1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679 |
- //===------- SPIRVEmitter.h - SPIR-V Binary Code Emitter --------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //===----------------------------------------------------------------------===//
- //
- // This file implements a SPIR-V emitter class that takes in HLSL AST and emits
- // SPIR-V binary words.
- //
- //===----------------------------------------------------------------------===//
- #include "SPIRVEmitter.h"
- #include "dxc/HlslIntrinsicOp.h"
- #include "spirv-tools/optimizer.hpp"
- #include "llvm/ADT/StringExtras.h"
- #include "InitListHandler.h"
- namespace clang {
- namespace spirv {
- namespace {
- /// Returns the type of the given decl. If the given decl is a FunctionDecl,
- /// returns its result type.
- inline QualType getTypeOrFnRetType(const ValueDecl *decl) {
- if (const auto *funcDecl = dyn_cast<FunctionDecl>(decl)) {
- return funcDecl->getReturnType();
- }
- return decl->getType();
- }
- // Returns true if the given decl has the given semantic.
- bool hasSemantic(const DeclaratorDecl *decl,
- hlsl::DXIL::SemanticKind semanticKind) {
- using namespace hlsl;
- for (auto *annotation : decl->getUnusualAnnotations()) {
- if (auto *semanticDecl = dyn_cast<SemanticDecl>(annotation)) {
- llvm::StringRef semanticName;
- uint32_t semanticIndex = 0;
- Semantic::DecomposeNameAndIndex(semanticDecl->SemanticName, &semanticName,
- &semanticIndex);
- const auto *semantic = Semantic::GetByName(semanticName);
- if (semantic->GetKind() == semanticKind)
- return true;
- }
- }
- return false;
- }
- bool patchConstFuncTakesHullOutputPatch(FunctionDecl *pcf) {
- for (const auto *param : pcf->parameters())
- if (hlsl::IsHLSLOutputPatchType(param->getType()))
- return true;
- return false;
- }
- // TODO: Maybe we should move these type probing functions to TypeTranslator.
- /// Returns true if the given type is a bool or vector of bool type.
- bool isBoolOrVecOfBoolType(QualType type) {
- QualType elemType = {};
- return (TypeTranslator::isScalarType(type, &elemType) ||
- TypeTranslator::isVectorType(type, &elemType)) &&
- elemType->isBooleanType();
- }
- /// Returns true if the given type is a signed integer or vector of signed
- /// integer type.
- bool isSintOrVecOfSintType(QualType type) {
- QualType elemType = {};
- return (TypeTranslator::isScalarType(type, &elemType) ||
- TypeTranslator::isVectorType(type, &elemType)) &&
- elemType->isSignedIntegerType();
- }
- /// Returns true if the given type is an unsigned integer or vector of unsigned
- /// integer type.
- bool isUintOrVecOfUintType(QualType type) {
- QualType elemType = {};
- return (TypeTranslator::isScalarType(type, &elemType) ||
- TypeTranslator::isVectorType(type, &elemType)) &&
- elemType->isUnsignedIntegerType();
- }
- /// Returns true if the given type is a float or vector of float type.
- bool isFloatOrVecOfFloatType(QualType type) {
- QualType elemType = {};
- return (TypeTranslator::isScalarType(type, &elemType) ||
- TypeTranslator::isVectorType(type, &elemType)) &&
- elemType->isFloatingType();
- }
- /// Returns true if the given type is a bool or vector/matrix of bool type.
- bool isBoolOrVecMatOfBoolType(QualType type) {
- return isBoolOrVecOfBoolType(type) ||
- (hlsl::IsHLSLMatType(type) &&
- hlsl::GetHLSLMatElementType(type)->isBooleanType());
- }
- /// Returns true if the given type is a signed integer or vector/matrix of
- /// signed integer type.
- bool isSintOrVecMatOfSintType(QualType type) {
- return isSintOrVecOfSintType(type) ||
- (hlsl::IsHLSLMatType(type) &&
- hlsl::GetHLSLMatElementType(type)->isSignedIntegerType());
- }
- /// Returns true if the given type is an unsigned integer or vector/matrix of
- /// unsigned integer type.
- bool isUintOrVecMatOfUintType(QualType type) {
- return isUintOrVecOfUintType(type) ||
- (hlsl::IsHLSLMatType(type) &&
- hlsl::GetHLSLMatElementType(type)->isUnsignedIntegerType());
- }
- /// Returns true if the given type is a float or vector/matrix of float type.
- bool isFloatOrVecMatOfFloatType(QualType type) {
- return isFloatOrVecOfFloatType(type) ||
- (hlsl::IsHLSLMatType(type) &&
- hlsl::GetHLSLMatElementType(type)->isFloatingType());
- }
- inline bool isSpirvMatrixOp(spv::Op opcode) {
- return opcode == spv::Op::OpMatrixTimesMatrix ||
- opcode == spv::Op::OpMatrixTimesVector ||
- opcode == spv::Op::OpMatrixTimesScalar;
- }
- /// If expr is a (RW)StructuredBuffer.Load(), returns the object and writes
- /// index. Otherwiser, returns false.
- // TODO: The following doesn't handle Load(int, int) yet. And it is basically a
- // duplicate of doCXXMemberCallExpr.
- const Expr *isStructuredBufferLoad(const Expr *expr, const Expr **index) {
- using namespace hlsl;
- if (const auto *indexing = dyn_cast<CXXMemberCallExpr>(expr)) {
- const auto *callee = indexing->getDirectCallee();
- uint32_t opcode = static_cast<uint32_t>(IntrinsicOp::Num_Intrinsics);
- llvm::StringRef group;
- if (GetIntrinsicOp(callee, opcode, group)) {
- if (static_cast<IntrinsicOp>(opcode) == IntrinsicOp::MOP_Load) {
- const auto *object = indexing->getImplicitObjectArgument();
- if (TypeTranslator::isStructuredBuffer(object->getType())) {
- *index = indexing->getArg(0);
- return indexing->getImplicitObjectArgument();
- }
- }
- }
- }
- return nullptr;
- }
- /// Returns true if the given VarDecl will be translated into a SPIR-V variable
- /// not in the Private or Function storage class.
- inline bool isExternalVar(const VarDecl *var) {
- // Class static variables should be put in the Private storage class.
- // groupshared variables are allowed to be declared as "static". But we still
- // need to put them in the Workgroup storage class. That is, when seeing
- // "static groupshared", ignore "static".
- return var->hasExternalFormalLinkage() ? !var->isStaticDataMember()
- : var->getAttr<HLSLGroupSharedAttr>();
- }
- /// Returns the referenced variable's DeclContext if the given expr is
- /// a DeclRefExpr referencing a ConstantBuffer/TextureBuffer. Otherwise,
- /// returns nullptr.
- const DeclContext *isConstantTextureBufferDeclRef(const Expr *expr) {
- if (const auto *declRefExpr = dyn_cast<DeclRefExpr>(expr->IgnoreParenCasts()))
- if (const auto *varDecl = dyn_cast<VarDecl>(declRefExpr->getFoundDecl()))
- if (TypeTranslator::isConstantTextureBuffer(varDecl))
- return varDecl->getType()->getAs<RecordType>()->getDecl();
- return nullptr;
- }
- /// Returns true if
- /// * the given expr is an DeclRefExpr referencing a kind of structured or byte
- /// buffer and it is non-alias one, or
- /// * the given expr is an CallExpr returning a kind of structured or byte
- /// buffer.
- ///
- /// Note: legalization specific code
- bool isReferencingNonAliasStructuredOrByteBuffer(const Expr *expr) {
- expr = expr->IgnoreParenCasts();
- if (const auto *declRefExpr = dyn_cast<DeclRefExpr>(expr)) {
- if (const auto *varDecl = dyn_cast<VarDecl>(declRefExpr->getFoundDecl()))
- if (TypeTranslator::isAKindOfStructuredOrByteBuffer(varDecl->getType()))
- return isExternalVar(varDecl);
- } else if (const auto *callExpr = dyn_cast<CallExpr>(expr)) {
- if (TypeTranslator::isAKindOfStructuredOrByteBuffer(callExpr->getType()))
- return true;
- }
- return false;
- }
- bool spirvToolsLegalize(spv_target_env env, std::vector<uint32_t> *module,
- std::string *messages) {
- spvtools::Optimizer optimizer(env);
- optimizer.SetMessageConsumer(
- [messages](spv_message_level_t /*level*/, const char * /*source*/,
- const spv_position_t & /*position*/,
- const char *message) { *messages += message; });
- optimizer.RegisterLegalizationPasses();
- optimizer.RegisterPass(spvtools::CreateReplaceInvalidOpcodePass());
- optimizer.RegisterPass(spvtools::CreateCompactIdsPass());
- return optimizer.Run(module->data(), module->size(), module);
- }
- bool spirvToolsOptimize(spv_target_env env, std::vector<uint32_t> *module,
- std::string *messages) {
- spvtools::Optimizer optimizer(env);
- optimizer.SetMessageConsumer(
- [messages](spv_message_level_t /*level*/, const char * /*source*/,
- const spv_position_t & /*position*/,
- const char *message) { *messages += message; });
- optimizer.RegisterPerformancePasses();
- optimizer.RegisterPass(spvtools::CreateCompactIdsPass());
- return optimizer.Run(module->data(), module->size(), module);
- }
- bool spirvToolsValidate(spv_target_env env, std::vector<uint32_t> *module,
- std::string *messages, bool relaxLogicalPointer) {
- spvtools::SpirvTools tools(env);
- tools.SetMessageConsumer(
- [messages](spv_message_level_t /*level*/, const char * /*source*/,
- const spv_position_t & /*position*/,
- const char *message) { *messages += message; });
- spvtools::ValidatorOptions options;
- options.SetRelaxLogicalPointer(relaxLogicalPointer);
- return tools.Validate(module->data(), module->size(), options);
- }
- /// Translates atomic HLSL opcodes into the equivalent SPIR-V opcode.
- spv::Op translateAtomicHlslOpcodeToSpirvOpcode(hlsl::IntrinsicOp opcode) {
- using namespace hlsl;
- using namespace spv;
- switch (opcode) {
- case IntrinsicOp::IOP_InterlockedAdd:
- case IntrinsicOp::MOP_InterlockedAdd:
- return Op::OpAtomicIAdd;
- case IntrinsicOp::IOP_InterlockedAnd:
- case IntrinsicOp::MOP_InterlockedAnd:
- return Op::OpAtomicAnd;
- case IntrinsicOp::IOP_InterlockedOr:
- case IntrinsicOp::MOP_InterlockedOr:
- return Op::OpAtomicOr;
- case IntrinsicOp::IOP_InterlockedXor:
- case IntrinsicOp::MOP_InterlockedXor:
- return Op::OpAtomicXor;
- case IntrinsicOp::IOP_InterlockedUMax:
- case IntrinsicOp::MOP_InterlockedUMax:
- return Op::OpAtomicUMax;
- case IntrinsicOp::IOP_InterlockedUMin:
- case IntrinsicOp::MOP_InterlockedUMin:
- return Op::OpAtomicUMin;
- case IntrinsicOp::IOP_InterlockedMax:
- case IntrinsicOp::MOP_InterlockedMax:
- return Op::OpAtomicSMax;
- case IntrinsicOp::IOP_InterlockedMin:
- case IntrinsicOp::MOP_InterlockedMin:
- return Op::OpAtomicSMin;
- case IntrinsicOp::IOP_InterlockedExchange:
- case IntrinsicOp::MOP_InterlockedExchange:
- return Op::OpAtomicExchange;
- }
- assert(false && "unimplemented hlsl intrinsic opcode");
- return Op::Max;
- }
- // Returns true if the given opcode is an accepted binary opcode in
- // OpSpecConstantOp.
- bool isAcceptedSpecConstantBinaryOp(spv::Op op) {
- switch (op) {
- case spv::Op::OpIAdd:
- case spv::Op::OpISub:
- case spv::Op::OpIMul:
- case spv::Op::OpUDiv:
- case spv::Op::OpSDiv:
- case spv::Op::OpUMod:
- case spv::Op::OpSRem:
- case spv::Op::OpSMod:
- case spv::Op::OpShiftRightLogical:
- case spv::Op::OpShiftRightArithmetic:
- case spv::Op::OpShiftLeftLogical:
- case spv::Op::OpBitwiseOr:
- case spv::Op::OpBitwiseXor:
- case spv::Op::OpBitwiseAnd:
- case spv::Op::OpVectorShuffle:
- case spv::Op::OpCompositeExtract:
- case spv::Op::OpCompositeInsert:
- case spv::Op::OpLogicalOr:
- case spv::Op::OpLogicalAnd:
- case spv::Op::OpLogicalNot:
- case spv::Op::OpLogicalEqual:
- case spv::Op::OpLogicalNotEqual:
- case spv::Op::OpIEqual:
- case spv::Op::OpINotEqual:
- case spv::Op::OpULessThan:
- case spv::Op::OpSLessThan:
- case spv::Op::OpUGreaterThan:
- case spv::Op::OpSGreaterThan:
- case spv::Op::OpULessThanEqual:
- case spv::Op::OpSLessThanEqual:
- case spv::Op::OpUGreaterThanEqual:
- case spv::Op::OpSGreaterThanEqual:
- return true;
- }
- return false;
- }
- /// Returns true if the given expression is an accepted initializer for a spec
- /// constant.
- bool isAcceptedSpecConstantInit(const Expr *init) {
- // Allow numeric casts
- init = init->IgnoreParenCasts();
- if (isa<CXXBoolLiteralExpr>(init) || isa<IntegerLiteral>(init) ||
- isa<FloatingLiteral>(init))
- return true;
- // Allow the minus operator which is used to specify negative values
- if (const auto *unaryOp = dyn_cast<UnaryOperator>(init))
- return unaryOp->getOpcode() == UO_Minus &&
- isAcceptedSpecConstantInit(unaryOp->getSubExpr());
- return false;
- }
- /// Returns true if the given function parameter can act as shader stage
- /// input parameter.
- inline bool canActAsInParmVar(const ParmVarDecl *param) {
- // If the parameter has no in/out/inout attribute, it is defaulted to
- // an in parameter.
- return !param->hasAttr<HLSLOutAttr>() &&
- // GS output streams are marked as inout, but it should not be
- // used as in parameter.
- !hlsl::IsHLSLStreamOutputType(param->getType());
- }
- /// Returns true if the given function parameter can act as shader stage
- /// output parameter.
- inline bool canActAsOutParmVar(const ParmVarDecl *param) {
- return param->hasAttr<HLSLOutAttr>() || param->hasAttr<HLSLInOutAttr>();
- }
- /// Returns true if the given expression is of builtin type and can be evaluated
- /// to a constant zero. Returns false otherwise.
- inline bool evaluatesToConstZero(const Expr *expr, ASTContext &astContext) {
- const auto type = expr->getType();
- if (!type->isBuiltinType())
- return false;
- Expr::EvalResult evalResult;
- if (expr->EvaluateAsRValue(evalResult, astContext) &&
- !evalResult.HasSideEffects) {
- const auto &val = evalResult.Val;
- return ((type->isBooleanType() && !val.getInt().getBoolValue()) ||
- (type->isIntegerType() && !val.getInt().getBoolValue()) ||
- (type->isFloatingType() && val.getFloat().isZero()));
- }
- return false;
- }
- /// Returns the HLSLBufferDecl if the given VarDecl is inside a cbuffer/tbuffer.
- /// Returns nullptr otherwise, including varDecl is a ConstantBuffer or
- /// TextureBuffer itself.
- inline const HLSLBufferDecl *getCTBufferContext(const VarDecl *varDecl) {
- if (const auto *bufferDecl =
- dyn_cast<HLSLBufferDecl>(varDecl->getDeclContext()))
- // Filter ConstantBuffer/TextureBuffer
- if (!bufferDecl->isConstantBufferView())
- return bufferDecl;
- return nullptr;
- }
- /// Returns the real definition of the callee of the given CallExpr.
- ///
- /// If we are calling a forward-declared function, callee will be the
- /// FunctionDecl for the foward-declared function, not the actual
- /// definition. The foward-delcaration and defintion are two completely
- /// different AST nodes.
- inline const FunctionDecl *getCalleeDefinition(const CallExpr *expr) {
- const auto *callee = expr->getDirectCallee();
- if (callee->isThisDeclarationADefinition())
- return callee;
- // We need to update callee to the actual definition here
- if (!callee->isDefined(callee))
- return nullptr;
- return callee;
- }
- /// Returns the referenced definition. The given expr is expected to be a
- /// DeclRefExpr or CallExpr after ignoring casts. Returns nullptr otherwise.
- const DeclaratorDecl *getReferencedDef(const Expr *expr) {
- if (!expr)
- return nullptr;
- expr = expr->IgnoreParenCasts();
- if (const auto *declRefExpr = dyn_cast<DeclRefExpr>(expr)) {
- return dyn_cast_or_null<DeclaratorDecl>(declRefExpr->getDecl());
- }
- if (const auto *callExpr = dyn_cast<CallExpr>(expr)) {
- return getCalleeDefinition(callExpr);
- }
- return nullptr;
- }
- /// Returns the number of base classes if this type is a derived class/struct.
- /// Returns zero otherwise.
- inline uint32_t getNumBaseClasses(QualType type) {
- if (const auto *cxxDecl = type->getAsCXXRecordDecl())
- return cxxDecl->getNumBases();
- return 0;
- }
- /// Gets the index sequence of casting a derived object to a base object by
- /// following the cast chain.
- void getBaseClassIndices(const CastExpr *expr,
- llvm::SmallVectorImpl<uint32_t> *indices) {
- assert(expr->getCastKind() == CK_UncheckedDerivedToBase ||
- expr->getCastKind() == CK_HLSLDerivedToBase);
- indices->clear();
- QualType derivedType = expr->getSubExpr()->getType();
- const auto *derivedDecl = derivedType->getAsCXXRecordDecl();
- // Go through the base cast chain: for each of the derived to base cast, find
- // the index of the base in question in the derived's bases.
- for (auto pathIt = expr->path_begin(), pathIe = expr->path_end();
- pathIt != pathIe; ++pathIt) {
- // The type of the base in question
- const auto baseType = (*pathIt)->getType();
- uint32_t index = 0;
- for (auto baseIt = derivedDecl->bases_begin(),
- baseIe = derivedDecl->bases_end();
- baseIt != baseIe; ++baseIt, ++index)
- if (baseIt->getType() == baseType) {
- indices->push_back(index);
- break;
- }
- assert(index < derivedDecl->getNumBases());
- // Continue to proceed the next base in the chain
- derivedType = baseType;
- derivedDecl = derivedType->getAsCXXRecordDecl();
- }
- }
- spv::Capability getCapabilityForGroupNonUniform(spv::Op opcode) {
- switch (opcode) {
- case spv::Op::OpGroupNonUniformElect:
- return spv::Capability::GroupNonUniform;
- case spv::Op::OpGroupNonUniformAny:
- case spv::Op::OpGroupNonUniformAll:
- case spv::Op::OpGroupNonUniformAllEqual:
- return spv::Capability::GroupNonUniformVote;
- case spv::Op::OpGroupNonUniformBallot:
- case spv::Op::OpGroupNonUniformBallotBitCount:
- case spv::Op::OpGroupNonUniformBroadcast:
- case spv::Op::OpGroupNonUniformBroadcastFirst:
- return spv::Capability::GroupNonUniformBallot;
- case spv::Op::OpGroupNonUniformIAdd:
- case spv::Op::OpGroupNonUniformFAdd:
- case spv::Op::OpGroupNonUniformIMul:
- case spv::Op::OpGroupNonUniformFMul:
- case spv::Op::OpGroupNonUniformSMax:
- case spv::Op::OpGroupNonUniformUMax:
- case spv::Op::OpGroupNonUniformFMax:
- case spv::Op::OpGroupNonUniformSMin:
- case spv::Op::OpGroupNonUniformUMin:
- case spv::Op::OpGroupNonUniformFMin:
- case spv::Op::OpGroupNonUniformBitwiseAnd:
- case spv::Op::OpGroupNonUniformBitwiseOr:
- case spv::Op::OpGroupNonUniformBitwiseXor:
- return spv::Capability::GroupNonUniformArithmetic;
- case spv::Op::OpGroupNonUniformQuadBroadcast:
- case spv::Op::OpGroupNonUniformQuadSwap:
- return spv::Capability::GroupNonUniformQuad;
- }
- assert(false && "unhandled opcode");
- return spv::Capability::Max;
- }
- std::string getNamespacePrefix(const Decl *decl) {
- std::string nsPrefix = "";
- const DeclContext *dc = decl->getDeclContext();
- while (dc && !dc->isTranslationUnit()) {
- if (const NamespaceDecl *ns = dyn_cast<NamespaceDecl>(dc)) {
- if (!ns->isAnonymousNamespace()) {
- nsPrefix = ns->getName().str() + "::" + nsPrefix;
- }
- }
- dc = dc->getParent();
- }
- return nsPrefix;
- }
- std::string getFnName(const FunctionDecl *fn) {
- // Prefix the function name with the struct name if necessary
- std::string classOrStructName = "";
- if (const auto *memberFn = dyn_cast<CXXMethodDecl>(fn))
- if (const auto *st = dyn_cast<CXXRecordDecl>(memberFn->getDeclContext()))
- classOrStructName = st->getName().str() + ".";
- return getNamespacePrefix(fn) + classOrStructName + fn->getName().str();
- }
- } // namespace
- SPIRVEmitter::SPIRVEmitter(CompilerInstance &ci, EmitSPIRVOptions &options)
- : theCompilerInstance(ci), astContext(ci.getASTContext()),
- diags(ci.getDiagnostics()), spirvOptions(options),
- entryFunctionName(ci.getCodeGenOpts().HLSLEntryFunction),
- shaderModel(*hlsl::ShaderModel::GetByName(
- ci.getCodeGenOpts().HLSLProfile.c_str())),
- theContext(), featureManager(diags, options),
- theBuilder(&theContext, &featureManager, options.enableReflect),
- typeTranslator(astContext, theBuilder, diags, options),
- declIdMapper(shaderModel, astContext, theBuilder, typeTranslator,
- featureManager, options),
- entryFunctionId(0), curFunction(nullptr), curThis(0),
- seenPushConstantAt(), isSpecConstantMode(false),
- needsLegalization(false) {
- if (shaderModel.GetKind() == hlsl::ShaderModel::Kind::Invalid)
- emitError("unknown shader module: %0", {}) << shaderModel.GetName();
- if (options.invertY && !shaderModel.IsVS() && !shaderModel.IsDS() &&
- !shaderModel.IsGS())
- emitError("-fvk-invert-y can only be used in VS/DS/GS", {});
- if (options.useGlLayout && options.useDxLayout)
- emitError("cannot specify both -fvk-use-dx-layout and -fvk-use-gl-layout",
- {});
- options.Initialize();
- // Set shader module version
- theBuilder.setShaderModelVersion(shaderModel.GetMajor(),
- shaderModel.GetMinor());
- // Set debug info
- const auto &inputFiles = ci.getFrontendOpts().Inputs;
- if (options.enableDebugInfo && !inputFiles.empty())
- theBuilder.setSourceFileName(theContext.takeNextId(),
- inputFiles.front().getFile().str());
- }
- void SPIRVEmitter::HandleTranslationUnit(ASTContext &context) {
- // Stop translating if there are errors in previous compilation stages.
- if (context.getDiagnostics().hasErrorOccurred())
- return;
- TranslationUnitDecl *tu = context.getTranslationUnitDecl();
- // The entry function is the seed of the queue.
- for (auto *decl : tu->decls()) {
- if (auto *funcDecl = dyn_cast<FunctionDecl>(decl)) {
- if (funcDecl->getName() == entryFunctionName) {
- workQueue.insert(funcDecl);
- }
- } else {
- // If ignoring unused resources, defer Decl handling inside
- // TranslationUnit to the time of first referencing.
- if (!spirvOptions.ignoreUnusedResources) {
- doDecl(decl);
- }
- }
- }
- // Translate all functions reachable from the entry function.
- // The queue can grow in the meanwhile; so need to keep evaluating
- // workQueue.size().
- for (uint32_t i = 0; i < workQueue.size(); ++i) {
- doDecl(workQueue[i]);
- }
- if (context.getDiagnostics().hasErrorOccurred())
- return;
- const spv_target_env targetEnv = featureManager.getTargetEnv();
- AddRequiredCapabilitiesForShaderModel();
- // Addressing and memory model are required in a valid SPIR-V module.
- theBuilder.setAddressingModel(spv::AddressingModel::Logical);
- theBuilder.setMemoryModel(spv::MemoryModel::GLSL450);
- theBuilder.addEntryPoint(getSpirvShaderStage(shaderModel), entryFunctionId,
- entryFunctionName, declIdMapper.collectStageVars());
- // Add Location decorations to stage input/output variables.
- if (!declIdMapper.decorateStageIOLocations())
- return;
- // Add descriptor set and binding decorations to resource variables.
- if (!declIdMapper.decorateResourceBindings())
- return;
- // Output the constructed module.
- std::vector<uint32_t> m = theBuilder.takeModule();
- if (!spirvOptions.codeGenHighLevel) {
- // Run legalization passes
- if (needsLegalization || declIdMapper.requiresLegalization()) {
- std::string messages;
- if (!spirvToolsLegalize(targetEnv, &m, &messages)) {
- emitFatalError("failed to legalize SPIR-V: %0", {}) << messages;
- emitNote("please file a bug report on "
- "https://github.com/Microsoft/DirectXShaderCompiler/issues "
- "with source code if possible",
- {});
- return;
- } else if (!messages.empty()) {
- emitWarning("SPIR-V legalization: %0", {}) << messages;
- }
- }
- // Run optimization passes
- if (theCompilerInstance.getCodeGenOpts().OptimizationLevel > 0) {
- std::string messages;
- if (!spirvToolsOptimize(targetEnv, &m, &messages)) {
- emitFatalError("failed to optimize SPIR-V: %0", {}) << messages;
- emitNote("please file a bug report on "
- "https://github.com/Microsoft/DirectXShaderCompiler/issues "
- "with source code if possible",
- {});
- return;
- }
- }
- }
- // Validate the generated SPIR-V code
- if (!spirvOptions.disableValidation) {
- std::string messages;
- if (!spirvToolsValidate(targetEnv, &m, &messages,
- declIdMapper.requiresLegalization())) {
- emitFatalError("generated SPIR-V is invalid: %0", {}) << messages;
- emitNote("please file a bug report on "
- "https://github.com/Microsoft/DirectXShaderCompiler/issues "
- "with source code if possible",
- {});
- return;
- }
- }
- theCompilerInstance.getOutStream()->write(
- reinterpret_cast<const char *>(m.data()), m.size() * 4);
- }
- void SPIRVEmitter::doDecl(const Decl *decl) {
- if (decl->isImplicit() || isa<EmptyDecl>(decl) || isa<TypedefDecl>(decl))
- return;
- if (const auto *varDecl = dyn_cast<VarDecl>(decl)) {
- // We can have VarDecls inside cbuffer/tbuffer. For those VarDecls, we need
- // to emit their cbuffer/tbuffer as a whole and access each individual one
- // using access chains.
- if (const auto *bufferDecl = getCTBufferContext(varDecl)) {
- doHLSLBufferDecl(bufferDecl);
- } else {
- doVarDecl(varDecl);
- }
- } else if (const auto *namespaceDecl = dyn_cast<NamespaceDecl>(decl)) {
- for (auto *subDecl : namespaceDecl->decls())
- // Note: We only emit functions as they are discovered through the call
- // graph starting from the entry-point. We should not emit unused
- // functions inside namespaces.
- if (!isa<FunctionDecl>(subDecl))
- doDecl(subDecl);
- } else if (const auto *funcDecl = dyn_cast<FunctionDecl>(decl)) {
- doFunctionDecl(funcDecl);
- } else if (const auto *bufferDecl = dyn_cast<HLSLBufferDecl>(decl)) {
- doHLSLBufferDecl(bufferDecl);
- } else if (const auto *recordDecl = dyn_cast<RecordDecl>(decl)) {
- doRecordDecl(recordDecl);
- } else {
- emitError("decl type %0 unimplemented", decl->getLocation())
- << decl->getDeclKindName();
- }
- }
- void SPIRVEmitter::doStmt(const Stmt *stmt,
- llvm::ArrayRef<const Attr *> attrs) {
- if (const auto *compoundStmt = dyn_cast<CompoundStmt>(stmt)) {
- for (auto *st : compoundStmt->body())
- doStmt(st);
- } else if (const auto *retStmt = dyn_cast<ReturnStmt>(stmt)) {
- doReturnStmt(retStmt);
- } else if (const auto *declStmt = dyn_cast<DeclStmt>(stmt)) {
- doDeclStmt(declStmt);
- } else if (const auto *ifStmt = dyn_cast<IfStmt>(stmt)) {
- doIfStmt(ifStmt, attrs);
- } else if (const auto *switchStmt = dyn_cast<SwitchStmt>(stmt)) {
- doSwitchStmt(switchStmt, attrs);
- } else if (const auto *caseStmt = dyn_cast<CaseStmt>(stmt)) {
- processCaseStmtOrDefaultStmt(stmt);
- } else if (const auto *defaultStmt = dyn_cast<DefaultStmt>(stmt)) {
- processCaseStmtOrDefaultStmt(stmt);
- } else if (const auto *breakStmt = dyn_cast<BreakStmt>(stmt)) {
- doBreakStmt(breakStmt);
- } else if (const auto *theDoStmt = dyn_cast<DoStmt>(stmt)) {
- doDoStmt(theDoStmt, attrs);
- } else if (const auto *discardStmt = dyn_cast<DiscardStmt>(stmt)) {
- doDiscardStmt(discardStmt);
- } else if (const auto *continueStmt = dyn_cast<ContinueStmt>(stmt)) {
- doContinueStmt(continueStmt);
- } else if (const auto *whileStmt = dyn_cast<WhileStmt>(stmt)) {
- doWhileStmt(whileStmt, attrs);
- } else if (const auto *forStmt = dyn_cast<ForStmt>(stmt)) {
- doForStmt(forStmt, attrs);
- } else if (const auto *nullStmt = dyn_cast<NullStmt>(stmt)) {
- // For the null statement ";". We don't need to do anything.
- } else if (const auto *expr = dyn_cast<Expr>(stmt)) {
- // All cases for expressions used as statements
- doExpr(expr);
- } else if (const auto *attrStmt = dyn_cast<AttributedStmt>(stmt)) {
- doStmt(attrStmt->getSubStmt(), attrStmt->getAttrs());
- } else {
- emitError("statement class '%0' unimplemented", stmt->getLocStart())
- << stmt->getStmtClassName() << stmt->getSourceRange();
- }
- }
- SpirvEvalInfo SPIRVEmitter::doDeclRefExpr(const DeclRefExpr *expr) {
- const auto *decl = expr->getDecl();
- auto id = declIdMapper.getDeclEvalInfo(decl, false);
- if (spirvOptions.ignoreUnusedResources && !id) {
- // First time referencing a Decl inside TranslationUnit. Register
- // into DeclResultIdMapper and emit SPIR-V for it and then query
- // again.
- doDecl(decl);
- id = declIdMapper.getDeclEvalInfo(decl);
- }
- return id;
- }
- SpirvEvalInfo SPIRVEmitter::doExpr(const Expr *expr) {
- SpirvEvalInfo result(/*id*/ 0);
- // Provide a hint to the typeTranslator that if a literal is discovered, its
- // intended usage is as this expression type.
- TypeTranslator::LiteralTypeHint hint(typeTranslator, expr->getType());
- expr = expr->IgnoreParens();
- if (const auto *declRefExpr = dyn_cast<DeclRefExpr>(expr)) {
- result = doDeclRefExpr(declRefExpr);
- } else if (const auto *memberExpr = dyn_cast<MemberExpr>(expr)) {
- result = doMemberExpr(memberExpr);
- } else if (const auto *castExpr = dyn_cast<CastExpr>(expr)) {
- result = doCastExpr(castExpr);
- } else if (const auto *initListExpr = dyn_cast<InitListExpr>(expr)) {
- result = doInitListExpr(initListExpr);
- } else if (const auto *boolLiteral = dyn_cast<CXXBoolLiteralExpr>(expr)) {
- const auto value =
- theBuilder.getConstantBool(boolLiteral->getValue(), isSpecConstantMode);
- result = SpirvEvalInfo(value).setConstant().setRValue();
- } else if (const auto *intLiteral = dyn_cast<IntegerLiteral>(expr)) {
- const auto value = translateAPInt(intLiteral->getValue(), expr->getType());
- result = SpirvEvalInfo(value).setConstant().setRValue();
- } else if (const auto *floatLiteral = dyn_cast<FloatingLiteral>(expr)) {
- const auto value =
- translateAPFloat(floatLiteral->getValue(), expr->getType());
- result = SpirvEvalInfo(value).setConstant().setRValue();
- } else if (const auto *compoundAssignOp =
- dyn_cast<CompoundAssignOperator>(expr)) {
- // CompoundAssignOperator is a subclass of BinaryOperator. It should be
- // checked before BinaryOperator.
- result = doCompoundAssignOperator(compoundAssignOp);
- } else if (const auto *binOp = dyn_cast<BinaryOperator>(expr)) {
- result = doBinaryOperator(binOp);
- } else if (const auto *unaryOp = dyn_cast<UnaryOperator>(expr)) {
- result = doUnaryOperator(unaryOp);
- } else if (const auto *vecElemExpr = dyn_cast<HLSLVectorElementExpr>(expr)) {
- result = doHLSLVectorElementExpr(vecElemExpr);
- } else if (const auto *matElemExpr = dyn_cast<ExtMatrixElementExpr>(expr)) {
- result = doExtMatrixElementExpr(matElemExpr);
- } else if (const auto *funcCall = dyn_cast<CallExpr>(expr)) {
- result = doCallExpr(funcCall);
- } else if (const auto *subscriptExpr = dyn_cast<ArraySubscriptExpr>(expr)) {
- result = doArraySubscriptExpr(subscriptExpr);
- } else if (const auto *condExpr = dyn_cast<ConditionalOperator>(expr)) {
- result = doConditionalOperator(condExpr);
- } else if (const auto *defaultArgExpr = dyn_cast<CXXDefaultArgExpr>(expr)) {
- result = doExpr(defaultArgExpr->getParam()->getDefaultArg());
- } else if (isa<CXXThisExpr>(expr)) {
- assert(curThis);
- result = curThis;
- } else {
- emitError("expression class '%0' unimplemented", expr->getExprLoc())
- << expr->getStmtClassName() << expr->getSourceRange();
- }
- return result;
- }
- SpirvEvalInfo SPIRVEmitter::loadIfGLValue(const Expr *expr) {
- // We are trying to load the value here, which is what an LValueToRValue
- // implicit cast is intended to do. We can ignore the cast if exists.
- expr = expr->IgnoreParenLValueCasts();
- return loadIfGLValue(expr, doExpr(expr));
- }
- SpirvEvalInfo SPIRVEmitter::loadIfGLValue(const Expr *expr,
- SpirvEvalInfo info) {
- // Do nothing if this is already rvalue
- if (info.isRValue())
- return info;
- // Check whether we are trying to load an array of opaque objects as a whole.
- // If true, we are likely to copy it as a whole. To assist per-element
- // copying, avoid the load here and return the pointer directly.
- // TODO: consider moving this hack into SPIRV-Tools as a transformation.
- if (TypeTranslator::isOpaqueArrayType(expr->getType()))
- return info;
- // Check whether we are trying to load an externally visible structured/byte
- // buffer as a whole. If true, it means we are creating alias for it. Avoid
- // the load and write the pointer directly to the alias variable then.
- //
- // Also for the case of alias function returns. If we are trying to load an
- // alias function return as a whole, it means we are assigning it to another
- // alias variable. Avoid the load and write the pointer directly.
- //
- // Note: legalization specific code
- if (isReferencingNonAliasStructuredOrByteBuffer(expr)) {
- return info.setRValue();
- }
- if (loadIfAliasVarRef(expr, info)) {
- // We are loading an alias variable as a whole here. This is likely for
- // wholesale assignments or function returns. Need to load the pointer.
- //
- // Note: legalization specific code
- return info;
- }
- uint32_t valType = 0;
- // TODO: Ouch. Very hacky. We need special path to get the value type if
- // we are loading a whole ConstantBuffer/TextureBuffer since the normal
- // type translation path won't work.
- if (const auto *declContext = isConstantTextureBufferDeclRef(expr)) {
- valType = declIdMapper.getCTBufferPushConstantTypeId(declContext);
- } else {
- valType =
- typeTranslator.translateType(expr->getType(), info.getLayoutRule());
- }
- uint32_t loadedId = theBuilder.createLoad(valType, info);
- // Special-case: According to the SPIR-V Spec: There is no physical size or
- // bit pattern defined for boolean type. Therefore an unsigned integer is used
- // to represent booleans when layout is required. In such cases, after loading
- // the uint, we should perform a comparison.
- {
- uint32_t vecSize = 1, numRows = 0, numCols = 0;
- if (info.getLayoutRule() != LayoutRule::Void &&
- isBoolOrVecMatOfBoolType(expr->getType())) {
- const auto exprType = expr->getType();
- QualType uintType = astContext.UnsignedIntTy;
- QualType boolType = astContext.BoolTy;
- if (TypeTranslator::isScalarType(exprType) ||
- TypeTranslator::isVectorType(exprType, nullptr, &vecSize)) {
- const auto fromType =
- vecSize == 1 ? uintType
- : astContext.getExtVectorType(uintType, vecSize);
- const auto toType =
- vecSize == 1 ? boolType
- : astContext.getExtVectorType(boolType, vecSize);
- loadedId = castToBool(loadedId, fromType, toType);
- } else {
- const bool isMat =
- TypeTranslator::isMxNMatrix(exprType, nullptr, &numRows, &numCols);
- assert(isMat);
- const auto uintRowQualType =
- astContext.getExtVectorType(uintType, numCols);
- const auto uintRowQualTypeId =
- typeTranslator.translateType(uintRowQualType);
- const auto boolRowQualType =
- astContext.getExtVectorType(boolType, numCols);
- const auto boolRowQualTypeId =
- typeTranslator.translateType(boolRowQualType);
- const uint32_t resultTypeId =
- theBuilder.getMatType(boolType, boolRowQualTypeId, numRows);
- llvm::SmallVector<uint32_t, 4> rows;
- for (uint32_t i = 0; i < numRows; ++i) {
- const auto row = theBuilder.createCompositeExtract(uintRowQualTypeId,
- loadedId, {i});
- rows.push_back(castToBool(row, uintRowQualType, boolRowQualType));
- }
- loadedId = theBuilder.createCompositeConstruct(resultTypeId, rows);
- }
- // Now that it is converted to Bool, it has no layout rule.
- // This result-id should be evaluated as bool from here on out.
- info.setLayoutRule(LayoutRule::Void);
- }
- }
- return info.setResultId(loadedId).setRValue();
- }
- SpirvEvalInfo SPIRVEmitter::loadIfAliasVarRef(const Expr *expr) {
- auto info = doExpr(expr);
- loadIfAliasVarRef(expr, info);
- return info;
- }
- bool SPIRVEmitter::loadIfAliasVarRef(const Expr *varExpr, SpirvEvalInfo &info) {
- if (info.containsAliasComponent() &&
- TypeTranslator::isAKindOfStructuredOrByteBuffer(varExpr->getType())) {
- // Aliased-to variables are all in the Uniform storage class with GLSL
- // std430 layout rules.
- const auto ptrType = typeTranslator.translateType(varExpr->getType());
- // Load the pointer of the aliased-to-variable if the expression has a
- // pointer to pointer type. That is, the expression itself is a lvalue.
- // (Note that we translate alias function return values as pointer types,
- // not pointer to pointer types.)
- if (varExpr->isGLValue())
- info.setResultId(theBuilder.createLoad(ptrType, info));
- info.setStorageClass(spv::StorageClass::Uniform)
- .setLayoutRule(spirvOptions.sBufferLayoutRule)
- // Now it is a pointer to the global resource, which is lvalue.
- .setRValue(false)
- // Set to false to indicate that we've performed dereference over the
- // pointer-to-pointer and now should fallback to the normal path
- .setContainsAliasComponent(false);
- return true;
- }
- return false;
- }
- uint32_t SPIRVEmitter::castToType(uint32_t value, QualType fromType,
- QualType toType, SourceLocation srcLoc) {
- if (isFloatOrVecOfFloatType(toType))
- return castToFloat(value, fromType, toType, srcLoc);
- // Order matters here. Bool (vector) values will also be considered as uint
- // (vector) values. So given a bool (vector) argument, isUintOrVecOfUintType()
- // will also return true. We need to check bool before uint. The opposite is
- // not true.
- if (isBoolOrVecOfBoolType(toType))
- return castToBool(value, fromType, toType);
- if (isSintOrVecOfSintType(toType) || isUintOrVecOfUintType(toType))
- return castToInt(value, fromType, toType, srcLoc);
- emitError("casting to type %0 unimplemented", {}) << toType;
- return 0;
- }
- void SPIRVEmitter::doFunctionDecl(const FunctionDecl *decl) {
- assert(decl->isThisDeclarationADefinition());
- // A RAII class for maintaining the current function under traversal.
- class FnEnvRAII {
- public:
- // Creates a new instance which sets fnEnv to the newFn on creation,
- // and resets fnEnv to its original value on destruction.
- FnEnvRAII(const FunctionDecl **fnEnv, const FunctionDecl *newFn)
- : oldFn(*fnEnv), fnSlot(fnEnv) {
- *fnEnv = newFn;
- }
- ~FnEnvRAII() { *fnSlot = oldFn; }
- private:
- const FunctionDecl *oldFn;
- const FunctionDecl **fnSlot;
- };
- FnEnvRAII fnEnvRAII(&curFunction, decl);
- // We are about to start translation for a new function. Clear the break stack
- // and the continue stack.
- breakStack = std::stack<uint32_t>();
- continueStack = std::stack<uint32_t>();
- // This will allow the entry-point name to be something like
- // myNamespace::myEntrypointFunc.
- std::string funcName = getFnName(decl);
- uint32_t funcId = 0;
- if (funcName == entryFunctionName) {
- // The entry function surely does not have pre-assigned <result-id> for
- // it like other functions that got added to the work queue following
- // function calls.
- funcId = theContext.takeNextId();
- funcName = "src." + funcName;
- // Create wrapper for the entry function
- if (!emitEntryFunctionWrapper(decl, funcId))
- return;
- } else {
- // Non-entry functions are added to the work queue following function
- // calls. We have already assigned <result-id>s for it when translating
- // its call site. Query it here.
- funcId = declIdMapper.getDeclEvalInfo(decl);
- }
- const uint32_t retType =
- declIdMapper.getTypeAndCreateCounterForPotentialAliasVar(decl);
- // Construct the function signature.
- llvm::SmallVector<uint32_t, 4> paramTypes;
- bool isNonStaticMemberFn = false;
- if (const auto *memberFn = dyn_cast<CXXMethodDecl>(decl)) {
- isNonStaticMemberFn = !memberFn->isStatic();
- if (isNonStaticMemberFn) {
- // For non-static member function, the first parameter should be the
- // object on which we are invoking this method.
- const uint32_t valueType = typeTranslator.translateType(
- memberFn->getThisType(astContext)->getPointeeType());
- const uint32_t ptrType =
- theBuilder.getPointerType(valueType, spv::StorageClass::Function);
- paramTypes.push_back(ptrType);
- }
- }
- for (const auto *param : decl->params()) {
- const uint32_t valueType =
- declIdMapper.getTypeAndCreateCounterForPotentialAliasVar(param);
- const uint32_t ptrType =
- theBuilder.getPointerType(valueType, spv::StorageClass::Function);
- paramTypes.push_back(ptrType);
- }
- const uint32_t funcType = theBuilder.getFunctionType(retType, paramTypes);
- theBuilder.beginFunction(funcType, retType, funcName, funcId);
- if (isNonStaticMemberFn) {
- // Remember the parameter for the this object so later we can handle
- // CXXThisExpr correctly.
- curThis = theBuilder.addFnParam(paramTypes[0], "param.this");
- }
- // Create all parameters.
- for (uint32_t i = 0; i < decl->getNumParams(); ++i) {
- const ParmVarDecl *paramDecl = decl->getParamDecl(i);
- (void)declIdMapper.createFnParam(paramDecl);
- }
- if (decl->hasBody()) {
- // The entry basic block.
- const uint32_t entryLabel = theBuilder.createBasicBlock("bb.entry");
- theBuilder.setInsertPoint(entryLabel);
- // Process all statments in the body.
- doStmt(decl->getBody());
- // We have processed all Stmts in this function and now in the last
- // basic block. Make sure we have a termination instruction.
- if (!theBuilder.isCurrentBasicBlockTerminated()) {
- const auto retType = decl->getReturnType();
- if (retType->isVoidType()) {
- theBuilder.createReturn();
- } else {
- // If the source code does not provide a proper return value for some
- // control flow path, it's undefined behavior. We just return null
- // value here.
- theBuilder.createReturnValue(
- theBuilder.getConstantNull(typeTranslator.translateType(retType)));
- }
- }
- }
- theBuilder.endFunction();
- }
- bool SPIRVEmitter::validateVKAttributes(const NamedDecl *decl) {
- bool success = true;
- if (const auto *varDecl = dyn_cast<VarDecl>(decl)) {
- const auto varType = varDecl->getType();
- if ((TypeTranslator::isSubpassInput(varType) ||
- TypeTranslator::isSubpassInputMS(varType)) &&
- !varDecl->hasAttr<VKInputAttachmentIndexAttr>()) {
- emitError("missing vk::input_attachment_index attribute",
- varDecl->getLocation());
- success = false;
- }
- }
- if (const auto *iaiAttr = decl->getAttr<VKInputAttachmentIndexAttr>()) {
- if (!shaderModel.IsPS()) {
- emitError("SubpassInput(MS) only allowed in pixel shader",
- decl->getLocation());
- success = false;
- }
- if (!decl->isExternallyVisible()) {
- emitError("SubpassInput(MS) must be externally visible",
- decl->getLocation());
- success = false;
- }
- // We only allow VKInputAttachmentIndexAttr to be attached to global
- // variables. So it should be fine to cast here.
- const auto elementType =
- hlsl::GetHLSLResourceResultType(cast<VarDecl>(decl)->getType());
- if (!TypeTranslator::isScalarType(elementType) &&
- !TypeTranslator::isVectorType(elementType)) {
- emitError(
- "only scalar/vector types allowed as SubpassInput(MS) parameter type",
- decl->getLocation());
- // Return directly to avoid further type processing, which will hit
- // asserts in TypeTranslator.
- return false;
- }
- }
- // The frontend will make sure that
- // * vk::push_constant applies to global variables of struct type
- // * vk::binding applies to global variables or cbuffers/tbuffers
- // * vk::counter_binding applies to global variables of RW/Append/Consume
- // StructuredBuffer
- // * vk::location applies to function parameters/returns and struct fields
- // So the only case we need to check co-existence is vk::push_constant and
- // vk::binding.
- if (const auto *pcAttr = decl->getAttr<VKPushConstantAttr>()) {
- const auto loc = pcAttr->getLocation();
- if (seenPushConstantAt.isInvalid()) {
- seenPushConstantAt = loc;
- } else {
- // TODO: Actually this is slightly incorrect. The Vulkan spec says:
- // There must be no more than one push constant block statically used
- // per shader entry point.
- // But we are checking whether there are more than one push constant
- // blocks defined. Tracking usage requires more work.
- emitError("cannot have more than one push constant block", loc);
- emitNote("push constant block previously defined here",
- seenPushConstantAt);
- success = false;
- }
- if (decl->hasAttr<VKBindingAttr>()) {
- emitError("vk::push_constant attribute cannot be used together with "
- "vk::binding attribute",
- loc);
- success = false;
- }
- }
- return success;
- }
- void SPIRVEmitter::doHLSLBufferDecl(const HLSLBufferDecl *bufferDecl) {
- // This is a cbuffer/tbuffer decl.
- // Check and emit warnings for member intializers which are not
- // supported in Vulkan
- for (const auto *member : bufferDecl->decls()) {
- if (const auto *varMember = dyn_cast<VarDecl>(member)) {
- if (const auto *init = varMember->getInit())
- emitWarning("%select{tbuffer|cbuffer}0 member initializer "
- "ignored since no equivalent in Vulkan",
- init->getExprLoc())
- << bufferDecl->isCBuffer() << init->getSourceRange();
- // We cannot handle external initialization of column-major matrices now.
- if (typeTranslator.isOrContainsNonFpColMajorMatrix(varMember->getType(),
- varMember)) {
- emitError("externally initialized non-floating-point column-major "
- "matrices not supported yet",
- varMember->getLocation());
- }
- }
- }
- if (!validateVKAttributes(bufferDecl))
- return;
- (void)declIdMapper.createCTBuffer(bufferDecl);
- }
- void SPIRVEmitter::doRecordDecl(const RecordDecl *recordDecl) {
- // Ignore implict records
- // Somehow we'll have implicit records with:
- // static const int Length = count;
- // that can mess up with the normal CodeGen.
- if (recordDecl->isImplicit())
- return;
- // Handle each static member with inline initializer.
- // Each static member has a corresponding VarDecl inside the
- // RecordDecl. For those defined in the translation unit,
- // their VarDecls do not have initializer.
- for (auto *subDecl : recordDecl->decls())
- if (auto *varDecl = dyn_cast<VarDecl>(subDecl))
- if (varDecl->isStaticDataMember() && varDecl->hasInit())
- doVarDecl(varDecl);
- }
- void SPIRVEmitter::doVarDecl(const VarDecl *decl) {
- if (!validateVKAttributes(decl))
- return;
- // We cannot handle external initialization of column-major matrices now.
- if (isExternalVar(decl) &&
- typeTranslator.isOrContainsNonFpColMajorMatrix(decl->getType(), decl)) {
- emitError("externally initialized non-floating-point column-major "
- "matrices not supported yet",
- decl->getLocation());
- }
- if (const auto *arrayType =
- astContext.getAsConstantArrayType(decl->getType())) {
- if (TypeTranslator::isAKindOfStructuredOrByteBuffer(
- arrayType->getElementType())) {
- emitError("arrays of structured/byte buffers unsupported",
- decl->getLocation());
- return;
- }
- }
- if (decl->hasAttr<VKConstantIdAttr>()) {
- // This is a VarDecl for specialization constant.
- createSpecConstant(decl);
- return;
- }
- if (decl->hasAttr<VKPushConstantAttr>()) {
- // This is a VarDecl for PushConstant block.
- (void)declIdMapper.createPushConstant(decl);
- return;
- }
- if (isa<HLSLBufferDecl>(decl->getDeclContext())) {
- // This is a VarDecl of a ConstantBuffer/TextureBuffer type.
- (void)declIdMapper.createCTBuffer(decl);
- return;
- }
- SpirvEvalInfo varId(0);
- // The contents in externally visible variables can be updated via the
- // pipeline. They should be handled differently from file and function scope
- // variables.
- // File scope variables (static "global" and "local" variables) belongs to
- // the Private storage class, while function scope variables (normal "local"
- // variables) belongs to the Function storage class.
- if (isExternalVar(decl)) {
- varId = declIdMapper.createExternVar(decl);
- } else {
- // We already know the variable is not externally visible here. If it does
- // not have local storage, it should be file scope variable.
- const bool isFileScopeVar = !decl->hasLocalStorage();
- if (isFileScopeVar)
- varId = declIdMapper.createFileVar(decl, llvm::None);
- else
- varId = declIdMapper.createFnVar(decl, llvm::None);
- // Emit OpStore to initialize the variable
- // TODO: revert back to use OpVariable initializer
- // We should only evaluate the initializer once for a static variable.
- if (isFileScopeVar) {
- if (decl->isStaticLocal()) {
- initOnce(decl->getType(), decl->getName(), varId, decl->getInit());
- } else {
- // Defer to initialize these global variables at the beginning of the
- // entry function.
- toInitGloalVars.push_back(decl);
- }
- }
- // Function local variables. Just emit OpStore at the current insert point.
- else if (const Expr *init = decl->getInit()) {
- if (const auto constId = tryToEvaluateAsConst(init))
- theBuilder.createStore(varId, constId);
- else
- storeValue(varId, loadIfGLValue(init), decl->getType());
- // Update counter variable associated with local variables
- tryToAssignCounterVar(decl, init);
- }
- // Variables that are not externally visible and of opaque types should
- // request legalization.
- if (!needsLegalization && TypeTranslator::isOpaqueType(decl->getType()))
- needsLegalization = true;
- }
- if (TypeTranslator::isRelaxedPrecisionType(decl->getType(), spirvOptions)) {
- theBuilder.decorate(varId, spv::Decoration::RelaxedPrecision);
- }
- // All variables that are of opaque struct types should request legalization.
- if (!needsLegalization && TypeTranslator::isOpaqueStructType(decl->getType()))
- needsLegalization = true;
- }
- spv::LoopControlMask SPIRVEmitter::translateLoopAttribute(const Stmt *stmt,
- const Attr &attr) {
- switch (attr.getKind()) {
- case attr::HLSLLoop:
- case attr::HLSLFastOpt:
- return spv::LoopControlMask::DontUnroll;
- case attr::HLSLUnroll:
- return spv::LoopControlMask::Unroll;
- case attr::HLSLAllowUAVCondition:
- emitWarning("unsupported allow_uav_condition attribute ignored",
- stmt->getLocStart());
- break;
- default:
- llvm_unreachable("found unknown loop attribute");
- }
- return spv::LoopControlMask::MaskNone;
- }
- void SPIRVEmitter::doDiscardStmt(const DiscardStmt *discardStmt) {
- assert(!theBuilder.isCurrentBasicBlockTerminated());
- theBuilder.createKill();
- // Some statements that alter the control flow (break, continue, return, and
- // discard), require creation of a new basic block to hold any statement that
- // may follow them.
- const uint32_t newBB = theBuilder.createBasicBlock();
- theBuilder.setInsertPoint(newBB);
- }
- void SPIRVEmitter::doDoStmt(const DoStmt *theDoStmt,
- llvm::ArrayRef<const Attr *> attrs) {
- // do-while loops are composed of:
- //
- // do {
- // <body>
- // } while(<check>);
- //
- // SPIR-V requires loops to have a merge basic block as well as a continue
- // basic block. Even though do-while loops do not have an explicit continue
- // block as in for-loops, we still do need to create a continue block.
- //
- // Since SPIR-V requires structured control flow, we need two more basic
- // blocks, <header> and <merge>. <header> is the block before control flow
- // diverges, and <merge> is the block where control flow subsequently
- // converges. The <check> can be performed in the <continue> basic block.
- // The final CFG should normally be like the following. Exceptions
- // will occur with non-local exits like loop breaks or early returns.
- //
- // +----------+
- // | header | <-----------------------------------+
- // +----------+ |
- // | | (true)
- // v |
- // +------+ +--------------------+ |
- // | body | ----> | continue (<check>) |-----------+
- // +------+ +--------------------+
- // |
- // | (false)
- // +-------+ |
- // | merge | <-------------+
- // +-------+
- //
- // For more details, see "2.11. Structured Control Flow" in the SPIR-V spec.
- const spv::LoopControlMask loopControl =
- attrs.empty() ? spv::LoopControlMask::MaskNone
- : translateLoopAttribute(theDoStmt, *attrs.front());
- // Create basic blocks
- const uint32_t headerBB = theBuilder.createBasicBlock("do_while.header");
- const uint32_t bodyBB = theBuilder.createBasicBlock("do_while.body");
- const uint32_t continueBB = theBuilder.createBasicBlock("do_while.continue");
- const uint32_t mergeBB = theBuilder.createBasicBlock("do_while.merge");
- // Make sure any continue statements branch to the continue block, and any
- // break statements branch to the merge block.
- continueStack.push(continueBB);
- breakStack.push(mergeBB);
- // Branch from the current insert point to the header block.
- theBuilder.createBranch(headerBB);
- theBuilder.addSuccessor(headerBB);
- // Process the <header> block
- // The header block must always branch to the body.
- theBuilder.setInsertPoint(headerBB);
- theBuilder.createBranch(bodyBB, mergeBB, continueBB, loopControl);
- theBuilder.addSuccessor(bodyBB);
- // The current basic block has OpLoopMerge instruction. We need to set its
- // continue and merge target.
- theBuilder.setContinueTarget(continueBB);
- theBuilder.setMergeTarget(mergeBB);
- // Process the <body> block
- theBuilder.setInsertPoint(bodyBB);
- if (const Stmt *body = theDoStmt->getBody()) {
- doStmt(body);
- }
- if (!theBuilder.isCurrentBasicBlockTerminated())
- theBuilder.createBranch(continueBB);
- theBuilder.addSuccessor(continueBB);
- // Process the <continue> block. The check for whether the loop should
- // continue lies in the continue block.
- // *NOTE*: There's a SPIR-V rule that when a conditional branch is to occur in
- // a continue block of a loop, there should be no OpSelectionMerge. Only an
- // OpBranchConditional must be specified.
- theBuilder.setInsertPoint(continueBB);
- uint32_t condition = 0;
- if (const Expr *check = theDoStmt->getCond()) {
- condition = doExpr(check);
- } else {
- condition = theBuilder.getConstantBool(true);
- }
- theBuilder.createConditionalBranch(condition, headerBB, mergeBB);
- theBuilder.addSuccessor(headerBB);
- theBuilder.addSuccessor(mergeBB);
- // Set insertion point to the <merge> block for subsequent statements
- theBuilder.setInsertPoint(mergeBB);
- // Done with the current scope's continue block and merge block.
- continueStack.pop();
- breakStack.pop();
- }
- void SPIRVEmitter::doContinueStmt(const ContinueStmt *continueStmt) {
- assert(!theBuilder.isCurrentBasicBlockTerminated());
- const uint32_t continueTargetBB = continueStack.top();
- theBuilder.createBranch(continueTargetBB);
- theBuilder.addSuccessor(continueTargetBB);
- // Some statements that alter the control flow (break, continue, return, and
- // discard), require creation of a new basic block to hold any statement that
- // may follow them. For example: StmtB and StmtC below are put inside a new
- // basic block which is unreachable.
- //
- // while (true) {
- // StmtA;
- // continue;
- // StmtB;
- // StmtC;
- // }
- const uint32_t newBB = theBuilder.createBasicBlock();
- theBuilder.setInsertPoint(newBB);
- }
- void SPIRVEmitter::doWhileStmt(const WhileStmt *whileStmt,
- llvm::ArrayRef<const Attr *> attrs) {
- // While loops are composed of:
- // while (<check>) { <body> }
- //
- // SPIR-V requires loops to have a merge basic block as well as a continue
- // basic block. Even though while loops do not have an explicit continue
- // block as in for-loops, we still do need to create a continue block.
- //
- // Since SPIR-V requires structured control flow, we need two more basic
- // blocks, <header> and <merge>. <header> is the block before control flow
- // diverges, and <merge> is the block where control flow subsequently
- // converges. The <check> block can take the responsibility of the <header>
- // block. The final CFG should normally be like the following. Exceptions
- // will occur with non-local exits like loop breaks or early returns.
- //
- // +----------+
- // | header | <------------------+
- // | (check) | |
- // +----------+ |
- // | |
- // +-------+-------+ |
- // | false | true |
- // | v |
- // | +------+ +------------------+
- // | | body | --> | continue (no-op) |
- // v +------+ +------------------+
- // +-------+
- // | merge |
- // +-------+
- //
- // For more details, see "2.11. Structured Control Flow" in the SPIR-V spec.
- const spv::LoopControlMask loopControl =
- attrs.empty() ? spv::LoopControlMask::MaskNone
- : translateLoopAttribute(whileStmt, *attrs.front());
- // Create basic blocks
- const uint32_t checkBB = theBuilder.createBasicBlock("while.check");
- const uint32_t bodyBB = theBuilder.createBasicBlock("while.body");
- const uint32_t continueBB = theBuilder.createBasicBlock("while.continue");
- const uint32_t mergeBB = theBuilder.createBasicBlock("while.merge");
- // Make sure any continue statements branch to the continue block, and any
- // break statements branch to the merge block.
- continueStack.push(continueBB);
- breakStack.push(mergeBB);
- // Process the <check> block
- theBuilder.createBranch(checkBB);
- theBuilder.addSuccessor(checkBB);
- theBuilder.setInsertPoint(checkBB);
- // If we have:
- // while (int a = foo()) {...}
- // we should evaluate 'a' by calling 'foo()' every single time the check has
- // to occur.
- if (const auto *condVarDecl = whileStmt->getConditionVariableDeclStmt())
- doStmt(condVarDecl);
- uint32_t condition = 0;
- if (const Expr *check = whileStmt->getCond()) {
- condition = doExpr(check);
- } else {
- condition = theBuilder.getConstantBool(true);
- }
- theBuilder.createConditionalBranch(condition, bodyBB,
- /*false branch*/ mergeBB,
- /*merge*/ mergeBB, continueBB,
- spv::SelectionControlMask::MaskNone,
- loopControl);
- theBuilder.addSuccessor(bodyBB);
- theBuilder.addSuccessor(mergeBB);
- // The current basic block has OpLoopMerge instruction. We need to set its
- // continue and merge target.
- theBuilder.setContinueTarget(continueBB);
- theBuilder.setMergeTarget(mergeBB);
- // Process the <body> block
- theBuilder.setInsertPoint(bodyBB);
- if (const Stmt *body = whileStmt->getBody()) {
- doStmt(body);
- }
- if (!theBuilder.isCurrentBasicBlockTerminated())
- theBuilder.createBranch(continueBB);
- theBuilder.addSuccessor(continueBB);
- // Process the <continue> block. While loops do not have an explicit
- // continue block. The continue block just branches to the <check> block.
- theBuilder.setInsertPoint(continueBB);
- theBuilder.createBranch(checkBB);
- theBuilder.addSuccessor(checkBB);
- // Set insertion point to the <merge> block for subsequent statements
- theBuilder.setInsertPoint(mergeBB);
- // Done with the current scope's continue and merge blocks.
- continueStack.pop();
- breakStack.pop();
- }
- void SPIRVEmitter::doForStmt(const ForStmt *forStmt,
- llvm::ArrayRef<const Attr *> attrs) {
- // for loops are composed of:
- // for (<init>; <check>; <continue>) <body>
- //
- // To translate a for loop, we'll need to emit all <init> statements
- // in the current basic block, and then have separate basic blocks for
- // <check>, <continue>, and <body>. Besides, since SPIR-V requires
- // structured control flow, we need two more basic blocks, <header>
- // and <merge>. <header> is the block before control flow diverges,
- // while <merge> is the block where control flow subsequently converges.
- // The <check> block can take the responsibility of the <header> block.
- // The final CFG should normally be like the following. Exceptions will
- // occur with non-local exits like loop breaks or early returns.
- // +--------+
- // | init |
- // +--------+
- // |
- // v
- // +----------+
- // | header | <---------------+
- // | (check) | |
- // +----------+ |
- // | |
- // +-------+-------+ |
- // | false | true |
- // | v |
- // | +------+ +----------+
- // | | body | --> | continue |
- // v +------+ +----------+
- // +-------+
- // | merge |
- // +-------+
- //
- // For more details, see "2.11. Structured Control Flow" in the SPIR-V spec.
- const spv::LoopControlMask loopControl =
- attrs.empty() ? spv::LoopControlMask::MaskNone
- : translateLoopAttribute(forStmt, *attrs.front());
- // Create basic blocks
- const uint32_t checkBB = theBuilder.createBasicBlock("for.check");
- const uint32_t bodyBB = theBuilder.createBasicBlock("for.body");
- const uint32_t continueBB = theBuilder.createBasicBlock("for.continue");
- const uint32_t mergeBB = theBuilder.createBasicBlock("for.merge");
- // Make sure any continue statements branch to the continue block, and any
- // break statements branch to the merge block.
- continueStack.push(continueBB);
- breakStack.push(mergeBB);
- // Process the <init> block
- if (const Stmt *initStmt = forStmt->getInit()) {
- doStmt(initStmt);
- }
- theBuilder.createBranch(checkBB);
- theBuilder.addSuccessor(checkBB);
- // Process the <check> block
- theBuilder.setInsertPoint(checkBB);
- uint32_t condition;
- if (const Expr *check = forStmt->getCond()) {
- condition = doExpr(check);
- } else {
- condition = theBuilder.getConstantBool(true);
- }
- theBuilder.createConditionalBranch(condition, bodyBB,
- /*false branch*/ mergeBB,
- /*merge*/ mergeBB, continueBB,
- spv::SelectionControlMask::MaskNone,
- loopControl);
- theBuilder.addSuccessor(bodyBB);
- theBuilder.addSuccessor(mergeBB);
- // The current basic block has OpLoopMerge instruction. We need to set its
- // continue and merge target.
- theBuilder.setContinueTarget(continueBB);
- theBuilder.setMergeTarget(mergeBB);
- // Process the <body> block
- theBuilder.setInsertPoint(bodyBB);
- if (const Stmt *body = forStmt->getBody()) {
- doStmt(body);
- }
- if (!theBuilder.isCurrentBasicBlockTerminated())
- theBuilder.createBranch(continueBB);
- theBuilder.addSuccessor(continueBB);
- // Process the <continue> block
- theBuilder.setInsertPoint(continueBB);
- if (const Expr *cont = forStmt->getInc()) {
- doExpr(cont);
- }
- theBuilder.createBranch(checkBB); // <continue> should jump back to header
- theBuilder.addSuccessor(checkBB);
- // Set insertion point to the <merge> block for subsequent statements
- theBuilder.setInsertPoint(mergeBB);
- // Done with the current scope's continue block and merge block.
- continueStack.pop();
- breakStack.pop();
- }
- void SPIRVEmitter::doIfStmt(const IfStmt *ifStmt,
- llvm::ArrayRef<const Attr *> attrs) {
- // if statements are composed of:
- // if (<check>) { <then> } else { <else> }
- //
- // To translate if statements, we'll need to emit the <check> expressions
- // in the current basic block, and then create separate basic blocks for
- // <then> and <else>. Additionally, we'll need a <merge> block as per
- // SPIR-V's structured control flow requirements. Depending whether there
- // exists the else branch, the final CFG should normally be like the
- // following. Exceptions will occur with non-local exits like loop breaks
- // or early returns.
- // +-------+ +-------+
- // | check | | check |
- // +-------+ +-------+
- // | |
- // +-------+-------+ +-----+-----+
- // | true | false | true | false
- // v v or v |
- // +------+ +------+ +------+ |
- // | then | | else | | then | |
- // +------+ +------+ +------+ |
- // | | | v
- // | +-------+ | | +-------+
- // +-> | merge | <-+ +---> | merge |
- // +-------+ +-------+
- { // Try to see if we can const-eval the condition
- bool condition = false;
- if (ifStmt->getCond()->EvaluateAsBooleanCondition(condition, astContext)) {
- if (condition) {
- doStmt(ifStmt->getThen());
- } else if (ifStmt->getElse()) {
- doStmt(ifStmt->getElse());
- }
- return;
- }
- }
- auto selectionControl = spv::SelectionControlMask::MaskNone;
- if (!attrs.empty()) {
- const Attr *attribute = attrs.front();
- switch (attribute->getKind()) {
- case attr::HLSLBranch:
- selectionControl = spv::SelectionControlMask::DontFlatten;
- break;
- case attr::HLSLFlatten:
- selectionControl = spv::SelectionControlMask::Flatten;
- break;
- default:
- emitWarning("unknown if statement attribute '%0' ignored",
- attribute->getLocation())
- << attribute->getSpelling();
- break;
- }
- }
- if (const auto *declStmt = ifStmt->getConditionVariableDeclStmt())
- doDeclStmt(declStmt);
- // First emit the instruction for evaluating the condition.
- const uint32_t condition = doExpr(ifStmt->getCond());
- // Then we need to emit the instruction for the conditional branch.
- // We'll need the <label-id> for the then/else/merge block to do so.
- const bool hasElse = ifStmt->getElse() != nullptr;
- const uint32_t thenBB = theBuilder.createBasicBlock("if.true");
- const uint32_t mergeBB = theBuilder.createBasicBlock("if.merge");
- const uint32_t elseBB =
- hasElse ? theBuilder.createBasicBlock("if.false") : mergeBB;
- // Create the branch instruction. This will end the current basic block.
- theBuilder.createConditionalBranch(condition, thenBB, elseBB, mergeBB,
- /*continue*/ 0, selectionControl);
- theBuilder.addSuccessor(thenBB);
- theBuilder.addSuccessor(elseBB);
- // The current basic block has the OpSelectionMerge instruction. We need
- // to record its merge target.
- theBuilder.setMergeTarget(mergeBB);
- // Handle the then branch
- theBuilder.setInsertPoint(thenBB);
- doStmt(ifStmt->getThen());
- if (!theBuilder.isCurrentBasicBlockTerminated())
- theBuilder.createBranch(mergeBB);
- theBuilder.addSuccessor(mergeBB);
- // Handle the else branch (if exists)
- if (hasElse) {
- theBuilder.setInsertPoint(elseBB);
- doStmt(ifStmt->getElse());
- if (!theBuilder.isCurrentBasicBlockTerminated())
- theBuilder.createBranch(mergeBB);
- theBuilder.addSuccessor(mergeBB);
- }
- // From now on, we'll emit instructions into the merge block.
- theBuilder.setInsertPoint(mergeBB);
- }
- void SPIRVEmitter::doReturnStmt(const ReturnStmt *stmt) {
- if (const auto *retVal = stmt->getRetValue()) {
- // Update counter variable associated with function returns
- tryToAssignCounterVar(curFunction, retVal);
- const auto retInfo = loadIfGLValue(retVal);
- const auto retType = retVal->getType();
- if (retInfo.getStorageClass() != spv::StorageClass::Function &&
- retType->isStructureType()) {
- // We are returning some value from a non-Function storage class. Need to
- // create a temporary variable to "convert" the value to Function storage
- // class and then return.
- const uint32_t valType = typeTranslator.translateType(retType);
- const uint32_t tempVar = theBuilder.addFnVar(valType, "temp.var.ret");
- storeValue(tempVar, retInfo, retType);
- theBuilder.createReturnValue(theBuilder.createLoad(valType, tempVar));
- } else {
- theBuilder.createReturnValue(retInfo);
- }
- } else {
- theBuilder.createReturn();
- }
- // We are translating a ReturnStmt, we should be in some function's body.
- assert(curFunction->hasBody());
- // If this return statement is the last statement in the function, then
- // whe have no more work to do.
- if (cast<CompoundStmt>(curFunction->getBody())->body_back() == stmt)
- return;
- // Some statements that alter the control flow (break, continue, return, and
- // discard), require creation of a new basic block to hold any statement that
- // may follow them. In this case, the newly created basic block will contain
- // any statement that may come after an early return.
- const uint32_t newBB = theBuilder.createBasicBlock();
- theBuilder.setInsertPoint(newBB);
- }
- void SPIRVEmitter::doBreakStmt(const BreakStmt *breakStmt) {
- assert(!theBuilder.isCurrentBasicBlockTerminated());
- uint32_t breakTargetBB = breakStack.top();
- theBuilder.addSuccessor(breakTargetBB);
- theBuilder.createBranch(breakTargetBB);
- // Some statements that alter the control flow (break, continue, return, and
- // discard), require creation of a new basic block to hold any statement that
- // may follow them. For example: StmtB and StmtC below are put inside a new
- // basic block which is unreachable.
- //
- // while (true) {
- // StmtA;
- // break;
- // StmtB;
- // StmtC;
- // }
- const uint32_t newBB = theBuilder.createBasicBlock();
- theBuilder.setInsertPoint(newBB);
- }
- void SPIRVEmitter::doSwitchStmt(const SwitchStmt *switchStmt,
- llvm::ArrayRef<const Attr *> attrs) {
- // Switch statements are composed of:
- // switch (<condition variable>) {
- // <CaseStmt>
- // <CaseStmt>
- // <CaseStmt>
- // <DefaultStmt> (optional)
- // }
- //
- // +-------+
- // | check |
- // +-------+
- // |
- // +-------+-------+----------------+---------------+
- // | 1 | 2 | 3 | (others)
- // v v v v
- // +-------+ +-------------+ +-------+ +------------+
- // | case1 | | case2 | | case3 | ... | default |
- // | | |(fallthrough)|---->| | | (optional) |
- // +-------+ |+------------+ +-------+ +------------+
- // | | |
- // | | |
- // | +-------+ | |
- // | | | <--------------------+ |
- // +-> | merge | |
- // | | <-------------------------------------+
- // +-------+
- // If no attributes are given, or if "forcecase" attribute was provided,
- // we'll do our best to use OpSwitch if possible.
- // If any of the cases compares to a variable (rather than an integer
- // literal), we cannot use OpSwitch because OpSwitch expects literal
- // numbers as parameters.
- const bool isAttrForceCase =
- !attrs.empty() && attrs.front()->getKind() == attr::HLSLForceCase;
- const bool canUseSpirvOpSwitch =
- (attrs.empty() || isAttrForceCase) &&
- allSwitchCasesAreIntegerLiterals(switchStmt->getBody());
- if (isAttrForceCase && !canUseSpirvOpSwitch)
- emitWarning("ignored 'forcecase' attribute for the switch statement "
- "since one or more case values are not integer literals",
- switchStmt->getLocStart());
- if (canUseSpirvOpSwitch)
- processSwitchStmtUsingSpirvOpSwitch(switchStmt);
- else
- processSwitchStmtUsingIfStmts(switchStmt);
- }
- SpirvEvalInfo
- SPIRVEmitter::doArraySubscriptExpr(const ArraySubscriptExpr *expr) {
- llvm::SmallVector<uint32_t, 4> indices;
- auto info = loadIfAliasVarRef(collectArrayStructIndices(expr, &indices));
- if (!indices.empty()) {
- (void)turnIntoElementPtr(info, expr->getType(), indices);
- }
- return info;
- }
- SpirvEvalInfo SPIRVEmitter::doBinaryOperator(const BinaryOperator *expr) {
- const auto opcode = expr->getOpcode();
- // Handle assignment first since we need to evaluate rhs before lhs.
- // For other binary operations, we need to evaluate lhs before rhs.
- if (opcode == BO_Assign) {
- // Update counter variable associated with lhs of assignments
- tryToAssignCounterVar(expr->getLHS(), expr->getRHS());
- return processAssignment(expr->getLHS(), loadIfGLValue(expr->getRHS()),
- /*isCompoundAssignment=*/false);
- }
- // Try to optimize floatMxN * float and floatN * float case
- if (opcode == BO_Mul) {
- if (SpirvEvalInfo result = tryToGenFloatMatrixScale(expr))
- return result;
- if (SpirvEvalInfo result = tryToGenFloatVectorScale(expr))
- return result;
- }
- return processBinaryOp(expr->getLHS(), expr->getRHS(), opcode,
- expr->getLHS()->getType(), expr->getType(),
- expr->getSourceRange());
- }
- SpirvEvalInfo SPIRVEmitter::doCallExpr(const CallExpr *callExpr) {
- if (const auto *operatorCall = dyn_cast<CXXOperatorCallExpr>(callExpr))
- return doCXXOperatorCallExpr(operatorCall);
- if (const auto *memberCall = dyn_cast<CXXMemberCallExpr>(callExpr))
- return doCXXMemberCallExpr(memberCall);
- // Intrinsic functions such as 'dot' or 'mul'
- if (hlsl::IsIntrinsicOp(callExpr->getDirectCallee())) {
- return processIntrinsicCallExpr(callExpr);
- }
- // Normal standalone functions
- return processCall(callExpr);
- }
- SpirvEvalInfo SPIRVEmitter::processCall(const CallExpr *callExpr) {
- const FunctionDecl *callee = getCalleeDefinition(callExpr);
- // Note that we always want the defintion because Stmts/Exprs in the
- // function body references the parameters in the definition.
- if (!callee) {
- emitError("found undefined function", callExpr->getExprLoc());
- return 0;
- }
- const auto numParams = callee->getNumParams();
- bool isNonStaticMemberCall = false;
- QualType objectType = {}; // Type of the object (if exists)
- SpirvEvalInfo objectEvalInfo = 0; // EvalInfo for the object (if exists)
- bool needsTempVar = false; // Whether we need temporary variable.
- llvm::SmallVector<uint32_t, 4> params; // Temporary variables
- llvm::SmallVector<SpirvEvalInfo, 4> args; // Evaluated arguments
- if (const auto *memberCall = dyn_cast<CXXMemberCallExpr>(callExpr)) {
- const auto *memberFn = cast<CXXMethodDecl>(memberCall->getCalleeDecl());
- isNonStaticMemberCall = !memberFn->isStatic();
- if (isNonStaticMemberCall) {
- // For non-static member calls, evaluate the object and pass it as the
- // first argument.
- const auto *object = memberCall->getImplicitObjectArgument();
- object = object->IgnoreParenNoopCasts(astContext);
- // Update counter variable associated with the implicit object
- tryToAssignCounterVar(getOrCreateDeclForMethodObject(memberFn), object);
- objectType = object->getType();
- objectEvalInfo = doExpr(object);
- uint32_t objectId = objectEvalInfo;
- // If not already a variable, we need to create a temporary variable and
- // pass the object pointer to the function. Example:
- // getObject().objectMethod();
- // Also, any parameter passed to the member function must be of Function
- // storage class.
- needsTempVar =
- objectEvalInfo.isRValue() ||
- objectEvalInfo.getStorageClass() != spv::StorageClass::Function;
- if (needsTempVar) {
- objectId =
- createTemporaryVar(objectType, TypeTranslator::getName(objectType),
- // May need to load to use as initializer
- loadIfGLValue(object, objectEvalInfo));
- }
- args.push_back(objectId);
- // We do not need to create a new temporary variable for the this
- // object. Use the evaluated argument.
- params.push_back(args.back());
- }
- }
- // Evaluate parameters
- for (uint32_t i = 0; i < numParams; ++i) {
- // We want the argument variable here so that we can write back to it
- // later. We will do the OpLoad of this argument manually. So ingore
- // the LValueToRValue implicit cast here.
- auto *arg = callExpr->getArg(i)->IgnoreParenLValueCasts();
- const auto *param = callee->getParamDecl(i);
- // We need to create variables for holding the values to be used as
- // arguments. The variables themselves are of pointer types.
- const uint32_t varType =
- declIdMapper.getTypeAndCreateCounterForPotentialAliasVar(param);
- const std::string varName = "param.var." + param->getNameAsString();
- const uint32_t tempVarId = theBuilder.addFnVar(varType, varName);
- params.push_back(tempVarId);
- args.push_back(doExpr(arg));
- // Update counter variable associated with function parameters
- tryToAssignCounterVar(param, arg);
- // Manually load the argument here
- const auto rhsVal = loadIfGLValue(arg, args.back());
- // Initialize the temporary variables using the contents of the arguments
- storeValue(tempVarId, rhsVal, param->getType());
- }
- // Push the callee into the work queue if it is not there.
- if (!workQueue.count(callee)) {
- workQueue.insert(callee);
- }
- const uint32_t retType =
- declIdMapper.getTypeAndCreateCounterForPotentialAliasVar(callee);
- // Get or forward declare the function <result-id>
- const uint32_t funcId = declIdMapper.getOrRegisterFnResultId(callee);
- const uint32_t retVal =
- theBuilder.createFunctionCall(retType, funcId, params);
- // If we created a temporary variable for the lvalue object this method is
- // invoked upon, we need to copy the contents in the temporary variable back
- // to the original object's variable in case there are side effects.
- if (needsTempVar && !objectEvalInfo.isRValue()) {
- const uint32_t typeId = typeTranslator.translateType(objectType);
- const uint32_t value = theBuilder.createLoad(typeId, params.front());
- storeValue(objectEvalInfo, value, objectType);
- }
- // Go through all parameters and write those marked as out/inout
- for (uint32_t i = 0; i < numParams; ++i) {
- const auto *param = callee->getParamDecl(i);
- if (canActAsOutParmVar(param)) {
- const auto *arg = callExpr->getArg(i);
- const uint32_t index = i + isNonStaticMemberCall;
- const uint32_t typeId = typeTranslator.translateType(param->getType());
- const uint32_t value = theBuilder.createLoad(typeId, params[index]);
- processAssignment(arg, value, false, args[index]);
- }
- }
- // Inherit the SpirvEvalInfo from the function definition
- return declIdMapper.getDeclEvalInfo(callee).setResultId(retVal);
- }
- SpirvEvalInfo SPIRVEmitter::doCastExpr(const CastExpr *expr) {
- const Expr *subExpr = expr->getSubExpr();
- const QualType subExprType = subExpr->getType();
- const QualType toType = expr->getType();
- // Unfortunately the front-end fails to deduce some types in certain cases.
- // Provide a hint about literal type usage if possible.
- TypeTranslator::LiteralTypeHint hint(typeTranslator);
- // 'literal int' to 'float' conversion. If a literal integer is to be used as
- // a 32-bit float, the hint is a 32-bit integer.
- if (toType->isFloatingType() &&
- subExprType->isSpecificBuiltinType(BuiltinType::LitInt) &&
- llvm::APFloat::getSizeInBits(astContext.getFloatTypeSemantics(toType)) ==
- 32)
- hint.setHint(astContext.IntTy);
- // 'literal float' to 'float' conversion where intended type is float32.
- if (toType->isFloatingType() &&
- subExprType->isSpecificBuiltinType(BuiltinType::LitFloat) &&
- llvm::APFloat::getSizeInBits(astContext.getFloatTypeSemantics(toType)) ==
- 32)
- hint.setHint(astContext.FloatTy);
- // TODO: We could provide other useful hints. For instance:
- // For the case of toType being a boolean, if the fromType is a literal float,
- // we could provide a FloatTy hint and if the fromType is a literal integer,
- // we could provide an IntTy hint. The front-end, however, seems to deduce the
- // correct type in these cases; therefore we currently don't provide any
- // additional hints.
- switch (expr->getCastKind()) {
- case CastKind::CK_LValueToRValue:
- return loadIfGLValue(subExpr);
- case CastKind::CK_NoOp:
- return doExpr(subExpr);
- case CastKind::CK_IntegralCast:
- case CastKind::CK_FloatingToIntegral:
- case CastKind::CK_HLSLCC_IntegralCast:
- case CastKind::CK_HLSLCC_FloatingToIntegral: {
- // Integer literals in the AST are represented using 64bit APInt
- // themselves and then implicitly casted into the expected bitwidth.
- // We need special treatment of integer literals here because generating
- // a 64bit constant and then explicit casting in SPIR-V requires Int64
- // capability. We should avoid introducing unnecessary capabilities to
- // our best.
- if (const uint32_t valueId = tryToEvaluateAsConst(expr))
- return SpirvEvalInfo(valueId).setConstant().setRValue();
- const auto valueId =
- castToInt(doExpr(subExpr), subExprType, toType, subExpr->getExprLoc());
- return SpirvEvalInfo(valueId).setRValue();
- }
- case CastKind::CK_FloatingCast:
- case CastKind::CK_IntegralToFloating:
- case CastKind::CK_HLSLCC_FloatingCast:
- case CastKind::CK_HLSLCC_IntegralToFloating: {
- // First try to see if we can do constant folding for floating point
- // numbers like what we are doing for integers in the above.
- if (const uint32_t valueId = tryToEvaluateAsConst(expr))
- return SpirvEvalInfo(valueId).setConstant().setRValue();
- const auto valueId = castToFloat(doExpr(subExpr), subExprType, toType,
- subExpr->getExprLoc());
- return SpirvEvalInfo(valueId).setRValue();
- }
- case CastKind::CK_IntegralToBoolean:
- case CastKind::CK_FloatingToBoolean:
- case CastKind::CK_HLSLCC_IntegralToBoolean:
- case CastKind::CK_HLSLCC_FloatingToBoolean: {
- // First try to see if we can do constant folding.
- if (const uint32_t valueId = tryToEvaluateAsConst(expr))
- return SpirvEvalInfo(valueId).setConstant().setRValue();
- const auto valueId = castToBool(doExpr(subExpr), subExprType, toType);
- return SpirvEvalInfo(valueId).setRValue();
- }
- case CastKind::CK_HLSLVectorSplat: {
- const size_t size = hlsl::GetHLSLVecSize(expr->getType());
- return createVectorSplat(subExpr, size);
- }
- case CastKind::CK_HLSLVectorTruncationCast: {
- const uint32_t toVecTypeId = typeTranslator.translateType(toType);
- const uint32_t elemTypeId =
- typeTranslator.translateType(hlsl::GetHLSLVecElementType(toType));
- const auto toSize = hlsl::GetHLSLVecSize(toType);
- const uint32_t composite = doExpr(subExpr);
- llvm::SmallVector<uint32_t, 4> elements;
- for (uint32_t i = 0; i < toSize; ++i) {
- elements.push_back(
- theBuilder.createCompositeExtract(elemTypeId, composite, {i}));
- }
- auto valueId = elements.front();
- if (toSize > 1)
- valueId = theBuilder.createCompositeConstruct(toVecTypeId, elements);
- return SpirvEvalInfo(valueId).setRValue();
- }
- case CastKind::CK_HLSLVectorToScalarCast: {
- // The underlying should already be a vector of size 1.
- assert(hlsl::GetHLSLVecSize(subExprType) == 1);
- return doExpr(subExpr);
- }
- case CastKind::CK_HLSLVectorToMatrixCast: {
- // If target type is already an 1xN matrix type, we just return the
- // underlying vector.
- if (TypeTranslator::is1xNMatrix(toType))
- return doExpr(subExpr);
- // A vector can have no more than 4 elements. The only remaining case
- // is casting from size-4 vector to size-2-by-2 matrix.
- const auto vec = loadIfGLValue(subExpr);
- QualType elemType = {};
- uint32_t rowCount = 0, colCount = 0;
- const bool isMat =
- TypeTranslator::isMxNMatrix(toType, &elemType, &rowCount, &colCount);
- assert(isMat && rowCount == 2 && colCount == 2);
- uint32_t vec2Type =
- theBuilder.getVecType(typeTranslator.translateType(elemType), 2);
- const auto subVec1 =
- theBuilder.createVectorShuffle(vec2Type, vec, vec, {0, 1});
- const auto subVec2 =
- theBuilder.createVectorShuffle(vec2Type, vec, vec, {2, 3});
- const auto mat = theBuilder.createCompositeConstruct(
- theBuilder.getMatType(elemType, vec2Type, 2), {subVec1, subVec2});
- return SpirvEvalInfo(mat).setRValue();
- }
- case CastKind::CK_HLSLMatrixSplat: {
- // From scalar to matrix
- uint32_t rowCount = 0, colCount = 0;
- hlsl::GetHLSLMatRowColCount(toType, rowCount, colCount);
- // Handle degenerated cases first
- if (rowCount == 1 && colCount == 1)
- return doExpr(subExpr);
- if (colCount == 1)
- return createVectorSplat(subExpr, rowCount);
- const auto vecSplat = createVectorSplat(subExpr, colCount);
- if (rowCount == 1)
- return vecSplat;
- const uint32_t matType = typeTranslator.translateType(toType);
- llvm::SmallVector<uint32_t, 4> vectors(size_t(rowCount), vecSplat);
- if (vecSplat.isConstant()) {
- const auto valueId = theBuilder.getConstantComposite(matType, vectors);
- return SpirvEvalInfo(valueId).setConstant().setRValue();
- } else {
- const auto valueId =
- theBuilder.createCompositeConstruct(matType, vectors);
- return SpirvEvalInfo(valueId).setRValue();
- }
- }
- case CastKind::CK_HLSLMatrixTruncationCast: {
- const QualType srcType = subExprType;
- const uint32_t srcId = doExpr(subExpr);
- const QualType elemType = hlsl::GetHLSLMatElementType(srcType);
- const uint32_t dstTypeId = typeTranslator.translateType(toType);
- llvm::SmallVector<uint32_t, 4> indexes;
- // It is possible that the source matrix is in fact a vector.
- // For example: Truncate float1x3 --> float1x2.
- // The front-end disallows float1x3 --> float2x1.
- {
- uint32_t srcVecSize = 0, dstVecSize = 0;
- if (TypeTranslator::isVectorType(srcType, nullptr, &srcVecSize) &&
- TypeTranslator::isVectorType(toType, nullptr, &dstVecSize)) {
- for (uint32_t i = 0; i < dstVecSize; ++i)
- indexes.push_back(i);
- const auto valId =
- theBuilder.createVectorShuffle(dstTypeId, srcId, srcId, indexes);
- return SpirvEvalInfo(valId).setRValue();
- }
- }
- uint32_t srcRows = 0, srcCols = 0, dstRows = 0, dstCols = 0;
- hlsl::GetHLSLMatRowColCount(srcType, srcRows, srcCols);
- hlsl::GetHLSLMatRowColCount(toType, dstRows, dstCols);
- const uint32_t elemTypeId = typeTranslator.translateType(elemType);
- const uint32_t srcRowType = theBuilder.getVecType(elemTypeId, srcCols);
- // Indexes to pass to OpVectorShuffle
- for (uint32_t i = 0; i < dstCols; ++i)
- indexes.push_back(i);
- llvm::SmallVector<uint32_t, 4> extractedVecs;
- for (uint32_t row = 0; row < dstRows; ++row) {
- // Extract a row
- uint32_t rowId =
- theBuilder.createCompositeExtract(srcRowType, srcId, {row});
- // Extract the necessary columns from that row.
- // The front-end ensures dstCols <= srcCols.
- // If dstCols equals srcCols, we can use the whole row directly.
- if (dstCols == 1) {
- rowId = theBuilder.createCompositeExtract(elemTypeId, rowId, {0});
- } else if (dstCols < srcCols) {
- rowId = theBuilder.createVectorShuffle(
- theBuilder.getVecType(elemTypeId, dstCols), rowId, rowId, indexes);
- }
- extractedVecs.push_back(rowId);
- }
- uint32_t valId = extractedVecs.front();
- if (extractedVecs.size() > 1) {
- valId = theBuilder.createCompositeConstruct(
- typeTranslator.translateType(toType), extractedVecs);
- }
- return SpirvEvalInfo(valId).setRValue();
- }
- case CastKind::CK_HLSLMatrixToScalarCast: {
- // The underlying should already be a matrix of 1x1.
- assert(TypeTranslator::is1x1Matrix(subExprType));
- return doExpr(subExpr);
- }
- case CastKind::CK_HLSLMatrixToVectorCast: {
- // The underlying should already be a matrix of 1xN.
- assert(TypeTranslator::is1xNMatrix(subExprType) ||
- TypeTranslator::isMx1Matrix(subExprType));
- return doExpr(subExpr);
- }
- case CastKind::CK_FunctionToPointerDecay:
- // Just need to return the function id
- return doExpr(subExpr);
- case CastKind::CK_FlatConversion: {
- uint32_t subExprId = 0;
- QualType evalType = subExprType;
- // Optimization: we can use OpConstantNull for cases where we want to
- // initialize an entire data structure to zeros.
- if (evaluatesToConstZero(subExpr, astContext)) {
- subExprId =
- theBuilder.getConstantNull(typeTranslator.translateType(toType));
- return SpirvEvalInfo(subExprId).setRValue().setConstant();
- }
- TypeTranslator::LiteralTypeHint hint(typeTranslator);
- // Try to evaluate float literals as float rather than double.
- if (const auto *floatLiteral = dyn_cast<FloatingLiteral>(subExpr)) {
- subExprId = tryToEvaluateAsFloat32(floatLiteral->getValue());
- if (subExprId)
- evalType = astContext.FloatTy;
- }
- // Evaluate 'literal float' initializer type as float rather than double.
- // TODO: This could result in rounding error if the initializer is a
- // non-literal expression that requires larger than 32 bits and has the
- // 'literal float' type.
- else if (subExprType->isSpecificBuiltinType(BuiltinType::LitFloat)) {
- evalType = astContext.FloatTy;
- hint.setHint(astContext.FloatTy);
- }
- // Try to evaluate integer literals as 32-bit int rather than 64-bit int.
- else if (const auto *intLiteral = dyn_cast<IntegerLiteral>(subExpr)) {
- const bool isSigned = subExprType->isSignedIntegerType();
- subExprId = tryToEvaluateAsInt32(intLiteral->getValue(), isSigned);
- if (subExprId)
- evalType = isSigned ? astContext.IntTy : astContext.UnsignedIntTy;
- }
- // For assigning one array instance to another one with the same array type
- // (regardless of constness and literalness), the rhs will be wrapped in a
- // FlatConversion:
- // |- <lhs>
- // `- ImplicitCastExpr <FlatConversion>
- // `- ImplicitCastExpr <LValueToRValue>
- // `- <rhs>
- // This FlatConversion does not affect CodeGen, so that we can ignore it.
- else if (subExprType->isArrayType() &&
- typeTranslator.isSameType(expr->getType(), subExprType)) {
- return doExpr(subExpr);
- }
- if (!subExprId)
- subExprId = doExpr(subExpr);
- const auto valId =
- processFlatConversion(toType, evalType, subExprId, expr->getExprLoc());
- return SpirvEvalInfo(valId).setRValue();
- }
- case CastKind::CK_UncheckedDerivedToBase:
- case CastKind::CK_HLSLDerivedToBase: {
- // Find the index sequence of the base to which we are casting
- llvm::SmallVector<uint32_t, 4> baseIndices;
- getBaseClassIndices(expr, &baseIndices);
- // Turn them in to SPIR-V constants
- for (uint32_t i = 0; i < baseIndices.size(); ++i)
- baseIndices[i] = theBuilder.getConstantUint32(baseIndices[i]);
- auto derivedInfo = doExpr(subExpr);
- return turnIntoElementPtr(derivedInfo, expr->getType(), baseIndices);
- }
- default:
- emitError("implicit cast kind '%0' unimplemented", expr->getExprLoc())
- << expr->getCastKindName() << expr->getSourceRange();
- expr->dump();
- return 0;
- }
- }
- uint32_t SPIRVEmitter::processFlatConversion(const QualType type,
- const QualType initType,
- const uint32_t initId,
- SourceLocation srcLoc) {
- // Try to translate the canonical type first
- const auto canonicalType = type.getCanonicalType();
- if (canonicalType != type)
- return processFlatConversion(canonicalType, initType, initId, srcLoc);
- // Primitive types
- {
- QualType ty = {};
- if (TypeTranslator::isScalarType(type, &ty)) {
- if (const auto *builtinType = ty->getAs<BuiltinType>()) {
- switch (builtinType->getKind()) {
- case BuiltinType::Void: {
- emitError("cannot create a constant of void type", srcLoc);
- return 0;
- }
- case BuiltinType::Bool:
- return castToBool(initId, initType, ty);
- // Target type is an integer variant.
- case BuiltinType::Int:
- case BuiltinType::Short:
- case BuiltinType::Min12Int:
- case BuiltinType::UShort:
- case BuiltinType::UInt:
- case BuiltinType::Long:
- case BuiltinType::LongLong:
- case BuiltinType::ULong:
- case BuiltinType::ULongLong:
- return castToInt(initId, initType, ty, srcLoc);
- // Target type is a float variant.
- case BuiltinType::Double:
- case BuiltinType::Float:
- case BuiltinType::Half:
- case BuiltinType::Min10Float:
- return castToFloat(initId, initType, ty, srcLoc);
- default:
- emitError("flat conversion of type %0 unimplemented", srcLoc)
- << builtinType->getTypeClassName();
- return 0;
- }
- }
- }
- }
- // Vector types
- {
- QualType elemType = {};
- uint32_t elemCount = {};
- if (TypeTranslator::isVectorType(type, &elemType, &elemCount)) {
- const uint32_t elemId =
- processFlatConversion(elemType, initType, initId, srcLoc);
- llvm::SmallVector<uint32_t, 4> constituents(size_t(elemCount), elemId);
- return theBuilder.createCompositeConstruct(
- typeTranslator.translateType(type), constituents);
- }
- }
- // Matrix types
- {
- QualType elemType = {};
- uint32_t rowCount = 0, colCount = 0;
- if (TypeTranslator::isMxNMatrix(type, &elemType, &rowCount, &colCount)) {
- // By default HLSL matrices are row major, while SPIR-V matrices are
- // column major. We are mapping what HLSL semantically mean a row into a
- // column here.
- const uint32_t vecType = theBuilder.getVecType(
- typeTranslator.translateType(elemType), colCount);
- const uint32_t elemId =
- processFlatConversion(elemType, initType, initId, srcLoc);
- const llvm::SmallVector<uint32_t, 4> constituents(size_t(colCount),
- elemId);
- const uint32_t colId =
- theBuilder.createCompositeConstruct(vecType, constituents);
- const llvm::SmallVector<uint32_t, 4> rows(size_t(rowCount), colId);
- return theBuilder.createCompositeConstruct(
- typeTranslator.translateType(type), rows);
- }
- }
- // Struct type
- if (const auto *structType = type->getAs<RecordType>()) {
- const auto *decl = structType->getDecl();
- llvm::SmallVector<uint32_t, 4> fields;
- for (const auto *field : decl->fields()) {
- // There is a special case for FlatConversion. If T is a struct with only
- // one member, S, then (T)<an-instance-of-S> is allowed, which essentially
- // constructs a new T instance using the instance of S as its only member.
- // Check whether we are handling that case here first.
- if (field->getType().getCanonicalType() == initType.getCanonicalType()) {
- fields.push_back(initId);
- } else {
- fields.push_back(
- processFlatConversion(field->getType(), initType, initId, srcLoc));
- }
- }
- return theBuilder.createCompositeConstruct(
- typeTranslator.translateType(type), fields);
- }
- // Array type
- if (const auto *arrayType = astContext.getAsConstantArrayType(type)) {
- const auto size =
- static_cast<uint32_t>(arrayType->getSize().getZExtValue());
- const uint32_t elemId = processFlatConversion(arrayType->getElementType(),
- initType, initId, srcLoc);
- llvm::SmallVector<uint32_t, 4> constituents(size_t(size), elemId);
- return theBuilder.createCompositeConstruct(
- typeTranslator.translateType(type), constituents);
- }
- emitError("flat conversion of type %0 unimplemented", {})
- << type->getTypeClassName();
- type->dump();
- return 0;
- }
- SpirvEvalInfo
- SPIRVEmitter::doCompoundAssignOperator(const CompoundAssignOperator *expr) {
- const auto opcode = expr->getOpcode();
- // Try to optimize floatMxN *= float and floatN *= float case
- if (opcode == BO_MulAssign) {
- if (SpirvEvalInfo result = tryToGenFloatMatrixScale(expr))
- return result;
- if (SpirvEvalInfo result = tryToGenFloatVectorScale(expr))
- return result;
- }
- const auto *rhs = expr->getRHS();
- const auto *lhs = expr->getLHS();
- SpirvEvalInfo lhsPtr = 0;
- const auto result =
- processBinaryOp(lhs, rhs, opcode, expr->getComputationLHSType(),
- expr->getType(), expr->getSourceRange(), &lhsPtr);
- return processAssignment(lhs, result, true, lhsPtr);
- }
- SpirvEvalInfo
- SPIRVEmitter::doConditionalOperator(const ConditionalOperator *expr) {
- const auto type = expr->getType();
- // Enhancement for special case when the ConditionalOperator return type is a
- // literal type. For example:
- //
- // float a = cond ? 1 : 2;
- // int b = cond ? 1.5 : 2.5;
- //
- // There will be no indications about whether '1' and '2' should be used as
- // 32-bit or 64-bit integers. Similarly, there will be no indication about
- // whether '1.5' and '2.5' should be used as 32-bit or 64-bit floats.
- //
- // We want to avoid using 64-bit int and 64-bit float as much as possible.
- //
- // Note that if the literal is in fact large enough that it can't be
- // represented in 32 bits (e.g. integer larger than 3e+9), we should *not*
- // provide a hint.
- TypeTranslator::LiteralTypeHint hint(typeTranslator);
- const bool isLitInt = type->isSpecificBuiltinType(BuiltinType::LitInt);
- const bool isLitFloat = type->isSpecificBuiltinType(BuiltinType::LitFloat);
- // Return type of ConditionalOperator is a 'literal int' or 'literal float'
- if (isLitInt || isLitFloat) {
- // There is no hint about the intended usage of the literal type.
- if (typeTranslator.getIntendedLiteralType(type) == type) {
- // If either branch is a literal that is larger than 32-bits, do not
- // provide a hint.
- if (!isLiteralLargerThan32Bits(expr->getTrueExpr()) &&
- !isLiteralLargerThan32Bits(expr->getFalseExpr())) {
- if (isLitInt)
- hint.setHint(astContext.IntTy);
- else if (isLitFloat)
- hint.setHint(astContext.FloatTy);
- }
- }
- }
- // According to HLSL doc, all sides of the ?: expression are always
- // evaluated.
- const uint32_t typeId = typeTranslator.translateType(type);
- // If we are selecting between two SampleState objects, none of the three
- // operands has a LValueToRValue implicit cast.
- uint32_t condition = loadIfGLValue(expr->getCond());
- const auto trueBranch = loadIfGLValue(expr->getTrueExpr());
- const auto falseBranch = loadIfGLValue(expr->getFalseExpr());
- // For cases where the return type is a scalar or a vector, we can use
- // OpSelect to choose between the two. OpSelect's return type must be either
- // scalar or vector.
- if (TypeTranslator::isScalarType(type) ||
- TypeTranslator::isVectorType(type)) {
- // The SPIR-V OpSelect instruction must have a selection argument that is
- // the same size as the return type. If the return type is a vector, the
- // selection must be a vector of booleans (one per output component).
- uint32_t count = 0;
- if (TypeTranslator::isVectorType(expr->getType(), nullptr, &count) &&
- !TypeTranslator::isVectorType(expr->getCond()->getType())) {
- const uint32_t condVecType =
- theBuilder.getVecType(theBuilder.getBoolType(), count);
- const llvm::SmallVector<uint32_t, 4> components(size_t(count), condition);
- condition = theBuilder.createCompositeConstruct(condVecType, components);
- }
- auto valueId =
- theBuilder.createSelect(typeId, condition, trueBranch, falseBranch);
- return SpirvEvalInfo(valueId).setRValue();
- }
- // If we can't use OpSelect, we need to create if-else control flow.
- const uint32_t tempVar = theBuilder.addFnVar(typeId, "temp.var.ternary");
- const uint32_t thenBB = theBuilder.createBasicBlock("if.true");
- const uint32_t mergeBB = theBuilder.createBasicBlock("if.merge");
- const uint32_t elseBB = theBuilder.createBasicBlock("if.false");
- // Create the branch instruction. This will end the current basic block.
- theBuilder.createConditionalBranch(condition, thenBB, elseBB, mergeBB);
- theBuilder.addSuccessor(thenBB);
- theBuilder.addSuccessor(elseBB);
- theBuilder.setMergeTarget(mergeBB);
- // Handle the then branch
- theBuilder.setInsertPoint(thenBB);
- theBuilder.createStore(tempVar, trueBranch);
- theBuilder.createBranch(mergeBB);
- theBuilder.addSuccessor(mergeBB);
- // Handle the else branch
- theBuilder.setInsertPoint(elseBB);
- theBuilder.createStore(tempVar, falseBranch);
- theBuilder.createBranch(mergeBB);
- theBuilder.addSuccessor(mergeBB);
- // From now on, emit instructions into the merge block.
- theBuilder.setInsertPoint(mergeBB);
- return SpirvEvalInfo(theBuilder.createLoad(typeId, tempVar)).setRValue();
- }
- uint32_t SPIRVEmitter::processByteAddressBufferStructuredBufferGetDimensions(
- const CXXMemberCallExpr *expr) {
- const auto *object = expr->getImplicitObjectArgument();
- const auto objectId = loadIfAliasVarRef(object);
- const auto type = object->getType();
- const bool isByteAddressBuffer = TypeTranslator::isByteAddressBuffer(type) ||
- TypeTranslator::isRWByteAddressBuffer(type);
- const bool isStructuredBuffer =
- TypeTranslator::isStructuredBuffer(type) ||
- TypeTranslator::isAppendStructuredBuffer(type) ||
- TypeTranslator::isConsumeStructuredBuffer(type);
- assert(isByteAddressBuffer || isStructuredBuffer);
- // (RW)ByteAddressBuffers/(RW)StructuredBuffers are represented as a structure
- // with only one member that is a runtime array. We need to perform
- // OpArrayLength on member 0.
- const auto uintType = theBuilder.getUint32Type();
- uint32_t length =
- theBuilder.createBinaryOp(spv::Op::OpArrayLength, uintType, objectId, 0);
- // For (RW)ByteAddressBuffers, GetDimensions() must return the array length
- // in bytes, but OpArrayLength returns the number of uints in the runtime
- // array. Therefore we must multiply the results by 4.
- if (isByteAddressBuffer) {
- length = theBuilder.createBinaryOp(spv::Op::OpIMul, uintType, length,
- theBuilder.getConstantUint32(4u));
- }
- theBuilder.createStore(doExpr(expr->getArg(0)), length);
- if (isStructuredBuffer) {
- // For (RW)StructuredBuffer, the stride of the runtime array (which is the
- // size of the struct) must also be written to the second argument.
- uint32_t size = 0, stride = 0;
- std::tie(std::ignore, size) = typeTranslator.getAlignmentAndSize(
- type, spirvOptions.sBufferLayoutRule, &stride);
- const auto sizeId = theBuilder.getConstantUint32(size);
- theBuilder.createStore(doExpr(expr->getArg(1)), sizeId);
- }
- return 0;
- }
- uint32_t SPIRVEmitter::processRWByteAddressBufferAtomicMethods(
- hlsl::IntrinsicOp opcode, const CXXMemberCallExpr *expr) {
- // The signature of RWByteAddressBuffer atomic methods are largely:
- // void Interlocked*(in UINT dest, in UINT value);
- // void Interlocked*(in UINT dest, in UINT value, out UINT original_value);
- const auto *object = expr->getImplicitObjectArgument();
- const auto objectInfo = loadIfAliasVarRef(object);
- const auto uintType = theBuilder.getUint32Type();
- const uint32_t zero = theBuilder.getConstantUint32(0);
- const uint32_t offset = doExpr(expr->getArg(0));
- // Right shift by 2 to convert the byte offset to uint32_t offset
- const uint32_t address =
- theBuilder.createBinaryOp(spv::Op::OpShiftRightLogical, uintType, offset,
- theBuilder.getConstantUint32(2));
- const auto ptrType =
- theBuilder.getPointerType(uintType, objectInfo.getStorageClass());
- const uint32_t ptr =
- theBuilder.createAccessChain(ptrType, objectInfo, {zero, address});
- const uint32_t scope = theBuilder.getConstantUint32(1); // Device
- const bool isCompareExchange =
- opcode == hlsl::IntrinsicOp::MOP_InterlockedCompareExchange;
- const bool isCompareStore =
- opcode == hlsl::IntrinsicOp::MOP_InterlockedCompareStore;
- if (isCompareExchange || isCompareStore) {
- const uint32_t comparator = doExpr(expr->getArg(1));
- const uint32_t originalVal = theBuilder.createAtomicCompareExchange(
- uintType, ptr, scope, zero, zero, doExpr(expr->getArg(2)), comparator);
- if (isCompareExchange)
- theBuilder.createStore(doExpr(expr->getArg(3)), originalVal);
- } else {
- const uint32_t value = doExpr(expr->getArg(1));
- const uint32_t originalVal = theBuilder.createAtomicOp(
- translateAtomicHlslOpcodeToSpirvOpcode(opcode), uintType, ptr, scope,
- zero, value);
- if (expr->getNumArgs() > 2)
- theBuilder.createStore(doExpr(expr->getArg(2)), originalVal);
- }
- return 0;
- }
- uint32_t SPIRVEmitter::processGetSamplePosition(const CXXMemberCallExpr *expr) {
- const auto *object = expr->getImplicitObjectArgument()->IgnoreParens();
- const auto sampleCount = theBuilder.createUnaryOp(
- spv::Op::OpImageQuerySamples, theBuilder.getUint32Type(),
- loadIfGLValue(object));
- emitWarning(
- "GetSamplePosition only supports standard sample settings with 1, 2, 4, "
- "8, or 16 samples and will return float2(0, 0) for other cases",
- expr->getCallee()->getExprLoc());
- return emitGetSamplePosition(sampleCount, doExpr(expr->getArg(0)));
- }
- SpirvEvalInfo SPIRVEmitter::processSubpassLoad(const CXXMemberCallExpr *expr) {
- const auto *object = expr->getImplicitObjectArgument()->IgnoreParens();
- const uint32_t sample = expr->getNumArgs() == 1 ? doExpr(expr->getArg(0)) : 0;
- const uint32_t zero = theBuilder.getConstantInt32(0);
- const uint32_t location = theBuilder.getConstantComposite(
- theBuilder.getVecType(theBuilder.getInt32Type(), 2), {zero, zero});
- return processBufferTextureLoad(object, location, /*constOffset*/ 0,
- /*varOffset*/ 0, /*lod*/ sample,
- /*residencyCode*/ 0);
- }
- uint32_t
- SPIRVEmitter::processBufferTextureGetDimensions(const CXXMemberCallExpr *expr) {
- const auto *object = expr->getImplicitObjectArgument();
- const auto objectId = loadIfGLValue(object);
- const auto type = object->getType();
- const auto *recType = type->getAs<RecordType>();
- assert(recType);
- const auto typeName = recType->getDecl()->getName();
- const auto numArgs = expr->getNumArgs();
- const Expr *mipLevel = nullptr, *numLevels = nullptr, *numSamples = nullptr;
- assert(TypeTranslator::isTexture(type) || TypeTranslator::isRWTexture(type) ||
- TypeTranslator::isBuffer(type) || TypeTranslator::isRWBuffer(type));
- // For Texture1D, arguments are either:
- // a) width
- // b) MipLevel, width, NumLevels
- // For Texture1DArray, arguments are either:
- // a) width, elements
- // b) MipLevel, width, elements, NumLevels
- // For Texture2D, arguments are either:
- // a) width, height
- // b) MipLevel, width, height, NumLevels
- // For Texture2DArray, arguments are either:
- // a) width, height, elements
- // b) MipLevel, width, height, elements, NumLevels
- // For Texture3D, arguments are either:
- // a) width, height, depth
- // b) MipLevel, width, height, depth, NumLevels
- // For Texture2DMS, arguments are: width, height, NumSamples
- // For Texture2DMSArray, arguments are: width, height, elements, NumSamples
- // For TextureCube, arguments are either:
- // a) width, height
- // b) MipLevel, width, height, NumLevels
- // For TextureCubeArray, arguments are either:
- // a) width, height, elements
- // b) MipLevel, width, height, elements, NumLevels
- // Note: SPIR-V Spec requires return type of OpImageQuerySize(Lod) to be a
- // scalar/vector of integers. SPIR-V Spec also requires return type of
- // OpImageQueryLevels and OpImageQuerySamples to be scalar integers.
- // The HLSL methods, however, have overloaded functions which have float
- // output arguments. Since the AST naturally won't have casting AST nodes for
- // such cases, we'll have to perform the cast ourselves.
- const auto storeToOutputArg = [this](const Expr *outputArg,
- uint32_t toStoreId) {
- const auto outputArgType = outputArg->getType();
- // Perform cast to float if necessary.
- if (isFloatOrVecMatOfFloatType(outputArgType)) {
- toStoreId = theBuilder.createUnaryOp(
- spv::Op::OpConvertUToF, typeTranslator.translateType(outputArgType),
- toStoreId);
- }
- theBuilder.createStore(doExpr(outputArg), toStoreId);
- };
- if ((typeName == "Texture1D" && numArgs > 1) ||
- (typeName == "Texture2D" && numArgs > 2) ||
- (typeName == "TextureCube" && numArgs > 2) ||
- (typeName == "Texture3D" && numArgs > 3) ||
- (typeName == "Texture1DArray" && numArgs > 2) ||
- (typeName == "TextureCubeArray" && numArgs > 3) ||
- (typeName == "Texture2DArray" && numArgs > 3)) {
- mipLevel = expr->getArg(0);
- numLevels = expr->getArg(numArgs - 1);
- }
- if (TypeTranslator::isTextureMS(type)) {
- numSamples = expr->getArg(numArgs - 1);
- }
- uint32_t querySize = numArgs;
- // If numLevels arg is present, mipLevel must also be present. These are not
- // queried via ImageQuerySizeLod.
- if (numLevels)
- querySize -= 2;
- // If numLevels arg is present, mipLevel must also be present.
- else if (numSamples)
- querySize -= 1;
- const uint32_t uintId = theBuilder.getUint32Type();
- const uint32_t resultTypeId =
- querySize == 1 ? uintId : theBuilder.getVecType(uintId, querySize);
- // Only Texture types use ImageQuerySizeLod.
- // TextureMS, RWTexture, Buffers, RWBuffers use ImageQuerySize.
- uint32_t lod = 0;
- if (TypeTranslator::isTexture(type) && !numSamples) {
- if (mipLevel) {
- // For Texture types when mipLevel argument is present.
- lod = doExpr(mipLevel);
- } else {
- // For Texture types when mipLevel argument is omitted.
- lod = theBuilder.getConstantInt32(0);
- }
- }
- const uint32_t query =
- lod ? theBuilder.createBinaryOp(spv::Op::OpImageQuerySizeLod,
- resultTypeId, objectId, lod)
- : theBuilder.createUnaryOp(spv::Op::OpImageQuerySize, resultTypeId,
- objectId);
- if (querySize == 1) {
- const uint32_t argIndex = mipLevel ? 1 : 0;
- storeToOutputArg(expr->getArg(argIndex), query);
- } else {
- for (uint32_t i = 0; i < querySize; ++i) {
- const uint32_t component =
- theBuilder.createCompositeExtract(uintId, query, {i});
- // If the first arg is the mipmap level, we must write the results
- // starting from Arg(i+1), not Arg(i).
- const uint32_t argIndex = mipLevel ? i + 1 : i;
- storeToOutputArg(expr->getArg(argIndex), component);
- }
- }
- if (numLevels || numSamples) {
- const Expr *numLevelsSamplesArg = numLevels ? numLevels : numSamples;
- const spv::Op opcode =
- numLevels ? spv::Op::OpImageQueryLevels : spv::Op::OpImageQuerySamples;
- const uint32_t numLevelsSamplesQuery =
- theBuilder.createUnaryOp(opcode, uintId, objectId);
- storeToOutputArg(numLevelsSamplesArg, numLevelsSamplesQuery);
- }
- return 0;
- }
- uint32_t
- SPIRVEmitter::processTextureLevelOfDetail(const CXXMemberCallExpr *expr) {
- // Possible signatures are as follows:
- // Texture1D(Array).CalculateLevelOfDetail(SamplerState S, float x);
- // Texture2D(Array).CalculateLevelOfDetail(SamplerState S, float2 xy);
- // TextureCube(Array).CalculateLevelOfDetail(SamplerState S, float3 xyz);
- // Texture3D.CalculateLevelOfDetail(SamplerState S, float3 xyz);
- // Return type is always a single float (LOD).
- assert(expr->getNumArgs() == 2u);
- const auto *object = expr->getImplicitObjectArgument();
- const uint32_t objectId = loadIfGLValue(object);
- const uint32_t samplerState = doExpr(expr->getArg(0));
- const uint32_t coordinate = doExpr(expr->getArg(1));
- const uint32_t sampledImageType = theBuilder.getSampledImageType(
- typeTranslator.translateType(object->getType()));
- const uint32_t sampledImage = theBuilder.createBinaryOp(
- spv::Op::OpSampledImage, sampledImageType, objectId, samplerState);
- // The result type of OpImageQueryLod must be a float2.
- const uint32_t queryResultType =
- theBuilder.getVecType(theBuilder.getFloat32Type(), 2u);
- const uint32_t query = theBuilder.createBinaryOp(
- spv::Op::OpImageQueryLod, queryResultType, sampledImage, coordinate);
- // The first component of the float2 contains the mipmap array layer.
- return theBuilder.createCompositeExtract(theBuilder.getFloat32Type(), query,
- {0});
- }
- uint32_t SPIRVEmitter::processTextureGatherRGBACmpRGBA(
- const CXXMemberCallExpr *expr, const bool isCmp, const uint32_t component) {
- // Parameters for .Gather{Red|Green|Blue|Alpha}() are one of the following
- // two sets:
- // * SamplerState s, float2 location, int2 offset
- // * SamplerState s, float2 location, int2 offset0, int2 offset1,
- // int offset2, int2 offset3
- //
- // An additional 'out uint status' parameter can appear in both of the above.
- //
- // Parameters for .GatherCmp{Red|Green|Blue|Alpha}() are one of the following
- // two sets:
- // * SamplerState s, float2 location, float compare_value, int2 offset
- // * SamplerState s, float2 location, float compare_value, int2 offset1,
- // int2 offset2, int2 offset3, int2 offset4
- //
- // An additional 'out uint status' parameter can appear in both of the above.
- //
- // TextureCube's signature is somewhat different from the rest.
- // Parameters for .Gather{Red|Green|Blue|Alpha}() for TextureCube are:
- // * SamplerState s, float2 location, out uint status
- // Parameters for .GatherCmp{Red|Green|Blue|Alpha}() for TextureCube are:
- // * SamplerState s, float2 location, float compare_value, out uint status
- //
- // Return type is always a 4-component vector.
- const FunctionDecl *callee = expr->getDirectCallee();
- const auto numArgs = expr->getNumArgs();
- const auto *imageExpr = expr->getImplicitObjectArgument();
- const QualType imageType = imageExpr->getType();
- const auto imageTypeId = typeTranslator.translateType(imageType);
- const auto retTypeId = typeTranslator.translateType(callee->getReturnType());
- // If the last arg is an unsigned integer, it must be the status.
- const bool hasStatusArg =
- expr->getArg(numArgs - 1)->getType()->isUnsignedIntegerType();
- // Subtract 1 for status arg (if it exists), subtract 1 for compare_value (if
- // it exists), and subtract 2 for SamplerState and location.
- const auto numOffsetArgs = numArgs - hasStatusArg - isCmp - 2;
- // No offset args for TextureCube, 1 or 4 offset args for the rest.
- assert(numOffsetArgs == 0 || numOffsetArgs == 1 || numOffsetArgs == 4);
- const uint32_t image = loadIfGLValue(imageExpr);
- const uint32_t sampler = doExpr(expr->getArg(0));
- const uint32_t coordinate = doExpr(expr->getArg(1));
- const uint32_t compareVal = isCmp ? doExpr(expr->getArg(2)) : 0;
- // Handle offsets (if any).
- bool needsEmulation = false;
- uint32_t constOffset = 0, varOffset = 0, constOffsets = 0;
- if (numOffsetArgs == 1) {
- // The offset arg is not optional.
- handleOffsetInMethodCall(expr, 2 + isCmp, &constOffset, &varOffset);
- } else if (numOffsetArgs == 4) {
- const auto offset0 = tryToEvaluateAsConst(expr->getArg(2 + isCmp));
- const auto offset1 = tryToEvaluateAsConst(expr->getArg(3 + isCmp));
- const auto offset2 = tryToEvaluateAsConst(expr->getArg(4 + isCmp));
- const auto offset3 = tryToEvaluateAsConst(expr->getArg(5 + isCmp));
- // If any of the offsets is not constant, we then need to emulate the call
- // using 4 OpImageGather instructions. Otherwise, we can leverage the
- // ConstOffsets image operand.
- if (offset0 && offset1 && offset2 && offset3) {
- const uint32_t v2i32 =
- theBuilder.getVecType(theBuilder.getInt32Type(), 2);
- const uint32_t offsetType =
- theBuilder.getArrayType(v2i32, theBuilder.getConstantUint32(4));
- constOffsets = theBuilder.getConstantComposite(
- offsetType, {offset0, offset1, offset2, offset3});
- } else {
- needsEmulation = true;
- }
- }
- const auto status = hasStatusArg ? doExpr(expr->getArg(numArgs - 1)) : 0;
- if (needsEmulation) {
- const auto elemType = typeTranslator.translateType(
- hlsl::GetHLSLVecElementType(callee->getReturnType()));
- uint32_t texels[4];
- for (uint32_t i = 0; i < 4; ++i) {
- varOffset = doExpr(expr->getArg(2 + isCmp + i));
- const uint32_t gatherRet = theBuilder.createImageGather(
- retTypeId, imageTypeId, image, sampler, coordinate,
- theBuilder.getConstantInt32(component), compareVal, /*constOffset*/ 0,
- varOffset, /*constOffsets*/ 0, /*sampleNumber*/ 0, status);
- texels[i] = theBuilder.createCompositeExtract(elemType, gatherRet, {i});
- }
- return theBuilder.createCompositeConstruct(
- retTypeId, {texels[0], texels[1], texels[2], texels[3]});
- }
- return theBuilder.createImageGather(
- retTypeId, imageTypeId, image, sampler, coordinate,
- theBuilder.getConstantInt32(component), compareVal, constOffset,
- varOffset, constOffsets, /*sampleNumber*/ 0, status);
- }
- uint32_t SPIRVEmitter::processTextureGatherCmp(const CXXMemberCallExpr *expr) {
- // Signature for Texture2D/Texture2DArray:
- //
- // float4 GatherCmp(
- // in SamplerComparisonState s,
- // in float2 location,
- // in float compare_value
- // [,in int2 offset]
- // [,out uint Status]
- // );
- //
- // Signature for TextureCube/TextureCubeArray:
- //
- // float4 GatherCmp(
- // in SamplerComparisonState s,
- // in float2 location,
- // in float compare_value,
- // out uint Status
- // );
- //
- // Other Texture types do not have the GatherCmp method.
- const FunctionDecl *callee = expr->getDirectCallee();
- const auto numArgs = expr->getNumArgs();
- const bool hasStatusArg =
- expr->getArg(numArgs - 1)->getType()->isUnsignedIntegerType();
- const bool hasOffsetArg = (numArgs == 5) || (numArgs == 4 && !hasStatusArg);
- const auto *imageExpr = expr->getImplicitObjectArgument();
- const uint32_t image = loadIfGLValue(imageExpr);
- const uint32_t sampler = doExpr(expr->getArg(0));
- const uint32_t coordinate = doExpr(expr->getArg(1));
- const uint32_t comparator = doExpr(expr->getArg(2));
- uint32_t constOffset = 0, varOffset = 0;
- if (hasOffsetArg)
- handleOffsetInMethodCall(expr, 3, &constOffset, &varOffset);
- const auto retType = typeTranslator.translateType(callee->getReturnType());
- const auto imageType = typeTranslator.translateType(imageExpr->getType());
- const auto status = hasStatusArg ? doExpr(expr->getArg(numArgs - 1)) : 0;
- return theBuilder.createImageGather(
- retType, imageType, image, sampler, coordinate, /*component*/ 0,
- comparator, constOffset, varOffset, /*constOffsets*/ 0,
- /*sampleNumber*/ 0, status);
- }
- SpirvEvalInfo SPIRVEmitter::processBufferTextureLoad(
- const Expr *object, const uint32_t locationId, uint32_t constOffset,
- uint32_t varOffset, uint32_t lod, uint32_t residencyCode) {
- // Loading for Buffer and RWBuffer translates to an OpImageFetch.
- // The result type of an OpImageFetch must be a vec4 of float or int.
- const auto type = object->getType();
- assert(TypeTranslator::isBuffer(type) || TypeTranslator::isRWBuffer(type) ||
- TypeTranslator::isTexture(type) || TypeTranslator::isRWTexture(type) ||
- TypeTranslator::isSubpassInput(type) ||
- TypeTranslator::isSubpassInputMS(type));
- const bool doFetch =
- TypeTranslator::isBuffer(type) || TypeTranslator::isTexture(type);
- const uint32_t objectId = loadIfGLValue(object);
- // For Texture2DMS and Texture2DMSArray, Sample must be used rather than Lod.
- uint32_t sampleNumber = 0;
- if (TypeTranslator::isTextureMS(type) ||
- TypeTranslator::isSubpassInputMS(type)) {
- sampleNumber = lod;
- lod = 0;
- }
- const auto sampledType = hlsl::GetHLSLResourceResultType(type);
- QualType elemType = sampledType;
- uint32_t elemCount = 1;
- uint32_t elemTypeId = 0;
- (void)TypeTranslator::isVectorType(sampledType, &elemType, &elemCount);
- if (elemType->isFloatingType()) {
- elemTypeId = theBuilder.getFloat32Type();
- } else if (elemType->isSignedIntegerType()) {
- elemTypeId = theBuilder.getInt32Type();
- } else if (elemType->isUnsignedIntegerType()) {
- elemTypeId = theBuilder.getUint32Type();
- } else {
- emitError("buffer/texture type unimplemented", object->getExprLoc());
- return 0;
- }
- // OpImageFetch and OpImageRead can only fetch a vector of 4 elements.
- const uint32_t texelTypeId = theBuilder.getVecType(elemTypeId, 4u);
- const uint32_t texel = theBuilder.createImageFetchOrRead(
- doFetch, texelTypeId, type, objectId, locationId, lod, constOffset,
- varOffset, /*constOffsets*/ 0, sampleNumber, residencyCode);
- // If the result type is a vec1, vec2, or vec3, some extra processing
- // (extraction) is required.
- uint32_t retVal = extractVecFromVec4(texel, elemCount, elemTypeId);
- return SpirvEvalInfo(retVal).setRValue();
- }
- SpirvEvalInfo SPIRVEmitter::processByteAddressBufferLoadStore(
- const CXXMemberCallExpr *expr, uint32_t numWords, bool doStore) {
- uint32_t resultId = 0;
- const auto object = expr->getImplicitObjectArgument();
- const auto type = object->getType();
- const auto objectInfo = loadIfAliasVarRef(object);
- assert(numWords >= 1 && numWords <= 4);
- if (doStore) {
- assert(typeTranslator.isRWByteAddressBuffer(type));
- assert(expr->getNumArgs() == 2);
- } else {
- assert(typeTranslator.isRWByteAddressBuffer(type) ||
- typeTranslator.isByteAddressBuffer(type));
- if (expr->getNumArgs() == 2) {
- emitError(
- "(RW)ByteAddressBuffer::Load(in address, out status) not supported",
- expr->getExprLoc());
- return 0;
- }
- }
- const Expr *addressExpr = expr->getArg(0);
- const uint32_t byteAddress = doExpr(addressExpr);
- const uint32_t addressTypeId =
- typeTranslator.translateType(addressExpr->getType());
- // Do a OpShiftRightLogical by 2 (divide by 4 to get aligned memory
- // access). The AST always casts the address to unsinged integer, so shift
- // by unsinged integer 2.
- const uint32_t constUint2 = theBuilder.getConstantUint32(2);
- const uint32_t address = theBuilder.createBinaryOp(
- spv::Op::OpShiftRightLogical, addressTypeId, byteAddress, constUint2);
- // Perform access chain into the RWByteAddressBuffer.
- // First index must be zero (member 0 of the struct is a
- // runtimeArray). The second index passed to OpAccessChain should be
- // the address.
- const uint32_t uintTypeId = theBuilder.getUint32Type();
- const uint32_t ptrType =
- theBuilder.getPointerType(uintTypeId, objectInfo.getStorageClass());
- const uint32_t constUint0 = theBuilder.getConstantUint32(0);
- if (doStore) {
- const uint32_t valuesId = doExpr(expr->getArg(1));
- uint32_t curStoreAddress = address;
- for (uint32_t wordCounter = 0; wordCounter < numWords; ++wordCounter) {
- // Extract a 32-bit word from the input.
- const uint32_t curValue = numWords == 1
- ? valuesId
- : theBuilder.createCompositeExtract(
- uintTypeId, valuesId, {wordCounter});
- // Update the output address if necessary.
- if (wordCounter > 0) {
- const uint32_t offset = theBuilder.getConstantUint32(wordCounter);
- curStoreAddress = theBuilder.createBinaryOp(
- spv::Op::OpIAdd, addressTypeId, address, offset);
- }
- // Store the word to the right address at the output.
- const uint32_t storePtr = theBuilder.createAccessChain(
- ptrType, objectInfo, {constUint0, curStoreAddress});
- theBuilder.createStore(storePtr, curValue);
- }
- } else {
- uint32_t loadPtr = theBuilder.createAccessChain(ptrType, objectInfo,
- {constUint0, address});
- resultId = theBuilder.createLoad(uintTypeId, loadPtr);
- if (numWords > 1) {
- // Load word 2, 3, and 4 where necessary. Use OpCompositeConstruct to
- // return a vector result.
- llvm::SmallVector<uint32_t, 4> values;
- values.push_back(resultId);
- for (uint32_t wordCounter = 2; wordCounter <= numWords; ++wordCounter) {
- const uint32_t offset = theBuilder.getConstantUint32(wordCounter - 1);
- const uint32_t newAddress = theBuilder.createBinaryOp(
- spv::Op::OpIAdd, addressTypeId, address, offset);
- loadPtr = theBuilder.createAccessChain(ptrType, objectInfo,
- {constUint0, newAddress});
- values.push_back(theBuilder.createLoad(uintTypeId, loadPtr));
- }
- const uint32_t resultType =
- theBuilder.getVecType(addressTypeId, numWords);
- resultId = theBuilder.createCompositeConstruct(resultType, values);
- }
- }
- return SpirvEvalInfo(resultId).setRValue();
- }
- SpirvEvalInfo
- SPIRVEmitter::processStructuredBufferLoad(const CXXMemberCallExpr *expr) {
- if (expr->getNumArgs() == 2) {
- emitError(
- "(RW)StructuredBuffer::Load(in location, out status) not supported",
- expr->getExprLoc());
- return 0;
- }
- const auto *buffer = expr->getImplicitObjectArgument();
- auto info = loadIfAliasVarRef(buffer);
- const QualType structType =
- hlsl::GetHLSLResourceResultType(buffer->getType());
- const uint32_t zero = theBuilder.getConstantInt32(0);
- const uint32_t index = doExpr(expr->getArg(0));
- return turnIntoElementPtr(info, structType, {zero, index});
- }
- uint32_t SPIRVEmitter::incDecRWACSBufferCounter(const CXXMemberCallExpr *expr,
- bool isInc, bool loadObject) {
- const uint32_t i32Type = theBuilder.getInt32Type();
- const uint32_t one = theBuilder.getConstantUint32(1); // As scope: Device
- const uint32_t zero = theBuilder.getConstantUint32(0); // As memory sema: None
- const uint32_t sOne = theBuilder.getConstantInt32(1);
- const auto *object =
- expr->getImplicitObjectArgument()->IgnoreParenNoopCasts(astContext);
- if (loadObject) {
- // We don't need the object's <result-id> here since counter variable is a
- // separate variable. But we still need the side effects of evaluating the
- // object, e.g., if the source code is foo(...).IncrementCounter(), we still
- // want to emit the code for foo(...).
- (void)doExpr(object);
- }
- const auto *counterPair = getFinalACSBufferCounter(object);
- if (!counterPair) {
- emitFatalError("cannot find the associated counter variable",
- object->getExprLoc());
- return 0;
- }
- const uint32_t counterPtrType = theBuilder.getPointerType(
- theBuilder.getInt32Type(), spv::StorageClass::Uniform);
- const uint32_t counterPtr = theBuilder.createAccessChain(
- counterPtrType, counterPair->get(theBuilder, typeTranslator), {zero});
- uint32_t index = 0;
- if (isInc) {
- index = theBuilder.createAtomicOp(spv::Op::OpAtomicIAdd, i32Type,
- counterPtr, one, zero, sOne);
- } else {
- // Note that OpAtomicISub returns the value before the subtraction;
- // so we need to do substraction again with OpAtomicISub's return value.
- const auto prev = theBuilder.createAtomicOp(spv::Op::OpAtomicISub, i32Type,
- counterPtr, one, zero, sOne);
- index = theBuilder.createBinaryOp(spv::Op::OpISub, i32Type, prev, sOne);
- }
- return index;
- }
- bool SPIRVEmitter::tryToAssignCounterVar(const DeclaratorDecl *dstDecl,
- const Expr *srcExpr) {
- // We are handling associated counters here. Casts should not alter which
- // associated counter to manipulate.
- srcExpr = srcExpr->IgnoreParenCasts();
- // For parameters of forward-declared functions. We must make sure the
- // associated counter variable is created. But for forward-declared functions,
- // the translation of the real definition may not be started yet.
- if (const auto *param = dyn_cast<ParmVarDecl>(dstDecl))
- declIdMapper.createFnParamCounterVar(param);
- // For implicit objects of methods. Similar to the above.
- else if (const auto *thisObject = dyn_cast<ImplicitParamDecl>(dstDecl))
- declIdMapper.createFnParamCounterVar(thisObject);
- // Handle AssocCounter#1 (see CounterVarFields comment)
- if (const auto *dstPair = declIdMapper.getCounterIdAliasPair(dstDecl)) {
- const auto *srcPair = getFinalACSBufferCounter(srcExpr);
- if (!srcPair) {
- emitFatalError("cannot find the associated counter variable",
- srcExpr->getExprLoc());
- return false;
- }
- dstPair->assign(*srcPair, theBuilder, typeTranslator);
- return true;
- }
- // Handle AssocCounter#3
- llvm::SmallVector<uint32_t, 4> srcIndices;
- const auto *dstFields = declIdMapper.getCounterVarFields(dstDecl);
- const auto *srcFields = getIntermediateACSBufferCounter(srcExpr, &srcIndices);
- if (dstFields && srcFields) {
- if (!dstFields->assign(*srcFields, theBuilder, typeTranslator)) {
- emitFatalError("cannot handle associated counter variable assignment",
- srcExpr->getExprLoc());
- return false;
- }
- return true;
- }
- // AssocCounter#2 and AssocCounter#4 for the lhs cannot happen since the lhs
- // is a stand-alone decl in this method.
- return false;
- }
- bool SPIRVEmitter::tryToAssignCounterVar(const Expr *dstExpr,
- const Expr *srcExpr) {
- dstExpr = dstExpr->IgnoreParenCasts();
- srcExpr = srcExpr->IgnoreParenCasts();
- const auto *dstPair = getFinalACSBufferCounter(dstExpr);
- const auto *srcPair = getFinalACSBufferCounter(srcExpr);
- if ((dstPair == nullptr) != (srcPair == nullptr)) {
- emitFatalError("cannot handle associated counter variable assignment",
- srcExpr->getExprLoc());
- return false;
- }
- // Handle AssocCounter#1 & AssocCounter#2
- if (dstPair && srcPair) {
- dstPair->assign(*srcPair, theBuilder, typeTranslator);
- return true;
- }
- // Handle AssocCounter#3 & AssocCounter#4
- llvm::SmallVector<uint32_t, 4> dstIndices;
- llvm::SmallVector<uint32_t, 4> srcIndices;
- const auto *srcFields = getIntermediateACSBufferCounter(srcExpr, &srcIndices);
- const auto *dstFields = getIntermediateACSBufferCounter(dstExpr, &dstIndices);
- if (dstFields && srcFields) {
- return dstFields->assign(*srcFields, dstIndices, srcIndices, theBuilder,
- typeTranslator);
- }
- return false;
- }
- const CounterIdAliasPair *
- SPIRVEmitter::getFinalACSBufferCounter(const Expr *expr) {
- // AssocCounter#1: referencing some stand-alone variable
- if (const auto *decl = getReferencedDef(expr))
- return declIdMapper.getCounterIdAliasPair(decl);
- // AssocCounter#2: referencing some non-struct field
- llvm::SmallVector<uint32_t, 4> indices;
- const auto *base =
- collectArrayStructIndices(expr, &indices, /*rawIndex=*/true);
- const auto *decl =
- (base && isa<CXXThisExpr>(base))
- ? getOrCreateDeclForMethodObject(cast<CXXMethodDecl>(curFunction))
- : getReferencedDef(base);
- return declIdMapper.getCounterIdAliasPair(decl, &indices);
- }
- const CounterVarFields *SPIRVEmitter::getIntermediateACSBufferCounter(
- const Expr *expr, llvm::SmallVector<uint32_t, 4> *indices) {
- const auto *base =
- collectArrayStructIndices(expr, indices, /*rawIndex=*/true);
- const auto *decl =
- (base && isa<CXXThisExpr>(base))
- // Use the decl we created to represent the implicit object
- ? getOrCreateDeclForMethodObject(cast<CXXMethodDecl>(curFunction))
- // Find the referenced decl from the original source code
- : getReferencedDef(base);
- return declIdMapper.getCounterVarFields(decl);
- }
- const ImplicitParamDecl *
- SPIRVEmitter::getOrCreateDeclForMethodObject(const CXXMethodDecl *method) {
- const auto found = thisDecls.find(method);
- if (found != thisDecls.end())
- return found->second;
- const std::string name = method->getName().str() + ".this";
- // Create a new identifier to convey the name
- auto &identifier = astContext.Idents.get(name);
- return thisDecls[method] = ImplicitParamDecl::Create(
- astContext, /*DC=*/nullptr, SourceLocation(), &identifier,
- method->getThisType(astContext)->getPointeeType());
- }
- SpirvEvalInfo
- SPIRVEmitter::processACSBufferAppendConsume(const CXXMemberCallExpr *expr) {
- const bool isAppend = expr->getNumArgs() == 1;
- const uint32_t zero = theBuilder.getConstantUint32(0);
- const auto *object =
- expr->getImplicitObjectArgument()->IgnoreParenNoopCasts(astContext);
- auto bufferInfo = loadIfAliasVarRef(object);
- uint32_t index = incDecRWACSBufferCounter(
- expr, isAppend,
- // We have already translated the object in the above. Avoid duplication.
- /*loadObject=*/false);
- const auto bufferElemTy = hlsl::GetHLSLResourceResultType(object->getType());
- (void)turnIntoElementPtr(bufferInfo, bufferElemTy, {zero, index});
- if (isAppend) {
- // Write out the value
- storeValue(bufferInfo, doExpr(expr->getArg(0)), bufferElemTy);
- return 0;
- } else {
- // Note that we are returning a pointer (lvalue) here inorder to further
- // acess the fields in this element, e.g., buffer.Consume().a.b. So we
- // cannot forcefully set all normal function calls as returning rvalue.
- return bufferInfo;
- }
- }
- uint32_t
- SPIRVEmitter::processStreamOutputAppend(const CXXMemberCallExpr *expr) {
- // TODO: handle multiple stream-output objects
- const auto *object =
- expr->getImplicitObjectArgument()->IgnoreParenNoopCasts(astContext);
- const auto *stream = cast<DeclRefExpr>(object)->getDecl();
- const uint32_t value = doExpr(expr->getArg(0));
- declIdMapper.writeBackOutputStream(stream, stream->getType(), value);
- theBuilder.createEmitVertex();
- return 0;
- }
- uint32_t
- SPIRVEmitter::processStreamOutputRestart(const CXXMemberCallExpr *expr) {
- // TODO: handle multiple stream-output objects
- theBuilder.createEndPrimitive();
- return 0;
- }
- uint32_t SPIRVEmitter::emitGetSamplePosition(const uint32_t sampleCount,
- const uint32_t sampleIndex) {
- struct Float2 {
- float x;
- float y;
- };
- static const Float2 pos2[] = {
- {4.0 / 16.0, 4.0 / 16.0},
- {-4.0 / 16.0, -4.0 / 16.0},
- };
- static const Float2 pos4[] = {
- {-2.0 / 16.0, -6.0 / 16.0},
- {6.0 / 16.0, -2.0 / 16.0},
- {-6.0 / 16.0, 2.0 / 16.0},
- {2.0 / 16.0, 6.0 / 16.0},
- };
- static const Float2 pos8[] = {
- {1.0 / 16.0, -3.0 / 16.0}, {-1.0 / 16.0, 3.0 / 16.0},
- {5.0 / 16.0, 1.0 / 16.0}, {-3.0 / 16.0, -5.0 / 16.0},
- {-5.0 / 16.0, 5.0 / 16.0}, {-7.0 / 16.0, -1.0 / 16.0},
- {3.0 / 16.0, 7.0 / 16.0}, {7.0 / 16.0, -7.0 / 16.0},
- };
- static const Float2 pos16[] = {
- {1.0 / 16.0, 1.0 / 16.0}, {-1.0 / 16.0, -3.0 / 16.0},
- {-3.0 / 16.0, 2.0 / 16.0}, {4.0 / 16.0, -1.0 / 16.0},
- {-5.0 / 16.0, -2.0 / 16.0}, {2.0 / 16.0, 5.0 / 16.0},
- {5.0 / 16.0, 3.0 / 16.0}, {3.0 / 16.0, -5.0 / 16.0},
- {-2.0 / 16.0, 6.0 / 16.0}, {0.0 / 16.0, -7.0 / 16.0},
- {-4.0 / 16.0, -6.0 / 16.0}, {-6.0 / 16.0, 4.0 / 16.0},
- {-8.0 / 16.0, 0.0 / 16.0}, {7.0 / 16.0, -4.0 / 16.0},
- {6.0 / 16.0, 7.0 / 16.0}, {-7.0 / 16.0, -8.0 / 16.0},
- };
- // We are emitting the SPIR-V for the following HLSL source code:
- //
- // float2 position;
- //
- // if (count == 2) {
- // position = pos2[index];
- // }
- // else if (count == 4) {
- // position = pos4[index];
- // }
- // else if (count == 8) {
- // position = pos8[index];
- // }
- // else if (count == 16) {
- // position = pos16[index];
- // }
- // else {
- // position = float2(0.0f, 0.0f);
- // }
- const uint32_t boolType = theBuilder.getBoolType();
- const auto v2f32Type = theBuilder.getVecType(theBuilder.getFloat32Type(), 2);
- const uint32_t ptrType =
- theBuilder.getPointerType(v2f32Type, spv::StorageClass::Function);
- // Creates a SPIR-V function scope variable of type float2[len].
- const auto createArray = [this, v2f32Type](const Float2 *ptr, uint32_t len) {
- llvm::SmallVector<uint32_t, 16> components;
- for (uint32_t i = 0; i < len; ++i) {
- const auto x = theBuilder.getConstantFloat32(ptr[i].x);
- const auto y = theBuilder.getConstantFloat32(ptr[i].y);
- components.push_back(theBuilder.getConstantComposite(v2f32Type, {x, y}));
- }
- const auto arrType =
- theBuilder.getArrayType(v2f32Type, theBuilder.getConstantUint32(len));
- const auto val = theBuilder.getConstantComposite(arrType, components);
- const std::string varName =
- "var.GetSamplePosition.data." + std::to_string(len);
- const auto var = theBuilder.addFnVar(arrType, varName);
- theBuilder.createStore(var, val);
- return var;
- };
- const uint32_t pos2Arr = createArray(pos2, 2);
- const uint32_t pos4Arr = createArray(pos4, 4);
- const uint32_t pos8Arr = createArray(pos8, 8);
- const uint32_t pos16Arr = createArray(pos16, 16);
- const uint32_t resultVar =
- theBuilder.addFnVar(v2f32Type, "var.GetSamplePosition.result");
- const uint32_t then2BB =
- theBuilder.createBasicBlock("if.GetSamplePosition.then2");
- const uint32_t then4BB =
- theBuilder.createBasicBlock("if.GetSamplePosition.then4");
- const uint32_t then8BB =
- theBuilder.createBasicBlock("if.GetSamplePosition.then8");
- const uint32_t then16BB =
- theBuilder.createBasicBlock("if.GetSamplePosition.then16");
- const uint32_t else2BB =
- theBuilder.createBasicBlock("if.GetSamplePosition.else2");
- const uint32_t else4BB =
- theBuilder.createBasicBlock("if.GetSamplePosition.else4");
- const uint32_t else8BB =
- theBuilder.createBasicBlock("if.GetSamplePosition.else8");
- const uint32_t else16BB =
- theBuilder.createBasicBlock("if.GetSamplePosition.else16");
- const uint32_t merge2BB =
- theBuilder.createBasicBlock("if.GetSamplePosition.merge2");
- const uint32_t merge4BB =
- theBuilder.createBasicBlock("if.GetSamplePosition.merge4");
- const uint32_t merge8BB =
- theBuilder.createBasicBlock("if.GetSamplePosition.merge8");
- const uint32_t merge16BB =
- theBuilder.createBasicBlock("if.GetSamplePosition.merge16");
- // if (count == 2) {
- const auto check2 =
- theBuilder.createBinaryOp(spv::Op::OpIEqual, boolType, sampleCount,
- theBuilder.getConstantUint32(2));
- theBuilder.createConditionalBranch(check2, then2BB, else2BB, merge2BB);
- theBuilder.addSuccessor(then2BB);
- theBuilder.addSuccessor(else2BB);
- theBuilder.setMergeTarget(merge2BB);
- // position = pos2[index];
- // }
- theBuilder.setInsertPoint(then2BB);
- auto ac = theBuilder.createAccessChain(ptrType, pos2Arr, {sampleIndex});
- theBuilder.createStore(resultVar, theBuilder.createLoad(v2f32Type, ac));
- theBuilder.createBranch(merge2BB);
- theBuilder.addSuccessor(merge2BB);
- // else if (count == 4) {
- theBuilder.setInsertPoint(else2BB);
- const auto check4 =
- theBuilder.createBinaryOp(spv::Op::OpIEqual, boolType, sampleCount,
- theBuilder.getConstantUint32(4));
- theBuilder.createConditionalBranch(check4, then4BB, else4BB, merge4BB);
- theBuilder.addSuccessor(then4BB);
- theBuilder.addSuccessor(else4BB);
- theBuilder.setMergeTarget(merge4BB);
- // position = pos4[index];
- // }
- theBuilder.setInsertPoint(then4BB);
- ac = theBuilder.createAccessChain(ptrType, pos4Arr, {sampleIndex});
- theBuilder.createStore(resultVar, theBuilder.createLoad(v2f32Type, ac));
- theBuilder.createBranch(merge4BB);
- theBuilder.addSuccessor(merge4BB);
- // else if (count == 8) {
- theBuilder.setInsertPoint(else4BB);
- const auto check8 =
- theBuilder.createBinaryOp(spv::Op::OpIEqual, boolType, sampleCount,
- theBuilder.getConstantUint32(8));
- theBuilder.createConditionalBranch(check8, then8BB, else8BB, merge8BB);
- theBuilder.addSuccessor(then8BB);
- theBuilder.addSuccessor(else8BB);
- theBuilder.setMergeTarget(merge8BB);
- // position = pos8[index];
- // }
- theBuilder.setInsertPoint(then8BB);
- ac = theBuilder.createAccessChain(ptrType, pos8Arr, {sampleIndex});
- theBuilder.createStore(resultVar, theBuilder.createLoad(v2f32Type, ac));
- theBuilder.createBranch(merge8BB);
- theBuilder.addSuccessor(merge8BB);
- // else if (count == 16) {
- theBuilder.setInsertPoint(else8BB);
- const auto check16 =
- theBuilder.createBinaryOp(spv::Op::OpIEqual, boolType, sampleCount,
- theBuilder.getConstantUint32(16));
- theBuilder.createConditionalBranch(check16, then16BB, else16BB, merge16BB);
- theBuilder.addSuccessor(then16BB);
- theBuilder.addSuccessor(else16BB);
- theBuilder.setMergeTarget(merge16BB);
- // position = pos16[index];
- // }
- theBuilder.setInsertPoint(then16BB);
- ac = theBuilder.createAccessChain(ptrType, pos16Arr, {sampleIndex});
- theBuilder.createStore(resultVar, theBuilder.createLoad(v2f32Type, ac));
- theBuilder.createBranch(merge16BB);
- theBuilder.addSuccessor(merge16BB);
- // else {
- // position = float2(0.0f, 0.0f);
- // }
- theBuilder.setInsertPoint(else16BB);
- const auto zero = theBuilder.getConstantFloat32(0);
- const auto v2f32Zero =
- theBuilder.getConstantComposite(v2f32Type, {zero, zero});
- theBuilder.createStore(resultVar, v2f32Zero);
- theBuilder.createBranch(merge16BB);
- theBuilder.addSuccessor(merge16BB);
- theBuilder.setInsertPoint(merge16BB);
- theBuilder.createBranch(merge8BB);
- theBuilder.addSuccessor(merge8BB);
- theBuilder.setInsertPoint(merge8BB);
- theBuilder.createBranch(merge4BB);
- theBuilder.addSuccessor(merge4BB);
- theBuilder.setInsertPoint(merge4BB);
- theBuilder.createBranch(merge2BB);
- theBuilder.addSuccessor(merge2BB);
- theBuilder.setInsertPoint(merge2BB);
- return theBuilder.createLoad(v2f32Type, resultVar);
- }
- SpirvEvalInfo SPIRVEmitter::doCXXMemberCallExpr(const CXXMemberCallExpr *expr) {
- const FunctionDecl *callee = expr->getDirectCallee();
- llvm::StringRef group;
- uint32_t opcode = static_cast<uint32_t>(hlsl::IntrinsicOp::Num_Intrinsics);
- if (hlsl::GetIntrinsicOp(callee, opcode, group)) {
- return processIntrinsicMemberCall(expr,
- static_cast<hlsl::IntrinsicOp>(opcode));
- }
- return processCall(expr);
- }
- void SPIRVEmitter::handleOffsetInMethodCall(const CXXMemberCallExpr *expr,
- uint32_t index,
- uint32_t *constOffset,
- uint32_t *varOffset) {
- // Ensure the given arg index is not out-of-range.
- assert(index < expr->getNumArgs());
- *constOffset = *varOffset = 0; // Initialize both first
- if (*constOffset = tryToEvaluateAsConst(expr->getArg(index)))
- return; // Constant offset
- else
- *varOffset = doExpr(expr->getArg(index));
- };
- SpirvEvalInfo
- SPIRVEmitter::processIntrinsicMemberCall(const CXXMemberCallExpr *expr,
- hlsl::IntrinsicOp opcode) {
- using namespace hlsl;
- uint32_t retVal = 0;
- switch (opcode) {
- case IntrinsicOp::MOP_Sample:
- retVal = processTextureSampleGather(expr, /*isSample=*/true);
- break;
- case IntrinsicOp::MOP_Gather:
- retVal = processTextureSampleGather(expr, /*isSample=*/false);
- break;
- case IntrinsicOp::MOP_SampleBias:
- retVal = processTextureSampleBiasLevel(expr, /*isBias=*/true);
- break;
- case IntrinsicOp::MOP_SampleLevel:
- retVal = processTextureSampleBiasLevel(expr, /*isBias=*/false);
- break;
- case IntrinsicOp::MOP_SampleGrad:
- retVal = processTextureSampleGrad(expr);
- break;
- case IntrinsicOp::MOP_SampleCmp:
- retVal = processTextureSampleCmpCmpLevelZero(expr, /*isCmp=*/true);
- break;
- case IntrinsicOp::MOP_SampleCmpLevelZero:
- retVal = processTextureSampleCmpCmpLevelZero(expr, /*isCmp=*/false);
- break;
- case IntrinsicOp::MOP_GatherRed:
- retVal = processTextureGatherRGBACmpRGBA(expr, /*isCmp=*/false, 0);
- break;
- case IntrinsicOp::MOP_GatherGreen:
- retVal = processTextureGatherRGBACmpRGBA(expr, /*isCmp=*/false, 1);
- break;
- case IntrinsicOp::MOP_GatherBlue:
- retVal = processTextureGatherRGBACmpRGBA(expr, /*isCmp=*/false, 2);
- break;
- case IntrinsicOp::MOP_GatherAlpha:
- retVal = processTextureGatherRGBACmpRGBA(expr, /*isCmp=*/false, 3);
- break;
- case IntrinsicOp::MOP_GatherCmp:
- retVal = processTextureGatherCmp(expr);
- break;
- case IntrinsicOp::MOP_GatherCmpRed:
- retVal = processTextureGatherRGBACmpRGBA(expr, /*isCmp=*/true, 0);
- break;
- case IntrinsicOp::MOP_Load:
- return processBufferTextureLoad(expr);
- case IntrinsicOp::MOP_Load2:
- return processByteAddressBufferLoadStore(expr, 2, /*doStore*/ false);
- case IntrinsicOp::MOP_Load3:
- return processByteAddressBufferLoadStore(expr, 3, /*doStore*/ false);
- case IntrinsicOp::MOP_Load4:
- return processByteAddressBufferLoadStore(expr, 4, /*doStore*/ false);
- case IntrinsicOp::MOP_Store:
- return processByteAddressBufferLoadStore(expr, 1, /*doStore*/ true);
- case IntrinsicOp::MOP_Store2:
- return processByteAddressBufferLoadStore(expr, 2, /*doStore*/ true);
- case IntrinsicOp::MOP_Store3:
- return processByteAddressBufferLoadStore(expr, 3, /*doStore*/ true);
- case IntrinsicOp::MOP_Store4:
- return processByteAddressBufferLoadStore(expr, 4, /*doStore*/ true);
- case IntrinsicOp::MOP_GetDimensions:
- retVal = processGetDimensions(expr);
- break;
- case IntrinsicOp::MOP_CalculateLevelOfDetail:
- retVal = processTextureLevelOfDetail(expr);
- break;
- case IntrinsicOp::MOP_IncrementCounter:
- retVal = theBuilder.createUnaryOp(
- spv::Op::OpBitcast, theBuilder.getUint32Type(),
- incDecRWACSBufferCounter(expr, /*isInc*/ true));
- break;
- case IntrinsicOp::MOP_DecrementCounter:
- retVal = theBuilder.createUnaryOp(
- spv::Op::OpBitcast, theBuilder.getUint32Type(),
- incDecRWACSBufferCounter(expr, /*isInc*/ false));
- break;
- case IntrinsicOp::MOP_Append:
- if (hlsl::IsHLSLStreamOutputType(
- expr->getImplicitObjectArgument()->getType()))
- return processStreamOutputAppend(expr);
- else
- return processACSBufferAppendConsume(expr);
- case IntrinsicOp::MOP_Consume:
- return processACSBufferAppendConsume(expr);
- case IntrinsicOp::MOP_RestartStrip:
- retVal = processStreamOutputRestart(expr);
- break;
- case IntrinsicOp::MOP_InterlockedAdd:
- case IntrinsicOp::MOP_InterlockedAnd:
- case IntrinsicOp::MOP_InterlockedOr:
- case IntrinsicOp::MOP_InterlockedXor:
- case IntrinsicOp::MOP_InterlockedUMax:
- case IntrinsicOp::MOP_InterlockedUMin:
- case IntrinsicOp::MOP_InterlockedMax:
- case IntrinsicOp::MOP_InterlockedMin:
- case IntrinsicOp::MOP_InterlockedExchange:
- case IntrinsicOp::MOP_InterlockedCompareExchange:
- case IntrinsicOp::MOP_InterlockedCompareStore:
- retVal = processRWByteAddressBufferAtomicMethods(opcode, expr);
- break;
- case IntrinsicOp::MOP_GetSamplePosition:
- retVal = processGetSamplePosition(expr);
- break;
- case IntrinsicOp::MOP_SubpassLoad:
- retVal = processSubpassLoad(expr);
- break;
- case IntrinsicOp::MOP_GatherCmpGreen:
- case IntrinsicOp::MOP_GatherCmpBlue:
- case IntrinsicOp::MOP_GatherCmpAlpha:
- case IntrinsicOp::MOP_CalculateLevelOfDetailUnclamped:
- emitError("no equivalent for %0 intrinsic method in Vulkan",
- expr->getCallee()->getExprLoc())
- << expr->getMethodDecl()->getName();
- return 0;
- default:
- emitError("intrinsic '%0' method unimplemented",
- expr->getCallee()->getExprLoc())
- << expr->getDirectCallee()->getName();
- return 0;
- }
- return SpirvEvalInfo(retVal).setRValue();
- }
- uint32_t SPIRVEmitter::createImageSample(
- QualType retType, uint32_t imageType, uint32_t image, uint32_t sampler,
- uint32_t coordinate, uint32_t compareVal, uint32_t bias, uint32_t lod,
- std::pair<uint32_t, uint32_t> grad, uint32_t constOffset,
- uint32_t varOffset, uint32_t constOffsets, uint32_t sample, uint32_t minLod,
- uint32_t residencyCodeId) {
- const auto retTypeId = typeTranslator.translateType(retType);
- // SampleDref* instructions in SPIR-V always return a scalar.
- // They also have the correct type in HLSL.
- if (compareVal) {
- return theBuilder.createImageSample(retTypeId, imageType, image, sampler,
- coordinate, compareVal, bias, lod, grad,
- constOffset, varOffset, constOffsets,
- sample, minLod, residencyCodeId);
- }
- // Non-Dref Sample instructions in SPIR-V must always return a vec4.
- auto texelTypeId = retTypeId;
- QualType elemType = {};
- uint32_t elemTypeId = 0;
- uint32_t retVecSize = 0;
- if (TypeTranslator::isVectorType(retType, &elemType, &retVecSize) &&
- retVecSize != 4) {
- elemTypeId = typeTranslator.translateType(elemType);
- texelTypeId = theBuilder.getVecType(elemTypeId, 4);
- } else if (TypeTranslator::isScalarType(retType)) {
- retVecSize = 1;
- elemTypeId = typeTranslator.translateType(retType);
- texelTypeId = theBuilder.getVecType(elemTypeId, 4);
- }
- // The Lod and Grad image operands requires explicit-lod instructions.
- // Otherwise we use implicit-lod instructions.
- const bool isExplicit = lod || (grad.first && grad.second);
- // Implicit-lod instructions are only allowed in pixel shader.
- if (!shaderModel.IsPS() && !isExplicit)
- needsLegalization = true;
- uint32_t retVal = theBuilder.createImageSample(
- texelTypeId, imageType, image, sampler, coordinate, compareVal, bias, lod,
- grad, constOffset, varOffset, constOffsets, sample, minLod,
- residencyCodeId);
- // Extract smaller vector from the vec4 result if necessary.
- if (texelTypeId != retTypeId) {
- retVal = extractVecFromVec4(retVal, retVecSize, elemTypeId);
- }
- return retVal;
- }
- uint32_t SPIRVEmitter::processTextureSampleGather(const CXXMemberCallExpr *expr,
- const bool isSample) {
- // Signatures:
- // For Texture1D, Texture1DArray, Texture2D, Texture2DArray, Texture3D:
- // DXGI_FORMAT Object.Sample(sampler_state S,
- // float Location
- // [, int Offset]
- // [, float Clamp]
- // [, out uint Status]);
- //
- // For TextureCube and TextureCubeArray:
- // DXGI_FORMAT Object.Sample(sampler_state S,
- // float Location
- // [, float Clamp]
- // [, out uint Status]);
- //
- // For Texture2D/Texture2DArray:
- // <Template Type>4 Object.Gather(sampler_state S,
- // float2|3|4 Location,
- // int2 Offset
- // [, uint Status]);
- //
- // For TextureCube/TextureCubeArray:
- // <Template Type>4 Object.Gather(sampler_state S,
- // float2|3|4 Location
- // [, uint Status]);
- //
- // Other Texture types do not have a Gather method.
- const auto numArgs = expr->getNumArgs();
- const bool hasStatusArg =
- expr->getArg(numArgs - 1)->getType()->isUnsignedIntegerType();
- uint32_t clamp = 0;
- if (numArgs > 2 && expr->getArg(2)->getType()->isFloatingType())
- clamp = doExpr(expr->getArg(2));
- else if (numArgs > 3 && expr->getArg(3)->getType()->isFloatingType())
- clamp = doExpr(expr->getArg(3));
- const bool hasClampArg = (clamp != 0);
- const auto status = hasStatusArg ? doExpr(expr->getArg(numArgs - 1)) : 0;
- // Subtract 1 for status (if it exists), subtract 1 for clamp (if it exists),
- // and subtract 2 for sampler_state and location.
- const bool hasOffsetArg = numArgs - hasStatusArg - hasClampArg - 2 > 0;
- const auto *imageExpr = expr->getImplicitObjectArgument();
- const uint32_t imageType = typeTranslator.translateType(imageExpr->getType());
- const uint32_t image = loadIfGLValue(imageExpr);
- const uint32_t sampler = doExpr(expr->getArg(0));
- const uint32_t coordinate = doExpr(expr->getArg(1));
- // .Sample()/.Gather() may have a third optional paramter for offset.
- uint32_t constOffset = 0, varOffset = 0;
- if (hasOffsetArg)
- handleOffsetInMethodCall(expr, 2, &constOffset, &varOffset);
- const auto retType = expr->getDirectCallee()->getReturnType();
- const auto retTypeId = typeTranslator.translateType(retType);
- if (isSample) {
- return createImageSample(
- retType, imageType, image, sampler, coordinate, /*compareVal*/ 0,
- /*bias*/ 0, /*lod*/ 0, std::make_pair(0, 0), constOffset, varOffset,
- /*constOffsets*/ 0, /*sampleNumber*/ 0, /*minLod*/ clamp, status);
- } else {
- return theBuilder.createImageGather(
- retTypeId, imageType, image, sampler, coordinate,
- // .Gather() doc says we return four components of red data.
- theBuilder.getConstantInt32(0), /*compareVal*/ 0, constOffset,
- varOffset, /*constOffsets*/ 0, /*sampleNumber*/ 0, status);
- }
- }
- uint32_t
- SPIRVEmitter::processTextureSampleBiasLevel(const CXXMemberCallExpr *expr,
- const bool isBias) {
- // Signatures:
- // For Texture1D, Texture1DArray, Texture2D, Texture2DArray, and Texture3D:
- // DXGI_FORMAT Object.SampleBias(sampler_state S,
- // float Location,
- // float Bias
- // [, int Offset]
- // [, float clamp]
- // [, out uint Status]);
- //
- // For TextureCube and TextureCubeArray:
- // DXGI_FORMAT Object.SampleBias(sampler_state S,
- // float Location,
- // float Bias
- // [, float clamp]
- // [, out uint Status]);
- //
- // For Texture1D, Texture1DArray, Texture2D, Texture2DArray, and Texture3D:
- // DXGI_FORMAT Object.SampleLevel(sampler_state S,
- // float Location,
- // float LOD
- // [, int Offset]
- // [, out uint Status]);
- //
- // For TextureCube and TextureCubeArray:
- // DXGI_FORMAT Object.SampleLevel(sampler_state S,
- // float Location,
- // float LOD
- // [, out uint Status]);
- const auto numArgs = expr->getNumArgs();
- const bool hasStatusArg =
- expr->getArg(numArgs - 1)->getType()->isUnsignedIntegerType();
- const auto status = hasStatusArg ? doExpr(expr->getArg(numArgs - 1)) : 0;
- uint32_t clamp = 0;
- // The .SampleLevel() methods do not take the clamp argument.
- if (isBias) {
- if (numArgs > 3 && expr->getArg(3)->getType()->isFloatingType())
- clamp = doExpr(expr->getArg(3));
- else if (numArgs > 4 && expr->getArg(4)->getType()->isFloatingType())
- clamp = doExpr(expr->getArg(4));
- }
- const bool hasClampArg = clamp != 0;
- // Subtract 1 for clamp (if it exists), 1 for status (if it exists),
- // and 3 for sampler_state, location, and Bias/LOD.
- const bool hasOffsetArg = numArgs - hasClampArg - hasStatusArg - 3 > 0;
- const auto *imageExpr = expr->getImplicitObjectArgument();
- const uint32_t imageType = typeTranslator.translateType(imageExpr->getType());
- const uint32_t image = loadIfGLValue(imageExpr);
- const uint32_t sampler = doExpr(expr->getArg(0));
- const uint32_t coordinate = doExpr(expr->getArg(1));
- uint32_t lod = 0;
- uint32_t bias = 0;
- if (isBias) {
- bias = doExpr(expr->getArg(2));
- } else {
- lod = doExpr(expr->getArg(2));
- }
- // If offset is present in .Bias()/.SampleLevel(), it is the fourth argument.
- uint32_t constOffset = 0, varOffset = 0;
- if (hasOffsetArg)
- handleOffsetInMethodCall(expr, 3, &constOffset, &varOffset);
- const auto retType = expr->getDirectCallee()->getReturnType();
- return createImageSample(retType, imageType, image, sampler, coordinate,
- /*compareVal*/ 0, bias, lod, std::make_pair(0, 0),
- constOffset, varOffset, /*constOffsets*/ 0,
- /*sampleNumber*/ 0, /*minLod*/ clamp, status);
- }
- uint32_t SPIRVEmitter::processTextureSampleGrad(const CXXMemberCallExpr *expr) {
- // Signature:
- // For Texture1D, Texture1DArray, Texture2D, Texture2DArray, and Texture3D:
- // DXGI_FORMAT Object.SampleGrad(sampler_state S,
- // float Location,
- // float DDX,
- // float DDY
- // [, int Offset]
- // [, float Clamp]
- // [, out uint Status]);
- //
- // For TextureCube and TextureCubeArray:
- // DXGI_FORMAT Object.SampleGrad(sampler_state S,
- // float Location,
- // float DDX,
- // float DDY
- // [, float Clamp]
- // [, out uint Status]);
- const auto numArgs = expr->getNumArgs();
- const bool hasStatusArg =
- expr->getArg(numArgs - 1)->getType()->isUnsignedIntegerType();
- const auto status = hasStatusArg ? doExpr(expr->getArg(numArgs - 1)) : 0;
- uint32_t clamp = 0;
- if (numArgs > 4 && expr->getArg(4)->getType()->isFloatingType())
- clamp = doExpr(expr->getArg(4));
- else if (numArgs > 5 && expr->getArg(5)->getType()->isFloatingType())
- clamp = doExpr(expr->getArg(5));
- const bool hasClampArg = clamp != 0;
- // Subtract 1 for clamp (if it exists), 1 for status (if it exists),
- // and 4 for sampler_state, location, DDX, and DDY;
- const bool hasOffsetArg = numArgs - hasClampArg - hasStatusArg - 4 > 0;
- const auto *imageExpr = expr->getImplicitObjectArgument();
- const uint32_t imageType = typeTranslator.translateType(imageExpr->getType());
- const uint32_t image = loadIfGLValue(imageExpr);
- const uint32_t sampler = doExpr(expr->getArg(0));
- const uint32_t coordinate = doExpr(expr->getArg(1));
- const uint32_t ddx = doExpr(expr->getArg(2));
- const uint32_t ddy = doExpr(expr->getArg(3));
- // If offset is present in .SampleGrad(), it is the fifth argument.
- uint32_t constOffset = 0, varOffset = 0;
- if (hasOffsetArg)
- handleOffsetInMethodCall(expr, 4, &constOffset, &varOffset);
- const auto retType = expr->getDirectCallee()->getReturnType();
- return createImageSample(
- retType, imageType, image, sampler, coordinate, /*compareVal*/ 0,
- /*bias*/ 0, /*lod*/ 0, std::make_pair(ddx, ddy), constOffset, varOffset,
- /*constOffsets*/ 0, /*sampleNumber*/ 0, /*minLod*/ clamp, status);
- }
- uint32_t
- SPIRVEmitter::processTextureSampleCmpCmpLevelZero(const CXXMemberCallExpr *expr,
- const bool isCmp) {
- // .SampleCmp() Signature:
- //
- // For Texture1D, Texture1DArray, Texture2D, Texture2DArray:
- // float Object.SampleCmp(
- // SamplerComparisonState S,
- // float Location,
- // float CompareValue
- // [, int Offset]
- // [, float Clamp]
- // [, out uint Status]
- // );
- //
- // For TextureCube and TextureCubeArray:
- // float Object.SampleCmp(
- // SamplerComparisonState S,
- // float Location,
- // float CompareValue
- // [, float Clamp]
- // [, out uint Status]
- // );
- //
- // .SampleCmpLevelZero() is identical to .SampleCmp() on mipmap level 0 only.
- // It never takes a clamp argument, which is good because lod and clamp may
- // not be used together.
- //
- // .SampleCmpLevelZero() Signature:
- //
- // For Texture1D, Texture1DArray, Texture2D, Texture2DArray:
- // float Object.SampleCmpLevelZero(
- // SamplerComparisonState S,
- // float Location,
- // float CompareValue
- // [, int Offset]
- // [, out uint Status]
- // );
- //
- // For TextureCube and TextureCubeArray:
- // float Object.SampleCmpLevelZero(
- // SamplerComparisonState S,
- // float Location,
- // float CompareValue
- // [, out uint Status]
- // );
- const auto numArgs = expr->getNumArgs();
- const bool hasStatusArg =
- expr->getArg(numArgs - 1)->getType()->isUnsignedIntegerType();
- const auto status = hasStatusArg ? doExpr(expr->getArg(numArgs - 1)) : 0;
- uint32_t clamp = 0;
- // The .SampleCmpLevelZero() methods do not take the clamp argument.
- if (isCmp) {
- if (numArgs > 3 && expr->getArg(3)->getType()->isFloatingType())
- clamp = doExpr(expr->getArg(3));
- else if (numArgs > 4 && expr->getArg(4)->getType()->isFloatingType())
- clamp = doExpr(expr->getArg(4));
- }
- const bool hasClampArg = clamp != 0;
- // Subtract 1 for clamp (if it exists), 1 for status (if it exists),
- // and 3 for sampler_state, location, and compare_value.
- const bool hasOffsetArg = numArgs - hasClampArg - hasStatusArg - 3 > 0;
- const auto *imageExpr = expr->getImplicitObjectArgument();
- const uint32_t image = loadIfGLValue(imageExpr);
- const uint32_t sampler = doExpr(expr->getArg(0));
- const uint32_t coordinate = doExpr(expr->getArg(1));
- const uint32_t compareVal = doExpr(expr->getArg(2));
- // If offset is present in .SampleCmp(), it will be the fourth argument.
- uint32_t constOffset = 0, varOffset = 0;
- if (hasOffsetArg)
- handleOffsetInMethodCall(expr, 3, &constOffset, &varOffset);
- const uint32_t lod = isCmp ? 0 : theBuilder.getConstantFloat32(0);
- const auto retType = expr->getDirectCallee()->getReturnType();
- // TODO: Hack. Drivers are expecting the Depth value in OpTypeImage to match
- // the OpImageSample* instruction: Depth=0 for normal sampling, and Depth=1
- // for depth-comparison sampling. That behavior is not what the spec says;
- // Vulkan spec reads "The 'Depth' operand of OpTypeImage is ignored."
- // We always generate OpTypeImage variables with Depth=0. Hack this only
- // depth-comparison sampling code path to use Depth=1 for the OpTypeImage
- // used by OpSampledImage. This causes inconsistent types in SPIR-V, but
- // pleases drivers. Whatever.
- const auto imageType = typeTranslator.translateResourceType(
- imageExpr->getType(), LayoutRule::Void, /*isDepthCmp=*/true);
- return createImageSample(retType, imageType, image, sampler, coordinate,
- compareVal, /*bias*/ 0, lod, std::make_pair(0, 0),
- constOffset, varOffset, /*constOffsets*/ 0,
- /*sampleNumber*/ 0, /*minLod*/ clamp, status);
- }
- SpirvEvalInfo
- SPIRVEmitter::processBufferTextureLoad(const CXXMemberCallExpr *expr) {
- // Signature:
- // For Texture1D, Texture1DArray, Texture2D, Texture2DArray, Texture3D:
- // ret Object.Load(int Location
- // [, int Offset]
- // [, uint status]);
- //
- // For Texture2DMS and Texture2DMSArray, there is one additional argument:
- // ret Object.Load(int Location
- // [, int SampleIndex]
- // [, int Offset]
- // [, uint status]);
- //
- // For (RW)Buffer, RWTexture1D, RWTexture1DArray, RWTexture2D,
- // RWTexture2DArray, RWTexture3D:
- // ret Object.Load (int Location
- // [, uint status]);
- //
- // Note: (RW)ByteAddressBuffer and (RW)StructuredBuffer types also have Load
- // methods that take an additional Status argument. However, since these types
- // are not represented as OpTypeImage in SPIR-V, we don't have a way of
- // figuring out the Residency Code for them. Therefore having the Status
- // argument for these types is not supported.
- //
- // For (RW)ByteAddressBuffer:
- // ret Object.{Load,Load2,Load3,Load4} (int Location
- // [, uint status]);
- //
- // For (RW)StructuredBuffer:
- // ret Object.Load (int Location
- // [, uint status]);
- //
- const auto *object = expr->getImplicitObjectArgument();
- const auto objectType = object->getType();
- if (typeTranslator.isRWByteAddressBuffer(objectType) ||
- typeTranslator.isByteAddressBuffer(objectType))
- return processByteAddressBufferLoadStore(expr, 1, /*doStore*/ false);
- if (TypeTranslator::isStructuredBuffer(objectType))
- return processStructuredBufferLoad(expr);
- const auto numArgs = expr->getNumArgs();
- const auto *location = expr->getArg(0);
- const bool isTextureMS = TypeTranslator::isTextureMS(objectType);
- const bool hasStatusArg =
- expr->getArg(numArgs - 1)->getType()->isUnsignedIntegerType();
- const auto status = hasStatusArg ? doExpr(expr->getArg(numArgs - 1)) : 0;
- if (TypeTranslator::isBuffer(objectType) ||
- TypeTranslator::isRWBuffer(objectType) ||
- TypeTranslator::isRWTexture(objectType))
- return processBufferTextureLoad(object, doExpr(location), /*constOffset*/ 0,
- /*varOffset*/ 0, /*lod*/ 0,
- /*residencyCode*/ status);
- // Subtract 1 for status (if it exists), and 1 for sampleIndex (if it exists),
- // and 1 for location.
- const bool hasOffsetArg = numArgs - hasStatusArg - isTextureMS - 1 > 0;
- if (TypeTranslator::isTexture(objectType)) {
- // .Load() has a second optional paramter for offset.
- const auto locationId = doExpr(location);
- uint32_t constOffset = 0, varOffset = 0;
- uint32_t coordinate = locationId, lod = 0;
- if (isTextureMS) {
- // SampleIndex is only available when the Object is of Texture2DMS or
- // Texture2DMSArray types. Under those cases, Offset will be the third
- // parameter (index 2).
- lod = doExpr(expr->getArg(1));
- if (hasOffsetArg)
- handleOffsetInMethodCall(expr, 2, &constOffset, &varOffset);
- } else {
- // For Texture Load() functions, the location parameter is a vector
- // that consists of both the coordinate and the mipmap level (via the
- // last vector element). We need to split it here since the
- // OpImageFetch SPIR-V instruction encodes them as separate arguments.
- splitVecLastElement(location->getType(), locationId, &coordinate, &lod);
- // For textures other than Texture2DMS(Array), offset should be the
- // second parameter (index 1).
- if (hasOffsetArg)
- handleOffsetInMethodCall(expr, 1, &constOffset, &varOffset);
- }
- return processBufferTextureLoad(object, coordinate, constOffset, varOffset,
- lod, status);
- }
- emitError("Load() of the given object type unimplemented",
- object->getExprLoc());
- return 0;
- }
- uint32_t SPIRVEmitter::processGetDimensions(const CXXMemberCallExpr *expr) {
- const auto objectType = expr->getImplicitObjectArgument()->getType();
- if (TypeTranslator::isTexture(objectType) ||
- TypeTranslator::isRWTexture(objectType) ||
- TypeTranslator::isBuffer(objectType) ||
- TypeTranslator::isRWBuffer(objectType)) {
- return processBufferTextureGetDimensions(expr);
- } else if (TypeTranslator::isByteAddressBuffer(objectType) ||
- TypeTranslator::isRWByteAddressBuffer(objectType) ||
- TypeTranslator::isStructuredBuffer(objectType) ||
- TypeTranslator::isAppendStructuredBuffer(objectType) ||
- TypeTranslator::isConsumeStructuredBuffer(objectType)) {
- return processByteAddressBufferStructuredBufferGetDimensions(expr);
- } else {
- emitError("GetDimensions() of the given object type unimplemented",
- expr->getExprLoc());
- return 0;
- }
- }
- SpirvEvalInfo
- SPIRVEmitter::doCXXOperatorCallExpr(const CXXOperatorCallExpr *expr) {
- { // Handle Buffer/RWBuffer/Texture/RWTexture indexing
- const Expr *baseExpr = nullptr;
- const Expr *indexExpr = nullptr;
- const Expr *lodExpr = nullptr;
- // For Textures, regular indexing (operator[]) uses slice 0.
- if (isBufferTextureIndexing(expr, &baseExpr, &indexExpr)) {
- const uint32_t lod = TypeTranslator::isTexture(baseExpr->getType())
- ? theBuilder.getConstantUint32(0)
- : 0;
- return processBufferTextureLoad(baseExpr, doExpr(indexExpr),
- /*constOffset*/ 0, /*varOffset*/ 0, lod,
- /*residencyCode*/ 0);
- }
- // .mips[][] or .sample[][] must use the correct slice.
- if (isTextureMipsSampleIndexing(expr, &baseExpr, &indexExpr, &lodExpr)) {
- const uint32_t lod = doExpr(lodExpr);
- return processBufferTextureLoad(baseExpr, doExpr(indexExpr),
- /*constOffset*/ 0, /*varOffset*/ 0, lod,
- /*residencyCode*/ 0);
- }
- }
- llvm::SmallVector<uint32_t, 4> indices;
- const Expr *baseExpr = collectArrayStructIndices(expr, &indices);
- auto base = loadIfAliasVarRef(baseExpr);
- if (indices.empty())
- return base; // For indexing into size-1 vectors and 1xN matrices
- // If we are indexing into a rvalue, to use OpAccessChain, we first need
- // to create a local variable to hold the rvalue.
- //
- // TODO: We can optimize the codegen by emitting OpCompositeExtract if
- // all indices are contant integers.
- if (base.isRValue()) {
- base = createTemporaryVar(baseExpr->getType(), "vector", base);
- }
- return turnIntoElementPtr(base, expr->getType(), indices);
- }
- SpirvEvalInfo
- SPIRVEmitter::doExtMatrixElementExpr(const ExtMatrixElementExpr *expr) {
- const Expr *baseExpr = expr->getBase();
- const auto baseInfo = doExpr(baseExpr);
- const auto layoutRule = baseInfo.getLayoutRule();
- const auto elemType = hlsl::GetHLSLMatElementType(baseExpr->getType());
- const auto accessor = expr->getEncodedElementAccess();
- const uint32_t elemTypeId =
- typeTranslator.translateType(elemType, layoutRule);
- uint32_t rowCount = 0, colCount = 0;
- hlsl::GetHLSLMatRowColCount(baseExpr->getType(), rowCount, colCount);
- // Construct a temporary vector out of all elements accessed:
- // 1. Create access chain for each element using OpAccessChain
- // 2. Load each element using OpLoad
- // 3. Create the vector using OpCompositeConstruct
- llvm::SmallVector<uint32_t, 4> elements;
- for (uint32_t i = 0; i < accessor.Count; ++i) {
- uint32_t row = 0, col = 0, elem = 0;
- accessor.GetPosition(i, &row, &col);
- llvm::SmallVector<uint32_t, 2> indices;
- // If the matrix only has one row/column, we are indexing into a vector
- // then. Only one index is needed for such cases.
- if (rowCount > 1)
- indices.push_back(row);
- if (colCount > 1)
- indices.push_back(col);
- if (baseExpr->isGLValue()) {
- for (uint32_t i = 0; i < indices.size(); ++i)
- indices[i] = theBuilder.getConstantInt32(indices[i]);
- const uint32_t ptrType =
- theBuilder.getPointerType(elemTypeId, baseInfo.getStorageClass());
- if (!indices.empty()) {
- assert(!baseInfo.isRValue());
- // Load the element via access chain
- elem = theBuilder.createAccessChain(ptrType, baseInfo, indices);
- } else {
- // The matrix is of size 1x1. No need to use access chain, base should
- // be the source pointer.
- elem = baseInfo;
- }
- elem = theBuilder.createLoad(elemTypeId, elem);
- } else { // e.g., (mat1 + mat2)._m11
- elem = theBuilder.createCompositeExtract(elemTypeId, baseInfo, indices);
- }
- elements.push_back(elem);
- }
- const auto size = elements.size();
- auto valueId = elements.front();
- if (size > 1) {
- const uint32_t vecType = theBuilder.getVecType(elemTypeId, size);
- valueId = theBuilder.createCompositeConstruct(vecType, elements);
- }
- // Note: Special-case: Booleans have no physical layout, and therefore when
- // layout is required booleans are represented as unsigned integers.
- // Therefore, after loading the uint we should convert it boolean.
- if (elemType->isBooleanType() && layoutRule != LayoutRule::Void) {
- const auto fromType =
- size == 1 ? astContext.UnsignedIntTy
- : astContext.getExtVectorType(astContext.UnsignedIntTy, size);
- const auto toType =
- size == 1 ? astContext.BoolTy
- : astContext.getExtVectorType(astContext.BoolTy, size);
- valueId = castToBool(valueId, fromType, toType);
- }
- return SpirvEvalInfo(valueId).setRValue();
- }
- SpirvEvalInfo
- SPIRVEmitter::doHLSLVectorElementExpr(const HLSLVectorElementExpr *expr) {
- const Expr *baseExpr = nullptr;
- hlsl::VectorMemberAccessPositions accessor;
- condenseVectorElementExpr(expr, &baseExpr, &accessor);
- const QualType baseType = baseExpr->getType();
- assert(hlsl::IsHLSLVecType(baseType));
- const auto baseSize = hlsl::GetHLSLVecSize(baseType);
- const auto accessorSize = static_cast<size_t>(accessor.Count);
- // Depending on the number of elements selected, we emit different
- // instructions.
- // For vectors of size greater than 1, if we are only selecting one element,
- // typical access chain or composite extraction should be fine. But if we
- // are selecting more than one elements, we must resolve to vector specific
- // operations.
- // For size-1 vectors, if we are selecting their single elements multiple
- // times, we need composite construct instructions.
- if (accessorSize == 1) {
- auto baseInfo = doExpr(baseExpr);
- if (baseSize == 1) {
- // Selecting one element from a size-1 vector. The underlying vector is
- // already treated as a scalar.
- return baseInfo;
- }
- // If the base is an lvalue, we should emit an access chain instruction
- // so that we can load/store the specified element. For rvalue base,
- // we should use composite extraction. We should check the immediate base
- // instead of the original base here since we can have something like
- // v.xyyz to turn a lvalue v into rvalue.
- const auto type =
- typeTranslator.translateType(expr->getType(), baseInfo.getLayoutRule());
- if (!baseInfo.isRValue()) { // E.g., v.x;
- const uint32_t ptrType =
- theBuilder.getPointerType(type, baseInfo.getStorageClass());
- const uint32_t index = theBuilder.getConstantInt32(accessor.Swz0);
- // We need a lvalue here. Do not try to load.
- return baseInfo.setResultId(
- theBuilder.createAccessChain(ptrType, baseInfo, {index}));
- } else { // E.g., (v + w).x;
- // The original base vector may not be a rvalue. Need to load it if
- // it is lvalue since ImplicitCastExpr (LValueToRValue) will be missing
- // for that case.
- auto result =
- theBuilder.createCompositeExtract(type, baseInfo, {accessor.Swz0});
- // Special-case: Booleans in SPIR-V do not have a physical layout. Uint is
- // used to represent them when layout is required.
- if (expr->getType()->isBooleanType() &&
- baseInfo.getLayoutRule() != LayoutRule::Void)
- result =
- castToBool(result, astContext.UnsignedIntTy, astContext.BoolTy);
- return baseInfo.setResultId(result);
- }
- }
- if (baseSize == 1) {
- // Selecting more than one element from a size-1 vector, for example,
- // <scalar>.xx. Construct the vector.
- auto info = loadIfGLValue(baseExpr);
- const auto type =
- typeTranslator.translateType(expr->getType(), info.getLayoutRule());
- llvm::SmallVector<uint32_t, 4> components(accessorSize, info);
- return info
- .setResultId(theBuilder.createCompositeConstruct(type, components))
- .setRValue();
- }
- llvm::SmallVector<uint32_t, 4> selectors;
- selectors.resize(accessorSize);
- // Whether we are selecting elements in the original order
- bool originalOrder = baseSize == accessorSize;
- for (uint32_t i = 0; i < accessorSize; ++i) {
- accessor.GetPosition(i, &selectors[i]);
- // We can select more elements than the vector provides. This handles
- // that case too.
- originalOrder &= selectors[i] == i;
- }
- if (originalOrder)
- return doExpr(baseExpr);
- auto info = loadIfGLValue(baseExpr);
- const auto type =
- typeTranslator.translateType(expr->getType(), info.getLayoutRule());
- // Use base for both vectors. But we are only selecting values from the
- // first one.
- return info.setResultId(
- theBuilder.createVectorShuffle(type, info, info, selectors));
- }
- SpirvEvalInfo SPIRVEmitter::doInitListExpr(const InitListExpr *expr) {
- if (const uint32_t id = tryToEvaluateAsConst(expr))
- return SpirvEvalInfo(id).setRValue();
- return SpirvEvalInfo(InitListHandler(*this).process(expr)).setRValue();
- }
- SpirvEvalInfo SPIRVEmitter::doMemberExpr(const MemberExpr *expr) {
- llvm::SmallVector<uint32_t, 4> indices;
- const Expr *base = collectArrayStructIndices(expr, &indices);
- auto info = loadIfAliasVarRef(base);
- if (!indices.empty()) {
- // Sometime we are accessing the member of a rvalue, e.g.,
- // <some-function-returing-a-struct>().<some-field>
- // Create a temporary variable to hold the rvalue so that we can use access
- // chain to index into it.
- if (info.isRValue()) {
- SpirvEvalInfo tempVar = createTemporaryVar(
- base->getType(), TypeTranslator::getName(base->getType()), info);
- (void)turnIntoElementPtr(tempVar, expr->getType(), indices);
- info.setResultId(theBuilder.createLoad(
- typeTranslator.translateType(expr->getType()), tempVar));
- } else {
- (void)turnIntoElementPtr(info, expr->getType(), indices);
- }
- }
- return info;
- }
- uint32_t SPIRVEmitter::createTemporaryVar(QualType type, llvm::StringRef name,
- const SpirvEvalInfo &init) {
- // We are creating a temporary variable in the Function storage class here,
- // which means it has void layout rule.
- const uint32_t varType = typeTranslator.translateType(type);
- const std::string varName = "temp.var." + name.str();
- const uint32_t varId = theBuilder.addFnVar(varType, varName);
- storeValue(varId, init, type);
- return varId;
- }
- SpirvEvalInfo SPIRVEmitter::doUnaryOperator(const UnaryOperator *expr) {
- const auto opcode = expr->getOpcode();
- const auto *subExpr = expr->getSubExpr();
- const auto subType = subExpr->getType();
- auto subValue = doExpr(subExpr);
- const auto subTypeId = typeTranslator.translateType(subType);
- switch (opcode) {
- case UO_PreInc:
- case UO_PreDec:
- case UO_PostInc:
- case UO_PostDec: {
- const bool isPre = opcode == UO_PreInc || opcode == UO_PreDec;
- const bool isInc = opcode == UO_PreInc || opcode == UO_PostInc;
- const spv::Op spvOp = translateOp(isInc ? BO_Add : BO_Sub, subType);
- const uint32_t originValue = theBuilder.createLoad(subTypeId, subValue);
- const uint32_t one = hlsl::IsHLSLMatType(subType)
- ? getMatElemValueOne(subType)
- : getValueOne(subType);
- uint32_t incValue = 0;
- if (TypeTranslator::isMxNMatrix(subType)) {
- // For matrices, we can only increment/decrement each vector of it.
- const auto actOnEachVec = [this, spvOp, one](uint32_t /*index*/,
- uint32_t vecType,
- uint32_t lhsVec) {
- const auto valId =
- theBuilder.createBinaryOp(spvOp, vecType, lhsVec, one);
- return SpirvEvalInfo(valId).setRValue();
- };
- incValue = processEachVectorInMatrix(subExpr, originValue, actOnEachVec);
- } else {
- incValue = theBuilder.createBinaryOp(spvOp, subTypeId, originValue, one);
- }
- theBuilder.createStore(subValue, incValue);
- // Prefix increment/decrement operator returns a lvalue, while postfix
- // increment/decrement returns a rvalue.
- return isPre ? subValue : SpirvEvalInfo(originValue).setRValue();
- }
- case UO_Not: {
- const auto valId =
- theBuilder.createUnaryOp(spv::Op::OpNot, subTypeId, subValue);
- return SpirvEvalInfo(valId).setRValue();
- }
- case UO_LNot: {
- // Parsing will do the necessary casting to make sure we are applying the
- // ! operator on boolean values.
- const auto valId =
- theBuilder.createUnaryOp(spv::Op::OpLogicalNot, subTypeId, subValue);
- return SpirvEvalInfo(valId).setRValue();
- }
- case UO_Plus:
- // No need to do anything for the prefix + operator.
- return subValue;
- case UO_Minus: {
- // SPIR-V have two opcodes for negating values: OpSNegate and OpFNegate.
- const spv::Op spvOp = isFloatOrVecOfFloatType(subType) ? spv::Op::OpFNegate
- : spv::Op::OpSNegate;
- const auto valId = theBuilder.createUnaryOp(spvOp, subTypeId, subValue);
- return SpirvEvalInfo(valId).setRValue();
- }
- default:
- break;
- }
- emitError("unary operator '%0' unimplemented", expr->getExprLoc())
- << expr->getOpcodeStr(opcode);
- expr->dump();
- return 0;
- }
- spv::Op SPIRVEmitter::translateOp(BinaryOperator::Opcode op, QualType type) {
- const bool isSintType = isSintOrVecMatOfSintType(type);
- const bool isUintType = isUintOrVecMatOfUintType(type);
- const bool isFloatType = isFloatOrVecMatOfFloatType(type);
- #define BIN_OP_CASE_INT_FLOAT(kind, intBinOp, floatBinOp) \
- \
- case BO_##kind: { \
- if (isSintType || isUintType) { \
- return spv::Op::Op##intBinOp; \
- } \
- if (isFloatType) { \
- return spv::Op::Op##floatBinOp; \
- } \
- } break
- #define BIN_OP_CASE_SINT_UINT_FLOAT(kind, sintBinOp, uintBinOp, floatBinOp) \
- \
- case BO_##kind: { \
- if (isSintType) { \
- return spv::Op::Op##sintBinOp; \
- } \
- if (isUintType) { \
- return spv::Op::Op##uintBinOp; \
- } \
- if (isFloatType) { \
- return spv::Op::Op##floatBinOp; \
- } \
- } break
- #define BIN_OP_CASE_SINT_UINT(kind, sintBinOp, uintBinOp) \
- \
- case BO_##kind: { \
- if (isSintType) { \
- return spv::Op::Op##sintBinOp; \
- } \
- if (isUintType) { \
- return spv::Op::Op##uintBinOp; \
- } \
- } break
- switch (op) {
- case BO_EQ: {
- if (isBoolOrVecMatOfBoolType(type))
- return spv::Op::OpLogicalEqual;
- if (isSintType || isUintType)
- return spv::Op::OpIEqual;
- if (isFloatType)
- return spv::Op::OpFOrdEqual;
- } break;
- case BO_NE: {
- if (isBoolOrVecMatOfBoolType(type))
- return spv::Op::OpLogicalNotEqual;
- if (isSintType || isUintType)
- return spv::Op::OpINotEqual;
- if (isFloatType)
- return spv::Op::OpFOrdNotEqual;
- } break;
- // According to HLSL doc, all sides of the && and || expression are always
- // evaluated.
- case BO_LAnd:
- return spv::Op::OpLogicalAnd;
- case BO_LOr:
- return spv::Op::OpLogicalOr;
- BIN_OP_CASE_INT_FLOAT(Add, IAdd, FAdd);
- BIN_OP_CASE_INT_FLOAT(AddAssign, IAdd, FAdd);
- BIN_OP_CASE_INT_FLOAT(Sub, ISub, FSub);
- BIN_OP_CASE_INT_FLOAT(SubAssign, ISub, FSub);
- BIN_OP_CASE_INT_FLOAT(Mul, IMul, FMul);
- BIN_OP_CASE_INT_FLOAT(MulAssign, IMul, FMul);
- BIN_OP_CASE_SINT_UINT_FLOAT(Div, SDiv, UDiv, FDiv);
- BIN_OP_CASE_SINT_UINT_FLOAT(DivAssign, SDiv, UDiv, FDiv);
- // According to HLSL spec, "the modulus operator returns the remainder of
- // a division." "The % operator is defined only in cases where either both
- // sides are positive or both sides are negative."
- //
- // In SPIR-V, there are two reminder operations: Op*Rem and Op*Mod. With
- // the former, the sign of a non-0 result comes from Operand 1, while
- // with the latter, from Operand 2.
- //
- // For operands with different signs, technically we can map % to either
- // Op*Rem or Op*Mod since it's undefined behavior. But it is more
- // consistent with C (HLSL starts as a C derivative) and Clang frontend
- // const expression evaluation if we map % to Op*Rem.
- //
- // Note there is no OpURem in SPIR-V.
- BIN_OP_CASE_SINT_UINT_FLOAT(Rem, SRem, UMod, FRem);
- BIN_OP_CASE_SINT_UINT_FLOAT(RemAssign, SRem, UMod, FRem);
- BIN_OP_CASE_SINT_UINT_FLOAT(LT, SLessThan, ULessThan, FOrdLessThan);
- BIN_OP_CASE_SINT_UINT_FLOAT(LE, SLessThanEqual, ULessThanEqual,
- FOrdLessThanEqual);
- BIN_OP_CASE_SINT_UINT_FLOAT(GT, SGreaterThan, UGreaterThan,
- FOrdGreaterThan);
- BIN_OP_CASE_SINT_UINT_FLOAT(GE, SGreaterThanEqual, UGreaterThanEqual,
- FOrdGreaterThanEqual);
- BIN_OP_CASE_SINT_UINT(And, BitwiseAnd, BitwiseAnd);
- BIN_OP_CASE_SINT_UINT(AndAssign, BitwiseAnd, BitwiseAnd);
- BIN_OP_CASE_SINT_UINT(Or, BitwiseOr, BitwiseOr);
- BIN_OP_CASE_SINT_UINT(OrAssign, BitwiseOr, BitwiseOr);
- BIN_OP_CASE_SINT_UINT(Xor, BitwiseXor, BitwiseXor);
- BIN_OP_CASE_SINT_UINT(XorAssign, BitwiseXor, BitwiseXor);
- BIN_OP_CASE_SINT_UINT(Shl, ShiftLeftLogical, ShiftLeftLogical);
- BIN_OP_CASE_SINT_UINT(ShlAssign, ShiftLeftLogical, ShiftLeftLogical);
- BIN_OP_CASE_SINT_UINT(Shr, ShiftRightArithmetic, ShiftRightLogical);
- BIN_OP_CASE_SINT_UINT(ShrAssign, ShiftRightArithmetic, ShiftRightLogical);
- default:
- break;
- }
- #undef BIN_OP_CASE_INT_FLOAT
- #undef BIN_OP_CASE_SINT_UINT_FLOAT
- #undef BIN_OP_CASE_SINT_UINT
- emitError("translating binary operator '%0' unimplemented", {})
- << BinaryOperator::getOpcodeStr(op);
- return spv::Op::OpNop;
- }
- SpirvEvalInfo SPIRVEmitter::processAssignment(const Expr *lhs,
- const SpirvEvalInfo &rhs,
- const bool isCompoundAssignment,
- SpirvEvalInfo lhsPtr) {
- // Assigning to vector swizzling should be handled differently.
- if (SpirvEvalInfo result = tryToAssignToVectorElements(lhs, rhs))
- return result;
- // Assigning to matrix swizzling should be handled differently.
- if (SpirvEvalInfo result = tryToAssignToMatrixElements(lhs, rhs))
- return result;
- // Assigning to a RWBuffer/RWTexture should be handled differently.
- if (SpirvEvalInfo result = tryToAssignToRWBufferRWTexture(lhs, rhs))
- return result;
- // Normal assignment procedure
- if (!lhsPtr)
- lhsPtr = doExpr(lhs);
- storeValue(lhsPtr, rhs, lhs->getType());
- // Plain assignment returns a rvalue, while compound assignment returns
- // lvalue.
- return isCompoundAssignment ? lhsPtr : rhs;
- }
- void SPIRVEmitter::storeValue(const SpirvEvalInfo &lhsPtr,
- const SpirvEvalInfo &rhsVal,
- const QualType lhsValType) {
- QualType matElemType = {};
- const bool lhsIsMat = typeTranslator.isMxNMatrix(lhsValType, &matElemType);
- const bool lhsIsFloatMat = lhsIsMat && matElemType->isFloatingType();
- const bool lhsIsNonFpMat = lhsIsMat && !matElemType->isFloatingType();
- if (typeTranslator.isScalarType(lhsValType) ||
- typeTranslator.isVectorType(lhsValType) || lhsIsFloatMat) {
- uint32_t rhsValId = rhsVal;
- // Special-case: According to the SPIR-V Spec: There is no physical size
- // or bit pattern defined for boolean type. Therefore an unsigned integer
- // is used to represent booleans when layout is required. In such cases,
- // we should cast the boolean to uint before creating OpStore.
- if (isBoolOrVecOfBoolType(lhsValType) &&
- lhsPtr.getLayoutRule() != LayoutRule::Void) {
- uint32_t vecSize = 1;
- const bool isVec =
- TypeTranslator::isVectorType(lhsValType, nullptr, &vecSize);
- const auto toType =
- isVec ? astContext.getExtVectorType(astContext.UnsignedIntTy, vecSize)
- : astContext.UnsignedIntTy;
- const auto fromType =
- isVec ? astContext.getExtVectorType(astContext.BoolTy, vecSize)
- : astContext.BoolTy;
- rhsValId = castToInt(rhsValId, fromType, toType, {});
- }
- theBuilder.createStore(lhsPtr, rhsValId);
- } else if (TypeTranslator::isOpaqueType(lhsValType)) {
- // Resource types are represented using RecordType in the AST.
- // Handle them before the general RecordType.
- //
- // HLSL allows to put resource types that translating into SPIR-V opaque
- // types in structs, or assign to variables of resource types. These can all
- // result in illegal SPIR-V for Vulkan. We just translate here literally and
- // let SPIRV-Tools opt to do the legalization work.
- //
- // Note: legalization specific code
- theBuilder.createStore(lhsPtr, rhsVal);
- needsLegalization = true;
- } else if (TypeTranslator::isAKindOfStructuredOrByteBuffer(lhsValType)) {
- // The rhs should be a pointer and the lhs should be a pointer-to-pointer.
- // Directly store the pointer here and let SPIRV-Tools opt to do the clean
- // up.
- //
- // Note: legalization specific code
- theBuilder.createStore(lhsPtr, rhsVal);
- needsLegalization = true;
- // For ConstantBuffers/TextureBuffers, we decompose and assign each field
- // recursively like normal structs using the following logic.
- //
- // The frontend forbids declaring ConstantBuffer<T> or TextureBuffer<T>
- // variables as function parameters/returns/variables, but happily accepts
- // assignments/returns from ConstantBuffer<T>/TextureBuffer<T> to function
- // parameters/returns/variables of type T. And ConstantBuffer<T> is not
- // represented differently as struct T.
- } else if (TypeTranslator::isOpaqueArrayType(lhsValType)) {
- // For opaque array types, we cannot perform OpLoad on the whole array and
- // then write out as a whole; instead, we need to OpLoad each element
- // using access chains. This is to influence later SPIR-V transformations
- // to use access chains to access each opaque object; if we do array
- // wholesale handling here, they will be in the final transformed code.
- // Drivers don't like that.
- // TODO: consider moving this hack into SPIRV-Tools as a transformation.
- assert(lhsValType->isConstantArrayType());
- assert(!rhsVal.isRValue());
- const auto *arrayType = astContext.getAsConstantArrayType(lhsValType);
- const auto elemType = arrayType->getElementType();
- const auto arraySize =
- static_cast<uint32_t>(arrayType->getSize().getZExtValue());
- // Do separate load of each element via access chain
- llvm::SmallVector<uint32_t, 8> elements;
- for (uint32_t i = 0; i < arraySize; ++i) {
- const auto subRhsValType =
- typeTranslator.translateType(elemType, rhsVal.getLayoutRule());
- const auto subRhsPtrType =
- theBuilder.getPointerType(subRhsValType, rhsVal.getStorageClass());
- const auto subRhsPtr = theBuilder.createAccessChain(
- subRhsPtrType, rhsVal, {theBuilder.getConstantInt32(i)});
- elements.push_back(theBuilder.createLoad(subRhsValType, subRhsPtr));
- }
- // Create a new composite and write out once
- const auto lhsValTypeId =
- typeTranslator.translateType(lhsValType, lhsPtr.getLayoutRule());
- theBuilder.createStore(
- lhsPtr, theBuilder.createCompositeConstruct(lhsValTypeId, elements));
- } else if (lhsPtr.getLayoutRule() == rhsVal.getLayoutRule()) {
- // If lhs and rhs has the same memory layout, we should be safe to load
- // from rhs and directly store into lhs and avoid decomposing rhs.
- // Note: this check should happen after those setting needsLegalization.
- // TODO: is this optimization always correct?
- theBuilder.createStore(lhsPtr, rhsVal);
- } else if (lhsValType->isRecordType() || lhsValType->isConstantArrayType() ||
- lhsIsNonFpMat) {
- theBuilder.createStore(
- lhsPtr, reconstructValue(rhsVal, lhsValType, lhsPtr.getLayoutRule()));
- } else {
- emitError("storing value of type %0 unimplemented", {}) << lhsValType;
- }
- }
- uint32_t SPIRVEmitter::reconstructValue(const SpirvEvalInfo &srcVal,
- const QualType valType,
- LayoutRule dstLR) {
- // Lambda for casting scalar or vector of bool<-->uint in cases where one side
- // of the reconstruction (lhs or rhs) has a layout rule.
- const auto handleBooleanLayout = [this, &srcVal, dstLR](uint32_t val,
- QualType valType) {
- // We only need to cast if we have a scalar or vector of booleans.
- if (!isBoolOrVecOfBoolType(valType))
- return val;
- LayoutRule srcLR = srcVal.getLayoutRule();
- // Source value has a layout rule, and has therefore been represented
- // as a uint. Cast it to boolean before using.
- bool shouldCastToBool =
- srcLR != LayoutRule::Void && dstLR == LayoutRule::Void;
- // Destination has a layout rule, and should therefore be represented
- // as a uint. Cast to uint before using.
- bool shouldCastToUint =
- srcLR == LayoutRule::Void && dstLR != LayoutRule::Void;
- // No boolean layout issues to take care of.
- if (!shouldCastToBool && !shouldCastToUint)
- return val;
- uint32_t vecSize = 1;
- TypeTranslator::isVectorType(valType, nullptr, &vecSize);
- QualType boolType =
- vecSize == 1 ? astContext.BoolTy
- : astContext.getExtVectorType(astContext.BoolTy, vecSize);
- QualType uintType =
- vecSize == 1
- ? astContext.UnsignedIntTy
- : astContext.getExtVectorType(astContext.UnsignedIntTy, vecSize);
- if (shouldCastToBool)
- return castToBool(val, uintType, boolType);
- if (shouldCastToUint)
- return castToInt(val, boolType, uintType, {});
- return val;
- };
- // Lambda for cases where we want to reconstruct an array
- const auto reconstructArray = [this, &srcVal, valType,
- dstLR](uint32_t arraySize,
- QualType arrayElemType) {
- llvm::SmallVector<uint32_t, 4> elements;
- for (uint32_t i = 0; i < arraySize; ++i) {
- const auto subSrcValType =
- typeTranslator.translateType(arrayElemType, srcVal.getLayoutRule());
- const auto subSrcVal =
- theBuilder.createCompositeExtract(subSrcValType, srcVal, {i});
- elements.push_back(reconstructValue(srcVal.substResultId(subSrcVal),
- arrayElemType, dstLR));
- }
- const auto dstValType = typeTranslator.translateType(valType, dstLR);
- return theBuilder.createCompositeConstruct(dstValType, elements);
- };
- // Constant arrays
- if (const auto *arrayType = astContext.getAsConstantArrayType(valType)) {
- const auto elemType = arrayType->getElementType();
- const auto size =
- static_cast<uint32_t>(arrayType->getSize().getZExtValue());
- return reconstructArray(size, elemType);
- }
- // Non-floating-point matrices
- QualType matElemType = {};
- uint32_t numRows = 0, numCols = 0;
- const bool isNonFpMat =
- typeTranslator.isMxNMatrix(valType, &matElemType, &numRows, &numCols) &&
- !matElemType->isFloatingType();
- if (isNonFpMat) {
- // Note: This check should happen before the RecordType check.
- // Non-fp matrices are represented as arrays of vectors in SPIR-V.
- // Each array element is a vector. Get the QualType for the vector.
- const auto elemType = astContext.getExtVectorType(matElemType, numCols);
- return reconstructArray(numRows, elemType);
- }
- // Note: This check should happen before the RecordType check since
- // vector/matrix/resource types are represented as RecordType in the AST.
- if (hlsl::IsHLSLVecMatType(valType) || hlsl::IsHLSLResourceType(valType))
- return handleBooleanLayout(srcVal, valType);
- // Structs
- if (const auto *recordType = valType->getAs<RecordType>()) {
- uint32_t index = 0;
- llvm::SmallVector<uint32_t, 4> elements;
- for (const auto *field : recordType->getDecl()->fields()) {
- const auto subSrcValType = typeTranslator.translateType(
- field->getType(), srcVal.getLayoutRule());
- const auto subSrcVal =
- theBuilder.createCompositeExtract(subSrcValType, srcVal, {index});
- elements.push_back(reconstructValue(srcVal.substResultId(subSrcVal),
- field->getType(), dstLR));
- ++index;
- }
- const auto dstValType = typeTranslator.translateType(valType, dstLR);
- return theBuilder.createCompositeConstruct(dstValType, elements);
- }
- return handleBooleanLayout(srcVal, valType);
- }
- SpirvEvalInfo SPIRVEmitter::processBinaryOp(const Expr *lhs, const Expr *rhs,
- const BinaryOperatorKind opcode,
- const QualType computationType,
- const QualType resultType,
- SourceRange sourceRange,
- SpirvEvalInfo *lhsInfo,
- const spv::Op mandateGenOpcode) {
- const QualType lhsType = lhs->getType();
- const QualType rhsType = rhs->getType();
- // Binary logical operations (such as ==, !=, etc) that return a boolean type
- // may get a literal (e.g. 0, 1, etc.) as lhs or rhs args. Since only
- // non-zero-ness of these literals matter, they can be translated as 32-bits.
- TypeTranslator::LiteralTypeHint hint(typeTranslator);
- if (resultType->isBooleanType()) {
- if (lhsType->isSpecificBuiltinType(BuiltinType::LitInt) ||
- rhsType->isSpecificBuiltinType(BuiltinType::LitInt))
- hint.setHint(astContext.IntTy);
- if (lhsType->isSpecificBuiltinType(BuiltinType::LitFloat) ||
- rhsType->isSpecificBuiltinType(BuiltinType::LitFloat))
- hint.setHint(astContext.FloatTy);
- }
- // If the operands are of matrix type, we need to dispatch the operation
- // onto each element vector iff the operands are not degenerated matrices
- // and we don't have a matrix specific SPIR-V instruction for the operation.
- if (!isSpirvMatrixOp(mandateGenOpcode) &&
- TypeTranslator::isMxNMatrix(lhsType)) {
- return processMatrixBinaryOp(lhs, rhs, opcode, sourceRange);
- }
- // Comma operator works differently from other binary operations as there is
- // no SPIR-V instruction for it. For each comma, we must evaluate lhs and rhs
- // respectively, and return the results of rhs.
- if (opcode == BO_Comma) {
- (void)doExpr(lhs);
- return doExpr(rhs);
- }
- SpirvEvalInfo rhsVal = 0, lhsPtr = 0, lhsVal = 0;
- if (BinaryOperator::isCompoundAssignmentOp(opcode)) {
- // Evalute rhs before lhs
- rhsVal = loadIfGLValue(rhs);
- lhsVal = lhsPtr = doExpr(lhs);
- // This is a compound assignment. We need to load the lhs value if lhs
- // is not already rvalue and does not generate a vector shuffle.
- if (!lhsPtr.isRValue() && !isVectorShuffle(lhs)) {
- lhsVal = loadIfGLValue(lhs, lhsPtr);
- }
- // For a compound assignments, the AST does not have the proper implicit
- // cast if lhs and rhs have different types. So we need to manually cast lhs
- // to the computation type.
- if (computationType != lhsType)
- lhsVal.setResultId(
- castToType(lhsVal, lhsType, computationType, lhs->getExprLoc()));
- } else {
- // Evalute lhs before rhs
- lhsPtr = doExpr(lhs);
- lhsVal = loadIfGLValue(lhs, lhsPtr);
- rhsVal = loadIfGLValue(rhs);
- }
- if (lhsInfo)
- *lhsInfo = lhsPtr;
- const spv::Op spvOp = (mandateGenOpcode == spv::Op::Max)
- ? translateOp(opcode, computationType)
- : mandateGenOpcode;
- switch (opcode) {
- case BO_Shl:
- case BO_Shr:
- case BO_ShlAssign:
- case BO_ShrAssign:
- // We need to cull the RHS to make sure that we are not shifting by an
- // amount that is larger than the bitwidth of the LHS.
- rhsVal.setResultId(theBuilder.createBinaryOp(
- spv::Op::OpBitwiseAnd, typeTranslator.translateType(computationType),
- rhsVal, getMaskForBitwidthValue(rhsType)));
- // Fall through
- case BO_Add:
- case BO_Sub:
- case BO_Mul:
- case BO_Div:
- case BO_Rem:
- case BO_LT:
- case BO_LE:
- case BO_GT:
- case BO_GE:
- case BO_EQ:
- case BO_NE:
- case BO_And:
- case BO_Or:
- case BO_Xor:
- case BO_LAnd:
- case BO_LOr:
- case BO_AddAssign:
- case BO_SubAssign:
- case BO_MulAssign:
- case BO_DivAssign:
- case BO_RemAssign:
- case BO_AndAssign:
- case BO_OrAssign:
- case BO_XorAssign: {
- // To evaluate this expression as an OpSpecConstantOp, we need to make sure
- // both operands are constant and at least one of them is a spec constant.
- if (lhsVal.isConstant() && rhsVal.isConstant() &&
- (lhsVal.isSpecConstant() || rhsVal.isSpecConstant()) &&
- isAcceptedSpecConstantBinaryOp(spvOp)) {
- const auto valId = theBuilder.createSpecConstantBinaryOp(
- spvOp, typeTranslator.translateType(resultType), lhsVal, rhsVal);
- return SpirvEvalInfo(valId).setRValue().setSpecConstant();
- }
- // Normal binary operation
- uint32_t valId = 0;
- if (BinaryOperator::isCompoundAssignmentOp(opcode)) {
- valId = theBuilder.createBinaryOp(
- spvOp, typeTranslator.translateType(computationType), lhsVal, rhsVal);
- // For a compound assignments, the AST does not have the proper implicit
- // cast if lhs and rhs have different types. So we need to manually cast
- // the result back to lhs' type.
- if (computationType != lhsType)
- valId = castToType(valId, computationType, lhsType, lhs->getExprLoc());
- } else {
- valId = theBuilder.createBinaryOp(
- spvOp, typeTranslator.translateType(resultType), lhsVal, rhsVal);
- }
- auto result = SpirvEvalInfo(valId).setRValue();
- if (lhsVal.isRelaxedPrecision() || rhsVal.isRelaxedPrecision())
- result.setRelaxedPrecision();
- return result;
- }
- case BO_Assign:
- llvm_unreachable("assignment should not be handled here");
- }
- emitError("binary operator '%0' unimplemented", lhs->getExprLoc())
- << BinaryOperator::getOpcodeStr(opcode) << sourceRange;
- return 0;
- }
- void SPIRVEmitter::initOnce(QualType varType, std::string varName,
- uint32_t varPtr, const Expr *varInit) {
- // For uninitialized resource objects, we do nothing since there is no
- // meaningful zero values for them.
- if (!varInit && hlsl::IsHLSLResourceType(varType))
- return;
- const uint32_t boolType = theBuilder.getBoolType();
- varName = "init.done." + varName;
- // Create a file/module visible variable to hold the initialization state.
- const uint32_t initDoneVar =
- theBuilder.addModuleVar(boolType, spv::StorageClass::Private, varName,
- theBuilder.getConstantBool(false));
- const uint32_t condition = theBuilder.createLoad(boolType, initDoneVar);
- const uint32_t todoBB = theBuilder.createBasicBlock("if.init.todo");
- const uint32_t doneBB = theBuilder.createBasicBlock("if.init.done");
- // If initDoneVar contains true, we jump to the "done" basic block; otherwise,
- // jump to the "todo" basic block.
- theBuilder.createConditionalBranch(condition, doneBB, todoBB, doneBB);
- theBuilder.addSuccessor(todoBB);
- theBuilder.addSuccessor(doneBB);
- theBuilder.setMergeTarget(doneBB);
- theBuilder.setInsertPoint(todoBB);
- // Do initialization and mark done
- if (varInit) {
- storeValue(
- // Static function variable are of private storage class
- SpirvEvalInfo(varPtr).setStorageClass(spv::StorageClass::Private),
- doExpr(varInit), varInit->getType());
- } else {
- const auto typeId = typeTranslator.translateType(varType);
- theBuilder.createStore(varPtr, theBuilder.getConstantNull(typeId));
- }
- theBuilder.createStore(initDoneVar, theBuilder.getConstantBool(true));
- theBuilder.createBranch(doneBB);
- theBuilder.addSuccessor(doneBB);
- theBuilder.setInsertPoint(doneBB);
- }
- bool SPIRVEmitter::isVectorShuffle(const Expr *expr) {
- // TODO: the following check is essentially duplicated from
- // doHLSLVectorElementExpr. Should unify them.
- if (const auto *vecElemExpr = dyn_cast<HLSLVectorElementExpr>(expr)) {
- const Expr *base = nullptr;
- hlsl::VectorMemberAccessPositions accessor;
- condenseVectorElementExpr(vecElemExpr, &base, &accessor);
- const auto accessorSize = accessor.Count;
- if (accessorSize == 1) {
- // Selecting only one element. OpAccessChain or OpCompositeExtract for
- // such cases.
- return false;
- }
- const auto baseSize = hlsl::GetHLSLVecSize(base->getType());
- if (accessorSize != baseSize)
- return true;
- for (uint32_t i = 0; i < accessorSize; ++i) {
- uint32_t position;
- accessor.GetPosition(i, &position);
- if (position != i)
- return true;
- }
- // Selecting exactly the original vector. No vector shuffle generated.
- return false;
- }
- return false;
- }
- bool SPIRVEmitter::isTextureMipsSampleIndexing(const CXXOperatorCallExpr *expr,
- const Expr **base,
- const Expr **location,
- const Expr **lod) {
- if (!expr)
- return false;
- // <object>.mips[][] consists of an outer operator[] and an inner operator[]
- const CXXOperatorCallExpr *outerExpr = expr;
- if (outerExpr->getOperator() != OverloadedOperatorKind::OO_Subscript)
- return false;
- const Expr *arg0 = outerExpr->getArg(0)->IgnoreParenNoopCasts(astContext);
- const CXXOperatorCallExpr *innerExpr = dyn_cast<CXXOperatorCallExpr>(arg0);
- // Must have an inner operator[]
- if (!innerExpr ||
- innerExpr->getOperator() != OverloadedOperatorKind::OO_Subscript) {
- return false;
- }
- const Expr *innerArg0 =
- innerExpr->getArg(0)->IgnoreParenNoopCasts(astContext);
- const MemberExpr *memberExpr = dyn_cast<MemberExpr>(innerArg0);
- if (!memberExpr)
- return false;
- // Must be accessing the member named "mips" or "sample"
- const auto &memberName =
- memberExpr->getMemberNameInfo().getName().getAsString();
- if (memberName != "mips" && memberName != "sample")
- return false;
- const Expr *object = memberExpr->getBase();
- const auto objectType = object->getType();
- if (!TypeTranslator::isTexture(objectType))
- return false;
- if (base)
- *base = object;
- if (lod)
- *lod = innerExpr->getArg(1);
- if (location)
- *location = outerExpr->getArg(1);
- return true;
- }
- bool SPIRVEmitter::isBufferTextureIndexing(const CXXOperatorCallExpr *indexExpr,
- const Expr **base,
- const Expr **index) {
- if (!indexExpr)
- return false;
- // Must be operator[]
- if (indexExpr->getOperator() != OverloadedOperatorKind::OO_Subscript)
- return false;
- const Expr *object = indexExpr->getArg(0);
- const auto objectType = object->getType();
- if (TypeTranslator::isBuffer(objectType) ||
- TypeTranslator::isRWBuffer(objectType) ||
- TypeTranslator::isTexture(objectType) ||
- TypeTranslator::isRWTexture(objectType)) {
- if (base)
- *base = object;
- if (index)
- *index = indexExpr->getArg(1);
- return true;
- }
- return false;
- }
- void SPIRVEmitter::condenseVectorElementExpr(
- const HLSLVectorElementExpr *expr, const Expr **basePtr,
- hlsl::VectorMemberAccessPositions *flattenedAccessor) {
- llvm::SmallVector<hlsl::VectorMemberAccessPositions, 2> accessors;
- accessors.push_back(expr->getEncodedElementAccess());
- // Recursively descending until we find the true base vector. In the
- // meanwhile, collecting accessors in the reverse order.
- *basePtr = expr->getBase();
- while (const auto *vecElemBase = dyn_cast<HLSLVectorElementExpr>(*basePtr)) {
- accessors.push_back(vecElemBase->getEncodedElementAccess());
- *basePtr = vecElemBase->getBase();
- }
- *flattenedAccessor = accessors.back();
- for (int32_t i = accessors.size() - 2; i >= 0; --i) {
- const auto ¤tAccessor = accessors[i];
- // Apply the current level of accessor to the flattened accessor of all
- // previous levels of ones.
- hlsl::VectorMemberAccessPositions combinedAccessor;
- for (uint32_t j = 0; j < currentAccessor.Count; ++j) {
- uint32_t currentPosition = 0;
- currentAccessor.GetPosition(j, ¤tPosition);
- uint32_t previousPosition = 0;
- flattenedAccessor->GetPosition(currentPosition, &previousPosition);
- combinedAccessor.SetPosition(j, previousPosition);
- }
- combinedAccessor.Count = currentAccessor.Count;
- combinedAccessor.IsValid =
- flattenedAccessor->IsValid && currentAccessor.IsValid;
- *flattenedAccessor = combinedAccessor;
- }
- }
- SpirvEvalInfo SPIRVEmitter::createVectorSplat(const Expr *scalarExpr,
- uint32_t size) {
- bool isConstVal = false;
- SpirvEvalInfo scalarVal = 0;
- // Try to evaluate the element as constant first. If successful, then we
- // can generate constant instructions for this vector splat.
- if (scalarVal = tryToEvaluateAsConst(scalarExpr)) {
- isConstVal = true;
- } else {
- scalarVal = doExpr(scalarExpr);
- }
- if (size == 1) {
- // Just return the scalar value for vector splat with size 1.
- // Note that can be used as an lvalue, so we need to carry over
- // the lvalueness for non-constant cases.
- return isConstVal ? scalarVal.setConstant().setRValue() : scalarVal;
- }
- const uint32_t vecType = theBuilder.getVecType(
- typeTranslator.translateType(scalarExpr->getType()), size);
- llvm::SmallVector<uint32_t, 4> elements(size_t(size), scalarVal);
- // TODO: we are saying the constant has Function storage class here.
- // Should find a more meaningful one.
- if (isConstVal) {
- const auto valueId = theBuilder.getConstantComposite(vecType, elements);
- return SpirvEvalInfo(valueId).setConstant().setRValue();
- } else {
- const auto valueId = theBuilder.createCompositeConstruct(vecType, elements);
- return SpirvEvalInfo(valueId).setRValue();
- }
- }
- void SPIRVEmitter::splitVecLastElement(QualType vecType, uint32_t vec,
- uint32_t *residual,
- uint32_t *lastElement) {
- assert(hlsl::IsHLSLVecType(vecType));
- const uint32_t count = hlsl::GetHLSLVecSize(vecType);
- assert(count > 1);
- const uint32_t elemTypeId =
- typeTranslator.translateType(hlsl::GetHLSLVecElementType(vecType));
- if (count == 2) {
- *residual = theBuilder.createCompositeExtract(elemTypeId, vec, 0);
- } else {
- llvm::SmallVector<uint32_t, 4> indices;
- for (uint32_t i = 0; i < count - 1; ++i)
- indices.push_back(i);
- const uint32_t typeId = theBuilder.getVecType(elemTypeId, count - 1);
- *residual = theBuilder.createVectorShuffle(typeId, vec, vec, indices);
- }
- *lastElement =
- theBuilder.createCompositeExtract(elemTypeId, vec, {count - 1});
- }
- SpirvEvalInfo
- SPIRVEmitter::tryToGenFloatVectorScale(const BinaryOperator *expr) {
- const QualType type = expr->getType();
- const SourceRange range = expr->getSourceRange();
- // We can only translate floatN * float into OpVectorTimesScalar.
- // So the result type must be floatN.
- if (!hlsl::IsHLSLVecType(type) ||
- !hlsl::GetHLSLVecElementType(type)->isFloatingType())
- return 0;
- const Expr *lhs = expr->getLHS();
- const Expr *rhs = expr->getRHS();
- // Multiplying a float vector with a float scalar will be represented in
- // AST via a binary operation with two float vectors as operands; one of
- // the operand is from an implicit cast with kind CK_HLSLVectorSplat.
- // vector * scalar
- if (hlsl::IsHLSLVecType(lhs->getType())) {
- if (const auto *cast = dyn_cast<ImplicitCastExpr>(rhs)) {
- if (cast->getCastKind() == CK_HLSLVectorSplat) {
- const QualType vecType = expr->getType();
- if (isa<CompoundAssignOperator>(expr)) {
- SpirvEvalInfo lhsPtr = 0;
- const auto result = processBinaryOp(
- lhs, cast->getSubExpr(), expr->getOpcode(), vecType, vecType,
- range, &lhsPtr, spv::Op::OpVectorTimesScalar);
- return processAssignment(lhs, result, true, lhsPtr);
- } else {
- return processBinaryOp(lhs, cast->getSubExpr(), expr->getOpcode(),
- vecType, vecType, range, nullptr,
- spv::Op::OpVectorTimesScalar);
- }
- }
- }
- }
- // scalar * vector
- if (hlsl::IsHLSLVecType(rhs->getType())) {
- if (const auto *cast = dyn_cast<ImplicitCastExpr>(lhs)) {
- if (cast->getCastKind() == CK_HLSLVectorSplat) {
- const QualType vecType = expr->getType();
- // We need to switch the positions of lhs and rhs here because
- // OpVectorTimesScalar requires the first operand to be a vector and
- // the second to be a scalar.
- return processBinaryOp(rhs, cast->getSubExpr(), expr->getOpcode(),
- vecType, vecType, range, nullptr,
- spv::Op::OpVectorTimesScalar);
- }
- }
- }
- return 0;
- }
- SpirvEvalInfo
- SPIRVEmitter::tryToGenFloatMatrixScale(const BinaryOperator *expr) {
- const QualType type = expr->getType();
- const SourceRange range = expr->getSourceRange();
- // We can only translate floatMxN * float into OpMatrixTimesScalar.
- // So the result type must be floatMxN.
- if (!hlsl::IsHLSLMatType(type) ||
- !hlsl::GetHLSLMatElementType(type)->isFloatingType())
- return 0;
- const Expr *lhs = expr->getLHS();
- const Expr *rhs = expr->getRHS();
- const QualType lhsType = lhs->getType();
- const QualType rhsType = rhs->getType();
- const auto selectOpcode = [](const QualType ty) {
- return TypeTranslator::isMx1Matrix(ty) || TypeTranslator::is1xNMatrix(ty)
- ? spv::Op::OpVectorTimesScalar
- : spv::Op::OpMatrixTimesScalar;
- };
- // Multiplying a float matrix with a float scalar will be represented in
- // AST via a binary operation with two float matrices as operands; one of
- // the operand is from an implicit cast with kind CK_HLSLMatrixSplat.
- // matrix * scalar
- if (hlsl::IsHLSLMatType(lhsType)) {
- if (const auto *cast = dyn_cast<ImplicitCastExpr>(rhs)) {
- if (cast->getCastKind() == CK_HLSLMatrixSplat) {
- const QualType matType = expr->getType();
- const spv::Op opcode = selectOpcode(lhsType);
- if (isa<CompoundAssignOperator>(expr)) {
- SpirvEvalInfo lhsPtr = 0;
- const auto result =
- processBinaryOp(lhs, cast->getSubExpr(), expr->getOpcode(),
- matType, matType, range, &lhsPtr, opcode);
- return processAssignment(lhs, result, true, lhsPtr);
- } else {
- return processBinaryOp(lhs, cast->getSubExpr(), expr->getOpcode(),
- matType, matType, range, nullptr, opcode);
- }
- }
- }
- }
- // scalar * matrix
- if (hlsl::IsHLSLMatType(rhsType)) {
- if (const auto *cast = dyn_cast<ImplicitCastExpr>(lhs)) {
- if (cast->getCastKind() == CK_HLSLMatrixSplat) {
- const QualType matType = expr->getType();
- const spv::Op opcode = selectOpcode(rhsType);
- // We need to switch the positions of lhs and rhs here because
- // OpMatrixTimesScalar requires the first operand to be a matrix and
- // the second to be a scalar.
- return processBinaryOp(rhs, cast->getSubExpr(), expr->getOpcode(),
- matType, matType, range, nullptr, opcode);
- }
- }
- }
- return 0;
- }
- SpirvEvalInfo
- SPIRVEmitter::tryToAssignToVectorElements(const Expr *lhs,
- const SpirvEvalInfo &rhs) {
- // Assigning to a vector swizzling lhs is tricky if we are neither
- // writing to one element nor all elements in their original order.
- // Under such cases, we need to create a new vector swizzling involving
- // both the lhs and rhs vectors and then write the result of this swizzling
- // into the base vector of lhs.
- // For example, for vec4.yz = vec2, we nee to do the following:
- //
- // %vec4Val = OpLoad %v4float %vec4
- // %vec2Val = OpLoad %v2float %vec2
- // %shuffle = OpVectorShuffle %v4float %vec4Val %vec2Val 0 4 5 3
- // OpStore %vec4 %shuffle
- //
- // When doing the vector shuffle, we use the lhs base vector as the first
- // vector and the rhs vector as the second vector. Therefore, all elements
- // in the second vector will be selected into the shuffle result.
- const auto *lhsExpr = dyn_cast<HLSLVectorElementExpr>(lhs);
- if (!lhsExpr)
- return 0;
- // Special case for <scalar-value>.x, which will have an AST of
- // HLSLVectorElementExpr whose base is an ImplicitCastExpr
- // (CK_HLSLVectorSplat). We just need to assign to <scalar-value>
- // for such case.
- if (const auto *baseCast = dyn_cast<CastExpr>(lhsExpr->getBase()))
- if (baseCast->getCastKind() == CastKind::CK_HLSLVectorSplat &&
- hlsl::GetHLSLVecSize(baseCast->getType()) == 1)
- return processAssignment(baseCast->getSubExpr(), rhs, false);
- const Expr *base = nullptr;
- hlsl::VectorMemberAccessPositions accessor;
- condenseVectorElementExpr(lhsExpr, &base, &accessor);
- const QualType baseType = base->getType();
- assert(hlsl::IsHLSLVecType(baseType));
- const uint32_t baseTypeId = typeTranslator.translateType(baseType);
- const auto baseSize = hlsl::GetHLSLVecSize(baseType);
- const auto accessorSize = accessor.Count;
- // Whether selecting the whole original vector
- bool isSelectOrigin = accessorSize == baseSize;
- // Assigning to one component
- if (accessorSize == 1) {
- if (isBufferTextureIndexing(dyn_cast_or_null<CXXOperatorCallExpr>(base))) {
- // Assigning to one component of a RWBuffer/RWTexture element
- // We need to use OpImageWrite here.
- // Compose the new vector value first
- const uint32_t oldVec = doExpr(base);
- const uint32_t newVec = theBuilder.createCompositeInsert(
- baseTypeId, oldVec, {accessor.Swz0}, rhs);
- const auto result = tryToAssignToRWBufferRWTexture(base, newVec);
- assert(result); // Definitely RWBuffer/RWTexture assignment
- return rhs; // TODO: incorrect for compound assignments
- } else {
- // Assigning to one normal vector component. Nothing special, just fall
- // back to the normal CodeGen path.
- return 0;
- }
- }
- if (isSelectOrigin) {
- for (uint32_t i = 0; i < accessorSize; ++i) {
- uint32_t position;
- accessor.GetPosition(i, &position);
- if (position != i)
- isSelectOrigin = false;
- }
- }
- // Assigning to the original vector
- if (isSelectOrigin) {
- // Ignore this HLSLVectorElementExpr and dispatch to base
- return processAssignment(base, rhs, false);
- }
- llvm::SmallVector<uint32_t, 4> selectors;
- selectors.resize(baseSize);
- // Assume we are selecting all original elements first.
- for (uint32_t i = 0; i < baseSize; ++i) {
- selectors[i] = i;
- }
- // Now fix up the elements that actually got overwritten by the rhs vector.
- // Since we are using the rhs vector as the second vector, their index
- // should be offset'ed by the size of the lhs base vector.
- for (uint32_t i = 0; i < accessor.Count; ++i) {
- uint32_t position;
- accessor.GetPosition(i, &position);
- selectors[position] = baseSize + i;
- }
- const auto vec1 = doExpr(base);
- const uint32_t vec1Val =
- vec1.isRValue() ? vec1 : theBuilder.createLoad(baseTypeId, vec1);
- const uint32_t shuffle =
- theBuilder.createVectorShuffle(baseTypeId, vec1Val, rhs, selectors);
- if (!tryToAssignToRWBufferRWTexture(base, shuffle))
- theBuilder.createStore(vec1, shuffle);
- // TODO: OK, this return value is incorrect for compound assignments, for
- // which cases we should return lvalues. Should at least emit errors if
- // this return value is used (can be checked via ASTContext.getParents).
- return rhs;
- }
- SpirvEvalInfo
- SPIRVEmitter::tryToAssignToRWBufferRWTexture(const Expr *lhs,
- const SpirvEvalInfo &rhs) {
- const Expr *baseExpr = nullptr;
- const Expr *indexExpr = nullptr;
- const auto lhsExpr = dyn_cast<CXXOperatorCallExpr>(lhs);
- if (isBufferTextureIndexing(lhsExpr, &baseExpr, &indexExpr)) {
- const uint32_t locId = doExpr(indexExpr);
- const QualType imageType = baseExpr->getType();
- const uint32_t imageId = theBuilder.createLoad(
- typeTranslator.translateType(imageType), doExpr(baseExpr));
- theBuilder.createImageWrite(imageType, imageId, locId, rhs);
- return rhs;
- }
- return 0;
- }
- SpirvEvalInfo
- SPIRVEmitter::tryToAssignToMatrixElements(const Expr *lhs,
- const SpirvEvalInfo &rhs) {
- const auto *lhsExpr = dyn_cast<ExtMatrixElementExpr>(lhs);
- if (!lhsExpr)
- return 0;
- const Expr *baseMat = lhsExpr->getBase();
- const auto base = doExpr(baseMat);
- const QualType elemType = hlsl::GetHLSLMatElementType(baseMat->getType());
- const uint32_t elemTypeId = typeTranslator.translateType(elemType);
- uint32_t rowCount = 0, colCount = 0;
- hlsl::GetHLSLMatRowColCount(baseMat->getType(), rowCount, colCount);
- // For each lhs element written to:
- // 1. Extract the corresponding rhs element using OpCompositeExtract
- // 2. Create access chain for the lhs element using OpAccessChain
- // 3. Write using OpStore
- const auto accessor = lhsExpr->getEncodedElementAccess();
- for (uint32_t i = 0; i < accessor.Count; ++i) {
- uint32_t row = 0, col = 0;
- accessor.GetPosition(i, &row, &col);
- llvm::SmallVector<uint32_t, 2> indices;
- // If the matrix only have one row/column, we are indexing into a vector
- // then. Only one index is needed for such cases.
- if (rowCount > 1)
- indices.push_back(row);
- if (colCount > 1)
- indices.push_back(col);
- for (uint32_t i = 0; i < indices.size(); ++i)
- indices[i] = theBuilder.getConstantInt32(indices[i]);
- // If we are writing to only one element, the rhs should already be a
- // scalar value.
- uint32_t rhsElem = rhs;
- if (accessor.Count > 1)
- rhsElem = theBuilder.createCompositeExtract(elemTypeId, rhs, {i});
- const uint32_t ptrType =
- theBuilder.getPointerType(elemTypeId, base.getStorageClass());
- // If the lhs is actually a matrix of size 1x1, we don't need the access
- // chain. base is already the dest pointer.
- uint32_t lhsElemPtr = base;
- if (!indices.empty()) {
- assert(!base.isRValue());
- // Load the element via access chain
- lhsElemPtr = theBuilder.createAccessChain(ptrType, lhsElemPtr, indices);
- }
- theBuilder.createStore(lhsElemPtr, rhsElem);
- }
- // TODO: OK, this return value is incorrect for compound assignments, for
- // which cases we should return lvalues. Should at least emit errors if
- // this return value is used (can be checked via ASTContext.getParents).
- return rhs;
- }
- SpirvEvalInfo SPIRVEmitter::processEachVectorInMatrix(
- const Expr *matrix, const uint32_t matrixVal,
- llvm::function_ref<uint32_t(uint32_t, uint32_t, uint32_t)>
- actOnEachVector) {
- const auto matType = matrix->getType();
- assert(TypeTranslator::isMxNMatrix(matType));
- const uint32_t vecType = typeTranslator.getComponentVectorType(matType);
- uint32_t rowCount = 0, colCount = 0;
- hlsl::GetHLSLMatRowColCount(matType, rowCount, colCount);
- llvm::SmallVector<uint32_t, 4> vectors;
- // Extract each component vector and do operation on it
- for (uint32_t i = 0; i < rowCount; ++i) {
- const uint32_t lhsVec =
- theBuilder.createCompositeExtract(vecType, matrixVal, {i});
- vectors.push_back(actOnEachVector(i, vecType, lhsVec));
- }
- // Construct the result matrix
- const auto valId = theBuilder.createCompositeConstruct(
- typeTranslator.translateType(matType), vectors);
- return SpirvEvalInfo(valId).setRValue();
- }
- void SPIRVEmitter::createSpecConstant(const VarDecl *varDecl) {
- class SpecConstantEnvRAII {
- public:
- // Creates a new instance which sets mode to true on creation,
- // and resets mode to false on destruction.
- SpecConstantEnvRAII(bool *mode) : modeSlot(mode) { *modeSlot = true; }
- ~SpecConstantEnvRAII() { *modeSlot = false; }
- private:
- bool *modeSlot;
- };
- const QualType varType = varDecl->getType();
- bool hasError = false;
- if (!varDecl->isExternallyVisible()) {
- emitError("specialization constant must be externally visible",
- varDecl->getLocation());
- hasError = true;
- }
- if (const auto *builtinType = varType->getAs<BuiltinType>()) {
- switch (builtinType->getKind()) {
- case BuiltinType::Bool:
- case BuiltinType::Int:
- case BuiltinType::UInt:
- case BuiltinType::Float:
- break;
- default:
- emitError("unsupported specialization constant type",
- varDecl->getLocStart());
- hasError = true;
- }
- }
- const auto *init = varDecl->getInit();
- if (!init) {
- emitError("missing default value for specialization constant",
- varDecl->getLocation());
- hasError = true;
- } else if (!isAcceptedSpecConstantInit(init)) {
- emitError("unsupported specialization constant initializer",
- init->getLocStart())
- << init->getSourceRange();
- hasError = true;
- }
- if (hasError)
- return;
- SpecConstantEnvRAII specConstantEnvRAII(&isSpecConstantMode);
- const auto specConstant = doExpr(init);
- // We are not creating a variable to hold the spec constant, instead, we
- // translate the varDecl directly into the spec constant here.
- theBuilder.decorateSpecId(
- specConstant, varDecl->getAttr<VKConstantIdAttr>()->getSpecConstId());
- declIdMapper.registerSpecConstant(varDecl, specConstant);
- }
- SpirvEvalInfo
- SPIRVEmitter::processMatrixBinaryOp(const Expr *lhs, const Expr *rhs,
- const BinaryOperatorKind opcode,
- SourceRange range) {
- // TODO: some code are duplicated from processBinaryOp. Try to unify them.
- const auto lhsType = lhs->getType();
- assert(TypeTranslator::isMxNMatrix(lhsType));
- const spv::Op spvOp = translateOp(opcode, lhsType);
- uint32_t rhsVal, lhsPtr, lhsVal;
- if (BinaryOperator::isCompoundAssignmentOp(opcode)) {
- // Evalute rhs before lhs
- rhsVal = doExpr(rhs);
- lhsPtr = doExpr(lhs);
- const uint32_t lhsTy = typeTranslator.translateType(lhsType);
- lhsVal = theBuilder.createLoad(lhsTy, lhsPtr);
- } else {
- // Evalute lhs before rhs
- lhsVal = lhsPtr = doExpr(lhs);
- rhsVal = doExpr(rhs);
- }
- switch (opcode) {
- case BO_Add:
- case BO_Sub:
- case BO_Mul:
- case BO_Div:
- case BO_Rem:
- case BO_AddAssign:
- case BO_SubAssign:
- case BO_MulAssign:
- case BO_DivAssign:
- case BO_RemAssign: {
- const uint32_t vecType = typeTranslator.getComponentVectorType(lhsType);
- const auto actOnEachVec = [this, spvOp, rhsVal](uint32_t index,
- uint32_t vecType,
- uint32_t lhsVec) {
- // For each vector of lhs, we need to load the corresponding vector of
- // rhs and do the operation on them.
- const uint32_t rhsVec =
- theBuilder.createCompositeExtract(vecType, rhsVal, {index});
- const auto valId =
- theBuilder.createBinaryOp(spvOp, vecType, lhsVec, rhsVec);
- return SpirvEvalInfo(valId).setRValue();
- };
- return processEachVectorInMatrix(lhs, lhsVal, actOnEachVec);
- }
- case BO_Assign:
- llvm_unreachable("assignment should not be handled here");
- default:
- break;
- }
- emitError("binary operator '%0' over matrix type unimplemented",
- lhs->getExprLoc())
- << BinaryOperator::getOpcodeStr(opcode) << range;
- return 0;
- }
- const Expr *SPIRVEmitter::collectArrayStructIndices(
- const Expr *expr, llvm::SmallVectorImpl<uint32_t> *indices, bool rawIndex) {
- if (const auto *indexing = dyn_cast<MemberExpr>(expr)) {
- // First check whether this is referring to a static member. If it is, we
- // create a DeclRefExpr for it.
- if (auto *varDecl = dyn_cast<VarDecl>(indexing->getMemberDecl()))
- if (varDecl->isStaticDataMember())
- return DeclRefExpr::Create(
- astContext, NestedNameSpecifierLoc(), SourceLocation(), varDecl,
- /*RefersToEnclosingVariableOrCapture=*/false, SourceLocation(),
- varDecl->getType(), VK_LValue);
- const Expr *base = collectArrayStructIndices(
- indexing->getBase()->IgnoreParenNoopCasts(astContext), indices,
- rawIndex);
- // Append the index of the current level
- const auto *fieldDecl = cast<FieldDecl>(indexing->getMemberDecl());
- assert(fieldDecl);
- // If we are accessing a derived struct, we need to account for the number
- // of base structs, since they are placed as fields at the beginning of the
- // derived struct.
- const uint32_t index = getNumBaseClasses(indexing->getBase()->getType()) +
- fieldDecl->getFieldIndex();
- indices->push_back(rawIndex ? index : theBuilder.getConstantInt32(index));
- return base;
- }
- // Provide a hint to the TypeTranslator that the integer literal used to
- // index into the following cases should be translated as a 32-bit integer.
- TypeTranslator::LiteralTypeHint hint(typeTranslator, astContext.IntTy);
- if (const auto *indexing = dyn_cast<ArraySubscriptExpr>(expr)) {
- if (rawIndex)
- return nullptr; // TODO: handle constant array index
- // The base of an ArraySubscriptExpr has a wrapping LValueToRValue implicit
- // cast. We need to ingore it to avoid creating OpLoad.
- const Expr *thisBase = indexing->getBase()->IgnoreParenLValueCasts();
- const Expr *base = collectArrayStructIndices(thisBase, indices, rawIndex);
- indices->push_back(doExpr(indexing->getIdx()));
- return base;
- }
- if (const auto *indexing = dyn_cast<CXXOperatorCallExpr>(expr))
- if (indexing->getOperator() == OverloadedOperatorKind::OO_Subscript) {
- if (rawIndex)
- return nullptr; // TODO: handle constant array index
- const Expr *thisBase =
- indexing->getArg(0)->IgnoreParenNoopCasts(astContext);
- const auto thisBaseType = thisBase->getType();
- const Expr *base = collectArrayStructIndices(thisBase, indices, rawIndex);
- if (thisBaseType != base->getType() &&
- TypeTranslator::isAKindOfStructuredOrByteBuffer(thisBaseType)) {
- // The immediate base is a kind of structured or byte buffer. It should
- // be an alias variable. Break the normal index collecting chain.
- // Return the immediate base as the base so that we can apply other
- // hacks for legalization over it.
- //
- // Note: legalization specific code
- indices->clear();
- base = thisBase;
- }
- // If the base is a StructureType, we need to push an addtional index 0
- // here. This is because we created an additional OpTypeRuntimeArray
- // in the structure.
- if (TypeTranslator::isStructuredBuffer(thisBaseType))
- indices->push_back(theBuilder.getConstantInt32(0));
- if ((hlsl::IsHLSLVecType(thisBaseType) &&
- (hlsl::GetHLSLVecSize(thisBaseType) == 1)) ||
- typeTranslator.is1x1Matrix(thisBaseType) ||
- typeTranslator.is1xNMatrix(thisBaseType)) {
- // If this is a size-1 vector or 1xN matrix, ignore the index.
- } else {
- indices->push_back(doExpr(indexing->getArg(1)));
- }
- return base;
- }
- {
- const Expr *index = nullptr;
- // TODO: the following is duplicating the logic in doCXXMemberCallExpr.
- if (const auto *object = isStructuredBufferLoad(expr, &index)) {
- if (rawIndex)
- return nullptr; // TODO: handle constant array index
- // For object.Load(index), there should be no more indexing into the
- // object.
- indices->push_back(theBuilder.getConstantInt32(0));
- indices->push_back(doExpr(index));
- return object;
- }
- }
- // This the deepest we can go. No more array or struct indexing.
- return expr;
- }
- SpirvEvalInfo &SPIRVEmitter::turnIntoElementPtr(
- SpirvEvalInfo &info, QualType elemType,
- const llvm::SmallVector<uint32_t, 4> &indices) {
- assert(!info.isRValue());
- const uint32_t ptrType = theBuilder.getPointerType(
- typeTranslator.translateType(elemType, info.getLayoutRule()),
- info.getStorageClass());
- return info.setResultId(theBuilder.createAccessChain(ptrType, info, indices));
- }
- uint32_t SPIRVEmitter::castToBool(const uint32_t fromVal, QualType fromType,
- QualType toBoolType) {
- if (TypeTranslator::isSameScalarOrVecType(fromType, toBoolType))
- return fromVal;
- const uint32_t boolType = typeTranslator.translateType(toBoolType);
- { // Special case handling for converting to a matrix of booleans.
- QualType elemType = {};
- uint32_t rowCount = 0, colCount = 0;
- if (TypeTranslator::isMxNMatrix(fromType, &elemType, &rowCount,
- &colCount)) {
- const auto fromRowQualType =
- astContext.getExtVectorType(elemType, colCount);
- const auto fromRowQualTypeId =
- typeTranslator.translateType(fromRowQualType);
- const auto toBoolRowQualType =
- astContext.getExtVectorType(astContext.BoolTy, colCount);
- llvm::SmallVector<uint32_t, 4> rows;
- for (uint32_t i = 0; i < rowCount; ++i) {
- const auto row =
- theBuilder.createCompositeExtract(fromRowQualTypeId, fromVal, {i});
- rows.push_back(castToBool(row, fromRowQualType, toBoolRowQualType));
- }
- return theBuilder.createCompositeConstruct(boolType, rows);
- }
- }
- // Converting to bool means comparing with value zero.
- const spv::Op spvOp = translateOp(BO_NE, fromType);
- const uint32_t zeroVal = getValueZero(fromType);
- return theBuilder.createBinaryOp(spvOp, boolType, fromVal, zeroVal);
- }
- uint32_t SPIRVEmitter::castToInt(uint32_t fromVal, QualType fromType,
- QualType toIntType, SourceLocation srcLoc) {
- if (TypeTranslator::isSameScalarOrVecType(fromType, toIntType))
- return fromVal;
- uint32_t intType = typeTranslator.translateType(toIntType);
- if (isBoolOrVecOfBoolType(fromType)) {
- const uint32_t one = getValueOne(toIntType);
- const uint32_t zero = getValueZero(toIntType);
- return theBuilder.createSelect(intType, fromVal, one, zero);
- }
- if (isSintOrVecOfSintType(fromType) || isUintOrVecOfUintType(fromType)) {
- // First convert the source to the bitwidth of the destination if necessary.
- uint32_t convertedType = 0;
- fromVal = convertBitwidth(fromVal, fromType, toIntType, &convertedType);
- // If bitwidth conversion was the only thing we needed to do, we're done.
- if (convertedType == typeTranslator.translateType(toIntType))
- return fromVal;
- return theBuilder.createUnaryOp(spv::Op::OpBitcast, intType, fromVal);
- }
- if (isFloatOrVecOfFloatType(fromType)) {
- // First convert the source to the bitwidth of the destination if necessary.
- fromVal = convertBitwidth(fromVal, fromType, toIntType);
- if (isSintOrVecOfSintType(toIntType)) {
- return theBuilder.createUnaryOp(spv::Op::OpConvertFToS, intType, fromVal);
- } else if (isUintOrVecOfUintType(toIntType)) {
- return theBuilder.createUnaryOp(spv::Op::OpConvertFToU, intType, fromVal);
- } else {
- emitError("casting from floating point to integer unimplemented", srcLoc);
- }
- }
- {
- QualType elemType = {};
- uint32_t numRows = 0, numCols = 0;
- if (TypeTranslator::isMxNMatrix(fromType, &elemType, &numRows, &numCols)) {
- // The source matrix and the target matrix must have the same dimensions.
- QualType toElemType = {};
- uint32_t toNumRows = 0, toNumCols = 0;
- const bool isMat = TypeTranslator::isMxNMatrix(toIntType, &toElemType,
- &toNumRows, &toNumCols);
- assert(isMat && numRows == toNumRows && numCols == toNumCols);
- (void)toNumRows;
- (void)toNumCols;
- // Casting to a matrix of integers: Cast each row and construct a
- // composite.
- llvm::SmallVector<uint32_t, 4> castedRows;
- const uint32_t vecType = typeTranslator.getComponentVectorType(fromType);
- const auto fromVecQualType =
- astContext.getExtVectorType(elemType, numCols);
- const auto toIntVecQualType =
- astContext.getExtVectorType(toElemType, numCols);
- for (uint32_t row = 0; row < numRows; ++row) {
- const auto rowId =
- theBuilder.createCompositeExtract(vecType, fromVal, {row});
- castedRows.push_back(
- castToInt(rowId, fromVecQualType, toIntVecQualType, srcLoc));
- }
- return theBuilder.createCompositeConstruct(intType, castedRows);
- }
- }
- return 0;
- }
- uint32_t SPIRVEmitter::convertBitwidth(uint32_t fromVal, QualType fromType,
- QualType toType, uint32_t *resultType) {
- // At the moment, we will not make bitwidth conversions for literal int and
- // literal float types because they always indicate 64-bit and do not
- // represent what SPIR-V was actually resolved to.
- // TODO: If the evaluated type is added to SpirvEvalInfo, change 'fromVal' to
- // SpirvEvalInfo and use it to handle literal types more accurately.
- if (fromType->isSpecificBuiltinType(BuiltinType::LitFloat) ||
- fromType->isSpecificBuiltinType(BuiltinType::LitInt))
- return fromVal;
- const auto fromBitwidth = typeTranslator.getElementSpirvBitwidth(fromType);
- const auto toBitwidth = typeTranslator.getElementSpirvBitwidth(toType);
- if (fromBitwidth == toBitwidth) {
- if (resultType)
- *resultType = typeTranslator.translateType(fromType);
- return fromVal;
- }
- // We want the 'fromType' with the 'toBitwidth'.
- const uint32_t targetTypeId =
- typeTranslator.getTypeWithCustomBitwidth(fromType, toBitwidth);
- if (resultType)
- *resultType = targetTypeId;
- if (isFloatOrVecOfFloatType(fromType))
- return theBuilder.createUnaryOp(spv::Op::OpFConvert, targetTypeId, fromVal);
- if (isSintOrVecOfSintType(fromType))
- return theBuilder.createUnaryOp(spv::Op::OpSConvert, targetTypeId, fromVal);
- if (isUintOrVecOfUintType(fromType))
- return theBuilder.createUnaryOp(spv::Op::OpUConvert, targetTypeId, fromVal);
- llvm_unreachable("invalid type passed to convertBitwidth");
- }
- uint32_t SPIRVEmitter::castToFloat(uint32_t fromVal, QualType fromType,
- QualType toFloatType,
- SourceLocation srcLoc) {
- if (TypeTranslator::isSameScalarOrVecType(fromType, toFloatType))
- return fromVal;
- const uint32_t floatType = typeTranslator.translateType(toFloatType);
- if (isBoolOrVecOfBoolType(fromType)) {
- const uint32_t one = getValueOne(toFloatType);
- const uint32_t zero = getValueZero(toFloatType);
- return theBuilder.createSelect(floatType, fromVal, one, zero);
- }
- if (isSintOrVecOfSintType(fromType)) {
- // First convert the source to the bitwidth of the destination if necessary.
- fromVal = convertBitwidth(fromVal, fromType, toFloatType);
- return theBuilder.createUnaryOp(spv::Op::OpConvertSToF, floatType, fromVal);
- }
- if (isUintOrVecOfUintType(fromType)) {
- // First convert the source to the bitwidth of the destination if necessary.
- fromVal = convertBitwidth(fromVal, fromType, toFloatType);
- return theBuilder.createUnaryOp(spv::Op::OpConvertUToF, floatType, fromVal);
- }
- if (isFloatOrVecOfFloatType(fromType)) {
- // This is the case of float to float conversion with different bitwidths.
- return convertBitwidth(fromVal, fromType, toFloatType);
- }
- // Casting matrix types
- {
- QualType elemType = {};
- uint32_t numRows = 0, numCols = 0;
- if (TypeTranslator::isMxNMatrix(fromType, &elemType, &numRows, &numCols)) {
- // The source matrix and the target matrix must have the same dimensions.
- QualType toElemType = {};
- uint32_t toNumRows = 0, toNumCols = 0;
- const auto isMat = TypeTranslator::isMxNMatrix(toFloatType, &toElemType,
- &toNumRows, &toNumCols);
- assert(isMat && numRows == toNumRows && numCols == toNumCols);
- (void)toNumRows;
- (void)toNumCols;
- // Casting to a matrix of floats: Cast each row and construct a
- // composite.
- llvm::SmallVector<uint32_t, 4> castedRows;
- const uint32_t vecType = typeTranslator.getComponentVectorType(fromType);
- const auto fromVecQualType =
- astContext.getExtVectorType(elemType, numCols);
- const auto toIntVecQualType =
- astContext.getExtVectorType(toElemType, numCols);
- for (uint32_t row = 0; row < numRows; ++row) {
- const auto rowId =
- theBuilder.createCompositeExtract(vecType, fromVal, {row});
- castedRows.push_back(
- castToFloat(rowId, fromVecQualType, toIntVecQualType, srcLoc));
- }
- return theBuilder.createCompositeConstruct(floatType, castedRows);
- }
- }
- emitError("casting to floating point unimplemented", srcLoc);
- return 0;
- }
- SpirvEvalInfo SPIRVEmitter::processIntrinsicCallExpr(const CallExpr *callExpr) {
- const FunctionDecl *callee = callExpr->getDirectCallee();
- assert(hlsl::IsIntrinsicOp(callee) &&
- "doIntrinsicCallExpr was called for a non-intrinsic function.");
- const bool isFloatType = isFloatOrVecMatOfFloatType(callExpr->getType());
- const bool isSintType = isSintOrVecMatOfSintType(callExpr->getType());
- // Figure out which intrinsic function to translate.
- llvm::StringRef group;
- uint32_t opcode = static_cast<uint32_t>(hlsl::IntrinsicOp::Num_Intrinsics);
- hlsl::GetIntrinsicOp(callee, opcode, group);
- GLSLstd450 glslOpcode = GLSLstd450Bad;
- uint32_t retVal = 0;
- #define INTRINSIC_SPIRV_OP_WITH_CAP_CASE(intrinsicOp, spirvOp, doEachVec, cap) \
- case hlsl::IntrinsicOp::IOP_##intrinsicOp: { \
- theBuilder.requireCapability(cap); \
- retVal = processIntrinsicUsingSpirvInst(callExpr, spv::Op::Op##spirvOp, \
- doEachVec); \
- } break
- #define INTRINSIC_SPIRV_OP_CASE(intrinsicOp, spirvOp, doEachVec) \
- case hlsl::IntrinsicOp::IOP_##intrinsicOp: { \
- retVal = processIntrinsicUsingSpirvInst(callExpr, spv::Op::Op##spirvOp, \
- doEachVec); \
- } break
- #define INTRINSIC_OP_CASE(intrinsicOp, glslOp, doEachVec) \
- case hlsl::IntrinsicOp::IOP_##intrinsicOp: { \
- glslOpcode = GLSLstd450::GLSLstd450##glslOp; \
- retVal = processIntrinsicUsingGLSLInst(callExpr, glslOpcode, doEachVec); \
- } break
- #define INTRINSIC_OP_CASE_INT_FLOAT(intrinsicOp, glslIntOp, glslFloatOp, \
- doEachVec) \
- case hlsl::IntrinsicOp::IOP_##intrinsicOp: { \
- glslOpcode = isFloatType ? GLSLstd450::GLSLstd450##glslFloatOp \
- : GLSLstd450::GLSLstd450##glslIntOp; \
- retVal = processIntrinsicUsingGLSLInst(callExpr, glslOpcode, doEachVec); \
- } break
- #define INTRINSIC_OP_CASE_SINT_UINT(intrinsicOp, glslSintOp, glslUintOp, \
- doEachVec) \
- case hlsl::IntrinsicOp::IOP_##intrinsicOp: { \
- glslOpcode = isSintType ? GLSLstd450::GLSLstd450##glslSintOp \
- : GLSLstd450::GLSLstd450##glslUintOp; \
- retVal = processIntrinsicUsingGLSLInst(callExpr, glslOpcode, doEachVec); \
- } break
- #define INTRINSIC_OP_CASE_SINT_UINT_FLOAT(intrinsicOp, glslSintOp, glslUintOp, \
- glslFloatOp, doEachVec) \
- case hlsl::IntrinsicOp::IOP_##intrinsicOp: { \
- glslOpcode = isFloatType \
- ? GLSLstd450::GLSLstd450##glslFloatOp \
- : isSintType ? GLSLstd450::GLSLstd450##glslSintOp \
- : GLSLstd450::GLSLstd450##glslUintOp; \
- retVal = processIntrinsicUsingGLSLInst(callExpr, glslOpcode, doEachVec); \
- } break
- switch (const auto hlslOpcode = static_cast<hlsl::IntrinsicOp>(opcode)) {
- case hlsl::IntrinsicOp::IOP_InterlockedAdd:
- case hlsl::IntrinsicOp::IOP_InterlockedAnd:
- case hlsl::IntrinsicOp::IOP_InterlockedMax:
- case hlsl::IntrinsicOp::IOP_InterlockedUMax:
- case hlsl::IntrinsicOp::IOP_InterlockedMin:
- case hlsl::IntrinsicOp::IOP_InterlockedUMin:
- case hlsl::IntrinsicOp::IOP_InterlockedOr:
- case hlsl::IntrinsicOp::IOP_InterlockedXor:
- case hlsl::IntrinsicOp::IOP_InterlockedExchange:
- case hlsl::IntrinsicOp::IOP_InterlockedCompareStore:
- case hlsl::IntrinsicOp::IOP_InterlockedCompareExchange:
- retVal = processIntrinsicInterlockedMethod(callExpr, hlslOpcode);
- break;
- case hlsl::IntrinsicOp::IOP_tex1D:
- case hlsl::IntrinsicOp::IOP_tex1Dbias:
- case hlsl::IntrinsicOp::IOP_tex1Dgrad:
- case hlsl::IntrinsicOp::IOP_tex1Dlod:
- case hlsl::IntrinsicOp::IOP_tex1Dproj:
- case hlsl::IntrinsicOp::IOP_tex2D:
- case hlsl::IntrinsicOp::IOP_tex2Dbias:
- case hlsl::IntrinsicOp::IOP_tex2Dgrad:
- case hlsl::IntrinsicOp::IOP_tex2Dlod:
- case hlsl::IntrinsicOp::IOP_tex2Dproj:
- case hlsl::IntrinsicOp::IOP_tex3D:
- case hlsl::IntrinsicOp::IOP_tex3Dbias:
- case hlsl::IntrinsicOp::IOP_tex3Dgrad:
- case hlsl::IntrinsicOp::IOP_tex3Dlod:
- case hlsl::IntrinsicOp::IOP_tex3Dproj:
- case hlsl::IntrinsicOp::IOP_texCUBE:
- case hlsl::IntrinsicOp::IOP_texCUBEbias:
- case hlsl::IntrinsicOp::IOP_texCUBEgrad:
- case hlsl::IntrinsicOp::IOP_texCUBElod:
- case hlsl::IntrinsicOp::IOP_texCUBEproj: {
- emitError("deprecated %0 intrinsic function will not be supported",
- callExpr->getExprLoc())
- << callee->getName();
- return 0;
- }
- case hlsl::IntrinsicOp::IOP_dot:
- retVal = processIntrinsicDot(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_GroupMemoryBarrier:
- retVal = processIntrinsicMemoryBarrier(callExpr,
- /*isDevice*/ false,
- /*groupSync*/ false,
- /*isAllBarrier*/ false);
- break;
- case hlsl::IntrinsicOp::IOP_GroupMemoryBarrierWithGroupSync:
- retVal = processIntrinsicMemoryBarrier(callExpr,
- /*isDevice*/ false,
- /*groupSync*/ true,
- /*isAllBarrier*/ false);
- break;
- case hlsl::IntrinsicOp::IOP_DeviceMemoryBarrier:
- retVal = processIntrinsicMemoryBarrier(callExpr, /*isDevice*/ true,
- /*groupSync*/ false,
- /*isAllBarrier*/ false);
- break;
- case hlsl::IntrinsicOp::IOP_DeviceMemoryBarrierWithGroupSync:
- retVal = processIntrinsicMemoryBarrier(callExpr, /*isDevice*/ true,
- /*groupSync*/ true,
- /*isAllBarrier*/ false);
- break;
- case hlsl::IntrinsicOp::IOP_AllMemoryBarrier:
- retVal = processIntrinsicMemoryBarrier(callExpr, /*isDevice*/ true,
- /*groupSync*/ false,
- /*isAllBarrier*/ true);
- break;
- case hlsl::IntrinsicOp::IOP_AllMemoryBarrierWithGroupSync:
- retVal = processIntrinsicMemoryBarrier(callExpr, /*isDevice*/ true,
- /*groupSync*/ true,
- /*isAllBarrier*/ true);
- break;
- case hlsl::IntrinsicOp::IOP_CheckAccessFullyMapped:
- retVal =
- theBuilder.createImageSparseTexelsResident(doExpr(callExpr->getArg(0)));
- break;
- case hlsl::IntrinsicOp::IOP_mul:
- case hlsl::IntrinsicOp::IOP_umul:
- retVal = processIntrinsicMul(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_all:
- retVal = processIntrinsicAllOrAny(callExpr, spv::Op::OpAll);
- break;
- case hlsl::IntrinsicOp::IOP_any:
- retVal = processIntrinsicAllOrAny(callExpr, spv::Op::OpAny);
- break;
- case hlsl::IntrinsicOp::IOP_asdouble:
- case hlsl::IntrinsicOp::IOP_asfloat:
- case hlsl::IntrinsicOp::IOP_asint:
- case hlsl::IntrinsicOp::IOP_asuint:
- retVal = processIntrinsicAsType(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_clip:
- retVal = processIntrinsicClip(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_dst:
- retVal = processIntrinsicDst(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_clamp:
- case hlsl::IntrinsicOp::IOP_uclamp:
- retVal = processIntrinsicClamp(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_frexp:
- retVal = processIntrinsicFrexp(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_ldexp:
- retVal = processIntrinsicLdexp(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_lit:
- retVal = processIntrinsicLit(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_modf:
- retVal = processIntrinsicModf(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_msad4:
- retVal = processIntrinsicMsad4(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_sign: {
- if (isFloatOrVecMatOfFloatType(callExpr->getArg(0)->getType()))
- retVal = processIntrinsicFloatSign(callExpr);
- else
- retVal =
- processIntrinsicUsingGLSLInst(callExpr, GLSLstd450::GLSLstd450SSign,
- /*actPerRowForMatrices*/ true);
- } break;
- case hlsl::IntrinsicOp::IOP_D3DCOLORtoUBYTE4:
- retVal = processD3DCOLORtoUBYTE4(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_isfinite:
- retVal = processIntrinsicIsFinite(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_sincos:
- retVal = processIntrinsicSinCos(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_rcp:
- retVal = processIntrinsicRcp(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_saturate:
- retVal = processIntrinsicSaturate(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_log10:
- retVal = processIntrinsicLog10(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_f16tof32:
- retVal = processIntrinsicF16ToF32(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_f32tof16:
- retVal = processIntrinsicF32ToF16(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_WaveGetLaneCount: {
- featureManager.requestTargetEnv(SPV_ENV_VULKAN_1_1, "WaveGetLaneCount",
- callExpr->getExprLoc());
- const uint32_t retType =
- typeTranslator.translateType(callExpr->getCallReturnType(astContext));
- const uint32_t varId =
- declIdMapper.getBuiltinVar(spv::BuiltIn::SubgroupSize);
- retVal = theBuilder.createLoad(retType, varId);
- } break;
- case hlsl::IntrinsicOp::IOP_WaveGetLaneIndex: {
- featureManager.requestTargetEnv(SPV_ENV_VULKAN_1_1, "WaveGetLaneIndex",
- callExpr->getExprLoc());
- const uint32_t retType =
- typeTranslator.translateType(callExpr->getCallReturnType(astContext));
- const uint32_t varId =
- declIdMapper.getBuiltinVar(spv::BuiltIn::SubgroupLocalInvocationId);
- retVal = theBuilder.createLoad(retType, varId);
- } break;
- case hlsl::IntrinsicOp::IOP_WaveIsFirstLane:
- retVal = processWaveQuery(callExpr, spv::Op::OpGroupNonUniformElect);
- break;
- case hlsl::IntrinsicOp::IOP_WaveActiveAllTrue:
- retVal = processWaveVote(callExpr, spv::Op::OpGroupNonUniformAll);
- break;
- case hlsl::IntrinsicOp::IOP_WaveActiveAnyTrue:
- retVal = processWaveVote(callExpr, spv::Op::OpGroupNonUniformAny);
- break;
- case hlsl::IntrinsicOp::IOP_WaveActiveBallot:
- retVal = processWaveVote(callExpr, spv::Op::OpGroupNonUniformBallot);
- break;
- case hlsl::IntrinsicOp::IOP_WaveActiveAllEqual:
- retVal = processWaveVote(callExpr, spv::Op::OpGroupNonUniformAllEqual);
- break;
- case hlsl::IntrinsicOp::IOP_WaveActiveCountBits:
- retVal = processWaveReductionOrPrefix(
- callExpr, spv::Op::OpGroupNonUniformBallotBitCount,
- spv::GroupOperation::Reduce);
- break;
- case hlsl::IntrinsicOp::IOP_WaveActiveUSum:
- case hlsl::IntrinsicOp::IOP_WaveActiveSum:
- case hlsl::IntrinsicOp::IOP_WaveActiveUProduct:
- case hlsl::IntrinsicOp::IOP_WaveActiveProduct:
- case hlsl::IntrinsicOp::IOP_WaveActiveUMax:
- case hlsl::IntrinsicOp::IOP_WaveActiveMax:
- case hlsl::IntrinsicOp::IOP_WaveActiveUMin:
- case hlsl::IntrinsicOp::IOP_WaveActiveMin:
- case hlsl::IntrinsicOp::IOP_WaveActiveBitAnd:
- case hlsl::IntrinsicOp::IOP_WaveActiveBitOr:
- case hlsl::IntrinsicOp::IOP_WaveActiveBitXor: {
- const auto retType = callExpr->getCallReturnType(astContext);
- retVal = processWaveReductionOrPrefix(
- callExpr, translateWaveOp(hlslOpcode, retType, callExpr->getExprLoc()),
- spv::GroupOperation::Reduce);
- } break;
- case hlsl::IntrinsicOp::IOP_WavePrefixUSum:
- case hlsl::IntrinsicOp::IOP_WavePrefixSum:
- case hlsl::IntrinsicOp::IOP_WavePrefixUProduct:
- case hlsl::IntrinsicOp::IOP_WavePrefixProduct: {
- const auto retType = callExpr->getCallReturnType(astContext);
- retVal = processWaveReductionOrPrefix(
- callExpr, translateWaveOp(hlslOpcode, retType, callExpr->getExprLoc()),
- spv::GroupOperation::ExclusiveScan);
- } break;
- case hlsl::IntrinsicOp::IOP_WavePrefixCountBits:
- retVal = processWaveReductionOrPrefix(
- callExpr, spv::Op::OpGroupNonUniformBallotBitCount,
- spv::GroupOperation::ExclusiveScan);
- break;
- case hlsl::IntrinsicOp::IOP_WaveReadLaneAt:
- case hlsl::IntrinsicOp::IOP_WaveReadLaneFirst:
- retVal = processWaveBroadcast(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_QuadReadAcrossX:
- case hlsl::IntrinsicOp::IOP_QuadReadAcrossY:
- case hlsl::IntrinsicOp::IOP_QuadReadAcrossDiagonal:
- case hlsl::IntrinsicOp::IOP_QuadReadLaneAt:
- retVal = processWaveQuadWideShuffle(callExpr, hlslOpcode);
- break;
- case hlsl::IntrinsicOp::IOP_abort:
- case hlsl::IntrinsicOp::IOP_GetRenderTargetSampleCount:
- case hlsl::IntrinsicOp::IOP_GetRenderTargetSamplePosition: {
- emitError("no equivalent for %0 intrinsic function in Vulkan",
- callExpr->getExprLoc())
- << callee->getName();
- return 0;
- }
- case hlsl::IntrinsicOp::IOP_transpose: {
- const Expr *mat = callExpr->getArg(0);
- const QualType matType = mat->getType();
- if (hlsl::GetHLSLMatElementType(matType)->isFloatingType())
- retVal =
- processIntrinsicUsingSpirvInst(callExpr, spv::Op::OpTranspose, false);
- else
- retVal = processNonFpMatrixTranspose(matType, doExpr(mat));
- break;
- }
- INTRINSIC_SPIRV_OP_CASE(ddx, DPdx, true);
- INTRINSIC_SPIRV_OP_WITH_CAP_CASE(ddx_coarse, DPdxCoarse, false,
- spv::Capability::DerivativeControl);
- INTRINSIC_SPIRV_OP_WITH_CAP_CASE(ddx_fine, DPdxFine, false,
- spv::Capability::DerivativeControl);
- INTRINSIC_SPIRV_OP_CASE(ddy, DPdy, true);
- INTRINSIC_SPIRV_OP_WITH_CAP_CASE(ddy_coarse, DPdyCoarse, false,
- spv::Capability::DerivativeControl);
- INTRINSIC_SPIRV_OP_WITH_CAP_CASE(ddy_fine, DPdyFine, false,
- spv::Capability::DerivativeControl);
- INTRINSIC_SPIRV_OP_CASE(countbits, BitCount, false);
- INTRINSIC_SPIRV_OP_CASE(isinf, IsInf, true);
- INTRINSIC_SPIRV_OP_CASE(isnan, IsNan, true);
- INTRINSIC_SPIRV_OP_CASE(fmod, FMod, true);
- INTRINSIC_SPIRV_OP_CASE(fwidth, Fwidth, true);
- INTRINSIC_SPIRV_OP_CASE(reversebits, BitReverse, false);
- INTRINSIC_OP_CASE(round, Round, true);
- INTRINSIC_OP_CASE_INT_FLOAT(abs, SAbs, FAbs, true);
- INTRINSIC_OP_CASE(acos, Acos, true);
- INTRINSIC_OP_CASE(asin, Asin, true);
- INTRINSIC_OP_CASE(atan, Atan, true);
- INTRINSIC_OP_CASE(atan2, Atan2, true);
- INTRINSIC_OP_CASE(ceil, Ceil, true);
- INTRINSIC_OP_CASE(cos, Cos, true);
- INTRINSIC_OP_CASE(cosh, Cosh, true);
- INTRINSIC_OP_CASE(cross, Cross, false);
- INTRINSIC_OP_CASE(degrees, Degrees, true);
- INTRINSIC_OP_CASE(distance, Distance, false);
- INTRINSIC_OP_CASE(determinant, Determinant, false);
- INTRINSIC_OP_CASE(exp, Exp, true);
- INTRINSIC_OP_CASE(exp2, Exp2, true);
- INTRINSIC_OP_CASE_SINT_UINT(firstbithigh, FindSMsb, FindUMsb, false);
- INTRINSIC_OP_CASE_SINT_UINT(ufirstbithigh, FindSMsb, FindUMsb, false);
- INTRINSIC_OP_CASE(faceforward, FaceForward, false);
- INTRINSIC_OP_CASE(firstbitlow, FindILsb, false);
- INTRINSIC_OP_CASE(floor, Floor, true);
- INTRINSIC_OP_CASE(fma, Fma, true);
- INTRINSIC_OP_CASE(frac, Fract, true);
- INTRINSIC_OP_CASE(length, Length, false);
- INTRINSIC_OP_CASE(lerp, FMix, true);
- INTRINSIC_OP_CASE(log, Log, true);
- INTRINSIC_OP_CASE(log2, Log2, true);
- INTRINSIC_OP_CASE(mad, Fma, true);
- INTRINSIC_OP_CASE_SINT_UINT_FLOAT(max, SMax, UMax, FMax, true);
- INTRINSIC_OP_CASE(umax, UMax, true);
- INTRINSIC_OP_CASE_SINT_UINT_FLOAT(min, SMin, UMin, FMin, true);
- INTRINSIC_OP_CASE(umin, UMin, true);
- INTRINSIC_OP_CASE(normalize, Normalize, false);
- INTRINSIC_OP_CASE(pow, Pow, true);
- INTRINSIC_OP_CASE(radians, Radians, true);
- INTRINSIC_OP_CASE(reflect, Reflect, false);
- INTRINSIC_OP_CASE(refract, Refract, false);
- INTRINSIC_OP_CASE(rsqrt, InverseSqrt, true);
- INTRINSIC_OP_CASE(smoothstep, SmoothStep, true);
- INTRINSIC_OP_CASE(step, Step, true);
- INTRINSIC_OP_CASE(sin, Sin, true);
- INTRINSIC_OP_CASE(sinh, Sinh, true);
- INTRINSIC_OP_CASE(tan, Tan, true);
- INTRINSIC_OP_CASE(tanh, Tanh, true);
- INTRINSIC_OP_CASE(sqrt, Sqrt, true);
- INTRINSIC_OP_CASE(trunc, Trunc, true);
- default:
- emitError("%0 intrinsic function unimplemented", callExpr->getExprLoc())
- << callee->getName();
- return 0;
- }
- #undef INTRINSIC_OP_CASE
- #undef INTRINSIC_OP_CASE_INT_FLOAT
- return SpirvEvalInfo(retVal).setRValue();
- }
- uint32_t
- SPIRVEmitter::processIntrinsicInterlockedMethod(const CallExpr *expr,
- hlsl::IntrinsicOp opcode) {
- // The signature of intrinsic atomic methods are:
- // void Interlocked*(in R dest, in T value);
- // void Interlocked*(in R dest, in T value, out T original_value);
- // Note: ALL Interlocked*() methods are forced to have an unsigned integer
- // 'value'. Meaning, T is forced to be 'unsigned int'. If the provided
- // parameter is not an unsigned integer, the frontend inserts an
- // 'ImplicitCastExpr' to convert it to unsigned integer. OpAtomicIAdd (and
- // other SPIR-V OpAtomic* instructions) require that the pointee in 'dest' to
- // be of the same type as T. This will result in an invalid SPIR-V if 'dest'
- // is a signed integer typed resource such as RWTexture1D<int>. For example,
- // the following OpAtomicIAdd is invalid because the pointee type defined in
- // %1 is a signed integer, while the value passed to atomic add (%3) is an
- // unsigned integer.
- //
- // %_ptr_Image_int = OpTypePointer Image %int
- // %1 = OpImageTexelPointer %_ptr_Image_int %RWTexture1D_int %index %uint_0
- // %2 = OpLoad %int %value
- // %3 = OpBitcast %uint %2 <-------- Inserted by the frontend
- // %4 = OpAtomicIAdd %int %1 %uint_1 %uint_0 %3
- //
- // In such cases, we bypass the forced IntegralCast.
- // Moreover, the frontend does not add a cast AST node to cast uint to int
- // where necessary. To ensure SPIR-V validity, we add that where necessary.
- const uint32_t zero = theBuilder.getConstantUint32(0);
- const uint32_t scope = theBuilder.getConstantUint32(1); // Device
- const auto *dest = expr->getArg(0);
- const auto baseType = dest->getType();
- const uint32_t baseTypeId = typeTranslator.translateType(baseType);
- const auto doArg = [baseType, this](const CallExpr *callExpr,
- uint32_t argIndex) {
- const Expr *valueExpr = callExpr->getArg(argIndex);
- if (const auto *castExpr = dyn_cast<ImplicitCastExpr>(valueExpr))
- if (castExpr->getCastKind() == CK_IntegralCast &&
- castExpr->getSubExpr()->getType() == baseType)
- valueExpr = castExpr->getSubExpr();
- uint32_t argId = doExpr(valueExpr);
- if (valueExpr->getType() != baseType)
- argId = castToInt(argId, valueExpr->getType(), baseType,
- valueExpr->getExprLoc());
- return argId;
- };
- const auto writeToOutputArg = [&baseType, dest, this](
- uint32_t toWrite, const CallExpr *callExpr,
- uint32_t outputArgIndex) {
- const auto outputArg = callExpr->getArg(outputArgIndex);
- const auto outputArgType = outputArg->getType();
- if (baseType != outputArgType)
- toWrite = castToInt(toWrite, baseType, outputArgType, dest->getExprLoc());
- theBuilder.createStore(doExpr(outputArg), toWrite);
- };
- // If the argument is indexing into a texture/buffer, we need to create an
- // OpImageTexelPointer instruction.
- uint32_t ptr = 0;
- if (const auto *callExpr = dyn_cast<CXXOperatorCallExpr>(dest)) {
- const Expr *base = nullptr;
- const Expr *index = nullptr;
- if (isBufferTextureIndexing(callExpr, &base, &index)) {
- const auto ptrType =
- theBuilder.getPointerType(baseTypeId, spv::StorageClass::Image);
- auto baseId = doExpr(base);
- if (baseId.isRValue()) {
- // OpImageTexelPointer's Image argument must have a type of
- // OpTypePointer with Type OpTypeImage. Need to create a temporary
- // variable if the baseId is an rvalue.
- baseId = createTemporaryVar(
- base->getType(), TypeTranslator::getName(base->getType()), baseId);
- }
- const auto coordId = doExpr(index);
- ptr = theBuilder.createImageTexelPointer(ptrType, baseId, coordId, zero);
- }
- }
- if (!ptr)
- ptr = doExpr(dest);
- const bool isCompareExchange =
- opcode == hlsl::IntrinsicOp::IOP_InterlockedCompareExchange;
- const bool isCompareStore =
- opcode == hlsl::IntrinsicOp::IOP_InterlockedCompareStore;
- if (isCompareExchange || isCompareStore) {
- const uint32_t comparator = doArg(expr, 1);
- const uint32_t valueId = doArg(expr, 2);
- const uint32_t originalVal = theBuilder.createAtomicCompareExchange(
- baseTypeId, ptr, scope, zero, zero, valueId, comparator);
- if (isCompareExchange)
- writeToOutputArg(originalVal, expr, 3);
- } else {
- const uint32_t valueId = doArg(expr, 1);
- // Since these atomic operations write through the provided pointer, the
- // signed vs. unsigned opcode must be decided based on the pointee type
- // of the first argument. However, the frontend decides the opcode based on
- // the second argument (value). Therefore, the HLSL opcode provided by the
- // frontend may be wrong. Therefore we need the following code to make sure
- // we are using the correct SPIR-V opcode.
- spv::Op atomicOp = translateAtomicHlslOpcodeToSpirvOpcode(opcode);
- if (atomicOp == spv::Op::OpAtomicUMax && baseType->isSignedIntegerType())
- atomicOp = spv::Op::OpAtomicSMax;
- if (atomicOp == spv::Op::OpAtomicSMax && baseType->isUnsignedIntegerType())
- atomicOp = spv::Op::OpAtomicUMax;
- if (atomicOp == spv::Op::OpAtomicUMin && baseType->isSignedIntegerType())
- atomicOp = spv::Op::OpAtomicSMin;
- if (atomicOp == spv::Op::OpAtomicSMin && baseType->isUnsignedIntegerType())
- atomicOp = spv::Op::OpAtomicUMin;
- const uint32_t originalVal = theBuilder.createAtomicOp(
- atomicOp, baseTypeId, ptr, scope, zero, valueId);
- if (expr->getNumArgs() > 2)
- writeToOutputArg(originalVal, expr, 2);
- }
- return 0;
- }
- uint32_t SPIRVEmitter::processIntrinsicMsad4(const CallExpr *callExpr) {
- emitWarning("msad4 intrinsic function is emulated using many SPIR-V "
- "instructions due to lack of direct SPIR-V equivalent",
- callExpr->getExprLoc());
- // Compares a 4-byte reference value and an 8-byte source value and
- // accumulates a vector of 4 sums. Each sum corresponds to the masked sum
- // of absolute differences of a different byte alignment between the
- // reference value and the source value.
- // If we have:
- // uint v0; // reference
- // uint2 v1; // source
- // uint4 v2; // accum
- // uint4 o0; // result of msad4
- // uint4 r0, t0; // temporary values
- //
- // Then msad4(v0, v1, v2) translates to the following SM5 assembly according
- // to fxc:
- // Step 1:
- // ushr r0.xyz, v1.xxxx, l(8, 16, 24, 0)
- // Step 2:
- // [result], [ width ], [ offset ], [ insert ], [ base ]
- // bfi t0.yzw, l(0, 8, 16, 24), l(0, 24, 16, 8), v1.yyyy , r0.xxyz
- // mov t0.x, v1.x
- // Step 3:
- // msad o0.xyzw, v0.xxxx, t0.xyzw, v2.xyzw
- const uint32_t glsl = theBuilder.getGLSLExtInstSet();
- const auto boolType = theBuilder.getBoolType();
- const auto intType = theBuilder.getInt32Type();
- const auto uintType = theBuilder.getUint32Type();
- const auto uint4Type = theBuilder.getVecType(uintType, 4);
- const uint32_t reference = doExpr(callExpr->getArg(0));
- const uint32_t source = doExpr(callExpr->getArg(1));
- const uint32_t accum = doExpr(callExpr->getArg(2));
- const auto uint0 = theBuilder.getConstantUint32(0);
- const auto uint8 = theBuilder.getConstantUint32(8);
- const auto uint16 = theBuilder.getConstantUint32(16);
- const auto uint24 = theBuilder.getConstantUint32(24);
- // Step 1.
- const uint32_t v1x = theBuilder.createCompositeExtract(uintType, source, {0});
- // r0.x = v1xS8 = v1.x shifted by 8 bits
- uint32_t v1xS8 = theBuilder.createBinaryOp(spv::Op::OpShiftLeftLogical,
- uintType, v1x, uint8);
- // r0.y = v1xS16 = v1.x shifted by 16 bits
- uint32_t v1xS16 = theBuilder.createBinaryOp(spv::Op::OpShiftLeftLogical,
- uintType, v1x, uint16);
- // r0.z = v1xS24 = v1.x shifted by 24 bits
- uint32_t v1xS24 = theBuilder.createBinaryOp(spv::Op::OpShiftLeftLogical,
- uintType, v1x, uint24);
- // Step 2.
- // Do bfi 3 times. DXIL bfi is equivalent to SPIR-V OpBitFieldInsert.
- const uint32_t v1y = theBuilder.createCompositeExtract(uintType, source, {1});
- // Note that t0.x = v1.x, nothing we need to do for that.
- const uint32_t t0y =
- theBuilder.createBitFieldInsert(uintType, /*base*/ v1xS8, /*insert*/ v1y,
- /*offset*/ uint24,
- /*width*/ uint8);
- const uint32_t t0z =
- theBuilder.createBitFieldInsert(uintType, /*base*/ v1xS16, /*insert*/ v1y,
- /*offset*/ uint16,
- /*width*/ uint16);
- const uint32_t t0w =
- theBuilder.createBitFieldInsert(uintType, /*base*/ v1xS24, /*insert*/ v1y,
- /*offset*/ uint8,
- /*width*/ uint24);
- // Step 3. MSAD (Masked Sum of Absolute Differences)
- // Now perform MSAD four times.
- // Need to mimic this algorithm in SPIR-V!
- //
- // UINT msad( UINT ref, UINT src, UINT accum )
- // {
- // for (UINT i = 0; i < 4; i++)
- // {
- // BYTE refByte, srcByte, absDiff;
- //
- // refByte = (BYTE)(ref >> (i * 8));
- // if (!refByte)
- // {
- // continue;
- // }
- //
- // srcByte = (BYTE)(src >> (i * 8));
- // if (refByte >= srcByte)
- // {
- // absDiff = refByte - srcByte;
- // }
- // else
- // {
- // absDiff = srcByte - refByte;
- // }
- //
- // // The recommended overflow behavior for MSAD is
- // // to do a 32-bit saturate. This is not
- // // required, however, and wrapping is allowed.
- // // So from an application point of view,
- // // overflow behavior is undefined.
- // if (UINT_MAX - accum < absDiff)
- // {
- // accum = UINT_MAX;
- // break;
- // }
- // accum += absDiff;
- // }
- //
- // return accum;
- // }
- llvm::SmallVector<uint32_t, 4> result;
- const uint32_t accum0 =
- theBuilder.createCompositeExtract(uintType, accum, {0});
- const uint32_t accum1 =
- theBuilder.createCompositeExtract(uintType, accum, {1});
- const uint32_t accum2 =
- theBuilder.createCompositeExtract(uintType, accum, {2});
- const uint32_t accum3 =
- theBuilder.createCompositeExtract(uintType, accum, {3});
- const llvm::SmallVector<uint32_t, 4> sources = {v1x, t0y, t0z, t0w};
- llvm::SmallVector<uint32_t, 4> accums = {accum0, accum1, accum2, accum3};
- llvm::SmallVector<uint32_t, 4> refBytes;
- llvm::SmallVector<uint32_t, 4> signedRefBytes;
- llvm::SmallVector<uint32_t, 4> isRefByteZero;
- for (uint32_t i = 0; i < 4; ++i) {
- refBytes.push_back(theBuilder.createBitFieldExtract(
- uintType, reference, /*offset*/ theBuilder.getConstantUint32(i * 8),
- /*count*/ uint8, /*isSigned*/ false));
- signedRefBytes.push_back(
- theBuilder.createUnaryOp(spv::Op::OpBitcast, intType, refBytes.back()));
- isRefByteZero.push_back(theBuilder.createBinaryOp(
- spv::Op::OpIEqual, boolType, refBytes.back(), uint0));
- }
- for (uint32_t msadNum = 0; msadNum < 4; ++msadNum) {
- for (uint32_t byteCount = 0; byteCount < 4; ++byteCount) {
- // 'count' is always 8 because we are extracting 8 bits out of 32.
- const uint32_t srcByte = theBuilder.createBitFieldExtract(
- uintType, sources[msadNum],
- /*offset*/ theBuilder.getConstantUint32(8 * byteCount),
- /*count*/ uint8, /*isSigned*/ false);
- const uint32_t signedSrcByte =
- theBuilder.createUnaryOp(spv::Op::OpBitcast, intType, srcByte);
- const uint32_t sub = theBuilder.createBinaryOp(
- spv::Op::OpISub, intType, signedRefBytes[byteCount], signedSrcByte);
- const uint32_t absSub = theBuilder.createExtInst(
- intType, glsl, GLSLstd450::GLSLstd450SAbs, {sub});
- const uint32_t diff = theBuilder.createSelect(
- uintType, isRefByteZero[byteCount], uint0,
- theBuilder.createUnaryOp(spv::Op::OpBitcast, uintType, absSub));
- // As pointed out by the DXIL reference above, it is *not* required to
- // saturate the output to UINT_MAX in case of overflow. Wrapping around is
- // also allowed. For simplicity, we will wrap around at this point.
- accums[msadNum] = theBuilder.createBinaryOp(spv::Op::OpIAdd, uintType,
- accums[msadNum], diff);
- }
- }
- return theBuilder.createCompositeConstruct(uint4Type, accums);
- }
- uint32_t SPIRVEmitter::processWaveQuery(const CallExpr *callExpr,
- spv::Op opcode) {
- // Signatures:
- // bool WaveIsFirstLane()
- // uint WaveGetLaneCount()
- // uint WaveGetLaneIndex()
- assert(callExpr->getNumArgs() == 0);
- featureManager.requestTargetEnv(SPV_ENV_VULKAN_1_1, "Wave Operation",
- callExpr->getExprLoc());
- theBuilder.requireCapability(getCapabilityForGroupNonUniform(opcode));
- const uint32_t subgroupScope = theBuilder.getConstantInt32(3);
- const uint32_t retType =
- typeTranslator.translateType(callExpr->getCallReturnType(astContext));
- return theBuilder.createGroupNonUniformOp(opcode, retType, subgroupScope);
- }
- uint32_t SPIRVEmitter::processWaveVote(const CallExpr *callExpr,
- spv::Op opcode) {
- // Signatures:
- // bool WaveActiveAnyTrue( bool expr )
- // bool WaveActiveAllTrue( bool expr )
- // bool uint4 WaveActiveBallot( bool expr )
- assert(callExpr->getNumArgs() == 1);
- featureManager.requestTargetEnv(SPV_ENV_VULKAN_1_1, "Wave Operation",
- callExpr->getExprLoc());
- theBuilder.requireCapability(getCapabilityForGroupNonUniform(opcode));
- const uint32_t predicate = doExpr(callExpr->getArg(0));
- const uint32_t subgroupScope = theBuilder.getConstantInt32(3);
- const uint32_t retType =
- typeTranslator.translateType(callExpr->getCallReturnType(astContext));
- return theBuilder.createGroupNonUniformUnaryOp(opcode, retType, subgroupScope,
- predicate);
- }
- spv::Op SPIRVEmitter::translateWaveOp(hlsl::IntrinsicOp op, QualType type,
- SourceLocation srcLoc) {
- const bool isSintType = isSintOrVecMatOfSintType(type);
- const bool isUintType = isUintOrVecMatOfUintType(type);
- const bool isFloatType = isFloatOrVecMatOfFloatType(type);
- #define WAVE_OP_CASE_INT(kind, intWaveOp) \
- \
- case hlsl::IntrinsicOp::IOP_Wave##kind: { \
- if (isSintType || isUintType) { \
- return spv::Op::OpGroupNonUniform##intWaveOp; \
- } \
- } break
- #define WAVE_OP_CASE_INT_FLOAT(kind, intWaveOp, floatWaveOp) \
- \
- case hlsl::IntrinsicOp::IOP_Wave##kind: { \
- if (isSintType || isUintType) { \
- return spv::Op::OpGroupNonUniform##intWaveOp; \
- } \
- if (isFloatType) { \
- return spv::Op::OpGroupNonUniform##floatWaveOp; \
- } \
- } break
- #define WAVE_OP_CASE_SINT_UINT_FLOAT(kind, sintWaveOp, uintWaveOp, \
- floatWaveOp) \
- \
- case hlsl::IntrinsicOp::IOP_Wave##kind: { \
- if (isSintType) { \
- return spv::Op::OpGroupNonUniform##sintWaveOp; \
- } \
- if (isUintType) { \
- return spv::Op::OpGroupNonUniform##uintWaveOp; \
- } \
- if (isFloatType) { \
- return spv::Op::OpGroupNonUniform##floatWaveOp; \
- } \
- } break
- switch (op) {
- WAVE_OP_CASE_INT_FLOAT(ActiveUSum, IAdd, FAdd);
- WAVE_OP_CASE_INT_FLOAT(ActiveSum, IAdd, FAdd);
- WAVE_OP_CASE_INT_FLOAT(ActiveUProduct, IMul, FMul);
- WAVE_OP_CASE_INT_FLOAT(ActiveProduct, IMul, FMul);
- WAVE_OP_CASE_INT_FLOAT(PrefixUSum, IAdd, FAdd);
- WAVE_OP_CASE_INT_FLOAT(PrefixSum, IAdd, FAdd);
- WAVE_OP_CASE_INT_FLOAT(PrefixUProduct, IMul, FMul);
- WAVE_OP_CASE_INT_FLOAT(PrefixProduct, IMul, FMul);
- WAVE_OP_CASE_INT(ActiveBitAnd, BitwiseAnd);
- WAVE_OP_CASE_INT(ActiveBitOr, BitwiseOr);
- WAVE_OP_CASE_INT(ActiveBitXor, BitwiseXor);
- WAVE_OP_CASE_SINT_UINT_FLOAT(ActiveUMax, SMax, UMax, FMax);
- WAVE_OP_CASE_SINT_UINT_FLOAT(ActiveMax, SMax, UMax, FMax);
- WAVE_OP_CASE_SINT_UINT_FLOAT(ActiveUMin, SMin, UMin, FMin);
- WAVE_OP_CASE_SINT_UINT_FLOAT(ActiveMin, SMin, UMin, FMin);
- }
- #undef WAVE_OP_CASE_INT_FLOAT
- #undef WAVE_OP_CASE_INT
- #undef WAVE_OP_CASE_SINT_UINT_FLOAT
- emitError("translating wave operator '%0' unimplemented", srcLoc)
- << static_cast<uint32_t>(op);
- return spv::Op::OpNop;
- }
- uint32_t SPIRVEmitter::processWaveReductionOrPrefix(
- const CallExpr *callExpr, spv::Op opcode, spv::GroupOperation groupOp) {
- // Signatures:
- // bool WaveActiveAllEqual( <type> expr )
- // uint WaveActiveCountBits( bool bBit )
- // <type> WaveActiveSum( <type> expr )
- // <type> WaveActiveProduct( <type> expr )
- // <int_type> WaveActiveBitAnd( <int_type> expr )
- // <int_type> WaveActiveBitOr( <int_type> expr )
- // <int_type> WaveActiveBitXor( <int_type> expr )
- // <type> WaveActiveMin( <type> expr)
- // <type> WaveActiveMax( <type> expr)
- //
- // uint WavePrefixCountBits(Bool bBit)
- // <type> WavePrefixProduct(<type> value)
- // <type> WavePrefixSum(<type> value)
- assert(callExpr->getNumArgs() == 1);
- featureManager.requestTargetEnv(SPV_ENV_VULKAN_1_1, "Wave Operation",
- callExpr->getExprLoc());
- theBuilder.requireCapability(getCapabilityForGroupNonUniform(opcode));
- const uint32_t predicate = doExpr(callExpr->getArg(0));
- const uint32_t subgroupScope = theBuilder.getConstantInt32(3);
- const uint32_t retType =
- typeTranslator.translateType(callExpr->getCallReturnType(astContext));
- return theBuilder.createGroupNonUniformUnaryOp(
- opcode, retType, subgroupScope, predicate,
- llvm::Optional<spv::GroupOperation>(groupOp));
- }
- uint32_t SPIRVEmitter::processWaveBroadcast(const CallExpr *callExpr) {
- // Signatures:
- // <type> WaveReadLaneFirst(<type> expr)
- // <type> WaveReadLaneAt(<type> expr, uint laneIndex)
- const auto numArgs = callExpr->getNumArgs();
- assert(numArgs == 1 || numArgs == 2);
- featureManager.requestTargetEnv(SPV_ENV_VULKAN_1_1, "Wave Operation",
- callExpr->getExprLoc());
- theBuilder.requireCapability(spv::Capability::GroupNonUniformBallot);
- const uint32_t value = doExpr(callExpr->getArg(0));
- const uint32_t subgroupScope = theBuilder.getConstantInt32(3);
- const uint32_t retType =
- typeTranslator.translateType(callExpr->getCallReturnType(astContext));
- if (numArgs == 2)
- return theBuilder.createGroupNonUniformBinaryOp(
- spv::Op::OpGroupNonUniformBroadcast, retType, subgroupScope, value,
- doExpr(callExpr->getArg(1)));
- else
- return theBuilder.createGroupNonUniformUnaryOp(
- spv::Op::OpGroupNonUniformBroadcastFirst, retType, subgroupScope,
- value);
- }
- uint32_t SPIRVEmitter::processWaveQuadWideShuffle(const CallExpr *callExpr,
- hlsl::IntrinsicOp op) {
- // Signatures:
- // <type> QuadReadAcrossX(<type> localValue)
- // <type> QuadReadAcrossY(<type> localValue)
- // <type> QuadReadAcrossDiagonal(<type> localValue)
- // <type> QuadReadLaneAt(<type> sourceValue, uint quadLaneID)
- assert(callExpr->getNumArgs() == 1 || callExpr->getNumArgs() == 2);
- featureManager.requestTargetEnv(SPV_ENV_VULKAN_1_1, "Wave Operation",
- callExpr->getExprLoc());
- theBuilder.requireCapability(spv::Capability::GroupNonUniformQuad);
- const uint32_t value = doExpr(callExpr->getArg(0));
- const uint32_t subgroupScope = theBuilder.getConstantInt32(3);
- const uint32_t retType =
- typeTranslator.translateType(callExpr->getCallReturnType(astContext));
- uint32_t target = 0;
- spv::Op opcode = spv::Op::OpGroupNonUniformQuadSwap;
- switch (op) {
- case hlsl::IntrinsicOp::IOP_QuadReadAcrossX:
- target = theBuilder.getConstantUint32(0);
- break;
- case hlsl::IntrinsicOp::IOP_QuadReadAcrossY:
- target = theBuilder.getConstantUint32(1);
- break;
- case hlsl::IntrinsicOp::IOP_QuadReadAcrossDiagonal:
- target = theBuilder.getConstantUint32(2);
- break;
- case hlsl::IntrinsicOp::IOP_QuadReadLaneAt:
- target = doExpr(callExpr->getArg(1));
- opcode = spv::Op::OpGroupNonUniformQuadBroadcast;
- break;
- default:
- llvm_unreachable("case should not appear here");
- }
- return theBuilder.createGroupNonUniformBinaryOp(opcode, retType,
- subgroupScope, value, target);
- }
- uint32_t SPIRVEmitter::processIntrinsicModf(const CallExpr *callExpr) {
- // Signature is: ret modf(x, ip)
- // [in] x: the input floating-point value.
- // [out] ip: the integer portion of x.
- // [out] ret: the fractional portion of x.
- // All of the above must be a scalar, vector, or matrix with the same
- // component types. Component types can be float or int.
- // The ModfStruct SPIR-V instruction returns a struct. The first member is the
- // fractional part and the second member is the integer portion.
- // ModfStruct {
- // <scalar or vector of float> frac;
- // <scalar or vector of float> ip;
- // }
- // Note if the input number (x) is not a float (i.e. 'x' is an int), it is
- // automatically converted to float before modf is invoked. Sadly, the 'ip'
- // argument is not treated the same way. Therefore, in such cases we'll have
- // to manually convert the float result into int.
- const uint32_t glslInstSetId = theBuilder.getGLSLExtInstSet();
- const Expr *arg = callExpr->getArg(0);
- const Expr *ipArg = callExpr->getArg(1);
- const auto argType = arg->getType();
- const auto ipType = ipArg->getType();
- const auto returnType = callExpr->getType();
- const auto returnTypeId = typeTranslator.translateType(returnType);
- const auto ipTypeId = typeTranslator.translateType(ipType);
- const uint32_t argId = doExpr(arg);
- const uint32_t ipId = doExpr(ipArg);
- // For scalar and vector argument types.
- {
- if (TypeTranslator::isScalarType(argType) ||
- TypeTranslator::isVectorType(argType)) {
- const auto argTypeId = typeTranslator.translateType(argType);
- // The struct members *must* have the same type.
- const auto modfStructTypeId = theBuilder.getStructType(
- {argTypeId, argTypeId}, "ModfStructType", {"frac", "ip"});
- const auto modf =
- theBuilder.createExtInst(modfStructTypeId, glslInstSetId,
- GLSLstd450::GLSLstd450ModfStruct, {argId});
- auto ip = theBuilder.createCompositeExtract(argTypeId, modf, {1});
- // This will do nothing if the input number (x) and the ip are both of the
- // same type. Otherwise, it will convert the ip into int as necessary.
- ip = castToInt(ip, argType, ipType, arg->getExprLoc());
- theBuilder.createStore(ipId, ip);
- return theBuilder.createCompositeExtract(argTypeId, modf, {0});
- }
- }
- // For matrix argument types.
- {
- uint32_t rowCount = 0, colCount = 0;
- QualType elemType = {};
- if (TypeTranslator::isMxNMatrix(argType, &elemType, &rowCount, &colCount)) {
- const auto elemTypeId = typeTranslator.translateType(elemType);
- const auto colTypeId = theBuilder.getVecType(elemTypeId, colCount);
- const auto modfStructTypeId = theBuilder.getStructType(
- {colTypeId, colTypeId}, "ModfStructType", {"frac", "ip"});
- llvm::SmallVector<uint32_t, 4> fracs;
- llvm::SmallVector<uint32_t, 4> ips;
- for (uint32_t i = 0; i < rowCount; ++i) {
- const auto curRow =
- theBuilder.createCompositeExtract(colTypeId, argId, {i});
- const auto modf = theBuilder.createExtInst(
- modfStructTypeId, glslInstSetId, GLSLstd450::GLSLstd450ModfStruct,
- {curRow});
- auto ip = theBuilder.createCompositeExtract(colTypeId, modf, {1});
- ips.push_back(ip);
- fracs.push_back(
- theBuilder.createCompositeExtract(colTypeId, modf, {0}));
- }
- uint32_t ip = theBuilder.createCompositeConstruct(
- typeTranslator.translateType(argType), ips);
- // If the 'ip' is not a float type, the AST will not contain a CastExpr
- // because this is internal to the intrinsic function. So, in such a
- // case we need to cast manually.
- if (!hlsl::GetHLSLMatElementType(ipType)->isFloatingType())
- ip = castToInt(ip, argType, ipType, ipArg->getExprLoc());
- theBuilder.createStore(ipId, ip);
- return theBuilder.createCompositeConstruct(returnTypeId, fracs);
- }
- }
- emitError("invalid argument type passed to Modf intrinsic function",
- callExpr->getExprLoc());
- return 0;
- }
- uint32_t SPIRVEmitter::processIntrinsicLit(const CallExpr *callExpr) {
- // Signature is: float4 lit(float n_dot_l, float n_dot_h, float m)
- //
- // This function returns a lighting coefficient vector
- // (ambient, diffuse, specular, 1) where:
- // ambient = 1.
- // diffuse = (n_dot_l < 0) ? 0 : n_dot_l
- // specular = (n_dot_l < 0 || n_dot_h < 0) ? 0 : ((n_dot_h) * m)
- const uint32_t glslInstSetId = theBuilder.getGLSLExtInstSet();
- const uint32_t nDotL = doExpr(callExpr->getArg(0));
- const uint32_t nDotH = doExpr(callExpr->getArg(1));
- const uint32_t m = doExpr(callExpr->getArg(2));
- const uint32_t floatType = theBuilder.getFloat32Type();
- const uint32_t boolType = theBuilder.getBoolType();
- const uint32_t floatZero = theBuilder.getConstantFloat32(0);
- const uint32_t floatOne = theBuilder.getConstantFloat32(1);
- const uint32_t retType = typeTranslator.translateType(callExpr->getType());
- const uint32_t diffuse = theBuilder.createExtInst(
- floatType, glslInstSetId, GLSLstd450::GLSLstd450FMax, {floatZero, nDotL});
- const uint32_t min = theBuilder.createExtInst(
- floatType, glslInstSetId, GLSLstd450::GLSLstd450FMin, {nDotL, nDotH});
- const uint32_t isNeg = theBuilder.createBinaryOp(spv::Op::OpFOrdLessThan,
- boolType, min, floatZero);
- const uint32_t mul =
- theBuilder.createBinaryOp(spv::Op::OpFMul, floatType, nDotH, m);
- const uint32_t specular =
- theBuilder.createSelect(floatType, isNeg, floatZero, mul);
- return theBuilder.createCompositeConstruct(
- retType, {floatOne, diffuse, specular, floatOne});
- }
- uint32_t SPIRVEmitter::processIntrinsicFrexp(const CallExpr *callExpr) {
- // Signature is: ret frexp(x, exp)
- // [in] x: the input floating-point value.
- // [out] exp: the calculated exponent.
- // [out] ret: the calculated mantissa.
- // All of the above must be a scalar, vector, or matrix of *float* type.
- // The FrexpStruct SPIR-V instruction returns a struct. The first
- // member is the significand (mantissa) and must be of the same type as the
- // input parameter, and the second member is the exponent and must always be a
- // scalar or vector of 32-bit *integer* type.
- // FrexpStruct {
- // <scalar or vector of int/float> mantissa;
- // <scalar or vector of integers> exponent;
- // }
- const uint32_t glslInstSetId = theBuilder.getGLSLExtInstSet();
- const Expr *arg = callExpr->getArg(0);
- const auto argType = arg->getType();
- const auto intId = theBuilder.getInt32Type();
- const auto returnTypeId = typeTranslator.translateType(callExpr->getType());
- const uint32_t argId = doExpr(arg);
- const uint32_t expId = doExpr(callExpr->getArg(1));
- // For scalar and vector argument types.
- {
- uint32_t elemCount = 1;
- if (TypeTranslator::isScalarType(argType) ||
- TypeTranslator::isVectorType(argType, nullptr, &elemCount)) {
- const auto argTypeId = typeTranslator.translateType(argType);
- const auto expTypeId =
- elemCount == 1 ? intId : theBuilder.getVecType(intId, elemCount);
- const auto frexpStructTypeId = theBuilder.getStructType(
- {argTypeId, expTypeId}, "FrexpStructType", {"mantissa", "exponent"});
- const auto frexp =
- theBuilder.createExtInst(frexpStructTypeId, glslInstSetId,
- GLSLstd450::GLSLstd450FrexpStruct, {argId});
- const auto exponentInt =
- theBuilder.createCompositeExtract(expTypeId, frexp, {1});
- // Since the SPIR-V instruction returns an int, and the intrinsic HLSL
- // expects a float, an conversion must take place before writing the
- // results.
- const auto exponentFloat = theBuilder.createUnaryOp(
- spv::Op::OpConvertSToF, returnTypeId, exponentInt);
- theBuilder.createStore(expId, exponentFloat);
- return theBuilder.createCompositeExtract(argTypeId, frexp, {0});
- }
- }
- // For matrix argument types.
- {
- uint32_t rowCount = 0, colCount = 0;
- if (TypeTranslator::isMxNMatrix(argType, nullptr, &rowCount, &colCount)) {
- const auto floatId = theBuilder.getFloat32Type();
- const auto expTypeId = theBuilder.getVecType(intId, colCount);
- const auto colTypeId = theBuilder.getVecType(floatId, colCount);
- const auto frexpStructTypeId = theBuilder.getStructType(
- {colTypeId, expTypeId}, "FrexpStructType", {"mantissa", "exponent"});
- llvm::SmallVector<uint32_t, 4> exponents;
- llvm::SmallVector<uint32_t, 4> mantissas;
- for (uint32_t i = 0; i < rowCount; ++i) {
- const auto curRow =
- theBuilder.createCompositeExtract(colTypeId, argId, {i});
- const auto frexp = theBuilder.createExtInst(
- frexpStructTypeId, glslInstSetId, GLSLstd450::GLSLstd450FrexpStruct,
- {curRow});
- const auto exponentInt =
- theBuilder.createCompositeExtract(expTypeId, frexp, {1});
- // Since the SPIR-V instruction returns an int, and the intrinsic HLSL
- // expects a float, an conversion must take place before writing the
- // results.
- const auto exponentFloat = theBuilder.createUnaryOp(
- spv::Op::OpConvertSToF, colTypeId, exponentInt);
- exponents.push_back(exponentFloat);
- mantissas.push_back(
- theBuilder.createCompositeExtract(colTypeId, frexp, {0}));
- }
- const auto exponentsResultId =
- theBuilder.createCompositeConstruct(returnTypeId, exponents);
- theBuilder.createStore(expId, exponentsResultId);
- return theBuilder.createCompositeConstruct(returnTypeId, mantissas);
- }
- }
- emitError("invalid argument type passed to Frexp intrinsic function",
- callExpr->getExprLoc());
- return 0;
- }
- uint32_t SPIRVEmitter::processIntrinsicLdexp(const CallExpr *callExpr) {
- // Signature: ret ldexp(x, exp)
- // This function uses the following formula: x * 2^exp.
- // Note that we cannot use GLSL extended instruction Ldexp since it requires
- // the exponent to be an integer (vector) but HLSL takes an float (vector)
- // exponent. So we must calculate the result manually.
- const uint32_t glsl = theBuilder.getGLSLExtInstSet();
- const Expr *x = callExpr->getArg(0);
- const auto paramType = x->getType();
- const uint32_t xId = doExpr(x);
- const uint32_t expId = doExpr(callExpr->getArg(1));
- // For scalar and vector argument types.
- if (TypeTranslator::isScalarType(paramType) ||
- TypeTranslator::isVectorType(paramType)) {
- const auto paramTypeId = typeTranslator.translateType(paramType);
- const auto twoExp = theBuilder.createExtInst(
- paramTypeId, glsl, GLSLstd450::GLSLstd450Exp2, {expId});
- return theBuilder.createBinaryOp(spv::Op::OpFMul, paramTypeId, xId, twoExp);
- }
- // For matrix argument types.
- {
- uint32_t rowCount = 0, colCount = 0;
- if (TypeTranslator::isMxNMatrix(paramType, nullptr, &rowCount, &colCount)) {
- const auto actOnEachVec = [this, glsl, expId](uint32_t index,
- uint32_t vecType,
- uint32_t xRowId) {
- const auto expRowId =
- theBuilder.createCompositeExtract(vecType, expId, {index});
- const auto twoExp = theBuilder.createExtInst(
- vecType, glsl, GLSLstd450::GLSLstd450Exp2, {expRowId});
- return theBuilder.createBinaryOp(spv::Op::OpFMul, vecType, xRowId,
- twoExp);
- };
- return processEachVectorInMatrix(x, xId, actOnEachVec);
- }
- }
- emitError("invalid argument type passed to ldexp intrinsic function",
- callExpr->getExprLoc());
- return 0;
- }
- uint32_t SPIRVEmitter::processIntrinsicDst(const CallExpr *callExpr) {
- // Signature is float4 dst(float4 src0, float4 src1)
- // result.x = 1;
- // result.y = src0.y * src1.y;
- // result.z = src0.z;
- // result.w = src1.w;
- const auto floatId = theBuilder.getFloat32Type();
- const auto arg0Id = doExpr(callExpr->getArg(0));
- const auto arg1Id = doExpr(callExpr->getArg(1));
- const auto arg0y = theBuilder.createCompositeExtract(floatId, arg0Id, {1});
- const auto arg1y = theBuilder.createCompositeExtract(floatId, arg1Id, {1});
- const auto arg0z = theBuilder.createCompositeExtract(floatId, arg0Id, {2});
- const auto arg1w = theBuilder.createCompositeExtract(floatId, arg1Id, {3});
- const auto arg0yMularg1y =
- theBuilder.createBinaryOp(spv::Op::OpFMul, floatId, arg0y, arg1y);
- return theBuilder.createCompositeConstruct(
- typeTranslator.translateType(callExpr->getType()),
- {theBuilder.getConstantFloat32(1.0), arg0yMularg1y, arg0z, arg1w});
- }
- uint32_t SPIRVEmitter::processIntrinsicClip(const CallExpr *callExpr) {
- // Discards the current pixel if the specified value is less than zero.
- // TODO: If the argument can be const folded and evaluated, we could
- // potentially avoid creating a branch. This would be a bit challenging for
- // matrix/vector arguments.
- assert(callExpr->getNumArgs() == 1u);
- const Expr *arg = callExpr->getArg(0);
- const auto argType = arg->getType();
- const auto boolType = theBuilder.getBoolType();
- uint32_t condition = 0;
- // Could not determine the argument as a constant. We need to branch based on
- // the argument. If the argument is a vector/matrix, clipping is done if *any*
- // element of the vector/matrix is less than zero.
- const uint32_t argId = doExpr(arg);
- QualType elemType = {};
- uint32_t elemCount = 0, rowCount = 0, colCount = 0;
- if (TypeTranslator::isScalarType(argType)) {
- const auto zero = getValueZero(argType);
- condition = theBuilder.createBinaryOp(spv::Op::OpFOrdLessThan, boolType,
- argId, zero);
- } else if (TypeTranslator::isVectorType(argType, nullptr, &elemCount)) {
- const auto zero = getValueZero(argType);
- const auto boolVecType = theBuilder.getVecType(boolType, elemCount);
- const auto cmp = theBuilder.createBinaryOp(spv::Op::OpFOrdLessThan,
- boolVecType, argId, zero);
- condition = theBuilder.createUnaryOp(spv::Op::OpAny, boolType, cmp);
- } else if (TypeTranslator::isMxNMatrix(argType, &elemType, &rowCount,
- &colCount)) {
- const uint32_t elemTypeId = typeTranslator.translateType(elemType);
- const uint32_t floatVecType = theBuilder.getVecType(elemTypeId, colCount);
- const uint32_t elemZeroId = getValueZero(elemType);
- llvm::SmallVector<uint32_t, 4> elements(size_t(colCount), elemZeroId);
- const auto zero = theBuilder.getConstantComposite(floatVecType, elements);
- llvm::SmallVector<uint32_t, 4> cmpResults;
- for (uint32_t i = 0; i < rowCount; ++i) {
- const uint32_t lhsVec =
- theBuilder.createCompositeExtract(floatVecType, argId, {i});
- const auto boolColType = theBuilder.getVecType(boolType, colCount);
- const auto cmp = theBuilder.createBinaryOp(spv::Op::OpFOrdLessThan,
- boolColType, lhsVec, zero);
- const auto any = theBuilder.createUnaryOp(spv::Op::OpAny, boolType, cmp);
- cmpResults.push_back(any);
- }
- const auto boolRowType = theBuilder.getVecType(boolType, rowCount);
- const auto results =
- theBuilder.createCompositeConstruct(boolRowType, cmpResults);
- condition = theBuilder.createUnaryOp(spv::Op::OpAny, boolType, results);
- } else {
- emitError("invalid argument type passed to clip intrinsic function",
- callExpr->getExprLoc());
- return 0;
- }
- // Then we need to emit the instruction for the conditional branch.
- const uint32_t thenBB = theBuilder.createBasicBlock("if.true");
- const uint32_t mergeBB = theBuilder.createBasicBlock("if.merge");
- // Create the branch instruction. This will end the current basic block.
- theBuilder.createConditionalBranch(condition, thenBB, mergeBB, mergeBB);
- theBuilder.addSuccessor(thenBB);
- theBuilder.addSuccessor(mergeBB);
- theBuilder.setMergeTarget(mergeBB);
- // Handle the then branch
- theBuilder.setInsertPoint(thenBB);
- theBuilder.createKill();
- theBuilder.addSuccessor(mergeBB);
- // From now on, we'll emit instructions into the merge block.
- theBuilder.setInsertPoint(mergeBB);
- return 0;
- }
- uint32_t SPIRVEmitter::processIntrinsicClamp(const CallExpr *callExpr) {
- // According the HLSL reference: clamp(X, Min, Max) takes 3 arguments. Each
- // one may be int, uint, or float.
- const uint32_t glslInstSetId = theBuilder.getGLSLExtInstSet();
- const QualType returnType = callExpr->getType();
- const uint32_t returnTypeId = typeTranslator.translateType(returnType);
- GLSLstd450 glslOpcode = GLSLstd450::GLSLstd450UClamp;
- if (isFloatOrVecMatOfFloatType(returnType))
- glslOpcode = GLSLstd450::GLSLstd450FClamp;
- else if (isSintOrVecMatOfSintType(returnType))
- glslOpcode = GLSLstd450::GLSLstd450SClamp;
- // Get the function parameters. Expect 3 parameters.
- assert(callExpr->getNumArgs() == 3u);
- const Expr *argX = callExpr->getArg(0);
- const Expr *argMin = callExpr->getArg(1);
- const Expr *argMax = callExpr->getArg(2);
- const uint32_t argXId = doExpr(argX);
- const uint32_t argMinId = doExpr(argMin);
- const uint32_t argMaxId = doExpr(argMax);
- // FClamp, UClamp, and SClamp do not operate on matrices, so we should perform
- // the operation on each vector of the matrix.
- if (TypeTranslator::isMxNMatrix(argX->getType())) {
- const auto actOnEachVec = [this, glslInstSetId, glslOpcode, argMinId,
- argMaxId](uint32_t index, uint32_t vecType,
- uint32_t curRowId) {
- const auto minRowId =
- theBuilder.createCompositeExtract(vecType, argMinId, {index});
- const auto maxRowId =
- theBuilder.createCompositeExtract(vecType, argMaxId, {index});
- return theBuilder.createExtInst(vecType, glslInstSetId, glslOpcode,
- {curRowId, minRowId, maxRowId});
- };
- return processEachVectorInMatrix(argX, argXId, actOnEachVec);
- }
- return theBuilder.createExtInst(returnTypeId, glslInstSetId, glslOpcode,
- {argXId, argMinId, argMaxId});
- }
- uint32_t SPIRVEmitter::processIntrinsicMemoryBarrier(const CallExpr *callExpr,
- bool isDevice,
- bool groupSync,
- bool isAllBarrier) {
- // * DeviceMemoryBarrier =
- // OpMemoryBarrier (memScope=Device,
- // sem=Image|Uniform|AcquireRelease)
- //
- // * DeviceMemoryBarrierWithGroupSync =
- // OpControlBarrier(execScope = Workgroup,
- // memScope=Device,
- // sem=Image|Uniform|AcquireRelease)
- const spv::MemorySemanticsMask deviceMemoryBarrierSema =
- spv::MemorySemanticsMask::ImageMemory |
- spv::MemorySemanticsMask::UniformMemory |
- spv::MemorySemanticsMask::AcquireRelease;
- // * GroupMemoryBarrier =
- // OpMemoryBarrier (memScope=Workgroup,
- // sem = Workgroup|AcquireRelease)
- //
- // * GroupMemoryBarrierWithGroupSync =
- // OpControlBarrier (execScope = Workgroup,
- // memScope = Workgroup,
- // sem = Workgroup|AcquireRelease)
- const spv::MemorySemanticsMask groupMemoryBarrierSema =
- spv::MemorySemanticsMask::WorkgroupMemory |
- spv::MemorySemanticsMask::AcquireRelease;
- // * AllMemoryBarrier =
- // OpMemoryBarrier(memScope = Device,
- // sem = Image|Uniform|Workgroup|AcquireRelease)
- //
- // * AllMemoryBarrierWithGroupSync =
- // OpControlBarrier(execScope = Workgroup,
- // memScope = Device,
- // sem = Image|Uniform|Workgroup|AcquireRelease)
- const spv::MemorySemanticsMask allMemoryBarrierSema =
- spv::MemorySemanticsMask::ImageMemory |
- spv::MemorySemanticsMask::UniformMemory |
- spv::MemorySemanticsMask::WorkgroupMemory |
- spv::MemorySemanticsMask::AtomicCounterMemory |
- spv::MemorySemanticsMask::AcquireRelease;
- // Get <result-id> for execution scope.
- // If present, execution scope is always Workgroup!
- const uint32_t execScopeId =
- groupSync ? theBuilder.getConstantUint32(
- static_cast<uint32_t>(spv::Scope::Workgroup))
- : 0;
- // Get <result-id> for memory scope
- const spv::Scope memScope =
- (isDevice || isAllBarrier) ? spv::Scope::Device : spv::Scope::Workgroup;
- const uint32_t memScopeId =
- theBuilder.getConstantUint32(static_cast<uint32_t>(memScope));
- // Get <result-id> for memory semantics
- const auto memSemaMask = isAllBarrier ? allMemoryBarrierSema
- : isDevice ? deviceMemoryBarrierSema
- : groupMemoryBarrierSema;
- const uint32_t memSema =
- theBuilder.getConstantUint32(static_cast<uint32_t>(memSemaMask));
- theBuilder.createBarrier(execScopeId, memScopeId, memSema);
- return 0;
- }
- uint32_t SPIRVEmitter::processNonFpMatrixTranspose(QualType matType,
- uint32_t matId) {
- // Simplest way is to flatten the matrix construct a new matrix from the
- // flattened elements. (for a mat4x4).
- QualType elemType = {};
- uint32_t numRows = 0, numCols = 0;
- const bool isMat =
- TypeTranslator::isMxNMatrix(matType, &elemType, &numRows, &numCols);
- assert(isMat && !elemType->isFloatingType());
- const auto rowQualType = astContext.getExtVectorType(elemType, numCols);
- const auto colQualType = astContext.getExtVectorType(elemType, numRows);
- const uint32_t rowTypeId = typeTranslator.translateType(rowQualType);
- const uint32_t colTypeId = typeTranslator.translateType(colQualType);
- const uint32_t elemTypeId = typeTranslator.translateType(elemType);
- // You cannot perform a composite construct of an array using a few vectors.
- // The number of constutients passed to OpCompositeConstruct must be equal to
- // the number of array elements.
- llvm::SmallVector<uint32_t, 4> elems;
- for (uint32_t i = 0; i < numRows; ++i)
- for (uint32_t j = 0; j < numCols; ++j)
- elems.push_back(
- theBuilder.createCompositeExtract(elemTypeId, matId, {i, j}));
- llvm::SmallVector<uint32_t, 4> cols;
- for (uint32_t i = 0; i < numCols; ++i) {
- // The elements in the ith vector of the "transposed" array are at offset i,
- // i + <original-vector-size>, ...
- llvm::SmallVector<uint32_t, 4> indexes;
- for (uint32_t j = 0; j < numRows; ++j)
- indexes.push_back(elems[i + (j * numCols)]);
- cols.push_back(theBuilder.createCompositeConstruct(colTypeId, indexes));
- }
- const auto transposeTypeId =
- theBuilder.getArrayType(colTypeId, theBuilder.getConstantUint32(numCols));
- return theBuilder.createCompositeConstruct(transposeTypeId, cols);
- }
- uint32_t SPIRVEmitter::processNonFpDot(uint32_t vec1Id, uint32_t vec2Id,
- uint32_t vecSize, QualType elemType) {
- const auto elemTypeId = typeTranslator.translateType(elemType);
- llvm::SmallVector<uint32_t, 4> muls;
- for (uint32_t i = 0; i < vecSize; ++i) {
- const auto elem1 =
- theBuilder.createCompositeExtract(elemTypeId, vec1Id, {i});
- const auto elem2 =
- theBuilder.createCompositeExtract(elemTypeId, vec2Id, {i});
- muls.push_back(theBuilder.createBinaryOp(translateOp(BO_Mul, elemType),
- elemTypeId, elem1, elem2));
- }
- uint32_t sum = muls[0];
- for (uint32_t i = 1; i < vecSize; ++i) {
- sum = theBuilder.createBinaryOp(translateOp(BO_Add, elemType), elemTypeId,
- sum, muls[i]);
- }
- return sum;
- }
- uint32_t SPIRVEmitter::processNonFpScalarTimesMatrix(QualType scalarType,
- uint32_t scalarId,
- QualType matrixType,
- uint32_t matrixId) {
- assert(TypeTranslator::isScalarType(scalarType));
- QualType elemType = {};
- uint32_t numRows = 0, numCols = 0;
- const bool isMat =
- TypeTranslator::isMxNMatrix(matrixType, &elemType, &numRows, &numCols);
- assert(isMat);
- assert(typeTranslator.isSameType(scalarType, elemType));
- // We need to multiply the scalar by each vector of the matrix.
- // The front-end guarantees that the scalar and matrix element type are
- // the same. For example, if the scalar is a float, the matrix is casted
- // to a float matrix before being passed to mul(). It is also guaranteed
- // that types such as bool are casted to float or int before being
- // passed to mul().
- const auto rowType = astContext.getExtVectorType(elemType, numCols);
- const auto rowTypeId = typeTranslator.translateType(rowType);
- llvm::SmallVector<uint32_t, 4> splat(size_t(numCols), scalarId);
- const auto scalarSplat =
- theBuilder.createCompositeConstruct(rowTypeId, splat);
- llvm::SmallVector<uint32_t, 4> mulRows;
- for (uint32_t row = 0; row < numRows; ++row) {
- const auto rowId =
- theBuilder.createCompositeExtract(rowTypeId, matrixId, {row});
- mulRows.push_back(theBuilder.createBinaryOp(translateOp(BO_Mul, scalarType),
- rowTypeId, rowId, scalarSplat));
- }
- return theBuilder.createCompositeConstruct(
- typeTranslator.translateType(matrixType), mulRows);
- }
- uint32_t SPIRVEmitter::processNonFpVectorTimesMatrix(QualType vecType,
- uint32_t vecId,
- QualType matType,
- uint32_t matId,
- uint32_t matTransposeId) {
- // This function assumes that the vector element type and matrix elemet type
- // are the same.
- QualType vecElemType = {}, matElemType = {};
- uint32_t vecSize = 0, numRows = 0, numCols = 0;
- const bool isVec =
- TypeTranslator::isVectorType(vecType, &vecElemType, &vecSize);
- const bool isMat =
- TypeTranslator::isMxNMatrix(matType, &matElemType, &numRows, &numCols);
- assert(typeTranslator.isSameType(vecElemType, matElemType));
- assert(isVec);
- assert(isMat);
- assert(vecSize == numRows);
- // When processing vector times matrix, the vector is a row vector, and it
- // should be multiplied by the matrix *columns*. The most efficient way to
- // handle this in SPIR-V would be to first transpose the matrix, and then use
- // OpAccessChain.
- if (!matTransposeId)
- matTransposeId = processNonFpMatrixTranspose(matType, matId);
- const auto vecTypeId = typeTranslator.translateType(vecType);
- llvm::SmallVector<uint32_t, 4> resultElems;
- for (uint32_t col = 0; col < numCols; ++col) {
- const auto colId =
- theBuilder.createCompositeExtract(vecTypeId, matTransposeId, {col});
- resultElems.push_back(processNonFpDot(vecId, colId, vecSize, vecElemType));
- }
- return theBuilder.createCompositeConstruct(
- typeTranslator.translateType(
- astContext.getExtVectorType(vecElemType, numCols)),
- resultElems);
- }
- uint32_t SPIRVEmitter::processNonFpMatrixTimesVector(QualType matType,
- uint32_t matId,
- QualType vecType,
- uint32_t vecId) {
- // This function assumes that the vector element type and matrix elemet type
- // are the same.
- QualType vecElemType = {}, matElemType = {};
- uint32_t vecSize = 0, numRows = 0, numCols = 0;
- const bool isVec =
- TypeTranslator::isVectorType(vecType, &vecElemType, &vecSize);
- const bool isMat =
- TypeTranslator::isMxNMatrix(matType, &matElemType, &numRows, &numCols);
- assert(typeTranslator.isSameType(vecElemType, matElemType));
- assert(isVec);
- assert(isMat);
- assert(vecSize == numCols);
- // When processing matrix times vector, the vector is a column vector. So we
- // simply get each row of the matrix and perform a dot product with the
- // vector.
- const auto vecTypeId = typeTranslator.translateType(vecType);
- llvm::SmallVector<uint32_t, 4> resultElems;
- for (uint32_t row = 0; row < numRows; ++row) {
- const auto rowId =
- theBuilder.createCompositeExtract(vecTypeId, matId, {row});
- resultElems.push_back(processNonFpDot(rowId, vecId, vecSize, vecElemType));
- }
- return theBuilder.createCompositeConstruct(
- typeTranslator.translateType(
- astContext.getExtVectorType(vecElemType, numRows)),
- resultElems);
- }
- uint32_t SPIRVEmitter::processNonFpMatrixTimesMatrix(QualType lhsType,
- uint32_t lhsId,
- QualType rhsType,
- uint32_t rhsId) {
- // This function assumes that the vector element type and matrix elemet type
- // are the same.
- QualType lhsElemType = {}, rhsElemType = {};
- uint32_t lhsNumRows = 0, lhsNumCols = 0;
- uint32_t rhsNumRows = 0, rhsNumCols = 0;
- const bool lhsIsMat = TypeTranslator::isMxNMatrix(lhsType, &lhsElemType,
- &lhsNumRows, &lhsNumCols);
- const bool rhsIsMat = TypeTranslator::isMxNMatrix(rhsType, &rhsElemType,
- &rhsNumRows, &rhsNumCols);
- assert(typeTranslator.isSameType(lhsElemType, rhsElemType));
- assert(lhsIsMat && rhsIsMat);
- assert(lhsNumCols == rhsNumRows);
- const uint32_t rhsTranspose = processNonFpMatrixTranspose(rhsType, rhsId);
- const auto vecType = astContext.getExtVectorType(lhsElemType, lhsNumCols);
- const auto vecTypeId = typeTranslator.translateType(vecType);
- llvm::SmallVector<uint32_t, 4> resultRows;
- for (uint32_t row = 0; row < lhsNumRows; ++row) {
- const auto rowId =
- theBuilder.createCompositeExtract(vecTypeId, lhsId, {row});
- resultRows.push_back(processNonFpVectorTimesMatrix(vecType, rowId, rhsType,
- rhsId, rhsTranspose));
- }
- // The resulting matrix will have 'lhsNumRows' rows and 'rhsNumCols' columns.
- const auto elemTypeId = typeTranslator.translateType(lhsElemType);
- const auto resultNumRows = theBuilder.getConstantUint32(lhsNumRows);
- const auto resultColType = theBuilder.getVecType(elemTypeId, rhsNumCols);
- const auto resultType = theBuilder.getArrayType(resultColType, resultNumRows);
- return theBuilder.createCompositeConstruct(resultType, resultRows);
- }
- uint32_t SPIRVEmitter::processIntrinsicMul(const CallExpr *callExpr) {
- const QualType returnType = callExpr->getType();
- const uint32_t returnTypeId =
- typeTranslator.translateType(callExpr->getType());
- // Get the function parameters. Expect 2 parameters.
- assert(callExpr->getNumArgs() == 2u);
- const Expr *arg0 = callExpr->getArg(0);
- const Expr *arg1 = callExpr->getArg(1);
- const QualType arg0Type = arg0->getType();
- const QualType arg1Type = arg1->getType();
- // The HLSL mul() function takes 2 arguments. Each argument may be a scalar,
- // vector, or matrix. The frontend ensures that the two arguments have the
- // same component type. The only allowed component types are int and float.
- // mul(scalar, vector)
- {
- uint32_t elemCount = 0;
- if (TypeTranslator::isScalarType(arg0Type) &&
- TypeTranslator::isVectorType(arg1Type, nullptr, &elemCount)) {
- const uint32_t arg1Id = doExpr(arg1);
- // We can use OpVectorTimesScalar if arguments are floats.
- if (arg0Type->isFloatingType())
- return theBuilder.createBinaryOp(spv::Op::OpVectorTimesScalar,
- returnTypeId, arg1Id, doExpr(arg0));
- // Use OpIMul for integers
- return theBuilder.createBinaryOp(spv::Op::OpIMul, returnTypeId,
- createVectorSplat(arg0, elemCount),
- arg1Id);
- }
- }
- // mul(vector, scalar)
- {
- uint32_t elemCount = 0;
- if (TypeTranslator::isVectorType(arg0Type, nullptr, &elemCount) &&
- TypeTranslator::isScalarType(arg1Type)) {
- const uint32_t arg0Id = doExpr(arg0);
- // We can use OpVectorTimesScalar if arguments are floats.
- if (arg1Type->isFloatingType())
- return theBuilder.createBinaryOp(spv::Op::OpVectorTimesScalar,
- returnTypeId, arg0Id, doExpr(arg1));
- // Use OpIMul for integers
- return theBuilder.createBinaryOp(spv::Op::OpIMul, returnTypeId, arg0Id,
- createVectorSplat(arg1, elemCount));
- }
- }
- // mul(vector, vector)
- if (TypeTranslator::isVectorType(arg0Type) &&
- TypeTranslator::isVectorType(arg1Type))
- return processIntrinsicDot(callExpr);
- // All the following cases require handling arg0 and arg1 expressions first.
- const uint32_t arg0Id = doExpr(arg0);
- const uint32_t arg1Id = doExpr(arg1);
- // mul(scalar, scalar)
- if (TypeTranslator::isScalarType(arg0Type) &&
- TypeTranslator::isScalarType(arg1Type))
- return theBuilder.createBinaryOp(translateOp(BO_Mul, arg0Type),
- returnTypeId, arg0Id, arg1Id);
- // mul(scalar, matrix)
- {
- QualType elemType = {};
- if (TypeTranslator::isScalarType(arg0Type) &&
- TypeTranslator::isMxNMatrix(arg1Type, &elemType)) {
- // OpMatrixTimesScalar can only be used if *both* the matrix element type
- // and the scalar type are float.
- if (arg0Type->isFloatingType() && elemType->isFloatingType())
- return theBuilder.createBinaryOp(spv::Op::OpMatrixTimesScalar,
- returnTypeId, arg1Id, arg0Id);
- else
- return processNonFpScalarTimesMatrix(arg0Type, arg0Id, arg1Type,
- arg1Id);
- }
- }
- // mul(matrix, scalar)
- {
- QualType elemType = {};
- if (TypeTranslator::isScalarType(arg1Type) &&
- TypeTranslator::isMxNMatrix(arg0Type, &elemType)) {
- // OpMatrixTimesScalar can only be used if *both* the matrix element type
- // and the scalar type are float.
- if (arg1Type->isFloatingType() && elemType->isFloatingType())
- return theBuilder.createBinaryOp(spv::Op::OpMatrixTimesScalar,
- returnTypeId, arg0Id, arg1Id);
- else
- return processNonFpScalarTimesMatrix(arg1Type, arg1Id, arg0Type,
- arg0Id);
- }
- }
- // mul(vector, matrix)
- {
- QualType vecElemType = {}, matElemType = {};
- uint32_t elemCount = 0, numRows = 0;
- if (TypeTranslator::isVectorType(arg0Type, &vecElemType, &elemCount) &&
- TypeTranslator::isMxNMatrix(arg1Type, &matElemType, &numRows)) {
- assert(elemCount == numRows);
- if (vecElemType->isFloatingType() && matElemType->isFloatingType())
- return theBuilder.createBinaryOp(spv::Op::OpMatrixTimesVector,
- returnTypeId, arg1Id, arg0Id);
- else
- return processNonFpVectorTimesMatrix(arg0Type, arg0Id, arg1Type,
- arg1Id);
- }
- }
- // mul(matrix, vector)
- {
- QualType vecElemType = {}, matElemType = {};
- uint32_t elemCount = 0, numCols = 0;
- if (TypeTranslator::isMxNMatrix(arg0Type, &matElemType, nullptr,
- &numCols) &&
- TypeTranslator::isVectorType(arg1Type, &vecElemType, &elemCount)) {
- assert(elemCount == numCols);
- if (vecElemType->isFloatingType() && matElemType->isFloatingType())
- return theBuilder.createBinaryOp(spv::Op::OpVectorTimesMatrix,
- returnTypeId, arg1Id, arg0Id);
- else
- return processNonFpMatrixTimesVector(arg0Type, arg0Id, arg1Type,
- arg1Id);
- }
- }
- // mul(matrix, matrix)
- {
- // The front-end ensures that the two matrix element types match.
- QualType elemType = {};
- uint32_t lhsCols = 0, rhsRows = 0;
- if (TypeTranslator::isMxNMatrix(arg0Type, &elemType, nullptr, &lhsCols) &&
- TypeTranslator::isMxNMatrix(arg1Type, nullptr, &rhsRows, nullptr)) {
- assert(lhsCols == rhsRows);
- if (elemType->isFloatingType())
- return theBuilder.createBinaryOp(spv::Op::OpMatrixTimesMatrix,
- returnTypeId, arg1Id, arg0Id);
- else
- return processNonFpMatrixTimesMatrix(arg0Type, arg0Id, arg1Type,
- arg1Id);
- }
- }
- emitError("invalid argument type passed to mul intrinsic function",
- callExpr->getExprLoc());
- return 0;
- }
- uint32_t SPIRVEmitter::processIntrinsicDot(const CallExpr *callExpr) {
- const QualType returnType = callExpr->getType();
- const uint32_t returnTypeId =
- typeTranslator.translateType(callExpr->getType());
- // Get the function parameters. Expect 2 vectors as parameters.
- assert(callExpr->getNumArgs() == 2u);
- const Expr *arg0 = callExpr->getArg(0);
- const Expr *arg1 = callExpr->getArg(1);
- const uint32_t arg0Id = doExpr(arg0);
- const uint32_t arg1Id = doExpr(arg1);
- QualType arg0Type = arg0->getType();
- QualType arg1Type = arg1->getType();
- const size_t vec0Size = hlsl::GetHLSLVecSize(arg0Type);
- const size_t vec1Size = hlsl::GetHLSLVecSize(arg1Type);
- const QualType vec0ComponentType = hlsl::GetHLSLVecElementType(arg0Type);
- const QualType vec1ComponentType = hlsl::GetHLSLVecElementType(arg1Type);
- assert(returnType == vec1ComponentType);
- assert(vec0ComponentType == vec1ComponentType);
- assert(vec0Size == vec1Size);
- assert(vec0Size >= 1 && vec0Size <= 4);
- // According to HLSL reference, the dot function only works on integers
- // and floats.
- assert(returnType->isFloatingType() || returnType->isIntegerType());
- // Special case: dot product of two vectors, each of size 1. That is
- // basically the same as regular multiplication of 2 scalars.
- if (vec0Size == 1) {
- const spv::Op spvOp = translateOp(BO_Mul, arg0Type);
- return theBuilder.createBinaryOp(spvOp, returnTypeId, arg0Id, arg1Id);
- }
- // If the vectors are of type Float, we can use OpDot.
- if (returnType->isFloatingType()) {
- return theBuilder.createBinaryOp(spv::Op::OpDot, returnTypeId, arg0Id,
- arg1Id);
- }
- // Vector component type is Integer (signed or unsigned).
- // Create all instructions necessary to perform a dot product on
- // two integer vectors. SPIR-V OpDot does not support integer vectors.
- // Therefore, we use other SPIR-V instructions (addition and
- // multiplication).
- else {
- uint32_t result = 0;
- llvm::SmallVector<uint32_t, 4> multIds;
- const spv::Op multSpvOp = translateOp(BO_Mul, arg0Type);
- const spv::Op addSpvOp = translateOp(BO_Add, arg0Type);
- // Extract members from the two vectors and multiply them.
- for (unsigned int i = 0; i < vec0Size; ++i) {
- const uint32_t vec0member =
- theBuilder.createCompositeExtract(returnTypeId, arg0Id, {i});
- const uint32_t vec1member =
- theBuilder.createCompositeExtract(returnTypeId, arg1Id, {i});
- const uint32_t multId = theBuilder.createBinaryOp(multSpvOp, returnTypeId,
- vec0member, vec1member);
- multIds.push_back(multId);
- }
- // Add all the multiplications.
- result = multIds[0];
- for (unsigned int i = 1; i < vec0Size; ++i) {
- const uint32_t additionId =
- theBuilder.createBinaryOp(addSpvOp, returnTypeId, result, multIds[i]);
- result = additionId;
- }
- return result;
- }
- }
- uint32_t SPIRVEmitter::processIntrinsicRcp(const CallExpr *callExpr) {
- // 'rcp' takes only 1 argument that is a scalar, vector, or matrix of type
- // float or double.
- assert(callExpr->getNumArgs() == 1u);
- const QualType returnType = callExpr->getType();
- const uint32_t returnTypeId = typeTranslator.translateType(returnType);
- const Expr *arg = callExpr->getArg(0);
- const uint32_t argId = doExpr(arg);
- const QualType argType = arg->getType();
- // For cases with matrix argument.
- QualType elemType = {};
- uint32_t numRows = 0, numCols = 0;
- if (TypeTranslator::isMxNMatrix(argType, &elemType, &numRows, &numCols)) {
- const uint32_t vecOne = getVecValueOne(elemType, numCols);
- const auto actOnEachVec = [this, vecOne](uint32_t /*index*/,
- uint32_t vecType,
- uint32_t curRowId) {
- return theBuilder.createBinaryOp(spv::Op::OpFDiv, vecType, vecOne,
- curRowId);
- };
- return processEachVectorInMatrix(arg, argId, actOnEachVec);
- }
- // For cases with scalar or vector arguments.
- return theBuilder.createBinaryOp(spv::Op::OpFDiv, returnTypeId,
- getValueOne(argType), argId);
- }
- uint32_t SPIRVEmitter::processIntrinsicAllOrAny(const CallExpr *callExpr,
- spv::Op spvOp) {
- // 'all' and 'any' take only 1 parameter.
- assert(callExpr->getNumArgs() == 1u);
- const QualType returnType = callExpr->getType();
- const uint32_t returnTypeId = typeTranslator.translateType(returnType);
- const Expr *arg = callExpr->getArg(0);
- const QualType argType = arg->getType();
- // Handle scalars, vectors of size 1, and 1x1 matrices as arguments.
- // Optimization: can directly cast them to boolean. No need for OpAny/OpAll.
- {
- QualType scalarType = {};
- if (TypeTranslator::isScalarType(argType, &scalarType) &&
- (scalarType->isBooleanType() || scalarType->isFloatingType() ||
- scalarType->isIntegerType()))
- return castToBool(doExpr(arg), argType, returnType);
- }
- // Handle vectors larger than 1, Mx1 matrices, and 1xN matrices as arguments.
- // Cast the vector to a boolean vector, then run OpAny/OpAll on it.
- {
- QualType elemType = {};
- uint32_t size = 0;
- if (TypeTranslator::isVectorType(argType, &elemType, &size)) {
- const QualType castToBoolType =
- astContext.getExtVectorType(returnType, size);
- uint32_t castedToBoolId =
- castToBool(doExpr(arg), argType, castToBoolType);
- return theBuilder.createUnaryOp(spvOp, returnTypeId, castedToBoolId);
- }
- }
- // Handle MxN matrices as arguments.
- {
- QualType elemType = {};
- uint32_t matRowCount = 0, matColCount = 0;
- if (TypeTranslator::isMxNMatrix(argType, &elemType, &matRowCount,
- &matColCount)) {
- uint32_t matrixId = doExpr(arg);
- const uint32_t vecType = typeTranslator.getComponentVectorType(argType);
- llvm::SmallVector<uint32_t, 4> rowResults;
- for (uint32_t i = 0; i < matRowCount; ++i) {
- // Extract the row which is a float vector of size matColCount.
- const uint32_t rowFloatVec =
- theBuilder.createCompositeExtract(vecType, matrixId, {i});
- // Cast the float vector to boolean vector.
- const auto rowFloatQualType =
- astContext.getExtVectorType(elemType, matColCount);
- const auto rowBoolQualType =
- astContext.getExtVectorType(returnType, matColCount);
- const uint32_t rowBoolVec =
- castToBool(rowFloatVec, rowFloatQualType, rowBoolQualType);
- // Perform OpAny/OpAll on the boolean vector.
- rowResults.push_back(
- theBuilder.createUnaryOp(spvOp, returnTypeId, rowBoolVec));
- }
- // Create a new vector that is the concatenation of results of all rows.
- uint32_t boolId = theBuilder.getBoolType();
- uint32_t vecOfBoolsId = theBuilder.getVecType(boolId, matRowCount);
- const uint32_t rowResultsId =
- theBuilder.createCompositeConstruct(vecOfBoolsId, rowResults);
- // Run OpAny/OpAll on the newly-created vector.
- return theBuilder.createUnaryOp(spvOp, returnTypeId, rowResultsId);
- }
- }
- // All types should be handled already.
- llvm_unreachable("Unknown argument type passed to all()/any().");
- return 0;
- }
- uint32_t SPIRVEmitter::processIntrinsicAsType(const CallExpr *callExpr) {
- // This function handles 'asint', 'asuint', 'asfloat', and 'asdouble'.
- // Method 1: ret asint(arg)
- // arg component type = {float, uint}
- // arg template type = {scalar, vector, matrix}
- // ret template type = same as arg template type.
- // ret component type = int
- // Method 2: ret asuint(arg)
- // arg component type = {float, int}
- // arg template type = {scalar, vector, matrix}
- // ret template type = same as arg template type.
- // ret component type = uint
- // Method 3: ret asfloat(arg)
- // arg component type = {float, uint, int}
- // arg template type = {scalar, vector, matrix}
- // ret template type = same as arg template type.
- // ret component type = float
- // Method 4: double asdouble(uint lowbits, uint highbits)
- // Method 5: double2 asdouble(uint2 lowbits, uint2 highbits)
- // Method 6:
- // void asuint(
- // in double value,
- // out uint lowbits,
- // out uint highbits
- // );
- const QualType returnType = callExpr->getType();
- const uint32_t numArgs = callExpr->getNumArgs();
- const uint32_t returnTypeId = typeTranslator.translateType(returnType);
- const Expr *arg0 = callExpr->getArg(0);
- const QualType argType = arg0->getType();
- // Method 3 return type may be the same as arg type, so it would be a no-op.
- if (typeTranslator.isSameType(returnType, argType))
- return doExpr(arg0);
- switch (numArgs) {
- case 1: {
- // Handling Method 1, 2, and 3.
- const auto argId = doExpr(arg0);
- QualType fromElemType = {};
- uint32_t numRows = 0, numCols = 0;
- // For non-matrix arguments (scalar or vector), just do an OpBitCast.
- if (!TypeTranslator::isMxNMatrix(argType, &fromElemType, &numRows,
- &numCols)) {
- return theBuilder.createUnaryOp(spv::Op::OpBitcast, returnTypeId, argId);
- }
- // Input or output type is a matrix.
- const QualType toElemType = hlsl::GetHLSLMatElementType(returnType);
- llvm::SmallVector<uint32_t, 4> castedRows;
- const auto fromVecQualType =
- astContext.getExtVectorType(fromElemType, numCols);
- const auto toVecQualType = astContext.getExtVectorType(toElemType, numCols);
- const auto fromVecTypeId = typeTranslator.translateType(fromVecQualType);
- const auto toVecTypeId = typeTranslator.translateType(toVecQualType);
- for (uint32_t row = 0; row < numRows; ++row) {
- const auto rowId =
- theBuilder.createCompositeExtract(fromVecTypeId, argId, {row});
- castedRows.push_back(
- theBuilder.createUnaryOp(spv::Op::OpBitcast, toVecTypeId, rowId));
- }
- return theBuilder.createCompositeConstruct(returnTypeId, castedRows);
- }
- case 2: {
- const uint32_t lowbits = doExpr(arg0);
- const uint32_t highbits = doExpr(callExpr->getArg(1));
- const uint32_t uintType = theBuilder.getUint32Type();
- const uint32_t doubleType = theBuilder.getFloat64Type();
- // Handling Method 4
- if (argType->isUnsignedIntegerType()) {
- const uint32_t uintVec2Type = theBuilder.getVecType(uintType, 2);
- const uint32_t operand = theBuilder.createCompositeConstruct(
- uintVec2Type, {lowbits, highbits});
- return theBuilder.createUnaryOp(spv::Op::OpBitcast, doubleType, operand);
- }
- // Handling Method 5
- else {
- const uint32_t uintVec4Type = theBuilder.getVecType(uintType, 4);
- const uint32_t doubleVec2Type = theBuilder.getVecType(doubleType, 2);
- const uint32_t operand = theBuilder.createVectorShuffle(
- uintVec4Type, lowbits, highbits, {0, 2, 1, 3});
- return theBuilder.createUnaryOp(spv::Op::OpBitcast, doubleVec2Type,
- operand);
- }
- }
- case 3: {
- // Handling Method 6.
- const uint32_t value = doExpr(arg0);
- const uint32_t lowbits = doExpr(callExpr->getArg(1));
- const uint32_t highbits = doExpr(callExpr->getArg(2));
- const uint32_t uintType = theBuilder.getUint32Type();
- const uint32_t uintVec2Type = theBuilder.getVecType(uintType, 2);
- const uint32_t vecResult =
- theBuilder.createUnaryOp(spv::Op::OpBitcast, uintVec2Type, value);
- theBuilder.createStore(
- lowbits, theBuilder.createCompositeExtract(uintType, vecResult, {0}));
- theBuilder.createStore(
- highbits, theBuilder.createCompositeExtract(uintType, vecResult, {1}));
- return 0;
- }
- default:
- emitError("unrecognized signature for %0 intrinsic function",
- callExpr->getExprLoc())
- << callExpr->getDirectCallee()->getName();
- return 0;
- }
- }
- uint32_t SPIRVEmitter::processD3DCOLORtoUBYTE4(const CallExpr *callExpr) {
- // Should take a float4 and return an int4 by doing:
- // int4 result = input.zyxw * 255.001953;
- // Maximum float precision makes the scaling factor 255.002.
- const auto arg = callExpr->getArg(0);
- const auto argId = doExpr(arg);
- const auto argTypeId = typeTranslator.translateType(arg->getType());
- const auto swizzle =
- theBuilder.createVectorShuffle(argTypeId, argId, argId, {2, 1, 0, 3});
- const auto scaled = theBuilder.createBinaryOp(
- spv::Op::OpVectorTimesScalar, argTypeId, swizzle,
- theBuilder.getConstantFloat32(255.002f));
- return castToInt(scaled, arg->getType(), callExpr->getType(),
- callExpr->getExprLoc());
- }
- uint32_t SPIRVEmitter::processIntrinsicIsFinite(const CallExpr *callExpr) {
- // Since OpIsFinite needs the Kernel capability, translation is instead done
- // using OpIsNan and OpIsInf:
- // isFinite = !(isNan || isInf)
- const auto arg = doExpr(callExpr->getArg(0));
- const auto returnType = typeTranslator.translateType(callExpr->getType());
- const auto isNan =
- theBuilder.createUnaryOp(spv::Op::OpIsNan, returnType, arg);
- const auto isInf =
- theBuilder.createUnaryOp(spv::Op::OpIsInf, returnType, arg);
- const auto isNanOrInf =
- theBuilder.createBinaryOp(spv::Op::OpLogicalOr, returnType, isNan, isInf);
- return theBuilder.createUnaryOp(spv::Op::OpLogicalNot, returnType,
- isNanOrInf);
- }
- uint32_t SPIRVEmitter::processIntrinsicSinCos(const CallExpr *callExpr) {
- // Since there is no sincos equivalent in SPIR-V, we need to perform Sin
- // once and Cos once. We can reuse existing Sine/Cosine handling functions.
- CallExpr *sincosExpr =
- new (astContext) CallExpr(astContext, Stmt::StmtClass::NoStmtClass, {});
- sincosExpr->setType(callExpr->getArg(0)->getType());
- sincosExpr->setNumArgs(astContext, 1);
- sincosExpr->setArg(0, const_cast<Expr *>(callExpr->getArg(0)));
- // Perform Sin and store results in argument 1.
- const uint32_t sin =
- processIntrinsicUsingGLSLInst(sincosExpr, GLSLstd450::GLSLstd450Sin,
- /*actPerRowForMatrices*/ true);
- theBuilder.createStore(doExpr(callExpr->getArg(1)), sin);
- // Perform Cos and store results in argument 2.
- const uint32_t cos =
- processIntrinsicUsingGLSLInst(sincosExpr, GLSLstd450::GLSLstd450Cos,
- /*actPerRowForMatrices*/ true);
- theBuilder.createStore(doExpr(callExpr->getArg(2)), cos);
- return 0;
- }
- uint32_t SPIRVEmitter::processIntrinsicSaturate(const CallExpr *callExpr) {
- const auto *arg = callExpr->getArg(0);
- const auto argId = doExpr(arg);
- const auto argType = arg->getType();
- const uint32_t returnType = typeTranslator.translateType(callExpr->getType());
- const uint32_t glslInstSetId = theBuilder.getGLSLExtInstSet();
- if (argType->isFloatingType()) {
- const uint32_t floatZero = getValueZero(argType);
- const uint32_t floatOne = getValueOne(argType);
- return theBuilder.createExtInst(returnType, glslInstSetId,
- GLSLstd450::GLSLstd450FClamp,
- {argId, floatZero, floatOne});
- }
- QualType elemType = {};
- uint32_t vecSize = 0;
- if (TypeTranslator::isVectorType(argType, &elemType, &vecSize)) {
- const uint32_t vecZero = getVecValueZero(elemType, vecSize);
- const uint32_t vecOne = getVecValueOne(elemType, vecSize);
- return theBuilder.createExtInst(returnType, glslInstSetId,
- GLSLstd450::GLSLstd450FClamp,
- {argId, vecZero, vecOne});
- }
- uint32_t numRows = 0, numCols = 0;
- if (TypeTranslator::isMxNMatrix(argType, &elemType, &numRows, &numCols)) {
- const uint32_t vecZero = getVecValueZero(elemType, numCols);
- const uint32_t vecOne = getVecValueOne(elemType, numCols);
- const auto actOnEachVec = [this, vecZero, vecOne, glslInstSetId](
- uint32_t /*index*/, uint32_t vecType,
- uint32_t curRowId) {
- return theBuilder.createExtInst(vecType, glslInstSetId,
- GLSLstd450::GLSLstd450FClamp,
- {curRowId, vecZero, vecOne});
- };
- return processEachVectorInMatrix(arg, argId, actOnEachVec);
- }
- emitError("invalid argument type passed to saturate intrinsic function",
- callExpr->getExprLoc());
- return 0;
- }
- uint32_t SPIRVEmitter::processIntrinsicFloatSign(const CallExpr *callExpr) {
- // Import the GLSL.std.450 extended instruction set.
- const uint32_t glslInstSetId = theBuilder.getGLSLExtInstSet();
- const Expr *arg = callExpr->getArg(0);
- const QualType returnType = callExpr->getType();
- const QualType argType = arg->getType();
- assert(isFloatOrVecMatOfFloatType(argType));
- const uint32_t argTypeId = typeTranslator.translateType(argType);
- const uint32_t argId = doExpr(arg);
- uint32_t floatSignResultId = 0;
- // For matrices, we can perform the instruction on each vector of the matrix.
- if (TypeTranslator::isMxNMatrix(argType)) {
- const auto actOnEachVec = [this, glslInstSetId](uint32_t /*index*/,
- uint32_t vecType,
- uint32_t curRowId) {
- return theBuilder.createExtInst(vecType, glslInstSetId,
- GLSLstd450::GLSLstd450FSign, {curRowId});
- };
- floatSignResultId = processEachVectorInMatrix(arg, argId, actOnEachVec);
- } else {
- floatSignResultId = theBuilder.createExtInst(
- argTypeId, glslInstSetId, GLSLstd450::GLSLstd450FSign, {argId});
- }
- return castToInt(floatSignResultId, arg->getType(), returnType,
- arg->getExprLoc());
- }
- uint32_t SPIRVEmitter::processIntrinsicF16ToF32(const CallExpr *callExpr) {
- // f16tof32() takes in (vector of) uint and returns (vector of) float.
- // The frontend should guarantee that by inserting implicit casts.
- const uint32_t glsl = theBuilder.getGLSLExtInstSet();
- const uint32_t f32TypeId = theBuilder.getFloat32Type();
- const uint32_t u32TypeId = theBuilder.getUint32Type();
- const uint32_t v2f32TypeId = theBuilder.getVecType(f32TypeId, 2);
- const auto *arg = callExpr->getArg(0);
- const uint32_t argId = doExpr(arg);
- uint32_t elemCount = {};
- if (TypeTranslator::isVectorType(arg->getType(), nullptr, &elemCount)) {
- // The input is a vector. We need to handle each element separately.
- llvm::SmallVector<uint32_t, 4> elements;
- for (uint32_t i = 0; i < elemCount; ++i) {
- const uint32_t srcElem =
- theBuilder.createCompositeExtract(u32TypeId, argId, {i});
- const uint32_t convert = theBuilder.createExtInst(
- v2f32TypeId, glsl, GLSLstd450::GLSLstd450UnpackHalf2x16, srcElem);
- elements.push_back(
- theBuilder.createCompositeExtract(f32TypeId, convert, {0}));
- }
- return theBuilder.createCompositeConstruct(
- theBuilder.getVecType(f32TypeId, elemCount), elements);
- }
- const uint32_t convert = theBuilder.createExtInst(
- v2f32TypeId, glsl, GLSLstd450::GLSLstd450UnpackHalf2x16, argId);
- // f16tof32() converts the float16 stored in the low-half of the uint to
- // a float. So just need to return the first component.
- return theBuilder.createCompositeExtract(f32TypeId, convert, {0});
- }
- uint32_t SPIRVEmitter::processIntrinsicF32ToF16(const CallExpr *callExpr) {
- // f32tof16() takes in (vector of) float and returns (vector of) uint.
- // The frontend should guarantee that by inserting implicit casts.
- const uint32_t glsl = theBuilder.getGLSLExtInstSet();
- const uint32_t f32TypeId = theBuilder.getFloat32Type();
- const uint32_t u32TypeId = theBuilder.getUint32Type();
- const uint32_t v2f32TypeId = theBuilder.getVecType(f32TypeId, 2);
- const uint32_t zero = theBuilder.getConstantFloat32(0);
- const auto *arg = callExpr->getArg(0);
- const uint32_t argId = doExpr(arg);
- uint32_t elemCount = {};
- if (TypeTranslator::isVectorType(arg->getType(), nullptr, &elemCount)) {
- // The input is a vector. We need to handle each element separately.
- llvm::SmallVector<uint32_t, 4> elements;
- for (uint32_t i = 0; i < elemCount; ++i) {
- const uint32_t srcElem =
- theBuilder.createCompositeExtract(f32TypeId, argId, {i});
- const uint32_t srcVec =
- theBuilder.createCompositeConstruct(v2f32TypeId, {srcElem, zero});
- elements.push_back(theBuilder.createExtInst(
- u32TypeId, glsl, GLSLstd450::GLSLstd450PackHalf2x16, srcVec));
- }
- return theBuilder.createCompositeConstruct(
- theBuilder.getVecType(u32TypeId, elemCount), elements);
- }
- // f16tof32() stores the float into the low-half of the uint. So we need
- // to supply another zero to take the other half.
- const uint32_t srcVec =
- theBuilder.createCompositeConstruct(v2f32TypeId, {argId, zero});
- return theBuilder.createExtInst(u32TypeId, glsl,
- GLSLstd450::GLSLstd450PackHalf2x16, srcVec);
- }
- uint32_t SPIRVEmitter::processIntrinsicUsingSpirvInst(
- const CallExpr *callExpr, spv::Op opcode, bool actPerRowForMatrices) {
- // Certain opcodes are only allowed in pixel shader
- if (!shaderModel.IsPS())
- switch (opcode) {
- case spv::Op::OpDPdx:
- case spv::Op::OpDPdy:
- case spv::Op::OpDPdxFine:
- case spv::Op::OpDPdyFine:
- case spv::Op::OpDPdxCoarse:
- case spv::Op::OpDPdyCoarse:
- case spv::Op::OpFwidth:
- case spv::Op::OpFwidthFine:
- case spv::Op::OpFwidthCoarse:
- needsLegalization = true;
- }
- const uint32_t returnType = typeTranslator.translateType(callExpr->getType());
- if (callExpr->getNumArgs() == 1u) {
- const Expr *arg = callExpr->getArg(0);
- const uint32_t argId = doExpr(arg);
- // If the instruction does not operate on matrices, we can perform the
- // instruction on each vector of the matrix.
- if (actPerRowForMatrices && TypeTranslator::isMxNMatrix(arg->getType())) {
- const auto actOnEachVec = [this, opcode](uint32_t /*index*/,
- uint32_t vecType,
- uint32_t curRowId) {
- return theBuilder.createUnaryOp(opcode, vecType, {curRowId});
- };
- return processEachVectorInMatrix(arg, argId, actOnEachVec);
- }
- return theBuilder.createUnaryOp(opcode, returnType, {argId});
- } else if (callExpr->getNumArgs() == 2u) {
- const Expr *arg0 = callExpr->getArg(0);
- const uint32_t arg0Id = doExpr(arg0);
- const uint32_t arg1Id = doExpr(callExpr->getArg(1));
- // If the instruction does not operate on matrices, we can perform the
- // instruction on each vector of the matrix.
- if (actPerRowForMatrices && TypeTranslator::isMxNMatrix(arg0->getType())) {
- const auto actOnEachVec = [this, opcode, arg1Id](uint32_t index,
- uint32_t vecType,
- uint32_t arg0RowId) {
- const uint32_t arg1RowId =
- theBuilder.createCompositeExtract(vecType, arg1Id, {index});
- return theBuilder.createBinaryOp(opcode, vecType, arg0RowId, arg1RowId);
- };
- return processEachVectorInMatrix(arg0, arg0Id, actOnEachVec);
- }
- return theBuilder.createBinaryOp(opcode, returnType, arg0Id, arg1Id);
- }
- emitError("unsupported %0 intrinsic function", callExpr->getExprLoc())
- << cast<DeclRefExpr>(callExpr->getCallee())->getNameInfo().getAsString();
- return 0;
- }
- uint32_t SPIRVEmitter::processIntrinsicUsingGLSLInst(
- const CallExpr *callExpr, GLSLstd450 opcode, bool actPerRowForMatrices) {
- // Import the GLSL.std.450 extended instruction set.
- const uint32_t glslInstSetId = theBuilder.getGLSLExtInstSet();
- const uint32_t returnType = typeTranslator.translateType(callExpr->getType());
- if (callExpr->getNumArgs() == 1u) {
- const Expr *arg = callExpr->getArg(0);
- const uint32_t argId = doExpr(arg);
- // If the instruction does not operate on matrices, we can perform the
- // instruction on each vector of the matrix.
- if (actPerRowForMatrices && TypeTranslator::isMxNMatrix(arg->getType())) {
- const auto actOnEachVec = [this, glslInstSetId,
- opcode](uint32_t /*index*/, uint32_t vecType,
- uint32_t curRowId) {
- return theBuilder.createExtInst(vecType, glslInstSetId, opcode,
- {curRowId});
- };
- return processEachVectorInMatrix(arg, argId, actOnEachVec);
- }
- return theBuilder.createExtInst(returnType, glslInstSetId, opcode, {argId});
- } else if (callExpr->getNumArgs() == 2u) {
- const Expr *arg0 = callExpr->getArg(0);
- const uint32_t arg0Id = doExpr(arg0);
- const uint32_t arg1Id = doExpr(callExpr->getArg(1));
- // If the instruction does not operate on matrices, we can perform the
- // instruction on each vector of the matrix.
- if (actPerRowForMatrices && TypeTranslator::isMxNMatrix(arg0->getType())) {
- const auto actOnEachVec = [this, glslInstSetId, opcode,
- arg1Id](uint32_t index, uint32_t vecType,
- uint32_t arg0RowId) {
- const uint32_t arg1RowId =
- theBuilder.createCompositeExtract(vecType, arg1Id, {index});
- return theBuilder.createExtInst(vecType, glslInstSetId, opcode,
- {arg0RowId, arg1RowId});
- };
- return processEachVectorInMatrix(arg0, arg0Id, actOnEachVec);
- }
- return theBuilder.createExtInst(returnType, glslInstSetId, opcode,
- {arg0Id, arg1Id});
- } else if (callExpr->getNumArgs() == 3u) {
- const Expr *arg0 = callExpr->getArg(0);
- const uint32_t arg0Id = doExpr(arg0);
- const uint32_t arg1Id = doExpr(callExpr->getArg(1));
- const uint32_t arg2Id = doExpr(callExpr->getArg(2));
- // If the instruction does not operate on matrices, we can perform the
- // instruction on each vector of the matrix.
- if (actPerRowForMatrices && TypeTranslator::isMxNMatrix(arg0->getType())) {
- const auto actOnEachVec = [this, glslInstSetId, opcode, arg0Id, arg1Id,
- arg2Id](uint32_t index, uint32_t vecType,
- uint32_t arg0RowId) {
- const uint32_t arg1RowId =
- theBuilder.createCompositeExtract(vecType, arg1Id, {index});
- const uint32_t arg2RowId =
- theBuilder.createCompositeExtract(vecType, arg2Id, {index});
- return theBuilder.createExtInst(vecType, glslInstSetId, opcode,
- {arg0RowId, arg1RowId, arg2RowId});
- };
- return processEachVectorInMatrix(arg0, arg0Id, actOnEachVec);
- }
- return theBuilder.createExtInst(returnType, glslInstSetId, opcode,
- {arg0Id, arg1Id, arg2Id});
- }
- emitError("unsupported %0 intrinsic function", callExpr->getExprLoc())
- << cast<DeclRefExpr>(callExpr->getCallee())->getNameInfo().getAsString();
- return 0;
- }
- uint32_t SPIRVEmitter::processIntrinsicLog10(const CallExpr *callExpr) {
- // Since there is no log10 instruction in SPIR-V, we can use:
- // log10(x) = log2(x) * ( 1 / log2(10) )
- // 1 / log2(10) = 0.30103
- const auto scale = theBuilder.getConstantFloat32(0.30103f);
- const auto log2 =
- processIntrinsicUsingGLSLInst(callExpr, GLSLstd450::GLSLstd450Log2, true);
- const auto returnType = callExpr->getType();
- const auto returnTypeId = typeTranslator.translateType(returnType);
- spv::Op scaleOp = TypeTranslator::isScalarType(returnType)
- ? spv::Op::OpFMul
- : TypeTranslator::isVectorType(returnType)
- ? spv::Op::OpVectorTimesScalar
- : spv::Op::OpMatrixTimesScalar;
- return theBuilder.createBinaryOp(scaleOp, returnTypeId, log2, scale);
- }
- uint32_t SPIRVEmitter::getValueZero(QualType type) {
- {
- QualType scalarType = {};
- if (TypeTranslator::isScalarType(type, &scalarType)) {
- if (scalarType->isSignedIntegerType()) {
- return theBuilder.getConstantInt32(0);
- }
- if (scalarType->isUnsignedIntegerType()) {
- return theBuilder.getConstantUint32(0);
- }
- if (scalarType->isFloatingType()) {
- return theBuilder.getConstantFloat32(0.0);
- }
- }
- }
- {
- QualType elemType = {};
- uint32_t size = {};
- if (TypeTranslator::isVectorType(type, &elemType, &size)) {
- return getVecValueZero(elemType, size);
- }
- }
- {
- QualType elemType = {};
- uint32_t rowCount = 0, colCount = 0;
- if (TypeTranslator::isMxNMatrix(type, &elemType, &rowCount, &colCount)) {
- const auto row = getVecValueZero(elemType, colCount);
- llvm::SmallVector<uint32_t, 4> rows((size_t)rowCount, row);
- return theBuilder.createCompositeConstruct(
- typeTranslator.translateType(type), rows);
- }
- }
- emitError("getting value 0 for type %0 unimplemented", {})
- << type.getAsString();
- return 0;
- }
- uint32_t SPIRVEmitter::getVecValueZero(QualType elemType, uint32_t size) {
- const uint32_t elemZeroId = getValueZero(elemType);
- if (size == 1)
- return elemZeroId;
- llvm::SmallVector<uint32_t, 4> elements(size_t(size), elemZeroId);
- const uint32_t vecType =
- theBuilder.getVecType(typeTranslator.translateType(elemType), size);
- return theBuilder.getConstantComposite(vecType, elements);
- }
- uint32_t SPIRVEmitter::getValueOne(QualType type) {
- {
- QualType scalarType = {};
- if (TypeTranslator::isScalarType(type, &scalarType)) {
- // TODO: Support other types such as short, half, etc.
- if (scalarType->isSignedIntegerType()) {
- return theBuilder.getConstantInt32(1);
- }
- if (scalarType->isUnsignedIntegerType()) {
- return theBuilder.getConstantUint32(1);
- }
- if (scalarType->isSpecificBuiltinType(BuiltinType::LitFloat))
- scalarType = typeTranslator.getIntendedLiteralType(scalarType);
- if (const auto *builtinType = scalarType->getAs<BuiltinType>()) {
- // TODO: Add support for other types that are not covered yet.
- switch (builtinType->getKind()) {
- case BuiltinType::Double:
- return theBuilder.getConstantFloat64(1.0);
- case BuiltinType::Float:
- return theBuilder.getConstantFloat32(1.0);
- }
- }
- }
- }
- {
- QualType elemType = {};
- uint32_t size = {};
- if (TypeTranslator::isVectorType(type, &elemType, &size)) {
- return getVecValueOne(elemType, size);
- }
- }
- emitError("getting value 1 for type %0 unimplemented", {}) << type;
- return 0;
- }
- uint32_t SPIRVEmitter::getVecValueOne(QualType elemType, uint32_t size) {
- const uint32_t elemOneId = getValueOne(elemType);
- if (size == 1)
- return elemOneId;
- llvm::SmallVector<uint32_t, 4> elements(size_t(size), elemOneId);
- const uint32_t vecType =
- theBuilder.getVecType(typeTranslator.translateType(elemType), size);
- return theBuilder.getConstantComposite(vecType, elements);
- }
- uint32_t SPIRVEmitter::getMatElemValueOne(QualType type) {
- assert(hlsl::IsHLSLMatType(type));
- const auto elemType = hlsl::GetHLSLMatElementType(type);
- uint32_t rowCount = 0, colCount = 0;
- hlsl::GetHLSLMatRowColCount(type, rowCount, colCount);
- if (rowCount == 1 && colCount == 1)
- return getValueOne(elemType);
- if (colCount == 1)
- return getVecValueOne(elemType, rowCount);
- return getVecValueOne(elemType, colCount);
- }
- uint32_t SPIRVEmitter::getMaskForBitwidthValue(QualType type) {
- QualType elemType = {};
- uint32_t count = 1;
- if (TypeTranslator::isScalarType(type, &elemType) ||
- TypeTranslator::isVectorType(type, &elemType, &count)) {
- const auto bitwidth = typeTranslator.getElementSpirvBitwidth(elemType);
- uint32_t mask = 0;
- uint32_t elemTypeId = 0;
- switch (bitwidth) {
- case 16:
- mask = theBuilder.getConstantUint16(bitwidth - 1);
- elemTypeId = theBuilder.getUint16Type();
- break;
- case 32:
- mask = theBuilder.getConstantUint32(bitwidth - 1);
- elemTypeId = theBuilder.getUint32Type();
- break;
- case 64:
- mask = theBuilder.getConstantUint64(bitwidth - 1);
- elemTypeId = theBuilder.getUint64Type();
- break;
- default:
- assert(false && "this method only supports 16-, 32-, and 64-bit types");
- }
- if (count == 1)
- return mask;
- const uint32_t typeId = theBuilder.getVecType(elemTypeId, count);
- llvm::SmallVector<uint32_t, 4> elements(size_t(count), mask);
- return theBuilder.getConstantComposite(typeId, elements);
- }
- assert(false && "this method only supports scalars and vectors");
- return 0;
- }
- uint32_t SPIRVEmitter::translateAPValue(const APValue &value,
- const QualType targetType) {
- uint32_t result = 0;
- // Provide a hint to the typeTranslator that if a literal is discovered, its
- // intended usage is targetType.
- TypeTranslator::LiteralTypeHint hint(typeTranslator, targetType);
- if (targetType->isBooleanType()) {
- result = theBuilder.getConstantBool(value.getInt().getBoolValue(),
- isSpecConstantMode);
- } else if (targetType->isIntegerType()) {
- result = translateAPInt(value.getInt(), targetType);
- } else if (targetType->isFloatingType()) {
- result = translateAPFloat(value.getFloat(), targetType);
- } else if (hlsl::IsHLSLVecType(targetType)) {
- const uint32_t vecType = typeTranslator.translateType(targetType);
- const QualType elemType = hlsl::GetHLSLVecElementType(targetType);
- const auto numElements = value.getVectorLength();
- // Special case for vectors of size 1. SPIR-V doesn't support this vector
- // size so we need to translate it to scalar values.
- if (numElements == 1) {
- result = translateAPValue(value.getVectorElt(0), elemType);
- } else {
- llvm::SmallVector<uint32_t, 4> elements;
- for (uint32_t i = 0; i < numElements; ++i) {
- elements.push_back(translateAPValue(value.getVectorElt(i), elemType));
- }
- result = theBuilder.getConstantComposite(vecType, elements);
- }
- }
- if (result)
- return result;
- emitError("APValue of type %0 unimplemented", {}) << value.getKind();
- value.dump();
- return 0;
- }
- uint32_t SPIRVEmitter::translateAPInt(const llvm::APInt &intValue,
- QualType targetType) {
- targetType = typeTranslator.getIntendedLiteralType(targetType);
- const auto targetTypeBitWidth = astContext.getTypeSize(targetType);
- const bool isSigned = targetType->isSignedIntegerType();
- switch (targetTypeBitWidth) {
- case 16: {
- if (spirvOptions.enable16BitTypes) {
- if (isSigned) {
- return theBuilder.getConstantInt16(
- static_cast<int16_t>(intValue.getSExtValue()));
- } else {
- return theBuilder.getConstantUint16(
- static_cast<uint16_t>(intValue.getZExtValue()));
- }
- } else {
- // If enable16BitTypes option is not true, treat as 32-bit integer.
- if (isSigned)
- return theBuilder.getConstantInt32(
- static_cast<int32_t>(intValue.getSExtValue()), isSpecConstantMode);
- else
- return theBuilder.getConstantUint32(
- static_cast<uint32_t>(intValue.getZExtValue()), isSpecConstantMode);
- }
- }
- case 32: {
- if (isSigned) {
- if (!intValue.isSignedIntN(32)) {
- emitError("evaluating integer literal %0 as a 32-bit integer loses "
- "inforamtion",
- {})
- << std::to_string(intValue.getSExtValue());
- return 0;
- }
- return theBuilder.getConstantInt32(
- static_cast<int32_t>(intValue.getSExtValue()), isSpecConstantMode);
- } else {
- if (!intValue.isIntN(32)) {
- emitError("evaluating integer literal %0 as a 32-bit integer loses "
- "inforamtion",
- {})
- << std::to_string(intValue.getZExtValue());
- return 0;
- }
- return theBuilder.getConstantUint32(
- static_cast<uint32_t>(intValue.getZExtValue()), isSpecConstantMode);
- }
- }
- case 64: {
- if (isSigned)
- return theBuilder.getConstantInt64(intValue.getSExtValue());
- else
- return theBuilder.getConstantUint64(intValue.getZExtValue());
- }
- }
- emitError("APInt for target bitwidth %0 unimplemented", {})
- << astContext.getIntWidth(targetType);
- return 0;
- }
- bool SPIRVEmitter::isLiteralLargerThan32Bits(const Expr *expr) {
- if (const auto *intLiteral = dyn_cast<IntegerLiteral>(expr)) {
- const bool isSigned = expr->getType()->isSignedIntegerType();
- const llvm::APInt &value = intLiteral->getValue();
- return (isSigned && !value.isSignedIntN(32)) ||
- (!isSigned && !value.isIntN(32));
- }
- if (const auto *floatLiteral = dyn_cast<FloatingLiteral>(expr)) {
- llvm::APFloat value = floatLiteral->getValue();
- const auto &semantics = value.getSemantics();
- // regular 'half' and 'float' can be represented in 32 bits.
- if (&semantics == &llvm::APFloat::IEEEsingle ||
- &semantics == &llvm::APFloat::IEEEhalf)
- return true;
- // See if 'double' value can be represented in 32 bits without losing info.
- bool losesInfo = false;
- const auto convertStatus =
- value.convert(llvm::APFloat::IEEEsingle,
- llvm::APFloat::rmNearestTiesToEven, &losesInfo);
- if (convertStatus != llvm::APFloat::opOK &&
- convertStatus != llvm::APFloat::opInexact)
- return true;
- }
- return false;
- }
- uint32_t SPIRVEmitter::tryToEvaluateAsInt32(const llvm::APInt &intValue,
- bool isSigned) {
- if (isSigned && intValue.isSignedIntN(32)) {
- return theBuilder.getConstantInt32(
- static_cast<int32_t>(intValue.getSExtValue()));
- }
- if (!isSigned && intValue.isIntN(32)) {
- return theBuilder.getConstantUint32(
- static_cast<uint32_t>(intValue.getZExtValue()));
- }
- // Couldn't evaluate as a 32-bit int without losing information.
- return 0;
- }
- uint32_t SPIRVEmitter::tryToEvaluateAsFloat32(const llvm::APFloat &floatValue) {
- const auto &semantics = floatValue.getSemantics();
- // If the given value is already a 32-bit float, there is no need to convert.
- if (&semantics == &llvm::APFloat::IEEEsingle) {
- return theBuilder.getConstantFloat32(floatValue.convertToFloat(),
- isSpecConstantMode);
- }
- // Try to see if this literal float can be represented in 32-bit.
- // Since the convert function below may modify the fp value, we call it on a
- // temporary copy.
- llvm::APFloat eval = floatValue;
- bool losesInfo = false;
- const auto convertStatus =
- eval.convert(llvm::APFloat::IEEEsingle,
- llvm::APFloat::rmNearestTiesToEven, &losesInfo);
- if (convertStatus == llvm::APFloat::opOK && !losesInfo)
- return theBuilder.getConstantFloat32(eval.convertToFloat());
- // Couldn't evaluate as a 32-bit float without losing information.
- return 0;
- }
- uint32_t SPIRVEmitter::translateAPFloat(llvm::APFloat floatValue,
- QualType targetType) {
- using llvm::APFloat;
- const auto originalValue = floatValue;
- const auto valueBitwidth = APFloat::getSizeInBits(floatValue.getSemantics());
- // Find out the target bitwidth.
- targetType = typeTranslator.getIntendedLiteralType(targetType);
- auto targetBitwidth =
- APFloat::getSizeInBits(astContext.getFloatTypeSemantics(targetType));
- // If 16-bit types are not enabled, treat them as 32-bit float.
- if (targetBitwidth == 16 && !spirvOptions.enable16BitTypes)
- targetBitwidth = 32;
- if (targetBitwidth != valueBitwidth) {
- bool losesInfo = false;
- const llvm::fltSemantics &targetSemantics =
- targetBitwidth == 16
- ? APFloat::IEEEhalf
- : targetBitwidth == 32 ? APFloat::IEEEsingle : APFloat::IEEEdouble;
- const auto status = floatValue.convert(
- targetSemantics, APFloat::roundingMode::rmTowardZero, &losesInfo);
- if (status != APFloat::opStatus::opOK &&
- status != APFloat::opStatus::opInexact) {
- emitError(
- "evaluating float literal %0 at a lower bitwidth loses information",
- {})
- // Converting from 16bit to 32/64-bit won't lose information.
- // So only 32/64-bit values can reach here.
- << std::to_string(valueBitwidth == 32
- ? originalValue.convertToFloat()
- : originalValue.convertToDouble());
- return 0;
- }
- }
- switch (targetBitwidth) {
- case 16:
- return theBuilder.getConstantFloat16(
- static_cast<uint16_t>(floatValue.bitcastToAPInt().getZExtValue()));
- case 32:
- return theBuilder.getConstantFloat32(floatValue.convertToFloat(),
- isSpecConstantMode);
- case 64:
- return theBuilder.getConstantFloat64(floatValue.convertToDouble());
- default:
- break;
- }
- emitError("APFloat for target bitwidth %0 unimplemented", {})
- << targetBitwidth;
- return 0;
- }
- uint32_t SPIRVEmitter::tryToEvaluateAsConst(const Expr *expr) {
- Expr::EvalResult evalResult;
- if (expr->EvaluateAsRValue(evalResult, astContext) &&
- !evalResult.HasSideEffects) {
- return translateAPValue(evalResult.Val, expr->getType());
- }
- return 0;
- }
- spv::ExecutionModel
- SPIRVEmitter::getSpirvShaderStage(const hlsl::ShaderModel &model) {
- // DXIL Models are:
- // Profile (DXIL Model) : HLSL Shader Kind : SPIR-V Shader Stage
- // vs_<version> : Vertex Shader : Vertex Shader
- // hs_<version> : Hull Shader : Tassellation Control Shader
- // ds_<version> : Domain Shader : Tessellation Evaluation Shader
- // gs_<version> : Geometry Shader : Geometry Shader
- // ps_<version> : Pixel Shader : Fragment Shader
- // cs_<version> : Compute Shader : Compute Shader
- switch (model.GetKind()) {
- case hlsl::ShaderModel::Kind::Vertex:
- return spv::ExecutionModel::Vertex;
- case hlsl::ShaderModel::Kind::Hull:
- return spv::ExecutionModel::TessellationControl;
- case hlsl::ShaderModel::Kind::Domain:
- return spv::ExecutionModel::TessellationEvaluation;
- case hlsl::ShaderModel::Kind::Geometry:
- return spv::ExecutionModel::Geometry;
- case hlsl::ShaderModel::Kind::Pixel:
- return spv::ExecutionModel::Fragment;
- case hlsl::ShaderModel::Kind::Compute:
- return spv::ExecutionModel::GLCompute;
- default:
- break;
- }
- llvm_unreachable("unknown shader model");
- }
- void SPIRVEmitter::AddRequiredCapabilitiesForShaderModel() {
- if (shaderModel.IsHS() || shaderModel.IsDS()) {
- theBuilder.requireCapability(spv::Capability::Tessellation);
- } else if (shaderModel.IsGS()) {
- theBuilder.requireCapability(spv::Capability::Geometry);
- } else {
- theBuilder.requireCapability(spv::Capability::Shader);
- }
- }
- bool SPIRVEmitter::processGeometryShaderAttributes(const FunctionDecl *decl,
- uint32_t *arraySize) {
- bool success = true;
- assert(shaderModel.IsGS());
- if (auto *vcAttr = decl->getAttr<HLSLMaxVertexCountAttr>()) {
- theBuilder.addExecutionMode(entryFunctionId,
- spv::ExecutionMode::OutputVertices,
- {static_cast<uint32_t>(vcAttr->getCount())});
- }
- uint32_t invocations = 1;
- if (auto *instanceAttr = decl->getAttr<HLSLInstanceAttr>()) {
- invocations = static_cast<uint32_t>(instanceAttr->getCount());
- }
- theBuilder.addExecutionMode(entryFunctionId, spv::ExecutionMode::Invocations,
- {invocations});
- // Only one primitive type is permitted for the geometry shader.
- bool outPoint = false, outLine = false, outTriangle = false, inPoint = false,
- inLine = false, inTriangle = false, inLineAdj = false,
- inTriangleAdj = false;
- for (const auto *param : decl->params()) {
- // Add an execution mode based on the output stream type. Do not an
- // execution mode more than once.
- if (param->hasAttr<HLSLInOutAttr>()) {
- const auto paramType = param->getType();
- if (hlsl::IsHLSLTriangleStreamType(paramType) && !outTriangle) {
- theBuilder.addExecutionMode(
- entryFunctionId, spv::ExecutionMode::OutputTriangleStrip, {});
- outTriangle = true;
- } else if (hlsl::IsHLSLLineStreamType(paramType) && !outLine) {
- theBuilder.addExecutionMode(entryFunctionId,
- spv::ExecutionMode::OutputLineStrip, {});
- outLine = true;
- } else if (hlsl::IsHLSLPointStreamType(paramType) && !outPoint) {
- theBuilder.addExecutionMode(entryFunctionId,
- spv::ExecutionMode::OutputPoints, {});
- outPoint = true;
- }
- // An output stream parameter will not have the input primitive type
- // attributes, so we can continue to the next parameter.
- continue;
- }
- // Add an execution mode based on the input primitive type. Do not add an
- // execution mode more than once.
- if (param->hasAttr<HLSLPointAttr>() && !inPoint) {
- theBuilder.addExecutionMode(entryFunctionId,
- spv::ExecutionMode::InputPoints, {});
- *arraySize = 1;
- inPoint = true;
- } else if (param->hasAttr<HLSLLineAttr>() && !inLine) {
- theBuilder.addExecutionMode(entryFunctionId,
- spv::ExecutionMode::InputLines, {});
- *arraySize = 2;
- inLine = true;
- } else if (param->hasAttr<HLSLTriangleAttr>() && !inTriangle) {
- theBuilder.addExecutionMode(entryFunctionId,
- spv::ExecutionMode::Triangles, {});
- *arraySize = 3;
- inTriangle = true;
- } else if (param->hasAttr<HLSLLineAdjAttr>() && !inLineAdj) {
- theBuilder.addExecutionMode(entryFunctionId,
- spv::ExecutionMode::InputLinesAdjacency, {});
- *arraySize = 4;
- inLineAdj = true;
- } else if (param->hasAttr<HLSLTriangleAdjAttr>() && !inTriangleAdj) {
- theBuilder.addExecutionMode(
- entryFunctionId, spv::ExecutionMode::InputTrianglesAdjacency, {});
- *arraySize = 6;
- inTriangleAdj = true;
- }
- }
- if (inPoint + inLine + inLineAdj + inTriangle + inTriangleAdj > 1) {
- emitError("only one input primitive type can be specified in the geometry "
- "shader",
- {});
- success = false;
- }
- if (outPoint + outTriangle + outLine > 1) {
- emitError("only one output primitive type can be specified in the geometry "
- "shader",
- {});
- success = false;
- }
- return success;
- }
- void SPIRVEmitter::processPixelShaderAttributes(const FunctionDecl *decl) {
- theBuilder.addExecutionMode(entryFunctionId,
- spv::ExecutionMode::OriginUpperLeft, {});
- if (auto *numThreadsAttr = decl->getAttr<HLSLEarlyDepthStencilAttr>()) {
- theBuilder.addExecutionMode(entryFunctionId,
- spv::ExecutionMode::EarlyFragmentTests, {});
- }
- }
- void SPIRVEmitter::processComputeShaderAttributes(const FunctionDecl *decl) {
- // If not explicitly specified, x, y, and z should be defaulted to 1.
- uint32_t x = 1, y = 1, z = 1;
- if (auto *numThreadsAttr = decl->getAttr<HLSLNumThreadsAttr>()) {
- x = static_cast<uint32_t>(numThreadsAttr->getX());
- y = static_cast<uint32_t>(numThreadsAttr->getY());
- z = static_cast<uint32_t>(numThreadsAttr->getZ());
- }
- theBuilder.addExecutionMode(entryFunctionId, spv::ExecutionMode::LocalSize,
- {x, y, z});
- }
- bool SPIRVEmitter::processTessellationShaderAttributes(
- const FunctionDecl *decl, uint32_t *numOutputControlPoints) {
- assert(shaderModel.IsHS() || shaderModel.IsDS());
- using namespace spv;
- if (auto *domain = decl->getAttr<HLSLDomainAttr>()) {
- const auto domainType = domain->getDomainType().lower();
- const ExecutionMode hsExecMode =
- llvm::StringSwitch<ExecutionMode>(domainType)
- .Case("tri", ExecutionMode::Triangles)
- .Case("quad", ExecutionMode::Quads)
- .Case("isoline", ExecutionMode::Isolines)
- .Default(ExecutionMode::Max);
- if (hsExecMode == ExecutionMode::Max) {
- emitError("unknown domain type specified for entry function",
- domain->getLocation());
- return false;
- }
- theBuilder.addExecutionMode(entryFunctionId, hsExecMode, {});
- }
- // Early return for domain shaders as domain shaders only takes the 'domain'
- // attribute.
- if (shaderModel.IsDS())
- return true;
- if (auto *partitioning = decl->getAttr<HLSLPartitioningAttr>()) {
- const auto scheme = partitioning->getScheme().lower();
- if (scheme == "pow2") {
- emitError("pow2 partitioning scheme is not supported since there is no "
- "equivalent in Vulkan",
- partitioning->getLocation());
- return false;
- }
- const ExecutionMode hsExecMode =
- llvm::StringSwitch<ExecutionMode>(scheme)
- .Case("fractional_even", ExecutionMode::SpacingFractionalEven)
- .Case("fractional_odd", ExecutionMode::SpacingFractionalOdd)
- .Case("integer", ExecutionMode::SpacingEqual)
- .Default(ExecutionMode::Max);
- if (hsExecMode == ExecutionMode::Max) {
- emitError("unknown partitioning scheme in hull shader",
- partitioning->getLocation());
- return false;
- }
- theBuilder.addExecutionMode(entryFunctionId, hsExecMode, {});
- }
- if (auto *outputTopology = decl->getAttr<HLSLOutputTopologyAttr>()) {
- const auto topology = outputTopology->getTopology().lower();
- const ExecutionMode hsExecMode =
- llvm::StringSwitch<ExecutionMode>(topology)
- .Case("point", ExecutionMode::PointMode)
- .Case("triangle_cw", ExecutionMode::VertexOrderCw)
- .Case("triangle_ccw", ExecutionMode::VertexOrderCcw)
- .Default(ExecutionMode::Max);
- // TODO: There is no SPIR-V equivalent for "line" topology. Is it the
- // default?
- if (topology != "line") {
- if (hsExecMode != spv::ExecutionMode::Max) {
- theBuilder.addExecutionMode(entryFunctionId, hsExecMode, {});
- } else {
- emitError("unknown output topology in hull shader",
- outputTopology->getLocation());
- return false;
- }
- }
- }
- if (auto *controlPoints = decl->getAttr<HLSLOutputControlPointsAttr>()) {
- *numOutputControlPoints = controlPoints->getCount();
- theBuilder.addExecutionMode(entryFunctionId,
- spv::ExecutionMode::OutputVertices,
- {*numOutputControlPoints});
- }
- if (auto *pcf = decl->getAttr<HLSLPatchConstantFuncAttr>()) {
- llvm::StringRef pcf_name = pcf->getFunctionName();
- for (auto *decl : astContext.getTranslationUnitDecl()->decls())
- if (auto *funcDecl = dyn_cast<FunctionDecl>(decl))
- if (astContext.IsPatchConstantFunctionDecl(funcDecl) &&
- funcDecl->getName() == pcf_name)
- patchConstFunc = funcDecl;
- }
- return true;
- }
- bool SPIRVEmitter::emitEntryFunctionWrapper(const FunctionDecl *decl,
- const uint32_t entryFuncId) {
- // HS specific attributes
- uint32_t numOutputControlPoints = 0;
- uint32_t outputControlPointIdVal = 0; // SV_OutputControlPointID value
- uint32_t primitiveIdVar = 0; // SV_PrimitiveID variable
- uint32_t viewIdVar = 0; // SV_ViewID variable
- uint32_t hullMainInputPatchParam = 0; // Temporary parameter for InputPatch<>
- // The array size of per-vertex input/output variables
- // Used by HS/DS/GS for the additional arrayness, zero means not an array.
- uint32_t inputArraySize = 0;
- uint32_t outputArraySize = 0;
- // Construct the wrapper function signature.
- const uint32_t voidType = theBuilder.getVoidType();
- const uint32_t funcType = theBuilder.getFunctionType(voidType, {});
- // The wrapper entry function surely does not have pre-assigned <result-id>
- // for it like other functions that got added to the work queue following
- // function calls. And the wrapper is the entry function.
- entryFunctionId =
- theBuilder.beginFunction(funcType, voidType, decl->getName());
- // Note this should happen before using declIdMapper for other tasks.
- declIdMapper.setEntryFunctionId(entryFunctionId);
- // Handle attributes specific to each shader stage
- if (shaderModel.IsPS()) {
- processPixelShaderAttributes(decl);
- } else if (shaderModel.IsCS()) {
- processComputeShaderAttributes(decl);
- } else if (shaderModel.IsHS()) {
- if (!processTessellationShaderAttributes(decl, &numOutputControlPoints))
- return false;
- // The input array size for HS is specified in the InputPatch parameter.
- for (const auto *param : decl->params())
- if (hlsl::IsHLSLInputPatchType(param->getType())) {
- inputArraySize = hlsl::GetHLSLInputPatchCount(param->getType());
- break;
- }
- outputArraySize = numOutputControlPoints;
- } else if (shaderModel.IsDS()) {
- if (!processTessellationShaderAttributes(decl, &numOutputControlPoints))
- return false;
- // The input array size for HS is specified in the OutputPatch parameter.
- for (const auto *param : decl->params())
- if (hlsl::IsHLSLOutputPatchType(param->getType())) {
- inputArraySize = hlsl::GetHLSLOutputPatchCount(param->getType());
- break;
- }
- // The per-vertex output of DS is not an array.
- } else if (shaderModel.IsGS()) {
- if (!processGeometryShaderAttributes(decl, &inputArraySize))
- return false;
- // The per-vertex output of GS is not an array.
- }
- // Go through all parameters and record the declaration of SV_ClipDistance
- // and SV_CullDistance. We need to do this extra step because in HLSL we
- // can declare multiple SV_ClipDistance/SV_CullDistance variables of float
- // or vector of float types, but we can only have one single float array
- // for the ClipDistance/CullDistance builtin. So we need to group all
- // SV_ClipDistance/SV_CullDistance variables into one float array, thus we
- // need to calculate the total size of the array and the offset of each
- // variable within that array.
- // Also go through all parameters to record the semantic strings provided for
- // the builtins in gl_PerVertex.
- for (const auto *param : decl->params()) {
- if (canActAsInParmVar(param))
- if (!declIdMapper.glPerVertex.recordGlPerVertexDeclFacts(param, true))
- return false;
- if (canActAsOutParmVar(param))
- if (!declIdMapper.glPerVertex.recordGlPerVertexDeclFacts(param, false))
- return false;
- }
- // Also consider the SV_ClipDistance/SV_CullDistance in the return type
- if (!declIdMapper.glPerVertex.recordGlPerVertexDeclFacts(decl, false))
- return false;
- // Calculate the total size of the ClipDistance/CullDistance array and the
- // offset of SV_ClipDistance/SV_CullDistance variables within the array.
- declIdMapper.glPerVertex.calculateClipCullDistanceArraySize();
- if (!shaderModel.IsCS()) {
- // Generate the gl_PerVertex structs or stand-alone builtins of
- // Position, ClipDistance, and CullDistance.
- declIdMapper.glPerVertex.generateVars(inputArraySize, outputArraySize);
- }
- // Require the ClipDistance/CullDistance capability if necessary.
- // It is legal to just use the ClipDistance/CullDistance builtin without
- // requiring the ClipDistance/CullDistance capability, as long as we don't
- // read or write the builtin variable.
- // For our CodeGen, that corresponds to not seeing SV_ClipDistance or
- // SV_CullDistance at all. If we see them, we will generate code to read
- // them to initialize temporary variable for calling the source code entry
- // function or write to them after calling the source code entry function.
- declIdMapper.glPerVertex.requireCapabilityIfNecessary();
- // The entry basic block.
- const uint32_t entryLabel = theBuilder.createBasicBlock();
- theBuilder.setInsertPoint(entryLabel);
- // Initialize all global variables at the beginning of the wrapper
- for (const VarDecl *varDecl : toInitGloalVars) {
- const auto varInfo = declIdMapper.getDeclEvalInfo(varDecl);
- if (const auto *init = varDecl->getInit()) {
- storeValue(varInfo, doExpr(init), varDecl->getType());
- // Update counter variable associated with global variables
- tryToAssignCounterVar(varDecl, init);
- }
- // If not explicitly initialized, initialize with their zero values if not
- // resource objects
- else if (!hlsl::IsHLSLResourceType(varDecl->getType())) {
- const auto typeId = typeTranslator.translateType(varDecl->getType());
- theBuilder.createStore(varInfo, theBuilder.getConstantNull(typeId));
- }
- }
- // Create temporary variables for holding function call arguments
- llvm::SmallVector<uint32_t, 4> params;
- for (const auto *param : decl->params()) {
- const auto paramType = param->getType();
- const uint32_t typeId = typeTranslator.translateType(paramType);
- std::string tempVarName = "param.var." + param->getNameAsString();
- const uint32_t tempVar = theBuilder.addFnVar(typeId, tempVarName);
- params.push_back(tempVar);
- // Create the stage input variable for parameter not marked as pure out and
- // initialize the corresponding temporary variable
- // Also do not create input variables for output stream objects of geometry
- // shaders (e.g. TriangleStream) which are required to be marked as 'inout'.
- if (canActAsInParmVar(param)) {
- if (shaderModel.IsHS() && hlsl::IsHLSLInputPatchType(paramType)) {
- // Record the temporary variable holding InputPatch. It may be used
- // later in the patch constant function.
- hullMainInputPatchParam = tempVar;
- }
- uint32_t loadedValue = 0;
- if (!declIdMapper.createStageInputVar(param, &loadedValue, false))
- return false;
- theBuilder.createStore(tempVar, loadedValue);
- // Record the temporary variable holding SV_OutputControlPointID,
- // SV_PrimitiveID, and SV_ViewID. It may be used later in the patch
- // constant function.
- if (hasSemantic(param, hlsl::DXIL::SemanticKind::OutputControlPointID))
- outputControlPointIdVal = loadedValue;
- else if (hasSemantic(param, hlsl::DXIL::SemanticKind::PrimitiveID))
- primitiveIdVar = tempVar;
- else if (hasSemantic(param, hlsl::DXIL::SemanticKind::ViewID))
- viewIdVar = tempVar;
- }
- }
- // Call the original entry function
- const uint32_t retType = typeTranslator.translateType(decl->getReturnType());
- const uint32_t retVal =
- theBuilder.createFunctionCall(retType, entryFuncId, params);
- // Create and write stage output variables for return value. Special case for
- // Hull shaders since they operate differently in 2 ways:
- // 1- Their return value is in fact an array and each invocation should write
- // to the proper offset in the array.
- // 2- The patch constant function must be called *once* after all invocations
- // of the main entry point function is done.
- if (shaderModel.IsHS()) {
- // Create stage output variables out of the return type.
- if (!declIdMapper.createStageOutputVar(decl, numOutputControlPoints,
- outputControlPointIdVal, retVal))
- return false;
- if (!processHSEntryPointOutputAndPCF(
- decl, retType, retVal, numOutputControlPoints,
- outputControlPointIdVal, primitiveIdVar, viewIdVar,
- hullMainInputPatchParam))
- return false;
- } else {
- if (!declIdMapper.createStageOutputVar(decl, retVal, /*forPCF*/ false))
- return false;
- }
- // Create and write stage output variables for parameters marked as
- // out/inout
- for (uint32_t i = 0; i < decl->getNumParams(); ++i) {
- const auto *param = decl->getParamDecl(i);
- if (canActAsOutParmVar(param)) {
- // Load the value from the parameter after function call
- const uint32_t typeId = typeTranslator.translateType(param->getType());
- uint32_t loadedParam = 0;
- // Write back of stage output variables in GS is manually controlled by
- // .Append() intrinsic method. No need to load the parameter since we
- // won't need to write back here.
- if (!shaderModel.IsGS())
- loadedParam = theBuilder.createLoad(typeId, params[i]);
- if (!declIdMapper.createStageOutputVar(param, loadedParam, false))
- return false;
- }
- }
- theBuilder.createReturn();
- theBuilder.endFunction();
- // For Hull shaders, there is no explicit call to the PCF in the HLSL source.
- // We should invoke a translation of the PCF manually.
- if (shaderModel.IsHS())
- doDecl(patchConstFunc);
- return true;
- }
- bool SPIRVEmitter::processHSEntryPointOutputAndPCF(
- const FunctionDecl *hullMainFuncDecl, uint32_t retType, uint32_t retVal,
- uint32_t numOutputControlPoints, uint32_t outputControlPointId,
- uint32_t primitiveId, uint32_t viewId, uint32_t hullMainInputPatch) {
- // This method may only be called for Hull shaders.
- assert(shaderModel.IsHS());
- // For Hull shaders, the real output is an array of size
- // numOutputControlPoints. The results of the main should be written to the
- // correct offset in the array (based on InvocationID).
- if (!numOutputControlPoints) {
- emitError("number of output control points cannot be zero",
- hullMainFuncDecl->getLocation());
- return false;
- }
- // TODO: We should be able to handle cases where the SV_OutputControlPointID
- // is not provided.
- if (!outputControlPointId) {
- emitError(
- "SV_OutputControlPointID semantic must be provided in hull shader",
- hullMainFuncDecl->getLocation());
- return false;
- }
- if (!patchConstFunc) {
- emitError("patch constant function not defined in hull shader",
- hullMainFuncDecl->getLocation());
- return false;
- }
- uint32_t hullMainOutputPatch = 0;
- // If the patch constant function (PCF) takes the result of the Hull main
- // entry point, create a temporary function-scope variable and write the
- // results to it, so it can be passed to the PCF.
- if (patchConstFuncTakesHullOutputPatch(patchConstFunc)) {
- const uint32_t hullMainRetType = theBuilder.getArrayType(
- retType, theBuilder.getConstantUint32(numOutputControlPoints));
- hullMainOutputPatch =
- theBuilder.addFnVar(hullMainRetType, "temp.var.hullMainRetVal");
- const auto tempLocation = theBuilder.createAccessChain(
- theBuilder.getPointerType(retType, spv::StorageClass::Function),
- hullMainOutputPatch, {outputControlPointId});
- theBuilder.createStore(tempLocation, retVal);
- }
- // Now create a barrier before calling the Patch Constant Function (PCF).
- // Flags are:
- // Execution Barrier scope = Workgroup (2)
- // Memory Barrier scope = Device (1)
- // Memory Semantics Barrier scope = None (0)
- theBuilder.createBarrier(theBuilder.getConstantUint32(2),
- theBuilder.getConstantUint32(1),
- theBuilder.getConstantUint32(0));
- // The PCF should be called only once. Therefore, we check the invocationID,
- // and we only allow ID 0 to call the PCF.
- const uint32_t condition = theBuilder.createBinaryOp(
- spv::Op::OpIEqual, theBuilder.getBoolType(), outputControlPointId,
- theBuilder.getConstantUint32(0));
- const uint32_t thenBB = theBuilder.createBasicBlock("if.true");
- const uint32_t mergeBB = theBuilder.createBasicBlock("if.merge");
- theBuilder.createConditionalBranch(condition, thenBB, mergeBB, mergeBB);
- theBuilder.addSuccessor(thenBB);
- theBuilder.addSuccessor(mergeBB);
- theBuilder.setMergeTarget(mergeBB);
- theBuilder.setInsertPoint(thenBB);
- // Call the PCF. Since the function is not explicitly called, we must first
- // register an ID for it.
- const uint32_t pcfId = declIdMapper.getOrRegisterFnResultId(patchConstFunc);
- const uint32_t pcfRetType =
- typeTranslator.translateType(patchConstFunc->getReturnType());
- std::vector<uint32_t> pcfParams;
- // A lambda for creating a stage input variable and its associated temporary
- // variable for function call. Also initializes the temporary variable using
- // the contents loaded from the stage input variable. Returns the <result-id>
- // of the temporary variable.
- const auto createParmVarAndInitFromStageInputVar =
- [this](const ParmVarDecl *param) {
- const uint32_t typeId = typeTranslator.translateType(param->getType());
- std::string tempVarName = "param.var." + param->getNameAsString();
- const uint32_t tempVar = theBuilder.addFnVar(typeId, tempVarName);
- uint32_t loadedValue = 0;
- declIdMapper.createStageInputVar(param, &loadedValue, /*forPCF*/ true);
- theBuilder.createStore(tempVar, loadedValue);
- return tempVar;
- };
- for (const auto *param : patchConstFunc->parameters()) {
- // Note: According to the HLSL reference, the PCF takes an InputPatch of
- // ControlPoints as well as the PatchID (PrimitiveID). This does not
- // necessarily mean that they are present. There is also no requirement
- // for the order of parameters passed to PCF.
- if (hlsl::IsHLSLInputPatchType(param->getType())) {
- pcfParams.push_back(hullMainInputPatch);
- } else if (hlsl::IsHLSLOutputPatchType(param->getType())) {
- pcfParams.push_back(hullMainOutputPatch);
- } else if (hasSemantic(param, hlsl::DXIL::SemanticKind::PrimitiveID)) {
- if (!primitiveId) {
- primitiveId = createParmVarAndInitFromStageInputVar(param);
- }
- pcfParams.push_back(primitiveId);
- } else if (hasSemantic(param, hlsl::DXIL::SemanticKind::ViewID)) {
- if (!viewId) {
- viewId = createParmVarAndInitFromStageInputVar(param);
- }
- pcfParams.push_back(viewId);
- } else {
- emitError("patch constant function parameter '%0' unknown",
- param->getLocation())
- << param->getName();
- }
- }
- const uint32_t pcfResultId =
- theBuilder.createFunctionCall(pcfRetType, pcfId, {pcfParams});
- if (!declIdMapper.createStageOutputVar(patchConstFunc, pcfResultId,
- /*forPCF*/ true))
- return false;
- theBuilder.createBranch(mergeBB);
- theBuilder.addSuccessor(mergeBB);
- theBuilder.setInsertPoint(mergeBB);
- return true;
- }
- bool SPIRVEmitter::allSwitchCasesAreIntegerLiterals(const Stmt *root) {
- if (!root)
- return false;
- const auto *caseStmt = dyn_cast<CaseStmt>(root);
- const auto *compoundStmt = dyn_cast<CompoundStmt>(root);
- if (!caseStmt && !compoundStmt)
- return true;
- if (caseStmt) {
- const Expr *caseExpr = caseStmt->getLHS();
- return caseExpr && caseExpr->isEvaluatable(astContext);
- }
- // Recurse down if facing a compound statement.
- for (auto *st : compoundStmt->body())
- if (!allSwitchCasesAreIntegerLiterals(st))
- return false;
- return true;
- }
- void SPIRVEmitter::discoverAllCaseStmtInSwitchStmt(
- const Stmt *root, uint32_t *defaultBB,
- std::vector<std::pair<uint32_t, uint32_t>> *targets) {
- if (!root)
- return;
- // A switch case can only appear in DefaultStmt, CaseStmt, or
- // CompoundStmt. For the rest, we can just return.
- const auto *defaultStmt = dyn_cast<DefaultStmt>(root);
- const auto *caseStmt = dyn_cast<CaseStmt>(root);
- const auto *compoundStmt = dyn_cast<CompoundStmt>(root);
- if (!defaultStmt && !caseStmt && !compoundStmt)
- return;
- // Recurse down if facing a compound statement.
- if (compoundStmt) {
- for (auto *st : compoundStmt->body())
- discoverAllCaseStmtInSwitchStmt(st, defaultBB, targets);
- return;
- }
- std::string caseLabel;
- uint32_t caseValue = 0;
- if (defaultStmt) {
- // This is the default branch.
- caseLabel = "switch.default";
- } else if (caseStmt) {
- // This is a non-default case.
- // When using OpSwitch, we only allow integer literal cases. e.g:
- // case <literal_integer>: {...; break;}
- const Expr *caseExpr = caseStmt->getLHS();
- assert(caseExpr && caseExpr->isEvaluatable(astContext));
- auto bitWidth = astContext.getIntWidth(caseExpr->getType());
- if (bitWidth != 32)
- emitError(
- "non-32bit integer case value in switch statement unimplemented",
- caseExpr->getExprLoc());
- Expr::EvalResult evalResult;
- caseExpr->EvaluateAsRValue(evalResult, astContext);
- const int64_t value = evalResult.Val.getInt().getSExtValue();
- caseValue = static_cast<uint32_t>(value);
- caseLabel = "switch." + std::string(value < 0 ? "n" : "") +
- llvm::itostr(std::abs(value));
- }
- const uint32_t caseBB = theBuilder.createBasicBlock(caseLabel);
- theBuilder.addSuccessor(caseBB);
- stmtBasicBlock[root] = caseBB;
- // Add all cases to the 'targets' vector.
- if (caseStmt)
- targets->emplace_back(caseValue, caseBB);
- // The default label is not part of the 'targets' vector that is passed
- // to the OpSwitch instruction.
- // If default statement was discovered, return its label via defaultBB.
- if (defaultStmt)
- *defaultBB = caseBB;
- // Process cases nested in other cases. It happens when we have fall through
- // cases. For example:
- // case 1: case 2: ...; break;
- // will result in the CaseSmt for case 2 nested in the one for case 1.
- discoverAllCaseStmtInSwitchStmt(caseStmt ? caseStmt->getSubStmt()
- : defaultStmt->getSubStmt(),
- defaultBB, targets);
- }
- void SPIRVEmitter::flattenSwitchStmtAST(const Stmt *root,
- std::vector<const Stmt *> *flatSwitch) {
- const auto *caseStmt = dyn_cast<CaseStmt>(root);
- const auto *compoundStmt = dyn_cast<CompoundStmt>(root);
- const auto *defaultStmt = dyn_cast<DefaultStmt>(root);
- if (!compoundStmt) {
- flatSwitch->push_back(root);
- }
- if (compoundStmt) {
- for (const auto *st : compoundStmt->body())
- flattenSwitchStmtAST(st, flatSwitch);
- } else if (caseStmt) {
- flattenSwitchStmtAST(caseStmt->getSubStmt(), flatSwitch);
- } else if (defaultStmt) {
- flattenSwitchStmtAST(defaultStmt->getSubStmt(), flatSwitch);
- }
- }
- void SPIRVEmitter::processCaseStmtOrDefaultStmt(const Stmt *stmt) {
- auto *caseStmt = dyn_cast<CaseStmt>(stmt);
- auto *defaultStmt = dyn_cast<DefaultStmt>(stmt);
- assert(caseStmt || defaultStmt);
- uint32_t caseBB = stmtBasicBlock[stmt];
- if (!theBuilder.isCurrentBasicBlockTerminated()) {
- // We are about to handle the case passed in as parameter. If the current
- // basic block is not terminated, it means the previous case is a fall
- // through case. We need to link it to the case to be processed.
- theBuilder.createBranch(caseBB);
- theBuilder.addSuccessor(caseBB);
- }
- theBuilder.setInsertPoint(caseBB);
- doStmt(caseStmt ? caseStmt->getSubStmt() : defaultStmt->getSubStmt());
- }
- void SPIRVEmitter::processSwitchStmtUsingSpirvOpSwitch(
- const SwitchStmt *switchStmt) {
- // First handle the condition variable DeclStmt if one exists.
- // For example: handle 'int a = b' in the following:
- // switch (int a = b) {...}
- if (const auto *condVarDeclStmt = switchStmt->getConditionVariableDeclStmt())
- doDeclStmt(condVarDeclStmt);
- const uint32_t selector = doExpr(switchStmt->getCond());
- // We need a merge block regardless of the number of switch cases.
- // Since OpSwitch always requires a default label, if the switch statement
- // does not have a default branch, we use the merge block as the default
- // target.
- const uint32_t mergeBB = theBuilder.createBasicBlock("switch.merge");
- theBuilder.setMergeTarget(mergeBB);
- breakStack.push(mergeBB);
- uint32_t defaultBB = mergeBB;
- // (literal, labelId) pairs to pass to the OpSwitch instruction.
- std::vector<std::pair<uint32_t, uint32_t>> targets;
- discoverAllCaseStmtInSwitchStmt(switchStmt->getBody(), &defaultBB, &targets);
- // Create the OpSelectionMerge and OpSwitch.
- theBuilder.createSwitch(mergeBB, selector, defaultBB, targets);
- // Handle the switch body.
- doStmt(switchStmt->getBody());
- if (!theBuilder.isCurrentBasicBlockTerminated())
- theBuilder.createBranch(mergeBB);
- theBuilder.setInsertPoint(mergeBB);
- breakStack.pop();
- }
- void SPIRVEmitter::processSwitchStmtUsingIfStmts(const SwitchStmt *switchStmt) {
- std::vector<const Stmt *> flatSwitch;
- flattenSwitchStmtAST(switchStmt->getBody(), &flatSwitch);
- // First handle the condition variable DeclStmt if one exists.
- // For example: handle 'int a = b' in the following:
- // switch (int a = b) {...}
- if (const auto *condVarDeclStmt = switchStmt->getConditionVariableDeclStmt())
- doDeclStmt(condVarDeclStmt);
- // Figure out the indexes of CaseStmts (and DefaultStmt if it exists) in
- // the flattened switch AST.
- // For instance, for the following flat vector:
- // +-----+-----+-----+-----+-----+-----+-----+-----+-----+-------+-----+
- // |Case1|Stmt1|Case2|Stmt2|Break|Case3|Case4|Stmt4|Break|Default|Stmt5|
- // +-----+-----+-----+-----+-----+-----+-----+-----+-----+-------+-----+
- // The indexes are: {0, 2, 5, 6, 9}
- std::vector<uint32_t> caseStmtLocs;
- for (uint32_t i = 0; i < flatSwitch.size(); ++i)
- if (isa<CaseStmt>(flatSwitch[i]) || isa<DefaultStmt>(flatSwitch[i]))
- caseStmtLocs.push_back(i);
- IfStmt *prevIfStmt = nullptr;
- IfStmt *rootIfStmt = nullptr;
- CompoundStmt *defaultBody = nullptr;
- // For each case, start at its index in the vector, and go forward
- // accumulating statements until BreakStmt or end of vector is reached.
- for (auto curCaseIndex : caseStmtLocs) {
- const Stmt *curCase = flatSwitch[curCaseIndex];
- // CompoundStmt to hold all statements for this case.
- CompoundStmt *cs = new (astContext) CompoundStmt(Stmt::EmptyShell());
- // Accumulate all non-case/default/break statements as the body for the
- // current case.
- std::vector<Stmt *> statements;
- for (int i = curCaseIndex + 1;
- i < flatSwitch.size() && !isa<BreakStmt>(flatSwitch[i]); ++i) {
- if (!isa<CaseStmt>(flatSwitch[i]) && !isa<DefaultStmt>(flatSwitch[i]))
- statements.push_back(const_cast<Stmt *>(flatSwitch[i]));
- }
- if (!statements.empty())
- cs->setStmts(astContext, statements.data(), statements.size());
- // For non-default cases, generate the IfStmt that compares the switch
- // value to the case value.
- if (auto *caseStmt = dyn_cast<CaseStmt>(curCase)) {
- IfStmt *curIf = new (astContext) IfStmt(Stmt::EmptyShell());
- BinaryOperator *bo = new (astContext) BinaryOperator(Stmt::EmptyShell());
- bo->setLHS(const_cast<Expr *>(switchStmt->getCond()));
- bo->setRHS(const_cast<Expr *>(caseStmt->getLHS()));
- bo->setOpcode(BO_EQ);
- bo->setType(astContext.getLogicalOperationType());
- curIf->setCond(bo);
- curIf->setThen(cs);
- // No conditional variable associated with this faux if statement.
- curIf->setConditionVariable(astContext, nullptr);
- // Each If statement is the "else" of the previous if statement.
- if (prevIfStmt)
- prevIfStmt->setElse(curIf);
- else
- rootIfStmt = curIf;
- prevIfStmt = curIf;
- } else {
- // Record the DefaultStmt body as it will be used as the body of the
- // "else" block in the if-elseif-...-else pattern.
- defaultBody = cs;
- }
- }
- // If a default case exists, it is the "else" of the last if statement.
- if (prevIfStmt)
- prevIfStmt->setElse(defaultBody);
- // Since all else-if and else statements are the child nodes of the first
- // IfStmt, we only need to call doStmt for the first IfStmt.
- if (rootIfStmt)
- doStmt(rootIfStmt);
- // If there are no CaseStmt and there is only 1 DefaultStmt, there will be
- // no if statements. The switch in that case only executes the body of the
- // default case.
- else if (defaultBody)
- doStmt(defaultBody);
- }
- uint32_t SPIRVEmitter::extractVecFromVec4(uint32_t fromId,
- uint32_t targetVecSize,
- uint32_t targetElemTypeId) {
- assert(targetVecSize > 0 && targetVecSize < 5);
- const uint32_t retType =
- targetVecSize == 1
- ? targetElemTypeId
- : theBuilder.getVecType(targetElemTypeId, targetVecSize);
- switch (targetVecSize) {
- case 1:
- return theBuilder.createCompositeExtract(retType, fromId, {0});
- break;
- case 2:
- return theBuilder.createVectorShuffle(retType, fromId, fromId, {0, 1});
- break;
- case 3:
- return theBuilder.createVectorShuffle(retType, fromId, fromId, {0, 1, 2});
- break;
- case 4:
- return fromId;
- default:
- llvm_unreachable("vector element count must be 1, 2, 3, or 4");
- }
- }
- } // end namespace spirv
- } // end namespace clang
|