type.
  835. if (SrcTy->isFloatingPointTy()) {
  836. // Use the intrinsic if the half type itself isn't supported
  837. // (as opposed to operations on half, available with NativeHalfType).
  838. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
  839. return Builder.CreateCall(
  840. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
  841. // If the half type is supported, just use an fptrunc.
  842. return Builder.CreateFPTrunc(Src, DstTy);
  843. }
  844. DstTy = CGF.FloatTy;
  845. }
  846. // HLSL Change Begins.
  847. if (const BuiltinType *BT = SrcType->getAs<BuiltinType>()) {
  848. if (BT->getKind() == BuiltinType::Kind::LitInt || BT->getKind() == BuiltinType::Kind::LitFloat) {
  849. Res = CGF.CGM.getHLSLRuntime().EmitHLSLLiteralCast(CGF, Src, SrcType, DstType);
  850. if (Res)
  851. return Res;
  852. }
  853. }
  854. // HLSL Change Ends.
  855. if (isa<llvm::IntegerType>(SrcTy)) {
  856. bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
  857. if (isa<llvm::IntegerType>(DstTy))
  858. Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
  859. else if (InputSigned)
  860. Res = Builder.CreateSIToFP(Src, DstTy, "conv");
  861. else
  862. Res = Builder.CreateUIToFP(Src, DstTy, "conv");
  863. } else if (isa<llvm::IntegerType>(DstTy)) {
  864. assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
  865. if (DstType->isSignedIntegerOrEnumerationType())
  866. Res = Builder.CreateFPToSI(Src, DstTy, "conv");
  867. else
  868. Res = Builder.CreateFPToUI(Src, DstTy, "conv");
  869. } else {
  870. assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
  871. "Unknown real conversion");
  872. if (DstTy->getTypeID() < SrcTy->getTypeID())
  873. Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
  874. else
  875. Res = Builder.CreateFPExt(Src, DstTy, "conv");
  876. }
  877. if (DstTy != ResTy) {
  878. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
  879. assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
  880. Res = Builder.CreateCall(
  881. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
  882. Res);
  883. } else {
  884. Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
  885. }
  886. }
  887. return Res;
  888. }
  889. /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
  890. /// type to the specified destination type, where the destination type is an
  891. /// LLVM scalar type.
  892. Value *ScalarExprEmitter::
  893. EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
  894. QualType SrcTy, QualType DstTy) {
  895. // Get the source element type.
  896. SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
  897. // Handle conversions to bool first, they are special: comparisons against 0.
  898. if (DstTy->isBooleanType()) {
  899. // Complex != 0 -> (Real != 0) | (Imag != 0)
  900. Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
  901. Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
  902. return Builder.CreateOr(Src.first, Src.second, "tobool");
  903. }
  904. // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
  905. // the imaginary part of the complex value is discarded and the value of the
  906. // real part is converted according to the conversion rules for the
  907. // corresponding real type.
  908. return EmitScalarConversion(Src.first, SrcTy, DstTy);
  909. }
  910. Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
  911. return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
  912. }
  913. /// \brief Emit a sanitization check for the given "binary" operation (which
  914. /// might actually be a unary increment which has been lowered to a binary
  915. /// operation). The check passes if all values in \p Checks (which are \c i1),
  916. /// are \c true.
  917. void ScalarExprEmitter::EmitBinOpCheck(
  918. ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
  919. assert(CGF.IsSanitizerScope);
  920. StringRef CheckName;
  921. SmallVector<llvm::Constant *, 4> StaticData;
  922. SmallVector<llvm::Value *, 2> DynamicData;
  923. BinaryOperatorKind Opcode = Info.Opcode;
  924. if (BinaryOperator::isCompoundAssignmentOp(Opcode))
  925. Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
  926. StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
  927. const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
  928. if (UO && UO->getOpcode() == UO_Minus) {
  929. CheckName = "negate_overflow";
  930. StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
  931. DynamicData.push_back(Info.RHS);
  932. } else {
  933. if (BinaryOperator::isShiftOp(Opcode)) {
  934. // Shift LHS negative or too large, or RHS out of bounds.
  935. CheckName = "shift_out_of_bounds";
  936. const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
  937. StaticData.push_back(
  938. CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
  939. StaticData.push_back(
  940. CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
  941. } else if (Opcode == BO_Div || Opcode == BO_Rem) {
  942. // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
  943. CheckName = "divrem_overflow";
  944. StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
  945. } else {
  946. // Arithmetic overflow (+, -, *).
  947. switch (Opcode) {
  948. case BO_Add: CheckName = "add_overflow"; break;
  949. case BO_Sub: CheckName = "sub_overflow"; break;
  950. case BO_Mul: CheckName = "mul_overflow"; break;
  951. default: llvm_unreachable("unexpected opcode for bin op check");
  952. }
  953. StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
  954. }
  955. DynamicData.push_back(Info.LHS);
  956. DynamicData.push_back(Info.RHS);
  957. }
  958. CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
  959. }
  960. //===----------------------------------------------------------------------===//
  961. // Visitor Methods
  962. //===----------------------------------------------------------------------===//
  963. Value *ScalarExprEmitter::VisitExpr(Expr *E) {
  964. CGF.ErrorUnsupported(E, "scalar expression");
  965. if (E->getType()->isVoidType())
  966. return nullptr;
  967. return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
  968. }
  969. Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
  970. // Vector Mask Case
  971. if (E->getNumSubExprs() == 2 ||
  972. (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
  973. Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
  974. Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
  975. Value *Mask;
  976. llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
  977. unsigned LHSElts = LTy->getNumElements();
  978. if (E->getNumSubExprs() == 3) {
  979. Mask = CGF.EmitScalarExpr(E->getExpr(2));
  980. // Shuffle LHS & RHS into one input vector.
  981. SmallVector<llvm::Constant*, 32> concat;
  982. for (unsigned i = 0; i != LHSElts; ++i) {
  983. concat.push_back(Builder.getInt32(2*i));
  984. concat.push_back(Builder.getInt32(2*i+1));
  985. }
  986. Value* CV = llvm::ConstantVector::get(concat);
  987. LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
  988. LHSElts *= 2;
  989. } else {
  990. Mask = RHS;
  991. }
  992. llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
  993. llvm::Constant* EltMask;
  994. EltMask = llvm::ConstantInt::get(MTy->getElementType(),
  995. llvm::NextPowerOf2(LHSElts-1)-1);
  996. // Mask off the high bits of each shuffle index.
  997. Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
  998. EltMask);
  999. Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
  1000. // newv = undef
  1001. // mask = mask & maskbits
  1002. // for each elt
  1003. // n = extract mask i
  1004. // x = extract val n
  1005. // newv = insert newv, x, i
  1006. llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
  1007. MTy->getNumElements());
  1008. Value* NewV = llvm::UndefValue::get(RTy);
  1009. for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
  1010. Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
  1011. Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
  1012. Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
  1013. NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
  1014. }
  1015. return NewV;
  1016. }
  1017. Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
  1018. Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
  1019. SmallVector<llvm::Constant*, 32> indices;
  1020. for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
  1021. llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
  1022. // Check for -1 and output it as undef in the IR.
  1023. if (Idx.isSigned() && Idx.isAllOnesValue())
  1024. indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
  1025. else
  1026. indices.push_back(Builder.getInt32(Idx.getZExtValue()));
  1027. }
  1028. Value *SV = llvm::ConstantVector::get(indices);
  1029. return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
  1030. }
  1031. Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
  1032. QualType SrcType = E->getSrcExpr()->getType(),
  1033. DstType = E->getType();
  1034. Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
  1035. SrcType = CGF.getContext().getCanonicalType(SrcType);
  1036. DstType = CGF.getContext().getCanonicalType(DstType);
  1037. if (SrcType == DstType) return Src;
  1038. assert(SrcType->isVectorType() &&
  1039. "ConvertVector source type must be a vector");
  1040. assert(DstType->isVectorType() &&
  1041. "ConvertVector destination type must be a vector");
  1042. llvm::Type *SrcTy = Src->getType();
  1043. llvm::Type *DstTy = ConvertType(DstType);
  1044. // Ignore conversions like int -> uint.
  1045. if (SrcTy == DstTy)
  1046. return Src;
  1047. QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
  1048. DstEltType = DstType->getAs<VectorType>()->getElementType();
  1049. assert(SrcTy->isVectorTy() &&
  1050. "ConvertVector source IR type must be a vector");
  1051. assert(DstTy->isVectorTy() &&
  1052. "ConvertVector destination IR type must be a vector");
  1053. llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
  1054. *DstEltTy = DstTy->getVectorElementType();
  1055. if (DstEltType->isBooleanType()) {
  1056. assert((SrcEltTy->isFloatingPointTy() ||
  1057. isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
  1058. llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
  1059. if (SrcEltTy->isFloatingPointTy()) {
  1060. return Builder.CreateFCmpUNE(Src, Zero, "tobool");
  1061. } else {
  1062. return Builder.CreateICmpNE(Src, Zero, "tobool");
  1063. }
  1064. }
  1065. // We have the arithmetic types: real int/float.
  1066. Value *Res = nullptr;
  1067. if (isa<llvm::IntegerType>(SrcEltTy)) {
  1068. bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
  1069. if (isa<llvm::IntegerType>(DstEltTy))
  1070. Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
  1071. else if (InputSigned)
  1072. Res = Builder.CreateSIToFP(Src, DstTy, "conv");
  1073. else
  1074. Res = Builder.CreateUIToFP(Src, DstTy, "conv");
  1075. } else if (isa<llvm::IntegerType>(DstEltTy)) {
  1076. assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
  1077. if (DstEltType->isSignedIntegerOrEnumerationType())
  1078. Res = Builder.CreateFPToSI(Src, DstTy, "conv");
  1079. else
  1080. Res = Builder.CreateFPToUI(Src, DstTy, "conv");
  1081. } else {
  1082. assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
  1083. "Unknown real conversion");
  1084. if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
  1085. Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
  1086. else
  1087. Res = Builder.CreateFPExt(Src, DstTy, "conv");
  1088. }
  1089. return Res;
  1090. }
  1091. Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
  1092. llvm::APSInt Value;
  1093. if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
  1094. if (E->isArrow())
  1095. CGF.EmitScalarExpr(E->getBase());
  1096. else
  1097. EmitLValue(E->getBase());
  1098. return Builder.getInt(Value);
  1099. }
  1100. return EmitLoadOfLValue(E);
  1101. }
  1102. Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
  1103. TestAndClearIgnoreResultAssign();
  1104. // Emit subscript expressions in rvalue context's. For most cases, this just
  1105. // loads the lvalue formed by the subscript expr. However, we have to be
  1106. // careful, because the base of a vector subscript is occasionally an rvalue,
  1107. // so we can't get it as an lvalue.
  1108. if (!E->getBase()->getType()->isVectorType())
  1109. return EmitLoadOfLValue(E);
  1110. // Handle the vector case. The base must be a vector, the index must be an
  1111. // integer value.
  1112. Value *Base = Visit(E->getBase());
  1113. Value *Idx = Visit(E->getIdx());
  1114. QualType IdxTy = E->getIdx()->getType();
  1115. if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
  1116. CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
  1117. return Builder.CreateExtractElement(Base, Idx, "vecext");
  1118. }
  1119. static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
  1120. unsigned Off, llvm::Type *I32Ty) {
  1121. int MV = SVI->getMaskValue(Idx);
  1122. if (MV == -1)
  1123. return llvm::UndefValue::get(I32Ty);
  1124. return llvm::ConstantInt::get(I32Ty, Off+MV);
  1125. }
  1126. static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
  1127. if (C->getBitWidth() != 32) {
  1128. assert(llvm::ConstantInt::isValueValidForType(I32Ty,
  1129. C->getZExtValue()) &&
  1130. "Index operand too large for shufflevector mask!");
  1131. return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
  1132. }
  1133. return C;
  1134. }
  1135. Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
  1136. bool Ignore = TestAndClearIgnoreResultAssign();
  1137. (void)Ignore;
  1138. assert (Ignore == false && "init list ignored");
  1139. unsigned NumInitElements = E->getNumInits();
  1140. if (E->hadArrayRangeDesignator())
  1141. CGF.ErrorUnsupported(E, "GNU array range designator extension");
  1142. llvm::VectorType *VType =
  1143. dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
  1144. if (!VType) {
  1145. // HLSL Change Begins
  1146. if (hlsl::IsHLSLMatType(E->getType())) {
  1147. // init function for matrix
  1148. return CGF.CGM.getHLSLRuntime().EmitHLSLInitListExpr(CGF, E, /*DestPtr*/nullptr);
  1149. }
  1150. // HLSL Change Ends
  1151. if (NumInitElements == 0) {
  1152. // C++11 value-initialization for the scalar.
  1153. return EmitNullValue(E->getType());
  1154. }
  1155. // We have a scalar in braces. Just use the first element.
  1156. return Visit(E->getInit(0));
  1157. }
  1158. else {
  1159. if (hlsl::IsHLSLVecType(E->getType())) {
  1160. return CGF.CGM.getHLSLRuntime().EmitHLSLInitListExpr(CGF, E, /*DestPtr*/nullptr);
  1161. }
  1162. }
  1163. unsigned ResElts = VType->getNumElements();
  1164. // HLSL Note - Matrix swizzle members emit - Consider handling matrix swizzles here
  1165. // Loop over initializers collecting the Value for each, and remembering
  1166. // whether the source was swizzle (ExtVectorElementExpr). This will allow
  1167. // us to fold the shuffle for the swizzle into the shuffle for the vector
  1168. // initializer, since LLVM optimizers generally do not want to touch
  1169. // shuffles.
  1170. unsigned CurIdx = 0;
  1171. bool VIsUndefShuffle = false;
  1172. llvm::Value *V = llvm::UndefValue::get(VType);
  1173. for (unsigned i = 0; i != NumInitElements; ++i) {
  1174. Expr *IE = E->getInit(i);
  1175. Value *Init = Visit(IE);
  1176. SmallVector<llvm::Constant*, 16> Args;
  1177. llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
  1178. // Handle scalar elements. If the scalar initializer is actually one
  1179. // element of a different vector of the same width, use shuffle instead of
  1180. // extract+insert.
  1181. if (!VVT) {
  1182. if (isa<ExtVectorElementExpr>(IE)) {
  1183. llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
  1184. if (EI->getVectorOperandType()->getNumElements() == ResElts) {
  1185. llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
  1186. Value *LHS = nullptr, *RHS = nullptr;
  1187. if (CurIdx == 0) {
  1188. // insert into undef -> shuffle (src, undef)
  1189. // shufflemask must use an i32
  1190. Args.push_back(getAsInt32(C, CGF.Int32Ty));
  1191. Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
  1192. LHS = EI->getVectorOperand();
  1193. RHS = V;
  1194. VIsUndefShuffle = true;
  1195. } else if (VIsUndefShuffle) {
  1196. // insert into undefshuffle && size match -> shuffle (v, src)
  1197. llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
  1198. for (unsigned j = 0; j != CurIdx; ++j)
  1199. Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
  1200. Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
  1201. Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
  1202. LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
  1203. RHS = EI->getVectorOperand();
  1204. VIsUndefShuffle = false;
  1205. }
  1206. if (!Args.empty()) {
  1207. llvm::Constant *Mask = llvm::ConstantVector::get(Args);
  1208. V = Builder.CreateShuffleVector(LHS, RHS, Mask);
  1209. ++CurIdx;
  1210. continue;
  1211. }
  1212. }
  1213. }
  1214. V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
  1215. "vecinit");
  1216. VIsUndefShuffle = false;
  1217. ++CurIdx;
  1218. continue;
  1219. }
  1220. unsigned InitElts = VVT->getNumElements();
  1221. // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
  1222. // input is the same width as the vector being constructed, generate an
  1223. // optimized shuffle of the swizzle input into the result.
  1224. unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
  1225. if (isa<ExtVectorElementExpr>(IE)) {
  1226. llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
  1227. Value *SVOp = SVI->getOperand(0);
  1228. llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
  1229. if (OpTy->getNumElements() == ResElts) {
  1230. for (unsigned j = 0; j != CurIdx; ++j) {
  1231. // If the current vector initializer is a shuffle with undef, merge
  1232. // this shuffle directly into it.
  1233. if (VIsUndefShuffle) {
  1234. Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
  1235. CGF.Int32Ty));
  1236. } else {
  1237. Args.push_back(Builder.getInt32(j));
  1238. }
  1239. }
  1240. for (unsigned j = 0, je = InitElts; j != je; ++j)
  1241. Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
  1242. Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
  1243. if (VIsUndefShuffle)
  1244. V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
  1245. Init = SVOp;
  1246. }
  1247. }
  1248. // Extend init to result vector length, and then shuffle its contribution
  1249. // to the vector initializer into V.
  1250. if (Args.empty()) {
  1251. for (unsigned j = 0; j != InitElts; ++j)
  1252. Args.push_back(Builder.getInt32(j));
  1253. Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
  1254. llvm::Constant *Mask = llvm::ConstantVector::get(Args);
  1255. Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
  1256. Mask, "vext");
  1257. Args.clear();
  1258. for (unsigned j = 0; j != CurIdx; ++j)
  1259. Args.push_back(Builder.getInt32(j));
  1260. for (unsigned j = 0; j != InitElts; ++j)
  1261. Args.push_back(Builder.getInt32(j+Offset));
  1262. Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
  1263. }
  1264. // If V is undef, make sure it ends up on the RHS of the shuffle to aid
  1265. // merging subsequent shuffles into this one.
  1266. if (CurIdx == 0)
  1267. std::swap(V, Init);
  1268. llvm::Constant *Mask = llvm::ConstantVector::get(Args);
  1269. V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
  1270. VIsUndefShuffle = isa<llvm::UndefValue>(Init);
  1271. CurIdx += InitElts;
  1272. }
  1273. // FIXME: evaluate codegen vs. shuffling against constant null vector.
  1274. // Emit remaining default initializers.
  1275. llvm::Type *EltTy = VType->getElementType();
  1276. // Emit remaining default initializers
  1277. for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
  1278. Value *Idx = Builder.getInt32(CurIdx);
  1279. llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
  1280. V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
  1281. }
  1282. return V;
  1283. }
  1284. static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
  1285. const Expr *E = CE->getSubExpr();
  1286. if (CE->getCastKind() == CK_UncheckedDerivedToBase)
  1287. return false;
  1288. if (isa<CXXThisExpr>(E)) {
  1289. // We always assume that 'this' is never null.
  1290. return false;
  1291. }
  1292. if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
  1293. // And that glvalue casts are never null.
  1294. if (ICE->getValueKind() != VK_RValue)
  1295. return false;
  1296. }
  1297. return true;
  1298. }
  1299. // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
  1300. // have to handle a more broad range of conversions than explicit casts, as they
  1301. // handle things like function to ptr-to-function decay etc.
  1302. Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
  1303. Expr *E = CE->getSubExpr();
  1304. QualType DestTy = CE->getType();
  1305. CastKind Kind = CE->getCastKind();
  1306. // HLSL Change Begins
  1307. if ((hlsl::IsHLSLMatType(E->getType()) || hlsl::IsHLSLMatType(CE->getType()))
  1308. && Kind != CastKind::CK_FlatConversion) {
  1309. llvm::Value *V = CGF.EmitScalarExpr(E);
  1310. llvm::Type *RetTy = CGF.ConvertType(DestTy);
  1311. if (V->getType() == RetTy)
  1312. return V;
  1313. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(CGF, CE, RetTy, { V });
  1314. }
  1315. // HLSL Change Ends
  1316. if (!DestTy->isVoidType())
  1317. TestAndClearIgnoreResultAssign();
  1318. // Since almost all cast kinds apply to scalars, this switch doesn't have
  1319. // a default case, so the compiler will warn on a missing case. The cases
  1320. // are in the same order as in the CastKind enum.
  1321. switch (Kind) {
  1322. case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
  1323. case CK_BuiltinFnToFnPtr:
  1324. llvm_unreachable("builtin functions are handled elsewhere");
  1325. case CK_LValueBitCast:
  1326. case CK_ObjCObjectLValueCast: {
  1327. Value *V = EmitLValue(E).getAddress();
  1328. V = Builder.CreateBitCast(V,
  1329. ConvertType(CGF.getContext().getPointerType(DestTy)));
  1330. return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
  1331. CE->getExprLoc());
  1332. }
  1333. case CK_CPointerToObjCPointerCast:
  1334. case CK_BlockPointerToObjCPointerCast:
  1335. case CK_AnyPointerToBlockPointerCast:
  1336. case CK_BitCast: {
  1337. Value *Src = Visit(const_cast<Expr*>(E));
  1338. llvm::Type *SrcTy = Src->getType();
  1339. llvm::Type *DstTy = ConvertType(DestTy);
  1340. if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
  1341. SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
  1342. llvm_unreachable("wrong cast for pointers in different address spaces"
  1343. "(must be an address space cast)!");
  1344. }
  1345. if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
  1346. if (auto PT = DestTy->getAs<PointerType>())
  1347. CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
  1348. /*MayBeNull=*/true,
  1349. CodeGenFunction::CFITCK_UnrelatedCast,
  1350. CE->getLocStart());
  1351. }
  1352. return Builder.CreateBitCast(Src, DstTy);
  1353. }
  1354. case CK_AddressSpaceConversion: {
  1355. Value *Src = Visit(const_cast<Expr*>(E));
  1356. return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
  1357. }
  1358. case CK_AtomicToNonAtomic:
  1359. case CK_NonAtomicToAtomic:
  1360. case CK_NoOp:
  1361. case CK_UserDefinedConversion:
  1362. return Visit(const_cast<Expr*>(E));
  1363. case CK_BaseToDerived: {
  1364. const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
  1365. assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
  1366. llvm::Value *V = Visit(E);
  1367. llvm::Value *Derived =
  1368. CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
  1369. CE->path_begin(), CE->path_end(),
  1370. ShouldNullCheckClassCastValue(CE));
  1371. // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
  1372. // performed and the object is not of the derived type.
  1373. if (CGF.sanitizePerformTypeCheck())
  1374. CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
  1375. Derived, DestTy->getPointeeType());
  1376. if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
  1377. CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
  1378. /*MayBeNull=*/true,
  1379. CodeGenFunction::CFITCK_DerivedCast,
  1380. CE->getLocStart());
  1381. return Derived;
  1382. }
  1383. case CK_UncheckedDerivedToBase:
  1384. case CK_DerivedToBase: {
  1385. const CXXRecordDecl *DerivedClassDecl =
  1386. E->getType()->getPointeeCXXRecordDecl();
  1387. assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
  1388. return CGF.GetAddressOfBaseClass(
  1389. Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(),
  1390. ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
  1391. }
  1392. case CK_Dynamic: {
  1393. Value *V = Visit(const_cast<Expr*>(E));
  1394. const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
  1395. return CGF.EmitDynamicCast(V, DCE);
  1396. }
  1397. case CK_ArrayToPointerDecay: {
  1398. assert(E->getType()->isArrayType() &&
  1399. "Array to pointer decay must have array source type!");
  1400. Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
  1401. // Note that VLA pointers are always decayed, so we don't need to do
  1402. // anything here.
  1403. if (!E->getType()->isVariableArrayType()) {
  1404. assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
  1405. llvm::Type *NewTy = ConvertType(E->getType());
  1406. V = CGF.Builder.CreatePointerCast(
  1407. V, NewTy->getPointerTo(V->getType()->getPointerAddressSpace()));
  1408. assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) &&
  1409. "Expected pointer to array");
  1410. V = Builder.CreateStructGEP(NewTy, V, 0, "arraydecay");
  1411. }
  1412. // Make sure the array decay ends up being the right type. This matters if
  1413. // the array type was of an incomplete type.
  1414. return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
  1415. }
  1416. case CK_FunctionToPointerDecay:
  1417. return EmitLValue(E).getAddress();
  1418. case CK_NullToPointer:
  1419. if (MustVisitNullValue(E))
  1420. (void) Visit(E);
  1421. return llvm::ConstantPointerNull::get(
  1422. cast<llvm::PointerType>(ConvertType(DestTy)));
  1423. case CK_NullToMemberPointer: {
  1424. if (MustVisitNullValue(E))
  1425. (void) Visit(E);
  1426. const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
  1427. return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
  1428. }
  1429. case CK_ReinterpretMemberPointer:
  1430. case CK_BaseToDerivedMemberPointer:
  1431. case CK_DerivedToBaseMemberPointer: {
  1432. Value *Src = Visit(E);
  1433. // Note that the AST doesn't distinguish between checked and
  1434. // unchecked member pointer conversions, so we always have to
  1435. // implement checked conversions here. This is inefficient when
  1436. // actual control flow may be required in order to perform the
  1437. // check, which it is for data member pointers (but not member
  1438. // function pointers on Itanium and ARM).
  1439. return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
  1440. }
  1441. case CK_ARCProduceObject:
  1442. return CGF.EmitARCRetainScalarExpr(E);
  1443. case CK_ARCConsumeObject:
  1444. return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
  1445. case CK_ARCReclaimReturnedObject: {
  1446. llvm::Value *value = Visit(E);
  1447. value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
  1448. return CGF.EmitObjCConsumeObject(E->getType(), value);
  1449. }
  1450. case CK_ARCExtendBlockObject:
  1451. return CGF.EmitARCExtendBlockObject(E);
  1452. case CK_CopyAndAutoreleaseBlockObject:
  1453. return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
  1454. case CK_FloatingRealToComplex:
  1455. case CK_FloatingComplexCast:
  1456. case CK_IntegralRealToComplex:
  1457. case CK_IntegralComplexCast:
  1458. case CK_IntegralComplexToFloatingComplex:
  1459. case CK_FloatingComplexToIntegralComplex:
  1460. case CK_ConstructorConversion:
  1461. case CK_ToUnion:
  1462. llvm_unreachable("scalar cast to non-scalar value");
  1463. case CK_LValueToRValue:
  1464. assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
  1465. assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
  1466. return Visit(const_cast<Expr*>(E));
  1467. case CK_IntegralToPointer: {
  1468. Value *Src = Visit(const_cast<Expr*>(E));
  1469. // First, convert to the correct width so that we control the kind of
  1470. // extension.
  1471. llvm::Type *MiddleTy = CGF.IntPtrTy;
  1472. bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
  1473. llvm::Value* IntResult =
  1474. Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
  1475. return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
  1476. }
  1477. case CK_PointerToIntegral:
  1478. assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
  1479. return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
  1480. case CK_ToVoid: {
  1481. CGF.EmitIgnoredExpr(E);
  1482. return nullptr;
  1483. }
  1484. case CK_VectorSplat: {
  1485. llvm::Type *DstTy = ConvertType(DestTy);
  1486. Value *Elt = Visit(const_cast<Expr*>(E));
  1487. Elt = EmitScalarConversion(Elt, E->getType(),
  1488. DestTy->getAs<VectorType>()->getElementType());
  1489. // Splat the element across to all elements
  1490. unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
  1491. return Builder.CreateVectorSplat(NumElements, Elt, "splat");
  1492. }
  1493. case CK_IntegralCast:
  1494. case CK_IntegralToFloating:
  1495. case CK_FloatingToIntegral:
  1496. case CK_FloatingCast:
  1497. return EmitScalarConversion(Visit(E), E->getType(), DestTy);
  1498. case CK_IntegralToBoolean:
  1499. return EmitIntToBoolConversion(Visit(E));
  1500. case CK_PointerToBoolean:
  1501. return EmitPointerToBoolConversion(Visit(E));
  1502. case CK_FloatingToBoolean:
  1503. return EmitFloatToBoolConversion(Visit(E));
  1504. case CK_MemberPointerToBoolean: {
  1505. llvm::Value *MemPtr = Visit(E);
  1506. const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
  1507. return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
  1508. }
  1509. case CK_FloatingComplexToReal:
  1510. case CK_IntegralComplexToReal:
  1511. return CGF.EmitComplexExpr(E, false, true).first;
  1512. case CK_FloatingComplexToBoolean:
  1513. case CK_IntegralComplexToBoolean: {
  1514. CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
  1515. // TODO: kill this function off, inline appropriate case here
  1516. return EmitComplexToScalarConversion(V, E->getType(), DestTy);
  1517. }
  1518. case CK_ZeroToOCLEvent: {
  1519. assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
  1520. return llvm::Constant::getNullValue(ConvertType(DestTy));
  1521. }
  1522. // HLSL Change Starts
  1523. case CK_HLSLMatrixTruncationCast:
  1524. case CK_HLSLVectorTruncationCast: {
  1525. // must be vector
  1526. llvm::Value *val = Visit(E);
  1527. if (const ExtVectorType *extVecTy =
  1528. hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(),
  1529. CE->getType())) {
  1530. uint32_t vecSize = extVecTy->getNumElements();
  1531. SmallVector<llvm::Constant *, 4> Mask;
  1532. for (unsigned i = 0; i != vecSize; ++i)
  1533. Mask.push_back(Builder.getInt32(i));
  1534. llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
  1535. return Builder.CreateShuffleVector(
  1536. val, llvm::UndefValue::get(val->getType()), MaskV);
  1537. } else if (E->getType()->isScalarType()) {
  1538. return Builder.CreateExtractElement(val, (uint64_t)0);
  1539. }
  1540. }
  1541. case CK_HLSLCC_FloatingToIntegral:
  1542. case CK_HLSLCC_FloatingCast: {
  1543. return EmitScalarConversion(Visit(E), E->getType(), DestTy);
  1544. }
  1545. case CK_HLSLVectorToMatrixCast:
  1546. case CK_HLSLMatrixToVectorCast: {
  1547. llvm::Value *val = Visit(E);
  1548. llvm::Type *RetTy = CGF.ConvertType(DestTy);
  1549. val = CGF.CGM.getHLSLRuntime().EmitHLSLMatrixLoad(CGF, val, E->getType());
  1550. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(CGF, CE, RetTy, { val });
  1551. }
  1552. case CK_HLSLCC_IntegralCast:
  1553. case CK_HLSLCC_IntegralToFloating: {
  1554. return EmitScalarConversion(Visit(E), E->getType(), DestTy);
  1555. }
  1556. case CK_HLSLMatrixSplat: {
  1557. llvm::Type *DstTy = ConvertType(DestTy);
  1558. Value *Elt = Visit(const_cast<Expr *>(E));
  1559. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(CGF, CE, DstTy, { Elt });
  1560. }
  1561. case CK_HLSLVectorSplat: {
  1562. llvm::Type *DstTy = ConvertType(DestTy);
  1563. Value *Elt = Visit(const_cast<Expr *>(E));
  1564. const ExtVectorType *extVecTy = hlsl::ConvertHLSLVecMatTypeToExtVectorType(
  1565. CGF.getContext(), CE->getType());
  1566. Elt = EmitScalarConversion(Elt, E->getType(), extVecTy->getElementType());
  1567. // Splat the element across to all elements
  1568. unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
  1569. return Builder.CreateVectorSplat(NumElements, Elt, "splat");
  1570. }
  1571. case CK_HLSLVectorToScalarCast:
  1572. case CK_HLSLMatrixToScalarCast: {
  1573. return Builder.CreateExtractElement(Visit(E), (uint64_t)0);
  1574. }
  1575. case CK_FlatConversion: {
  1576. llvm::Value *Src = Visit(E);
  1577. // We should have an aggregate type (struct or array) on one side,
  1578. // and a numeric type (scalar, vector or matrix) on the other.
  1579. // If the aggregate type is the cast source, it should be a pointer.
  1580. // Aggregate to aggregate casts are handled in CGExprAgg.cpp
  1581. auto areCompoundAndNumeric = [this](QualType lhs, QualType rhs) {
  1582. return hlsl::IsHLSLAggregateType(lhs)
  1583. && (rhs->isBuiltinType() || hlsl::IsHLSLVecMatType(rhs));
  1584. };
  1585. assert(Src->getType()->isPointerTy()
  1586. ? areCompoundAndNumeric(E->getType(), DestTy)
  1587. : areCompoundAndNumeric(DestTy, E->getType()));
  1588. (void)areCompoundAndNumeric;
  1589. llvm::Value *DstPtr = CGF.CreateMemTemp(DestTy, "flatconv");
  1590. CGF.CGM.getHLSLRuntime().EmitHLSLFlatConversion(
  1591. CGF, Src, DstPtr, DestTy, E->getType());
  1592. // Return an rvalue
  1593. // Matrices must be loaded with the special function
  1594. if (hlsl::IsHLSLMatType(DestTy))
  1595. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixLoad(CGF, DstPtr, DestTy);
  1596. // Structs/arrays are pointers to temporaries
  1597. if (hlsl::IsHLSLAggregateType(DestTy))
  1598. return DstPtr;
  1599. // Scalars/vectors are loaded regularly
  1600. llvm::Value *Result = Builder.CreateLoad(DstPtr);
  1601. return Result = CGF.EmitFromMemory(Result, DestTy);
  1602. }
  1603. case CK_HLSLCC_IntegralToBoolean:
  1604. return EmitIntToBoolConversion(Visit(E));
  1605. case CK_HLSLCC_FloatingToBoolean:
  1606. return EmitFloatToBoolConversion(Visit(E));
  1607. // HLSL Change Ends
  1608. }
  1609. llvm_unreachable("unknown scalar cast");
  1610. }
  1611. Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
  1612. CodeGenFunction::StmtExprEvaluation eval(CGF);
  1613. llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
  1614. !E->getType()->isVoidType());
  1615. if (!RetAlloca)
  1616. return nullptr;
  1617. return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
  1618. E->getExprLoc());
  1619. }
  1620. //===----------------------------------------------------------------------===//
  1621. // Unary Operators
  1622. //===----------------------------------------------------------------------===//
  1623. static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
  1624. llvm::Value *InVal, bool IsInc) {
  1625. BinOpInfo BinOp;
  1626. BinOp.LHS = InVal;
  1627. BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
  1628. BinOp.Ty = E->getType();
  1629. BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
  1630. BinOp.FPContractable = false;
  1631. BinOp.E = E;
  1632. return BinOp;
  1633. }
  1634. llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
  1635. const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
  1636. llvm::Value *Amount =
  1637. llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
  1638. StringRef Name = IsInc ? "inc" : "dec";
  1639. switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
  1640. case LangOptions::SOB_Defined:
  1641. return Builder.CreateAdd(InVal, Amount, Name);
  1642. case LangOptions::SOB_Undefined:
  1643. if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
  1644. return Builder.CreateNSWAdd(InVal, Amount, Name);
  1645. // Fall through.
  1646. case LangOptions::SOB_Trapping:
  1647. return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
  1648. }
  1649. llvm_unreachable("Unknown SignedOverflowBehaviorTy");
  1650. }
  1651. llvm::Value *
  1652. ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
  1653. bool isInc, bool isPre) {
  1654. QualType type = E->getSubExpr()->getType();
  1655. llvm::PHINode *atomicPHI = nullptr;
  1656. llvm::Value *value;
  1657. llvm::Value *input;
  1658. int amount = (isInc ? 1 : -1);
  1659. if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
  1660. type = atomicTy->getValueType();
  1661. if (isInc && type->isBooleanType()) {
  1662. llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
  1663. if (isPre) {
  1664. Builder.Insert(new llvm::StoreInst(True,
  1665. LV.getAddress(), LV.isVolatileQualified(),
  1666. LV.getAlignment().getQuantity(),
  1667. llvm::SequentiallyConsistent));
  1668. return Builder.getTrue();
  1669. }
  1670. // For atomic bool increment, we just store true and return it for
  1671. // preincrement, do an atomic swap with true for postincrement
  1672. return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
  1673. LV.getAddress(), True, llvm::SequentiallyConsistent);
  1674. }
  1675. // Special case for atomic increment / decrement on integers, emit
  1676. // atomicrmw instructions. We skip this if we want to be doing overflow
  1677. // checking, and fall into the slow path with the atomic cmpxchg loop.
  1678. if (!type->isBooleanType() && type->isIntegerType() &&
  1679. !(type->isUnsignedIntegerType() &&
  1680. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
  1681. CGF.getLangOpts().getSignedOverflowBehavior() !=
  1682. LangOptions::SOB_Trapping) {
  1683. llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
  1684. llvm::AtomicRMWInst::Sub;
  1685. llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
  1686. llvm::Instruction::Sub;
  1687. llvm::Value *amt = CGF.EmitToMemory(
  1688. llvm::ConstantInt::get(ConvertType(type), 1, true), type);
  1689. llvm::Value *old = Builder.CreateAtomicRMW(aop,
  1690. LV.getAddress(), amt, llvm::SequentiallyConsistent);
  1691. return isPre ? Builder.CreateBinOp(op, old, amt) : old;
  1692. }
  1693. value = EmitLoadOfLValue(LV, E->getExprLoc());
  1694. input = value;
  1695. // For every other atomic operation, we need to emit a load-op-cmpxchg loop
  1696. llvm::BasicBlock *startBB = Builder.GetInsertBlock();
  1697. llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
  1698. value = CGF.EmitToMemory(value, type);
  1699. Builder.CreateBr(opBB);
  1700. Builder.SetInsertPoint(opBB);
  1701. atomicPHI = Builder.CreatePHI(value->getType(), 2);
  1702. atomicPHI->addIncoming(value, startBB);
  1703. value = atomicPHI;
  1704. } else {
  1705. value = EmitLoadOfLValue(LV, E->getExprLoc());
  1706. input = value;
  1707. }
  1708. // Special case of integer increment that we have to check first: bool++.
  1709. // Due to promotion rules, we get:
  1710. // bool++ -> bool = bool + 1
  1711. // -> bool = (int)bool + 1
  1712. // -> bool = ((int)bool + 1 != 0)
  1713. // An interesting aspect of this is that increment is always true.
  1714. // Decrement does not have this property.
  1715. if (isInc && type->isBooleanType()) {
  1716. value = Builder.getTrue();
  1717. // Most common case by far: integer increment.
  1718. } else if (type->isIntegerType()) {
  1719. // Note that signed integer inc/dec with width less than int can't
  1720. // overflow because of promotion rules; we're just eliding a few steps here.
  1721. bool CanOverflow = value->getType()->getIntegerBitWidth() >=
  1722. CGF.IntTy->getIntegerBitWidth();
  1723. if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
  1724. value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
  1725. } else if (CanOverflow && type->isUnsignedIntegerType() &&
  1726. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
  1727. value =
  1728. EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
  1729. } else {
  1730. llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
  1731. value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
  1732. }
  1733. // Next most common: pointer increment.
  1734. } else if (const PointerType *ptr = type->getAs<PointerType>()) {
  1735. QualType type = ptr->getPointeeType();
  1736. // VLA types don't have constant size.
  1737. if (const VariableArrayType *vla
  1738. = CGF.getContext().getAsVariableArrayType(type)) {
  1739. llvm::Value *numElts = CGF.getVLASize(vla).first;
  1740. if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
  1741. if (CGF.getLangOpts().isSignedOverflowDefined())
  1742. value = Builder.CreateGEP(value, numElts, "vla.inc");
  1743. else
  1744. value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
  1745. // Arithmetic on function pointers (!) is just +-1.
  1746. } else if (type->isFunctionType()) {
  1747. llvm::Value *amt = Builder.getInt32(amount);
  1748. value = CGF.EmitCastToVoidPtr(value);
  1749. if (CGF.getLangOpts().isSignedOverflowDefined())
  1750. value = Builder.CreateGEP(value, amt, "incdec.funcptr");
  1751. else
  1752. value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
  1753. value = Builder.CreateBitCast(value, input->getType());
  1754. // For everything else, we can just do a simple increment.
  1755. } else {
  1756. llvm::Value *amt = Builder.getInt32(amount);
  1757. if (CGF.getLangOpts().isSignedOverflowDefined())
  1758. value = Builder.CreateGEP(value, amt, "incdec.ptr");
  1759. else
  1760. value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
  1761. }
  1762. // Vector increment/decrement.
  1763. } else if (type->isVectorType() ||
  1764. hlsl::IsHLSLVecType(type)) { // HLSL Change
  1765. if (type->hasIntegerRepresentation()) {
  1766. llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
  1767. value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
  1768. } else {
  1769. value = Builder.CreateFAdd(
  1770. value,
  1771. llvm::ConstantFP::get(value->getType(), amount),
  1772. isInc ? "inc" : "dec");
  1773. }
  1774. // HLSL Change Begins
  1775. // HLSL matrix
  1776. } else if (hlsl::IsHLSLMatType(type)) {
  1777. // generate operator call
  1778. value = CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
  1779. CGF, E, value->getType(), {value});
  1780. // store updated value
  1781. CGF.CGM.getHLSLRuntime().EmitHLSLMatrixStore(CGF, value, LV.getAddress(), E->getType());
  1782. // If this is a postinc, return the value read from memory, otherwise use
  1783. // the
  1784. // updated value.
  1785. return isPre ? value : input;
  1786. // HLSL Change Ends
  1787. // Floating point.
  1788. } else if (type->isRealFloatingType()) {
  1789. // Add the inc/dec to the real part.
  1790. llvm::Value *amt;
  1791. if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
  1792. // Another special case: half FP increment should be done via float
  1793. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
  1794. value = Builder.CreateCall(
  1795. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
  1796. CGF.CGM.FloatTy),
  1797. input, "incdec.conv");
  1798. } else {
  1799. value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
  1800. }
  1801. }
  1802. if (value->getType()->isFloatTy())
  1803. amt = llvm::ConstantFP::get(VMContext,
  1804. llvm::APFloat(static_cast<float>(amount)));
  1805. else if (value->getType()->isDoubleTy())
  1806. amt = llvm::ConstantFP::get(VMContext,
  1807. llvm::APFloat(static_cast<double>(amount)));
  1808. else {
  1809. // Remaining types are either Half or LongDouble. Convert from float.
  1810. llvm::APFloat F(static_cast<float>(amount));
  1811. bool ignored;
  1812. // Don't use getFloatTypeSemantics because Half isn't
  1813. // necessarily represented using the "half" LLVM type.
  1814. F.convert(value->getType()->isHalfTy()
  1815. ? CGF.getTarget().getHalfFormat()
  1816. : CGF.getTarget().getLongDoubleFormat(),
  1817. llvm::APFloat::rmTowardZero, &ignored);
  1818. amt = llvm::ConstantFP::get(VMContext, F);
  1819. }
  1820. value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
  1821. if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
  1822. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
  1823. value = Builder.CreateCall(
  1824. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
  1825. CGF.CGM.FloatTy),
  1826. value, "incdec.conv");
  1827. } else {
  1828. value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
  1829. }
  1830. }
  1831. // Objective-C pointer types.
  1832. } else {
  1833. const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
  1834. value = CGF.EmitCastToVoidPtr(value);
  1835. CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
  1836. if (!isInc) size = -size;
  1837. llvm::Value *sizeValue =
  1838. llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
  1839. if (CGF.getLangOpts().isSignedOverflowDefined())
  1840. value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
  1841. else
  1842. value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
  1843. value = Builder.CreateBitCast(value, input->getType());
  1844. }
  1845. if (atomicPHI) {
  1846. llvm::BasicBlock *opBB = Builder.GetInsertBlock();
  1847. llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
  1848. auto Pair = CGF.EmitAtomicCompareExchange(
  1849. LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
  1850. llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
  1851. llvm::Value *success = Pair.second;
  1852. atomicPHI->addIncoming(old, opBB);
  1853. Builder.CreateCondBr(success, contBB, opBB);
  1854. Builder.SetInsertPoint(contBB);
  1855. return isPre ? value : input;
  1856. }
  1857. // Store the updated result through the lvalue.
  1858. if (LV.isBitField())
  1859. CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
  1860. else
  1861. CGF.EmitStoreThroughLValue(RValue::get(value), LV);
  1862. // If this is a postinc, return the value read from memory, otherwise use the
  1863. // updated value.
  1864. return isPre ? value : input;
  1865. }
  1866. Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
  1867. TestAndClearIgnoreResultAssign();
  1868. // Emit unary minus with EmitSub so we handle overflow cases etc.
  1869. BinOpInfo BinOp;
  1870. BinOp.RHS = Visit(E->getSubExpr());
  1871. if (BinOp.RHS->getType()->isFPOrFPVectorTy())
  1872. BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
  1873. else
  1874. BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
  1875. BinOp.Ty = E->getType();
  1876. BinOp.Opcode = BO_Sub;
  1877. BinOp.FPContractable = false;
  1878. BinOp.E = E;
  1879. return EmitSub(BinOp);
  1880. }
  1881. Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
  1882. TestAndClearIgnoreResultAssign();
  1883. Value *Op = Visit(E->getSubExpr());
  1884. return Builder.CreateNot(Op, "neg");
  1885. }
  1886. Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
  1887. // Perform vector logical not on comparison with zero vector.
  1888. if (E->getType()->isExtVectorType() ||
  1889. hlsl::IsHLSLVecType(E->getType())) { // HLSL Change
  1890. Value *Oper = Visit(E->getSubExpr());
  1891. Value *Zero = llvm::Constant::getNullValue(Oper->getType());
  1892. Value *Result;
  1893. if (Oper->getType()->isFPOrFPVectorTy())
  1894. Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
  1895. else
  1896. Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
  1897. return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
  1898. }
  1899. // Compare operand to zero.
  1900. Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
  1901. // Invert value.
  1902. // TODO: Could dynamically modify easy computations here. For example, if
  1903. // the operand is an icmp ne, turn into icmp eq.
  1904. BoolVal = Builder.CreateNot(BoolVal, "lnot");
  1905. // ZExt result to the expr type.
  1906. return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
  1907. }
  1908. Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
  1909. // Try folding the offsetof to a constant.
  1910. llvm::APSInt Value;
  1911. if (E->EvaluateAsInt(Value, CGF.getContext()))
  1912. return Builder.getInt(Value);
  1913. // Loop over the components of the offsetof to compute the value.
  1914. unsigned n = E->getNumComponents();
  1915. llvm::Type* ResultType = ConvertType(E->getType());
  1916. llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
  1917. QualType CurrentType = E->getTypeSourceInfo()->getType();
  1918. for (unsigned i = 0; i != n; ++i) {
  1919. OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
  1920. llvm::Value *Offset = nullptr;
  1921. switch (ON.getKind()) {
  1922. case OffsetOfExpr::OffsetOfNode::Array: {
  1923. // Compute the index
  1924. Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
  1925. llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
  1926. bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
  1927. Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
  1928. // Save the element type
  1929. CurrentType =
  1930. CGF.getContext().getAsArrayType(CurrentType)->getElementType();
  1931. // Compute the element size
  1932. llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
  1933. CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
  1934. // Multiply out to compute the result
  1935. Offset = Builder.CreateMul(Idx, ElemSize);
  1936. break;
  1937. }
  1938. case OffsetOfExpr::OffsetOfNode::Field: {
  1939. FieldDecl *MemberDecl = ON.getField();
  1940. RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
  1941. const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
  1942. // Compute the index of the field in its parent.
  1943. unsigned i = 0;
  1944. // FIXME: It would be nice if we didn't have to loop here!
  1945. for (RecordDecl::field_iterator Field = RD->field_begin(),
  1946. FieldEnd = RD->field_end();
  1947. Field != FieldEnd; ++Field, ++i) {
  1948. if (*Field == MemberDecl)
  1949. break;
  1950. }
  1951. assert(i < RL.getFieldCount() && "offsetof field in wrong type");
  1952. // Compute the offset to the field
  1953. int64_t OffsetInt = RL.getFieldOffset(i) /
  1954. CGF.getContext().getCharWidth();
  1955. Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
  1956. // Save the element type.
  1957. CurrentType = MemberDecl->getType();
  1958. break;
  1959. }
  1960. case OffsetOfExpr::OffsetOfNode::Identifier:
  1961. llvm_unreachable("dependent __builtin_offsetof");
  1962. case OffsetOfExpr::OffsetOfNode::Base: {
  1963. if (ON.getBase()->isVirtual()) {
  1964. CGF.ErrorUnsupported(E, "virtual base in offsetof");
  1965. continue;
  1966. }
  1967. RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
  1968. const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
  1969. // Save the element type.
  1970. CurrentType = ON.getBase()->getType();
  1971. // Compute the offset to the base.
  1972. const RecordType *BaseRT = CurrentType->getAs<RecordType>();
  1973. CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
  1974. CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
  1975. Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
  1976. break;
  1977. }
  1978. }
  1979. Result = Builder.CreateAdd(Result, Offset);
  1980. }
  1981. return Result;
  1982. }
  1983. /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
  1984. /// argument of the sizeof expression as an integer.
  1985. Value *
  1986. ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
  1987. const UnaryExprOrTypeTraitExpr *E) {
  1988. QualType TypeToSize = E->getTypeOfArgument();
  1989. if (E->getKind() == UETT_SizeOf) {
  1990. if (const VariableArrayType *VAT =
  1991. CGF.getContext().getAsVariableArrayType(TypeToSize)) {
  1992. if (E->isArgumentType()) {
  1993. // sizeof(type) - make sure to emit the VLA size.
  1994. CGF.EmitVariablyModifiedType(TypeToSize);
  1995. } else {
  1996. // C99 6.5.3.4p2: If the argument is an expression of type
  1997. // VLA, it is evaluated.
  1998. CGF.EmitIgnoredExpr(E->getArgumentExpr());
  1999. }
  2000. QualType eltType;
  2001. llvm::Value *numElts;
  2002. std::tie(numElts, eltType) = CGF.getVLASize(VAT);
  2003. llvm::Value *size = numElts;
  2004. // Scale the number of non-VLA elements by the non-VLA element size.
  2005. CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
  2006. if (!eltSize.isOne())
  2007. size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
  2008. return size;
  2009. }
  2010. } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
  2011. auto Alignment =
  2012. CGF.getContext()
  2013. .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
  2014. E->getTypeOfArgument()->getPointeeType()))
  2015. .getQuantity();
  2016. return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
  2017. }
  2018. // If this isn't sizeof(vla), the result must be constant; use the constant
  2019. // folding logic so we don't have to duplicate it here.
  2020. return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
  2021. }
  2022. Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
  2023. Expr *Op = E->getSubExpr();
  2024. if (Op->getType()->isAnyComplexType()) {
  2025. // If it's an l-value, load through the appropriate subobject l-value.
  2026. // Note that we have to ask E because Op might be an l-value that
  2027. // this won't work for, e.g. an Obj-C property.
  2028. if (E->isGLValue())
  2029. return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
  2030. E->getExprLoc()).getScalarVal();
  2031. // Otherwise, calculate and project.
  2032. return CGF.EmitComplexExpr(Op, false, true).first;
  2033. }
  2034. return Visit(Op);
  2035. }
  2036. Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
  2037. Expr *Op = E->getSubExpr();
  2038. if (Op->getType()->isAnyComplexType()) {
  2039. // If it's an l-value, load through the appropriate subobject l-value.
  2040. // Note that we have to ask E because Op might be an l-value that
  2041. // this won't work for, e.g. an Obj-C property.
  2042. if (Op->isGLValue())
  2043. return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
  2044. E->getExprLoc()).getScalarVal();
  2045. // Otherwise, calculate and project.
  2046. return CGF.EmitComplexExpr(Op, true, false).second;
  2047. }
  2048. // __imag on a scalar returns zero. Emit the subexpr to ensure side
  2049. // effects are evaluated, but not the actual value.
  2050. if (Op->isGLValue())
  2051. CGF.EmitLValue(Op);
  2052. else
  2053. CGF.EmitScalarExpr(Op, true);
  2054. return llvm::Constant::getNullValue(ConvertType(E->getType()));
  2055. }
  2056. //===----------------------------------------------------------------------===//
  2057. // Binary Operators
  2058. //===----------------------------------------------------------------------===//
  2059. BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
  2060. TestAndClearIgnoreResultAssign();
  2061. BinOpInfo Result;
  2062. Result.LHS = Visit(E->getLHS());
  2063. Result.RHS = Visit(E->getRHS());
  2064. Result.Ty = E->getType();
  2065. Result.Opcode = E->getOpcode();
  2066. Result.FPContractable = E->isFPContractable();
  2067. Result.E = E;
  2068. return Result;
  2069. }
  2070. LValue ScalarExprEmitter::EmitCompoundAssignLValue(
  2071. const CompoundAssignOperator *E,
  2072. Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
  2073. Value *&Result) {
  2074. // HLSL Change Begins
  2075. if (hlsl::IsHLSLMatType(E->getType())) {
  2076. const Expr *LHS = E->getLHS();
  2077. const Expr *RHS = E->getRHS();
  2078. LValue L = CGF.EmitLValue(LHS);
  2079. Value *LVal = L.getAddress();
  2080. Value *RVal = CGF.EmitScalarExpr(RHS);
  2081. SmallVector<Value *, 4> paramList;
  2082. Value *LdLVal =
  2083. CGF.CGM.getHLSLRuntime().EmitHLSLMatrixLoad(CGF, LVal, LHS->getType());
  2084. paramList.emplace_back(LdLVal);
  2085. paramList.emplace_back(RVal);
  2086. // Set return type to be none reference type for Result
  2087. llvm::Type *RetType = LVal->getType()->getPointerElementType();
  2088. Result = CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
  2089. CGF, E, RetType, paramList);
  2090. // store result to LVal
  2091. CGF.CGM.getHLSLRuntime().EmitHLSLMatrixStore(CGF, Result, LVal,
  2092. LHS->getType());
  2093. return L;
  2094. }
  2095. // HLSL Change Ends
  2096. QualType LHSTy = E->getLHS()->getType();
  2097. BinOpInfo OpInfo;
  2098. if (E->getComputationResultType()->isAnyComplexType())
  2099. return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
  2100. // Emit the RHS first. __block variables need to have the rhs evaluated
  2101. // first, plus this should improve codegen a little.
  2102. OpInfo.RHS = Visit(E->getRHS());
  2103. OpInfo.Ty = E->getComputationResultType();
  2104. OpInfo.Opcode = E->getOpcode();
  2105. OpInfo.FPContractable = false;
  2106. OpInfo.E = E;
  2107. // Load/convert the LHS.
  2108. LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
  2109. llvm::PHINode *atomicPHI = nullptr;
  2110. if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
  2111. QualType type = atomicTy->getValueType();
  2112. if (!type->isBooleanType() && type->isIntegerType() &&
  2113. !(type->isUnsignedIntegerType() &&
  2114. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
  2115. CGF.getLangOpts().getSignedOverflowBehavior() !=
  2116. LangOptions::SOB_Trapping) {
  2117. llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
  2118. switch (OpInfo.Opcode) {
  2119. // We don't have atomicrmw operands for *, %, /, <<, >>
  2120. case BO_MulAssign: case BO_DivAssign:
  2121. case BO_RemAssign:
  2122. case BO_ShlAssign:
  2123. case BO_ShrAssign:
  2124. break;
  2125. case BO_AddAssign:
  2126. aop = llvm::AtomicRMWInst::Add;
  2127. break;
  2128. case BO_SubAssign:
  2129. aop = llvm::AtomicRMWInst::Sub;
  2130. break;
  2131. case BO_AndAssign:
  2132. aop = llvm::AtomicRMWInst::And;
  2133. break;
  2134. case BO_XorAssign:
  2135. aop = llvm::AtomicRMWInst::Xor;
  2136. break;
  2137. case BO_OrAssign:
  2138. aop = llvm::AtomicRMWInst::Or;
  2139. break;
  2140. default:
  2141. llvm_unreachable("Invalid compound assignment type");
  2142. }
  2143. if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
  2144. llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
  2145. E->getRHS()->getType(), LHSTy), LHSTy);
  2146. Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
  2147. llvm::SequentiallyConsistent);
  2148. return LHSLV;
  2149. }
  2150. }
  2151. // FIXME: For floating point types, we should be saving and restoring the
  2152. // floating point environment in the loop.
  2153. llvm::BasicBlock *startBB = Builder.GetInsertBlock();
  2154. llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
  2155. OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
  2156. OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
  2157. Builder.CreateBr(opBB);
  2158. Builder.SetInsertPoint(opBB);
  2159. atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
  2160. atomicPHI->addIncoming(OpInfo.LHS, startBB);
  2161. OpInfo.LHS = atomicPHI;
  2162. }
  2163. else
  2164. OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
  2165. OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
  2166. E->getComputationLHSType());
  2167. // Expand the binary operator.
  2168. Result = (this->*Func)(OpInfo);
  2169. // Convert the result back to the LHS type.
  2170. Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
  2171. if (atomicPHI) {
  2172. llvm::BasicBlock *opBB = Builder.GetInsertBlock();
  2173. llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
  2174. auto Pair = CGF.EmitAtomicCompareExchange(
  2175. LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
  2176. llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
  2177. llvm::Value *success = Pair.second;
  2178. atomicPHI->addIncoming(old, opBB);
  2179. Builder.CreateCondBr(success, contBB, opBB);
  2180. Builder.SetInsertPoint(contBB);
  2181. return LHSLV;
  2182. }
  2183. // Store the result value into the LHS lvalue. Bit-fields are handled
  2184. // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
  2185. // 'An assignment expression has the value of the left operand after the
  2186. // assignment...'.
  2187. if (LHSLV.isBitField())
  2188. CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
  2189. else
  2190. CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
  2191. return LHSLV;
  2192. }
  2193. Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
  2194. Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
  2195. bool Ignore = TestAndClearIgnoreResultAssign();
  2196. Value *RHS;
  2197. LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
  2198. // If the result is clearly ignored, return now.
  2199. if (Ignore)
  2200. return nullptr;
  2201. // The result of an assignment in C is the assigned r-value.
  2202. if (!CGF.getLangOpts().CPlusPlus)
  2203. return RHS;
  2204. // If the lvalue is non-volatile, return the computed value of the assignment.
  2205. if (!LHS.isVolatileQualified())
  2206. return RHS;
  2207. // Otherwise, reload the value.
  2208. return EmitLoadOfLValue(LHS, E->getExprLoc());
  2209. }
  2210. void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
  2211. const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
  2212. SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
  2213. if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
  2214. Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
  2215. SanitizerKind::IntegerDivideByZero));
  2216. }
  2217. if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
  2218. Ops.Ty->hasSignedIntegerRepresentation()) {
  2219. llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
  2220. llvm::Value *IntMin =
  2221. Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
  2222. llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
  2223. llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
  2224. llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
  2225. llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
  2226. Checks.push_back(
  2227. std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
  2228. }
  2229. if (Checks.size() > 0)
  2230. EmitBinOpCheck(Checks, Ops);
  2231. }
  2232. Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
  2233. {
  2234. CodeGenFunction::SanitizerScope SanScope(&CGF);
  2235. if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
  2236. CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
  2237. Ops.Ty->isIntegerType()) {
  2238. llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
  2239. EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
  2240. } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
  2241. Ops.Ty->isRealFloatingType()) {
  2242. llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
  2243. llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
  2244. EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
  2245. Ops);
  2246. }
  2247. }
  2248. if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
  2249. llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
  2250. if (CGF.getLangOpts().OpenCL) {
  2251. // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
  2252. llvm::Type *ValTy = Val->getType();
  2253. if (ValTy->isFloatTy() ||
  2254. (isa<llvm::VectorType>(ValTy) &&
  2255. cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
  2256. CGF.SetFPAccuracy(Val, 2.5);
  2257. }
  2258. return Val;
  2259. }
  2260. else if (Ops.Ty->hasUnsignedIntegerRepresentation())
  2261. return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
  2262. else
  2263. return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
  2264. }
  2265. Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
  2266. // Rem in C can't be a floating point type: C99 6.5.5p2.
  2267. if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
  2268. CodeGenFunction::SanitizerScope SanScope(&CGF);
  2269. llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
  2270. if (Ops.Ty->isIntegerType())
  2271. EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
  2272. }
  2273. // HLSL Change Begins.
  2274. if (CGF.getLangOpts().HLSL) {
  2275. if (Ops.LHS->getType()->getScalarType()->isFloatingPointTy()) {
  2276. return Builder.CreateFRem(Ops.LHS, Ops.RHS, "frem");
  2277. }
  2278. }
  2279. // HLSL Change Ends.
  2280. if (Ops.Ty->hasUnsignedIntegerRepresentation())
  2281. return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
  2282. else
  2283. return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
  2284. }
  2285. Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
  2286. unsigned IID;
  2287. unsigned OpID = 0;
  2288. bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
  2289. switch (Ops.Opcode) {
  2290. case BO_Add:
  2291. case BO_AddAssign:
  2292. OpID = 1;
  2293. IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
  2294. llvm::Intrinsic::uadd_with_overflow;
  2295. break;
  2296. case BO_Sub:
  2297. case BO_SubAssign:
  2298. OpID = 2;
  2299. IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
  2300. llvm::Intrinsic::usub_with_overflow;
  2301. break;
  2302. case BO_Mul:
  2303. case BO_MulAssign:
  2304. OpID = 3;
  2305. IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
  2306. llvm::Intrinsic::umul_with_overflow;
  2307. break;
  2308. default:
  2309. llvm_unreachable("Unsupported operation for overflow detection");
  2310. }
  2311. OpID <<= 1;
  2312. if (isSigned)
  2313. OpID |= 1;
  2314. llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
  2315. llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
  2316. Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
  2317. Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
  2318. Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
  2319. // Handle overflow with llvm.trap if no custom handler has been specified.
  2320. const std::string *handlerName =
  2321. &CGF.getLangOpts().OverflowHandler;
  2322. if (handlerName->empty()) {
  2323. // If the signed-integer-overflow sanitizer is enabled, emit a call to its
  2324. // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
  2325. if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
  2326. CodeGenFunction::SanitizerScope SanScope(&CGF);
  2327. llvm::Value *NotOverflow = Builder.CreateNot(overflow);
  2328. SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
  2329. : SanitizerKind::UnsignedIntegerOverflow;
  2330. EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
  2331. } else
  2332. CGF.EmitTrapCheck(Builder.CreateNot(overflow));
  2333. return result;
  2334. }
  2335. // Branch in case of overflow.
  2336. llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
  2337. llvm::Function::iterator insertPt = initialBB;
  2338. llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
  2339. std::next(insertPt));
  2340. llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
  2341. Builder.CreateCondBr(overflow, overflowBB, continueBB);
  2342. // If an overflow handler is set, then we want to call it and then use its
  2343. // result, if it returns.
  2344. Builder.SetInsertPoint(overflowBB);
  2345. // Get the overflow handler.
  2346. llvm::Type *Int8Ty = CGF.Int8Ty;
  2347. llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
  2348. llvm::FunctionType *handlerTy =
  2349. llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
  2350. llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
  2351. // Sign extend the args to 64-bit, so that we can use the same handler for
  2352. // all types of overflow.
  2353. llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
  2354. llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
  2355. // Call the handler with the two arguments, the operation, and the size of
  2356. // the result.
  2357. llvm::Value *handlerArgs[] = {
  2358. lhs,
  2359. rhs,
  2360. Builder.getInt8(OpID),
  2361. Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
  2362. };
  2363. llvm::Value *handlerResult =
  2364. CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
  2365. // Truncate the result back to the desired size.
  2366. handlerResult = Builder.CreateTrunc(handlerResult, opTy);
  2367. Builder.CreateBr(continueBB);
  2368. Builder.SetInsertPoint(continueBB);
  2369. llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
  2370. phi->addIncoming(result, initialBB);
  2371. phi->addIncoming(handlerResult, overflowBB);
  2372. return phi;
  2373. }
  2374. /// Emit pointer + index arithmetic.
  2375. static Value *emitPointerArithmetic(CodeGenFunction &CGF,
  2376. const BinOpInfo &op,
  2377. bool isSubtraction) {
  2378. // Must have binary (not unary) expr here. Unary pointer
  2379. // increment/decrement doesn't use this path.
  2380. const BinaryOperator *expr = cast<BinaryOperator>(op.E);
  2381. Value *pointer = op.LHS;
  2382. Expr *pointerOperand = expr->getLHS();
  2383. Value *index = op.RHS;
  2384. Expr *indexOperand = expr->getRHS();
  2385. // In a subtraction, the LHS is always the pointer.
  2386. if (!isSubtraction && !pointer->getType()->isPointerTy()) {
  2387. std::swap(pointer, index);
  2388. std::swap(pointerOperand, indexOperand);
  2389. }
  2390. unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
  2391. if (width != CGF.PointerWidthInBits) {
  2392. // Zero-extend or sign-extend the pointer value according to
  2393. // whether the index is signed or not.
  2394. bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
  2395. index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
  2396. "idx.ext");
  2397. }
  2398. // If this is subtraction, negate the index.
  2399. if (isSubtraction)
  2400. index = CGF.Builder.CreateNeg(index, "idx.neg");
  2401. if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
  2402. CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
  2403. /*Accessed*/ false);
  2404. const PointerType *pointerType
  2405. = pointerOperand->getType()->getAs<PointerType>();
  2406. if (!pointerType) {
  2407. QualType objectType = pointerOperand->getType()
  2408. ->castAs<ObjCObjectPointerType>()
  2409. ->getPointeeType();
  2410. llvm::Value *objectSize
  2411. = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
  2412. index = CGF.Builder.CreateMul(index, objectSize);
  2413. Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
  2414. result = CGF.Builder.CreateGEP(result, index, "add.ptr");
  2415. return CGF.Builder.CreateBitCast(result, pointer->getType());
  2416. }
  2417. QualType elementType = pointerType->getPointeeType();
  2418. if (const VariableArrayType *vla
  2419. = CGF.getContext().getAsVariableArrayType(elementType)) {
  2420. // The element count here is the total number of non-VLA elements.
  2421. llvm::Value *numElements = CGF.getVLASize(vla).first;
  2422. // Effectively, the multiply by the VLA size is part of the GEP.
  2423. // GEP indexes are signed, and scaling an index isn't permitted to
  2424. // signed-overflow, so we use the same semantics for our explicit
  2425. // multiply. We suppress this if overflow is not undefined behavior.
  2426. if (CGF.getLangOpts().isSignedOverflowDefined()) {
  2427. index = CGF.Builder.CreateMul(index, numElements, "vla.index");
  2428. pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
  2429. } else {
  2430. index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
  2431. pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
  2432. }
  2433. return pointer;
  2434. }
  2435. // Explicitly handle GNU void* and function pointer arithmetic extensions. The
  2436. // GNU void* casts amount to no-ops since our void* type is i8*, but this is
  2437. // future proof.
  2438. if (elementType->isVoidType() || elementType->isFunctionType()) {
  2439. Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
  2440. result = CGF.Builder.CreateGEP(result, index, "add.ptr");
  2441. return CGF.Builder.CreateBitCast(result, pointer->getType());
  2442. }
  2443. if (CGF.getLangOpts().isSignedOverflowDefined())
  2444. return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
  2445. return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
  2446. }
  2447. // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
  2448. // Addend. Use negMul and negAdd to negate the first operand of the Mul or
  2449. // the add operand respectively. This allows fmuladd to represent a*b-c, or
  2450. // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
  2451. // efficient operations.
  2452. static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
  2453. const CodeGenFunction &CGF, CGBuilderTy &Builder,
  2454. bool negMul, bool negAdd) {
  2455. assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
  2456. Value *MulOp0 = MulOp->getOperand(0);
  2457. Value *MulOp1 = MulOp->getOperand(1);
  2458. if (negMul) {
  2459. MulOp0 =
  2460. Builder.CreateFSub(
  2461. llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
  2462. "neg");
  2463. } else if (negAdd) {
  2464. Addend =
  2465. Builder.CreateFSub(
  2466. llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
  2467. "neg");
  2468. }
  2469. Value *FMulAdd = Builder.CreateCall(
  2470. CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
  2471. {MulOp0, MulOp1, Addend});
  2472. MulOp->eraseFromParent();
  2473. return FMulAdd;
  2474. }
  2475. // Check whether it would be legal to emit an fmuladd intrinsic call to
  2476. // represent op and if so, build the fmuladd.
  2477. //
  2478. // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
  2479. // Does NOT check the type of the operation - it's assumed that this function
  2480. // will be called from contexts where it's known that the type is contractable.
  2481. static Value* tryEmitFMulAdd(const BinOpInfo &op,
  2482. const CodeGenFunction &CGF, CGBuilderTy &Builder,
  2483. bool isSub=false) {
  2484. assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
  2485. op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
  2486. "Only fadd/fsub can be the root of an fmuladd.");
  2487. // Check whether this op is marked as fusable.
  2488. if (!op.FPContractable)
  2489. return nullptr;
  2490. // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
  2491. // either disabled, or handled entirely by the LLVM backend).
  2492. if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
  2493. return nullptr;
  2494. // We have a potentially fusable op. Look for a mul on one of the operands.
  2495. if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
  2496. if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
  2497. assert(LHSBinOp->getNumUses() == 0 &&
  2498. "Operations with multiple uses shouldn't be contracted.");
  2499. return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
  2500. }
  2501. } else if (llvm::BinaryOperator* RHSBinOp =
  2502. dyn_cast<llvm::BinaryOperator>(op.RHS)) {
  2503. if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
  2504. assert(RHSBinOp->getNumUses() == 0 &&
  2505. "Operations with multiple uses shouldn't be contracted.");
  2506. return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
  2507. }
  2508. }
  2509. return nullptr;
  2510. }
  2511. Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
  2512. if (op.LHS->getType()->isPointerTy() ||
  2513. op.RHS->getType()->isPointerTy())
  2514. return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
  2515. if (op.Ty->isSignedIntegerOrEnumerationType()) {
  2516. switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
  2517. case LangOptions::SOB_Defined:
  2518. return Builder.CreateAdd(op.LHS, op.RHS, "add");
  2519. case LangOptions::SOB_Undefined:
  2520. if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
  2521. return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
  2522. // Fall through.
  2523. case LangOptions::SOB_Trapping:
  2524. return EmitOverflowCheckedBinOp(op);
  2525. }
  2526. }
  2527. if (op.Ty->isUnsignedIntegerType() &&
  2528. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
  2529. return EmitOverflowCheckedBinOp(op);
  2530. if (op.LHS->getType()->isFPOrFPVectorTy()) {
  2531. // Try to form an fmuladd.
  2532. if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
  2533. return FMulAdd;
  2534. return Builder.CreateFAdd(op.LHS, op.RHS, "add");
  2535. }
  2536. return Builder.CreateAdd(op.LHS, op.RHS, "add");
  2537. }
  2538. Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
  2539. // The LHS is always a pointer if either side is.
  2540. if (!op.LHS->getType()->isPointerTy()) {
  2541. if (op.Ty->isSignedIntegerOrEnumerationType()) {
  2542. switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
  2543. case LangOptions::SOB_Defined:
  2544. return Builder.CreateSub(op.LHS, op.RHS, "sub");
  2545. case LangOptions::SOB_Undefined:
  2546. if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
  2547. return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
  2548. // Fall through.
  2549. case LangOptions::SOB_Trapping:
  2550. return EmitOverflowCheckedBinOp(op);
  2551. }
  2552. }
  2553. if (op.Ty->isUnsignedIntegerType() &&
  2554. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
  2555. return EmitOverflowCheckedBinOp(op);
  2556. if (op.LHS->getType()->isFPOrFPVectorTy()) {
  2557. // Try to form an fmuladd.
  2558. if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
  2559. return FMulAdd;
  2560. return Builder.CreateFSub(op.LHS, op.RHS, "sub");
  2561. }
  2562. return Builder.CreateSub(op.LHS, op.RHS, "sub");
  2563. }
  2564. // If the RHS is not a pointer, then we have normal pointer
  2565. // arithmetic.
  2566. if (!op.RHS->getType()->isPointerTy())
  2567. return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
  2568. // Otherwise, this is a pointer subtraction.
  2569. // Do the raw subtraction part.
  2570. llvm::Value *LHS
  2571. = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
  2572. llvm::Value *RHS
  2573. = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
  2574. Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
  2575. // Okay, figure out the element size.
  2576. const BinaryOperator *expr = cast<BinaryOperator>(op.E);
  2577. QualType elementType = expr->getLHS()->getType()->getPointeeType();
  2578. llvm::Value *divisor = nullptr;
  2579. // For a variable-length array, this is going to be non-constant.
  2580. if (const VariableArrayType *vla
  2581. = CGF.getContext().getAsVariableArrayType(elementType)) {
  2582. llvm::Value *numElements;
  2583. std::tie(numElements, elementType) = CGF.getVLASize(vla);
  2584. divisor = numElements;
  2585. // Scale the number of non-VLA elements by the non-VLA element size.
  2586. CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
  2587. if (!eltSize.isOne())
  2588. divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
  2589. // For everything elese, we can just compute it, safe in the
  2590. // assumption that Sema won't let anything through that we can't
  2591. // safely compute the size of.
  2592. } else {
  2593. CharUnits elementSize;
  2594. // Handle GCC extension for pointer arithmetic on void* and
  2595. // function pointer types.
  2596. if (elementType->isVoidType() || elementType->isFunctionType())
  2597. elementSize = CharUnits::One();
  2598. else
  2599. elementSize = CGF.getContext().getTypeSizeInChars(elementType);
  2600. // Don't even emit the divide for element size of 1.
  2601. if (elementSize.isOne())
  2602. return diffInChars;
  2603. divisor = CGF.CGM.getSize(elementSize);
  2604. }
  2605. // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
  2606. // pointer difference in C is only defined in the case where both operands
  2607. // are pointing to elements of an array.
  2608. return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
  2609. }
  2610. Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
  2611. llvm::IntegerType *Ty;
  2612. if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
  2613. Ty = cast<llvm::IntegerType>(VT->getElementType());
  2614. else
  2615. Ty = cast<llvm::IntegerType>(LHS->getType());
  2616. return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
  2617. }
  2618. Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
  2619. // LLVM requires the LHS and RHS to be the same type: promote or truncate the
  2620. // RHS to the same size as the LHS.
  2621. Value *RHS = Ops.RHS;
  2622. if (Ops.LHS->getType() != RHS->getType())
  2623. RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
  2624. bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
  2625. Ops.Ty->hasSignedIntegerRepresentation();
  2626. bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
  2627. // OpenCL 6.3j: shift values are effectively % word size of LHS.
  2628. if (CGF.getLangOpts().OpenCL)
  2629. RHS =
  2630. Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
  2631. else if ((SanitizeBase || SanitizeExponent) &&
  2632. isa<llvm::IntegerType>(Ops.LHS->getType())) {
  2633. CodeGenFunction::SanitizerScope SanScope(&CGF);
  2634. SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
  2635. llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
  2636. llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
  2637. if (SanitizeExponent) {
  2638. Checks.push_back(
  2639. std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
  2640. }
  2641. if (SanitizeBase) {
  2642. // Check whether we are shifting any non-zero bits off the top of the
  2643. // integer. We only emit this check if exponent is valid - otherwise
  2644. // instructions below will have undefined behavior themselves.
  2645. llvm::BasicBlock *Orig = Builder.GetInsertBlock();
  2646. llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
  2647. llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
  2648. Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
  2649. CGF.EmitBlock(CheckShiftBase);
  2650. llvm::Value *BitsShiftedOff =
  2651. Builder.CreateLShr(Ops.LHS,
  2652. Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
  2653. /*NUW*/true, /*NSW*/true),
  2654. "shl.check");
  2655. if (CGF.getLangOpts().CPlusPlus) {
  2656. // In C99, we are not permitted to shift a 1 bit into the sign bit.
  2657. // Under C++11's rules, shifting a 1 bit into the sign bit is
  2658. // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
  2659. // define signed left shifts, so we use the C99 and C++11 rules there).
  2660. llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
  2661. BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
  2662. }
  2663. llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
  2664. llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
  2665. CGF.EmitBlock(Cont);
  2666. llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
  2667. BaseCheck->addIncoming(Builder.getTrue(), Orig);
  2668. BaseCheck->addIncoming(ValidBase, CheckShiftBase);
  2669. Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
  2670. }
  2671. assert(!Checks.empty());
  2672. EmitBinOpCheck(Checks, Ops);
  2673. }
  2674. return Builder.CreateShl(Ops.LHS, RHS, "shl");
  2675. }
  2676. Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
  2677. // LLVM requires the LHS and RHS to be the same type: promote or truncate the
  2678. // RHS to the same size as the LHS.
  2679. Value *RHS = Ops.RHS;
  2680. if (Ops.LHS->getType() != RHS->getType())
  2681. RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
  2682. // OpenCL 6.3j: shift values are effectively % word size of LHS.
  2683. if (CGF.getLangOpts().OpenCL)
  2684. RHS =
  2685. Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
  2686. else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
  2687. isa<llvm::IntegerType>(Ops.LHS->getType())) {
  2688. CodeGenFunction::SanitizerScope SanScope(&CGF);
  2689. llvm::Value *Valid =
  2690. Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
  2691. EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
  2692. }
  2693. if (Ops.Ty->hasUnsignedIntegerRepresentation())
  2694. return Builder.CreateLShr(Ops.LHS, RHS, "shr");
  2695. // HLSL Change Begin - check unsigned for vector.
  2696. if (hlsl::IsHLSLVecType(Ops.Ty)) {
  2697. if (hlsl::GetHLSLVecElementType(Ops.Ty)->hasUnsignedIntegerRepresentation())
  2698. return Builder.CreateLShr(Ops.LHS, RHS, "shr");
  2699. }
  2700. // HLSL Change End.
  2701. return Builder.CreateAShr(Ops.LHS, RHS, "shr");
  2702. }
  2703. enum IntrinsicType { VCMPEQ, VCMPGT };
  2704. #if 0 // HLSL Change - remove platform intrinsics
  2705. // return corresponding comparison intrinsic for given vector type
  2706. static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
  2707. BuiltinType::Kind ElemKind) {
  2708. llvm_unreachable("HLSL Does not support altivec vectors");
  2709. return llvm::Intrinsic::not_intrinsic; // HLSL Change - remove platform intrinsics
  2710. switch (ElemKind) {
  2711. default: llvm_unreachable("unexpected element type");
  2712. case BuiltinType::Char_U:
  2713. case BuiltinType::UChar:
  2714. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
  2715. llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
  2716. case BuiltinType::Char_S:
  2717. case BuiltinType::SChar:
  2718. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
  2719. llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
  2720. case BuiltinType::UShort:
  2721. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
  2722. llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
  2723. case BuiltinType::Short:
  2724. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
  2725. llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
  2726. case BuiltinType::UInt:
  2727. case BuiltinType::ULong:
  2728. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
  2729. llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
  2730. case BuiltinType::Int:
  2731. case BuiltinType::Long:
  2732. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
  2733. llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
  2734. case BuiltinType::Float:
  2735. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
  2736. llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
  2737. }
  2738. }
  2739. #endif // HLSL Change - remove platform intrinsics
  2740. Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
  2741. unsigned SICmpOpc, unsigned FCmpOpc) {
  2742. TestAndClearIgnoreResultAssign();
  2743. Value *Result;
  2744. QualType LHSTy = E->getLHS()->getType();
  2745. QualType RHSTy = E->getRHS()->getType();
  2746. if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
  2747. assert(E->getOpcode() == BO_EQ ||
  2748. E->getOpcode() == BO_NE);
  2749. Value *LHS = CGF.EmitScalarExpr(E->getLHS());
  2750. Value *RHS = CGF.EmitScalarExpr(E->getRHS());
  2751. Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
  2752. CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
  2753. } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
  2754. Value *LHS = Visit(E->getLHS());
  2755. Value *RHS = Visit(E->getRHS());
  2756. // HLSL Change Begins
  2757. if (hlsl::IsHLSLMatType(LHSTy) && hlsl::IsHLSLMatType(RHSTy)) {
  2758. llvm::Type *RetTy = CGF.ConvertType(E->getType());
  2759. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(CGF, E, RetTy,
  2760. {LHS, RHS});
  2761. }
  2762. // HLSL Change Ends
  2763. // If AltiVec, the comparison results in a numeric type, so we use
  2764. // intrinsics comparing vectors and giving 0 or 1 as a result
  2765. if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
  2766. llvm_unreachable("HLSL Does not support altivec vectors");
  2767. #if 0 // HLSL Change - remove platform intrinsics
  2768. // constants for mapping CR6 register bits to predicate result
  2769. enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
  2770. llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
  2771. // in several cases vector arguments order will be reversed
  2772. Value *FirstVecArg = LHS,
  2773. *SecondVecArg = RHS;
  2774. QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
  2775. const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
  2776. BuiltinType::Kind ElementKind = BTy->getKind();
  2777. switch(E->getOpcode()) {
  2778. default: llvm_unreachable("is not a comparison operation");
  2779. case BO_EQ:
  2780. CR6 = CR6_LT;
  2781. ID = GetIntrinsic(VCMPEQ, ElementKind);
  2782. break;
  2783. case BO_NE:
  2784. CR6 = CR6_EQ;
  2785. ID = GetIntrinsic(VCMPEQ, ElementKind);
  2786. break;
  2787. case BO_LT:
  2788. CR6 = CR6_LT;
  2789. ID = GetIntrinsic(VCMPGT, ElementKind);
  2790. std::swap(FirstVecArg, SecondVecArg);
  2791. break;
  2792. case BO_GT:
  2793. CR6 = CR6_LT;
  2794. ID = GetIntrinsic(VCMPGT, ElementKind);
  2795. break;
  2796. case BO_LE:
  2797. if (ElementKind == BuiltinType::Float) {
  2798. CR6 = CR6_LT;
  2799. ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
  2800. std::swap(FirstVecArg, SecondVecArg);
  2801. }
  2802. else {
  2803. CR6 = CR6_EQ;
  2804. ID = GetIntrinsic(VCMPGT, ElementKind);
  2805. }
  2806. break;
  2807. case BO_GE:
  2808. if (ElementKind == BuiltinType::Float) {
  2809. CR6 = CR6_LT;
  2810. ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
  2811. }
  2812. else {
  2813. CR6 = CR6_EQ;
  2814. ID = GetIntrinsic(VCMPGT, ElementKind);
  2815. std::swap(FirstVecArg, SecondVecArg);
  2816. }
  2817. break;
  2818. }
  2819. Value *CR6Param = Builder.getInt32(CR6);
  2820. llvm::Function *F = CGF.CGM.getIntrinsic(ID);
  2821. Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
  2822. return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
  2823. #endif // HLSL Change - remove platform intrinsics
  2824. }
  2825. if (LHS->getType()->isFPOrFPVectorTy()) {
  2826. Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
  2827. LHS, RHS, "cmp");
  2828. } else if (LHSTy->hasSignedIntegerRepresentation()) {
  2829. Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
  2830. LHS, RHS, "cmp");
  2831. } else {
  2832. // Unsigned integers and pointers.
  2833. Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
  2834. LHS, RHS, "cmp");
  2835. }
  2836. // If this is a vector comparison, sign extend the result to the appropriate
  2837. // vector integer type and return it (don't convert to bool).
  2838. if (LHSTy->isVectorType())
  2839. return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
  2840. // HLSL Change Starts
  2841. if (const ExtVectorType *vecTy = hlsl::ConvertHLSLVecMatTypeToExtVectorType(
  2842. CGF.getContext(), LHSTy)) {
  2843. // Return Result directly when E is already a vector.
  2844. if (hlsl::IsHLSLVecType(E->getType()))
  2845. return Result;
  2846. QualType bVecTy = CGF.getContext().getExtVectorType(
  2847. E->getType(), vecTy->getNumElements());
  2848. return Builder.CreateSExt(Result, ConvertType(bVecTy), "sext");
  2849. }
  2850. // HLSL Change Ends
  2851. } else {
  2852. // Complex Comparison: can only be an equality comparison.
  2853. CodeGenFunction::ComplexPairTy LHS, RHS;
  2854. QualType CETy;
  2855. if (auto *CTy = LHSTy->getAs<ComplexType>()) {
  2856. LHS = CGF.EmitComplexExpr(E->getLHS());
  2857. CETy = CTy->getElementType();
  2858. } else {
  2859. LHS.first = Visit(E->getLHS());
  2860. LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
  2861. CETy = LHSTy;
  2862. }
  2863. if (auto *CTy = RHSTy->getAs<ComplexType>()) {
  2864. RHS = CGF.EmitComplexExpr(E->getRHS());
  2865. assert(CGF.getContext().hasSameUnqualifiedType(CETy,
  2866. CTy->getElementType()) &&
  2867. "The element types must always match.");
  2868. (void)CTy;
  2869. } else {
  2870. RHS.first = Visit(E->getRHS());
  2871. RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
  2872. assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
  2873. "The element types must always match.");
  2874. }
  2875. Value *ResultR, *ResultI;
  2876. if (CETy->isRealFloatingType()) {
  2877. ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
  2878. LHS.first, RHS.first, "cmp.r");
  2879. ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
  2880. LHS.second, RHS.second, "cmp.i");
  2881. } else {
  2882. // Complex comparisons can only be equality comparisons. As such, signed
  2883. // and unsigned opcodes are the same.
  2884. ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
  2885. LHS.first, RHS.first, "cmp.r");
  2886. ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
  2887. LHS.second, RHS.second, "cmp.i");
  2888. }
  2889. if (E->getOpcode() == BO_EQ) {
  2890. Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
  2891. } else {
  2892. assert(E->getOpcode() == BO_NE &&
  2893. "Complex comparison other than == or != ?");
  2894. Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
  2895. }
  2896. }
  2897. return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
  2898. }
  2899. Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
  2900. bool Ignore = TestAndClearIgnoreResultAssign();
  2901. Value *RHS;
  2902. LValue LHS;
  2903. switch (E->getLHS()->getType().getObjCLifetime()) {
  2904. case Qualifiers::OCL_Strong:
  2905. std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
  2906. break;
  2907. case Qualifiers::OCL_Autoreleasing:
  2908. std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
  2909. break;
  2910. case Qualifiers::OCL_Weak:
  2911. RHS = Visit(E->getRHS());
  2912. LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
  2913. RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
  2914. break;
  2915. // No reason to do any of these differently.
  2916. case Qualifiers::OCL_None:
  2917. case Qualifiers::OCL_ExplicitNone:
  2918. // __block variables need to have the rhs evaluated first, plus
  2919. // this should improve codegen just a little.
  2920. RHS = Visit(E->getRHS());
  2921. LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
  2922. // Store the value into the LHS. Bit-fields are handled specially
  2923. // because the result is altered by the store, i.e., [C99 6.5.16p1]
  2924. // 'An assignment expression has the value of the left operand after
  2925. // the assignment...'.
  2926. if (LHS.isBitField())
  2927. CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
  2928. else
  2929. CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
  2930. }
  2931. // If the result is clearly ignored, return now.
  2932. if (Ignore)
  2933. return nullptr;
  2934. // The result of an assignment in C is the assigned r-value.
  2935. if (!CGF.getLangOpts().CPlusPlus)
  2936. return RHS;
  2937. // If the lvalue is non-volatile, return the computed value of the assignment.
  2938. if (!LHS.isVolatileQualified())
  2939. return RHS;
  2940. // Otherwise, reload the value.
  2941. return EmitLoadOfLValue(LHS, E->getExprLoc());
  2942. }
  2943. Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
  2944. // Perform vector logical and on comparisons with zero vectors.
  2945. if (E->getType()->isVectorType()) {
  2946. CGF.incrementProfileCounter(E);
  2947. Value *LHS = Visit(E->getLHS());
  2948. Value *RHS = Visit(E->getRHS());
  2949. Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
  2950. if (LHS->getType()->isFPOrFPVectorTy()) {
  2951. LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
  2952. RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
  2953. } else {
  2954. LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
  2955. RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
  2956. }
  2957. Value *And = Builder.CreateAnd(LHS, RHS);
  2958. return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
  2959. }
  2960. llvm::Type *ResTy = ConvertType(E->getType());
  2961. // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
  2962. // If we have 1 && X, just emit X without inserting the control flow.
  2963. bool LHSCondVal;
  2964. if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
  2965. if (LHSCondVal) { // If we have 1 && X, just emit X.
  2966. CGF.incrementProfileCounter(E);
  2967. Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
  2968. // ZExt result to int or bool.
  2969. return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
  2970. }
  2971. // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
  2972. if (!CGF.ContainsLabel(E->getRHS())) {
  2973. // HLSL Change Begins.
  2974. if (CGF.getLangOpts().HLSL) {
  2975. // HLSL does not short circuit.
  2976. Visit(E->getRHS());
  2977. }
  2978. // HLSL Change Ends.
  2979. return llvm::Constant::getNullValue(ResTy);
  2980. }
  2981. }
  2982. // HLSL Change Begins.
  2983. if (CGF.getLangOpts().HLSL) {
  2984. // HLSL does not short circuit.
  2985. Value *LHS = Visit(E->getLHS());
  2986. Value *RHS = Visit(E->getRHS());
  2987. if (ResTy->isVectorTy()) {
  2988. Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
  2989. if (LHS->getType()->isFPOrFPVectorTy()) {
  2990. LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
  2991. RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
  2992. } else {
  2993. LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
  2994. RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
  2995. }
  2996. }
  2997. Value *And = Builder.CreateAnd(LHS, RHS);
  2998. return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
  2999. }
  3000. // HLSL Change Ends.
  3001. llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
  3002. llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
  3003. CodeGenFunction::ConditionalEvaluation eval(CGF);
  3004. // Branch on the LHS first. If it is false, go to the failure (cont) block.
  3005. CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
  3006. CGF.getProfileCount(E->getRHS()));
  3007. // Any edges into the ContBlock are now from an (indeterminate number of)
  3008. // edges from this first condition. All of these values will be false. Start
  3009. // setting up the PHI node in the Cont Block for this.
  3010. llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
  3011. "", ContBlock);
  3012. for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
  3013. PI != PE; ++PI)
  3014. PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
  3015. eval.begin(CGF);
  3016. CGF.EmitBlock(RHSBlock);
  3017. CGF.incrementProfileCounter(E);
  3018. Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
  3019. eval.end(CGF);
  3020. // Reaquire the RHS block, as there may be subblocks inserted.
  3021. RHSBlock = Builder.GetInsertBlock();
  3022. // Emit an unconditional branch from this block to ContBlock.
  3023. {
  3024. // There is no need to emit line number for unconditional branch.
  3025. auto NL = ApplyDebugLocation::CreateEmpty(CGF);
  3026. CGF.EmitBlock(ContBlock);
  3027. }
  3028. // Insert an entry into the phi node for the edge with the value of RHSCond.
  3029. PN->addIncoming(RHSCond, RHSBlock);
  3030. // ZExt result to int.
  3031. return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
  3032. }
  3033. Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
  3034. // Perform vector logical or on comparisons with zero vectors.
  3035. if (E->getType()->isVectorType()) {
  3036. CGF.incrementProfileCounter(E);
  3037. Value *LHS = Visit(E->getLHS());
  3038. Value *RHS = Visit(E->getRHS());
  3039. Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
  3040. if (LHS->getType()->isFPOrFPVectorTy()) {
  3041. LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
  3042. RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
  3043. } else {
  3044. LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
  3045. RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
  3046. }
  3047. Value *Or = Builder.CreateOr(LHS, RHS);
  3048. return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
  3049. }
  3050. llvm::Type *ResTy = ConvertType(E->getType());
  3051. // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
  3052. // If we have 0 || X, just emit X without inserting the control flow.
  3053. bool LHSCondVal;
  3054. if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
  3055. if (!LHSCondVal) { // If we have 0 || X, just emit X.
  3056. CGF.incrementProfileCounter(E);
  3057. Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
  3058. // ZExt result to int or bool.
  3059. return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
  3060. }
  3061. // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
  3062. if (!CGF.ContainsLabel(E->getRHS())) {
  3063. // HLSL Change Begins.
  3064. if (CGF.getLangOpts().HLSL) {
  3065. // HLSL does not short circuit.
  3066. Visit(E->getRHS());
  3067. }
  3068. // HLSL Change Ends.
  3069. return llvm::ConstantInt::get(ResTy, 1);
  3070. }
  3071. }
  3072. // HLSL Change Begins.
  3073. if (CGF.getLangOpts().HLSL) {
  3074. // HLSL does not short circuit.
  3075. Value *LHS = Visit(E->getLHS());
  3076. Value *RHS = Visit(E->getRHS());
  3077. if (ResTy->isVectorTy()) {
  3078. Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
  3079. if (LHS->getType()->isFPOrFPVectorTy()) {
  3080. LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
  3081. RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
  3082. } else {
  3083. LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
  3084. RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
  3085. }
  3086. }
  3087. Value *Or = Builder.CreateOr(LHS, RHS);
  3088. return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
  3089. }
  3090. // HLSL Change Ends.
  3091. llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
  3092. llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
  3093. CodeGenFunction::ConditionalEvaluation eval(CGF);
  3094. // Branch on the LHS first. If it is true, go to the success (cont) block.
  3095. CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
  3096. CGF.getCurrentProfileCount() -
  3097. CGF.getProfileCount(E->getRHS()));
  3098. // Any edges into the ContBlock are now from an (indeterminate number of)
  3099. // edges from this first condition. All of these values will be true. Start
  3100. // setting up the PHI node in the Cont Block for this.
  3101. llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
  3102. "", ContBlock);
  3103. for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
  3104. PI != PE; ++PI)
  3105. PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
  3106. eval.begin(CGF);
  3107. // Emit the RHS condition as a bool value.
  3108. CGF.EmitBlock(RHSBlock);
  3109. CGF.incrementProfileCounter(E);
  3110. Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
  3111. eval.end(CGF);
  3112. // Reaquire the RHS block, as there may be subblocks inserted.
  3113. RHSBlock = Builder.GetInsertBlock();
  3114. // Emit an unconditional branch from this block to ContBlock. Insert an entry
  3115. // into the phi node for the edge with the value of RHSCond.
  3116. CGF.EmitBlock(ContBlock);
  3117. PN->addIncoming(RHSCond, RHSBlock);
  3118. // ZExt result to int.
  3119. return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
  3120. }
  3121. Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
  3122. CGF.EmitIgnoredExpr(E->getLHS());
  3123. CGF.EnsureInsertPoint();
  3124. return Visit(E->getRHS());
  3125. }
  3126. //===----------------------------------------------------------------------===//
  3127. // Other Operators
  3128. //===----------------------------------------------------------------------===//
  3129. /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
  3130. /// expression is cheap enough and side-effect-free enough to evaluate
  3131. /// unconditionally instead of conditionally. This is used to convert control
  3132. /// flow into selects in some cases.
  3133. static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
  3134. CodeGenFunction &CGF) {
  3135. // Anything that is an integer or floating point constant is fine.
  3136. return E->IgnoreParens()->isEvaluatable(CGF.getContext());
  3137. // Even non-volatile automatic variables can't be evaluated unconditionally.
  3138. // Referencing a thread_local may cause non-trivial initialization work to
  3139. // occur. If we're inside a lambda and one of the variables is from the scope
  3140. // outside the lambda, that function may have returned already. Reading its
  3141. // locals is a bad idea. Also, these reads may introduce races there didn't
  3142. // exist in the source-level program.
  3143. }
  3144. Value *ScalarExprEmitter::
  3145. VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
  3146. TestAndClearIgnoreResultAssign();
  3147. // Bind the common expression if necessary.
  3148. CodeGenFunction::OpaqueValueMapping binding(CGF, E);
  3149. Expr *condExpr = E->getCond();
  3150. Expr *lhsExpr = E->getTrueExpr();
  3151. Expr *rhsExpr = E->getFalseExpr();
  3152. // If the condition constant folds and can be elided, try to avoid emitting
  3153. // the condition and the dead arm.
  3154. bool CondExprBool;
  3155. if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
  3156. Expr *live = lhsExpr, *dead = rhsExpr;
  3157. if (!CondExprBool) std::swap(live, dead);
  3158. // If the dead side doesn't have labels we need, just emit the Live part.
  3159. if (!CGF.ContainsLabel(dead)) {
  3160. if (CondExprBool)
  3161. CGF.incrementProfileCounter(E);
  3162. Value *Result = Visit(live);
  3163. // If the live part is a throw expression, it acts like it has a void
  3164. // type, so evaluating it returns a null Value*. However, a conditional
  3165. // with non-void type must return a non-null Value*.
  3166. if (!Result && !E->getType()->isVoidType())
  3167. Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
  3168. return Result;
  3169. }
  3170. }
  3171. // OpenCL: If the condition is a vector, we can treat this condition like
  3172. // the select function.
  3173. if (CGF.getLangOpts().OpenCL
  3174. && condExpr->getType()->isVectorType()) {
  3175. CGF.incrementProfileCounter(E);
  3176. llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
  3177. llvm::Value *LHS = Visit(lhsExpr);
  3178. llvm::Value *RHS = Visit(rhsExpr);
  3179. llvm::Type *condType = ConvertType(condExpr->getType());
  3180. llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
  3181. unsigned numElem = vecTy->getNumElements();
  3182. llvm::Type *elemType = vecTy->getElementType();
  3183. llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
  3184. llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
  3185. llvm::Value *tmp = Builder.CreateSExt(TestMSB,
  3186. llvm::VectorType::get(elemType,
  3187. numElem),
  3188. "sext");
  3189. llvm::Value *tmp2 = Builder.CreateNot(tmp);
  3190. // Cast float to int to perform ANDs if necessary.
  3191. llvm::Value *RHSTmp = RHS;
  3192. llvm::Value *LHSTmp = LHS;
  3193. bool wasCast = false;
  3194. llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
  3195. if (rhsVTy->getElementType()->isFloatingPointTy()) {
  3196. RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
  3197. LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
  3198. wasCast = true;
  3199. }
  3200. llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
  3201. llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
  3202. llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
  3203. if (wasCast)
  3204. tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
  3205. return tmp5;
  3206. }
  3207. // HLSL Change Starts
  3208. if (CGF.getLangOpts().HLSL && hlsl::IsHLSLVecType(E->getType())) {
  3209. llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
  3210. llvm::Value *LHS = Visit(lhsExpr);
  3211. llvm::Value *RHS = Visit(rhsExpr);
  3212. if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(CondV->getType())) {
  3213. llvm::VectorType *ResultVT = cast<llvm::VectorType>(LHS->getType());
  3214. llvm::Value *result = llvm::UndefValue::get(ResultVT);
  3215. for (unsigned i = 0; i < VT->getNumElements(); i++) {
  3216. llvm::Value *EltCond = Builder.CreateExtractElement(CondV, i);
  3217. llvm::Value *EltL = Builder.CreateExtractElement(LHS, i);
  3218. llvm::Value *EltR = Builder.CreateExtractElement(RHS, i);
  3219. llvm::Value *EltSelect = Builder.CreateSelect(EltCond, EltL, EltR);
  3220. result = Builder.CreateInsertElement(result, EltSelect, i);
  3221. }
  3222. return result;
  3223. } else {
  3224. return Builder.CreateSelect(CondV, LHS, RHS);
  3225. }
  3226. }
  3227. if (CGF.getLangOpts().HLSL && hlsl::IsHLSLMatType(E->getType())) {
  3228. llvm::Value *Cond = CGF.EmitScalarExpr(condExpr);
  3229. llvm::Value *LHS = Visit(lhsExpr);
  3230. llvm::Value *RHS = Visit(rhsExpr);
  3231. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
  3232. CGF, E, LHS->getType(), {Cond, LHS, RHS});
  3233. }
  3234. // HLSL Change Ends
  3235. // If this is a really simple expression (like x ? 4 : 5), emit this as a
  3236. // select instead of as control flow. We can only do this if it is cheap and
  3237. // safe to evaluate the LHS and RHS unconditionally.
  3238. if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
  3239. isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
  3240. CGF.incrementProfileCounter(E);
  3241. llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
  3242. llvm::Value *LHS = Visit(lhsExpr);
  3243. llvm::Value *RHS = Visit(rhsExpr);
  3244. if (!LHS) {
  3245. // If the conditional has void type, make sure we return a null Value*.
  3246. assert(!RHS && "LHS and RHS types must match");
  3247. return nullptr;
  3248. }
  3249. return Builder.CreateSelect(CondV, LHS, RHS, "cond");
  3250. }
  3251. llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
  3252. llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
  3253. llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
  3254. CodeGenFunction::ConditionalEvaluation eval(CGF);
  3255. CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
  3256. CGF.getProfileCount(lhsExpr));
  3257. CGF.EmitBlock(LHSBlock);
  3258. CGF.incrementProfileCounter(E);
  3259. eval.begin(CGF);
  3260. Value *LHS = Visit(lhsExpr);
  3261. eval.end(CGF);
  3262. LHSBlock = Builder.GetInsertBlock();
  3263. Builder.CreateBr(ContBlock);
  3264. CGF.EmitBlock(RHSBlock);
  3265. eval.begin(CGF);
  3266. Value *RHS = Visit(rhsExpr);
  3267. eval.end(CGF);
  3268. RHSBlock = Builder.GetInsertBlock();
  3269. CGF.EmitBlock(ContBlock);
  3270. // If the LHS or RHS is a throw expression, it will be legitimately null.
  3271. if (!LHS)
  3272. return RHS;
  3273. if (!RHS)
  3274. return LHS;
  3275. // Create a PHI node for the real part.
  3276. llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
  3277. PN->addIncoming(LHS, LHSBlock);
  3278. PN->addIncoming(RHS, RHSBlock);
  3279. return PN;
  3280. }
  3281. Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
  3282. return Visit(E->getChosenSubExpr());
  3283. }
  3284. Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
  3285. QualType Ty = VE->getType();
  3286. if (Ty->isVariablyModifiedType())
  3287. CGF.EmitVariablyModifiedType(Ty);
  3288. llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
  3289. llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
  3290. llvm::Type *ArgTy = ConvertType(VE->getType());
  3291. // If EmitVAArg fails, we fall back to the LLVM instruction.
  3292. if (!ArgPtr)
  3293. return Builder.CreateVAArg(ArgValue, ArgTy);
  3294. // FIXME Volatility.
  3295. llvm::Value *Val = Builder.CreateLoad(ArgPtr);
  3296. // If EmitVAArg promoted the type, we must truncate it.
  3297. if (ArgTy != Val->getType()) {
  3298. if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
  3299. Val = Builder.CreateIntToPtr(Val, ArgTy);
  3300. else
  3301. Val = Builder.CreateTrunc(Val, ArgTy);
  3302. }
  3303. return Val;
  3304. }
  3305. Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
  3306. return CGF.EmitBlockLiteral(block);
  3307. }
  3308. Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
  3309. Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
  3310. llvm::Type *DstTy = ConvertType(E->getType());
  3311. // Going from vec4->vec3 or vec3->vec4 is a special case and requires
  3312. // a shuffle vector instead of a bitcast.
  3313. llvm::Type *SrcTy = Src->getType();
  3314. if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
  3315. unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
  3316. unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
  3317. if ((numElementsDst == 3 && numElementsSrc == 4)
  3318. || (numElementsDst == 4 && numElementsSrc == 3)) {
  3319. // In the case of going from int4->float3, a bitcast is needed before
  3320. // doing a shuffle.
  3321. llvm::Type *srcElemTy =
  3322. cast<llvm::VectorType>(SrcTy)->getElementType();
  3323. llvm::Type *dstElemTy =
  3324. cast<llvm::VectorType>(DstTy)->getElementType();
  3325. if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
  3326. || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
  3327. // Create a float type of the same size as the source or destination.
  3328. llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
  3329. numElementsSrc);
  3330. Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
  3331. }
  3332. llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
  3333. SmallVector<llvm::Constant*, 3> Args;
  3334. Args.push_back(Builder.getInt32(0));
  3335. Args.push_back(Builder.getInt32(1));
  3336. Args.push_back(Builder.getInt32(2));
  3337. if (numElementsDst == 4)
  3338. Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
  3339. llvm::Constant *Mask = llvm::ConstantVector::get(Args);
  3340. return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
  3341. }
  3342. }
  3343. return Builder.CreateBitCast(Src, DstTy, "astype");
  3344. }
  3345. Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
  3346. return CGF.EmitAtomicExpr(E).getScalarVal();
  3347. }
  3348. //===----------------------------------------------------------------------===//
  3349. // Entry Point into this File
  3350. //===----------------------------------------------------------------------===//
  3351. /// EmitScalarExpr - Emit the computation of the specified expression of scalar
  3352. /// type, ignoring the result.
  3353. Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
  3354. assert(E && hasScalarEvaluationKind(E->getType()) &&
  3355. "Invalid scalar expression to emit");
  3356. return ScalarExprEmitter(*this, IgnoreResultAssign)
  3357. .Visit(const_cast<Expr *>(E));
  3358. }
  3359. /// EmitScalarConversion - Emit a conversion from the specified type to the
  3360. /// specified destination type, both of which are LLVM scalar types.
  3361. Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
  3362. QualType DstTy) {
  3363. assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
  3364. "Invalid scalar expression to emit");
  3365. return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
  3366. }
  3367. /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
  3368. /// type to the specified destination type, where the destination type is an
  3369. /// LLVM scalar type.
  3370. Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
  3371. QualType SrcTy,
  3372. QualType DstTy) {
  3373. assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
  3374. "Invalid complex -> scalar conversion");
  3375. return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
  3376. DstTy);
  3377. }
  3378. llvm::Value *CodeGenFunction::
  3379. EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
  3380. bool isInc, bool isPre) {
  3381. return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
  3382. }
  3383. LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
  3384. llvm::Value *V;
  3385. // object->isa or (*object).isa
  3386. // Generate code as for: *(Class*)object
  3387. // build Class* type
  3388. llvm::Type *ClassPtrTy = ConvertType(E->getType());
  3389. Expr *BaseExpr = E->getBase();
  3390. if (BaseExpr->isRValue()) {
  3391. V = CreateMemTemp(E->getType(), "resval");
  3392. llvm::Value *Src = EmitScalarExpr(BaseExpr);
  3393. Builder.CreateStore(Src, V);
  3394. V = ScalarExprEmitter(*this).EmitLoadOfLValue(
  3395. MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
  3396. } else {
  3397. if (E->isArrow())
  3398. V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
  3399. else
  3400. V = EmitLValue(BaseExpr).getAddress();
  3401. }
  3402. // build Class* type
  3403. ClassPtrTy = ClassPtrTy->getPointerTo();
  3404. V = Builder.CreateBitCast(V, ClassPtrTy);
  3405. return MakeNaturalAlignAddrLValue(V, E->getType());
  3406. }
  3407. LValue CodeGenFunction::EmitCompoundAssignmentLValue(
  3408. const CompoundAssignOperator *E) {
  3409. ScalarExprEmitter Scalar(*this);
  3410. Value *Result = nullptr;
  3411. switch (E->getOpcode()) {
  3412. #define COMPOUND_OP(Op) \
  3413. case BO_##Op##Assign: \
  3414. return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
  3415. Result)
  3416. COMPOUND_OP(Mul);
  3417. COMPOUND_OP(Div);
  3418. COMPOUND_OP(Rem);
  3419. COMPOUND_OP(Add);
  3420. COMPOUND_OP(Sub);
  3421. COMPOUND_OP(Shl);
  3422. COMPOUND_OP(Shr);
  3423. COMPOUND_OP(And);
  3424. COMPOUND_OP(Xor);
  3425. COMPOUND_OP(Or);
  3426. #undef COMPOUND_OP
  3427. case BO_PtrMemD:
  3428. case BO_PtrMemI:
  3429. case BO_Mul:
  3430. case BO_Div:
  3431. case BO_Rem:
  3432. case BO_Add:
  3433. case BO_Sub:
  3434. case BO_Shl:
  3435. case BO_Shr:
  3436. case BO_LT:
  3437. case BO_GT:
  3438. case BO_LE:
  3439. case BO_GE:
  3440. case BO_EQ:
  3441. case BO_NE:
  3442. case BO_And:
  3443. case BO_Xor:
  3444. case BO_Or:
  3445. case BO_LAnd:
  3446. case BO_LOr:
  3447. case BO_Assign:
  3448. case BO_Comma:
  3449. llvm_unreachable("Not valid compound assignment operators");
  3450. }
  3451. llvm_unreachable("Unhandled compound assignment operator");
  3452. }