DxilContainerAssembler.cpp 65 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673
  1. ///////////////////////////////////////////////////////////////////////////////
  2. // //
  3. // DxilContainerAssembler.cpp //
  4. // Copyright (C) Microsoft Corporation. All rights reserved. //
  5. // This file is distributed under the University of Illinois Open Source //
  6. // License. See LICENSE.TXT for details. //
  7. // //
  8. // Provides support for serializing a module into DXIL container structures. //
  9. // //
  10. ///////////////////////////////////////////////////////////////////////////////
  11. #include "llvm/ADT/MapVector.h"
  12. #include "llvm/ADT/SetVector.h"
  13. #include "llvm/IR/Module.h"
  14. #include "llvm/IR/DebugInfo.h"
  15. #include "llvm/Bitcode/ReaderWriter.h"
  16. #include "llvm/Support/MD5.h"
  17. #include "llvm/ADT/STLExtras.h"
  18. #include "dxc/DxilContainer/DxilContainer.h"
  19. #include "dxc/DXIL/DxilModule.h"
  20. #include "dxc/DXIL/DxilShaderModel.h"
  21. #include "dxc/DxilRootSignature/DxilRootSignature.h"
  22. #include "dxc/DxilContainer/DxilContainerAssembler.h"
  23. #include "dxc/DXIL/DxilUtil.h"
  24. #include "dxc/DXIL/DxilFunctionProps.h"
  25. #include "dxc/DXIL/DxilOperations.h"
  26. #include "dxc/Support/Global.h"
  27. #include "dxc/Support/Unicode.h"
  28. #include "dxc/Support/WinIncludes.h"
  29. #include "dxc/Support/FileIOHelper.h"
  30. #include "dxc/Support/dxcapi.impl.h"
  31. #include "dxc/DxilContainer/DxilPipelineStateValidation.h"
  32. #include "dxc/DxilContainer/DxilRuntimeReflection.h"
  33. #include <algorithm>
  34. #include <functional>
  35. using namespace llvm;
  36. using namespace hlsl;
  37. using namespace hlsl::RDAT;
  38. static DxilProgramSigSemantic KindToSystemValue(Semantic::Kind kind, DXIL::TessellatorDomain domain) {
  39. switch (kind) {
  40. case Semantic::Kind::Arbitrary: return DxilProgramSigSemantic::Undefined;
  41. case Semantic::Kind::VertexID: return DxilProgramSigSemantic::VertexID;
  42. case Semantic::Kind::InstanceID: return DxilProgramSigSemantic::InstanceID;
  43. case Semantic::Kind::Position: return DxilProgramSigSemantic::Position;
  44. case Semantic::Kind::Coverage: return DxilProgramSigSemantic::Coverage;
  45. case Semantic::Kind::InnerCoverage: return DxilProgramSigSemantic::InnerCoverage;
  46. case Semantic::Kind::PrimitiveID: return DxilProgramSigSemantic::PrimitiveID;
  47. case Semantic::Kind::SampleIndex: return DxilProgramSigSemantic::SampleIndex;
  48. case Semantic::Kind::IsFrontFace: return DxilProgramSigSemantic::IsFrontFace;
  49. case Semantic::Kind::RenderTargetArrayIndex: return DxilProgramSigSemantic::RenderTargetArrayIndex;
  50. case Semantic::Kind::ViewPortArrayIndex: return DxilProgramSigSemantic::ViewPortArrayIndex;
  51. case Semantic::Kind::ClipDistance: return DxilProgramSigSemantic::ClipDistance;
  52. case Semantic::Kind::CullDistance: return DxilProgramSigSemantic::CullDistance;
  53. case Semantic::Kind::Barycentrics: return DxilProgramSigSemantic::Barycentrics;
  54. case Semantic::Kind::ShadingRate: return DxilProgramSigSemantic::ShadingRate;
  55. case Semantic::Kind::TessFactor: {
  56. switch (domain) {
  57. case DXIL::TessellatorDomain::IsoLine:
  58. // Will bu updated to DetailTessFactor in next row.
  59. return DxilProgramSigSemantic::FinalLineDensityTessfactor;
  60. case DXIL::TessellatorDomain::Tri:
  61. return DxilProgramSigSemantic::FinalTriEdgeTessfactor;
  62. case DXIL::TessellatorDomain::Quad:
  63. return DxilProgramSigSemantic::FinalQuadEdgeTessfactor;
  64. default:
  65. // No other valid TesselatorDomain options.
  66. return DxilProgramSigSemantic::Undefined;
  67. }
  68. }
  69. case Semantic::Kind::InsideTessFactor: {
  70. switch (domain) {
  71. case DXIL::TessellatorDomain::IsoLine:
  72. DXASSERT(0, "invalid semantic");
  73. return DxilProgramSigSemantic::Undefined;
  74. case DXIL::TessellatorDomain::Tri:
  75. return DxilProgramSigSemantic::FinalTriInsideTessfactor;
  76. case DXIL::TessellatorDomain::Quad:
  77. return DxilProgramSigSemantic::FinalQuadInsideTessfactor;
  78. default:
  79. // No other valid DxilProgramSigSemantic options.
  80. return DxilProgramSigSemantic::Undefined;
  81. }
  82. }
  83. case Semantic::Kind::Invalid:
  84. return DxilProgramSigSemantic::Undefined;
  85. case Semantic::Kind::Target: return DxilProgramSigSemantic::Target;
  86. case Semantic::Kind::Depth: return DxilProgramSigSemantic::Depth;
  87. case Semantic::Kind::DepthLessEqual: return DxilProgramSigSemantic::DepthLE;
  88. case Semantic::Kind::DepthGreaterEqual: return DxilProgramSigSemantic::DepthGE;
  89. case Semantic::Kind::StencilRef:
  90. __fallthrough;
  91. default:
  92. DXASSERT(kind == Semantic::Kind::StencilRef, "else Invalid or switch is missing a case");
  93. return DxilProgramSigSemantic::StencilRef;
  94. }
  95. // TODO: Final_* values need mappings
  96. }
  97. static DxilProgramSigCompType CompTypeToSigCompType(hlsl::CompType value) {
  98. switch (value.GetKind()) {
  99. case CompType::Kind::I32: return DxilProgramSigCompType::SInt32;
  100. case CompType::Kind::I1: __fallthrough;
  101. case CompType::Kind::U32: return DxilProgramSigCompType::UInt32;
  102. case CompType::Kind::F32: return DxilProgramSigCompType::Float32;
  103. case CompType::Kind::I16: return DxilProgramSigCompType::SInt16;
  104. case CompType::Kind::I64: return DxilProgramSigCompType::SInt64;
  105. case CompType::Kind::U16: return DxilProgramSigCompType::UInt16;
  106. case CompType::Kind::U64: return DxilProgramSigCompType::UInt64;
  107. case CompType::Kind::F16: return DxilProgramSigCompType::Float16;
  108. case CompType::Kind::F64: return DxilProgramSigCompType::Float64;
  109. case CompType::Kind::Invalid: __fallthrough;
  110. default:
  111. return DxilProgramSigCompType::Unknown;
  112. }
  113. }
  114. static DxilProgramSigMinPrecision CompTypeToSigMinPrecision(hlsl::CompType value) {
  115. switch (value.GetKind()) {
  116. case CompType::Kind::I32: return DxilProgramSigMinPrecision::Default;
  117. case CompType::Kind::U32: return DxilProgramSigMinPrecision::Default;
  118. case CompType::Kind::F32: return DxilProgramSigMinPrecision::Default;
  119. case CompType::Kind::I1: return DxilProgramSigMinPrecision::Default;
  120. case CompType::Kind::U64: __fallthrough;
  121. case CompType::Kind::I64: __fallthrough;
  122. case CompType::Kind::F64: return DxilProgramSigMinPrecision::Default;
  123. case CompType::Kind::I16: return DxilProgramSigMinPrecision::SInt16;
  124. case CompType::Kind::U16: return DxilProgramSigMinPrecision::UInt16;
  125. case CompType::Kind::F16: return DxilProgramSigMinPrecision::Float16; // Float2_8 is not supported in DXIL.
  126. case CompType::Kind::Invalid: __fallthrough;
  127. default:
  128. return DxilProgramSigMinPrecision::Default;
  129. }
  130. }
  131. template <typename T>
  132. struct sort_second {
  133. bool operator()(const T &a, const T &b) {
  134. return std::less<decltype(a.second)>()(a.second, b.second);
  135. }
  136. };
  137. struct sort_sig {
  138. bool operator()(const DxilProgramSignatureElement &a,
  139. const DxilProgramSignatureElement &b) {
  140. return (a.Stream < b.Stream) ||
  141. ((a.Stream == b.Stream) && (a.Register < b.Register)) ||
  142. ((a.Stream == b.Stream) && (a.Register == b.Register) &&
  143. (a.SemanticName < b.SemanticName));
  144. }
  145. };
  146. class DxilProgramSignatureWriter : public DxilPartWriter {
  147. private:
  148. const DxilSignature &m_signature;
  149. DXIL::TessellatorDomain m_domain;
  150. bool m_isInput;
  151. bool m_useMinPrecision;
  152. size_t m_fixedSize;
  153. typedef std::pair<const char *, uint32_t> NameOffsetPair;
  154. typedef llvm::SmallMapVector<const char *, uint32_t, 8> NameOffsetMap;
  155. uint32_t m_lastOffset;
  156. NameOffsetMap m_semanticNameOffsets;
  157. unsigned m_paramCount;
  158. const char *GetSemanticName(const hlsl::DxilSignatureElement *pElement) {
  159. DXASSERT_NOMSG(pElement != nullptr);
  160. DXASSERT(pElement->GetName() != nullptr, "else sig is malformed");
  161. return pElement->GetName();
  162. }
  163. uint32_t GetSemanticOffset(const hlsl::DxilSignatureElement *pElement) {
  164. const char *pName = GetSemanticName(pElement);
  165. NameOffsetMap::iterator nameOffset = m_semanticNameOffsets.find(pName);
  166. uint32_t result;
  167. if (nameOffset == m_semanticNameOffsets.end()) {
  168. result = m_lastOffset;
  169. m_semanticNameOffsets.insert(NameOffsetPair(pName, result));
  170. m_lastOffset += strlen(pName) + 1;
  171. }
  172. else {
  173. result = nameOffset->second;
  174. }
  175. return result;
  176. }
  177. void write(std::vector<DxilProgramSignatureElement> &orderedSig,
  178. const hlsl::DxilSignatureElement *pElement) {
  179. const std::vector<unsigned> &indexVec = pElement->GetSemanticIndexVec();
  180. unsigned eltCount = pElement->GetSemanticIndexVec().size();
  181. unsigned eltRows = 1;
  182. if (eltCount)
  183. eltRows = pElement->GetRows() / eltCount;
  184. DXASSERT_NOMSG(eltRows == 1);
  185. DxilProgramSignatureElement sig;
  186. memset(&sig, 0, sizeof(DxilProgramSignatureElement));
  187. sig.Stream = pElement->GetOutputStream();
  188. sig.SemanticName = GetSemanticOffset(pElement);
  189. sig.SystemValue = KindToSystemValue(pElement->GetKind(), m_domain);
  190. sig.CompType = CompTypeToSigCompType(pElement->GetCompType());
  191. sig.Register = pElement->GetStartRow();
  192. sig.Mask = pElement->GetColsAsMask();
  193. // Only mark exist channel write for output.
  194. // All channel not used for input.
  195. if (!m_isInput)
  196. sig.NeverWrites_Mask = ~(sig.Mask);
  197. else
  198. sig.AlwaysReads_Mask = 0;
  199. sig.MinPrecision = m_useMinPrecision
  200. ? CompTypeToSigMinPrecision(pElement->GetCompType())
  201. : DxilProgramSigMinPrecision::Default;
  202. for (unsigned i = 0; i < eltCount; ++i) {
  203. sig.SemanticIndex = indexVec[i];
  204. orderedSig.emplace_back(sig);
  205. if (pElement->IsAllocated())
  206. sig.Register += eltRows;
  207. if (sig.SystemValue == DxilProgramSigSemantic::FinalLineDensityTessfactor)
  208. sig.SystemValue = DxilProgramSigSemantic::FinalLineDetailTessfactor;
  209. }
  210. }
  211. void calcSizes() {
  212. // Calculate size for signature elements.
  213. const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
  214. uint32_t result = sizeof(DxilProgramSignature);
  215. m_paramCount = 0;
  216. for (size_t i = 0; i < elements.size(); ++i) {
  217. DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
  218. if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
  219. continue;
  220. unsigned semanticCount = elements[i]->GetSemanticIndexVec().size();
  221. result += semanticCount * sizeof(DxilProgramSignatureElement);
  222. m_paramCount += semanticCount;
  223. }
  224. m_fixedSize = result;
  225. m_lastOffset = m_fixedSize;
  226. // Calculate size for semantic strings.
  227. for (size_t i = 0; i < elements.size(); ++i) {
  228. GetSemanticOffset(elements[i].get());
  229. }
  230. }
  231. public:
  232. DxilProgramSignatureWriter(const DxilSignature &signature,
  233. DXIL::TessellatorDomain domain, bool isInput, bool UseMinPrecision)
  234. : m_signature(signature), m_domain(domain), m_isInput(isInput), m_useMinPrecision(UseMinPrecision) {
  235. calcSizes();
  236. }
  237. uint32_t size() const override {
  238. return m_lastOffset;
  239. }
  240. void write(AbstractMemoryStream *pStream) override {
  241. UINT64 startPos = pStream->GetPosition();
  242. const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
  243. DxilProgramSignature programSig;
  244. programSig.ParamCount = m_paramCount;
  245. programSig.ParamOffset = sizeof(DxilProgramSignature);
  246. IFT(WriteStreamValue(pStream, programSig));
  247. // Write structures in register order.
  248. std::vector<DxilProgramSignatureElement> orderedSig;
  249. for (size_t i = 0; i < elements.size(); ++i) {
  250. DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
  251. if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
  252. continue;
  253. write(orderedSig, elements[i].get());
  254. }
  255. std::sort(orderedSig.begin(), orderedSig.end(), sort_sig());
  256. for (size_t i = 0; i < orderedSig.size(); ++i) {
  257. DxilProgramSignatureElement &sigElt = orderedSig[i];
  258. IFT(WriteStreamValue(pStream, sigElt));
  259. }
  260. // Write strings in the offset order.
  261. std::vector<NameOffsetPair> ordered;
  262. ordered.assign(m_semanticNameOffsets.begin(), m_semanticNameOffsets.end());
  263. std::sort(ordered.begin(), ordered.end(), sort_second<NameOffsetPair>());
  264. for (size_t i = 0; i < ordered.size(); ++i) {
  265. const char *pName = ordered[i].first;
  266. ULONG cbWritten;
  267. UINT64 offsetPos = pStream->GetPosition();
  268. DXASSERT_LOCALVAR(offsetPos, offsetPos - startPos == ordered[i].second, "else str offset is incorrect");
  269. IFT(pStream->Write(pName, strlen(pName) + 1, &cbWritten));
  270. }
  271. // Verify we wrote the bytes we though we would.
  272. UINT64 endPos = pStream->GetPosition();
  273. DXASSERT_LOCALVAR(endPos - startPos, endPos - startPos == size(), "else size is incorrect");
  274. }
  275. };
  276. DxilPartWriter *hlsl::NewProgramSignatureWriter(const DxilModule &M, DXIL::SignatureKind Kind) {
  277. DXIL::TessellatorDomain domain = DXIL::TessellatorDomain::Undefined;
  278. if (M.GetShaderModel()->IsHS() || M.GetShaderModel()->IsDS())
  279. domain = M.GetTessellatorDomain();
  280. switch (Kind) {
  281. case DXIL::SignatureKind::Input:
  282. return new DxilProgramSignatureWriter(
  283. M.GetInputSignature(), domain, true,
  284. M.GetUseMinPrecision());
  285. case DXIL::SignatureKind::Output:
  286. return new DxilProgramSignatureWriter(
  287. M.GetOutputSignature(), domain, false,
  288. M.GetUseMinPrecision());
  289. case DXIL::SignatureKind::PatchConstant:
  290. return new DxilProgramSignatureWriter(
  291. M.GetPatchConstantSignature(), domain,
  292. /*IsInput*/ M.GetShaderModel()->IsDS(),
  293. /*UseMinPrecision*/M.GetUseMinPrecision());
  294. case DXIL::SignatureKind::Invalid:
  295. return nullptr;
  296. }
  297. return nullptr;
  298. }
  299. class DxilProgramRootSignatureWriter : public DxilPartWriter {
  300. private:
  301. const RootSignatureHandle &m_Sig;
  302. public:
  303. DxilProgramRootSignatureWriter(const RootSignatureHandle &S) : m_Sig(S) {}
  304. uint32_t size() const {
  305. return m_Sig.GetSerializedSize();
  306. }
  307. void write(AbstractMemoryStream *pStream) {
  308. ULONG cbWritten;
  309. IFT(pStream->Write(m_Sig.GetSerializedBytes(), size(), &cbWritten));
  310. }
  311. };
  312. DxilPartWriter *hlsl::NewRootSignatureWriter(const RootSignatureHandle &S) {
  313. return new DxilProgramRootSignatureWriter(S);
  314. }
  315. class DxilFeatureInfoWriter : public DxilPartWriter {
  316. private:
  317. // Only save the shader properties after create class for it.
  318. DxilShaderFeatureInfo featureInfo;
  319. public:
  320. DxilFeatureInfoWriter(const DxilModule &M) {
  321. featureInfo.FeatureFlags = M.m_ShaderFlags.GetFeatureInfo();
  322. }
  323. uint32_t size() const override {
  324. return sizeof(DxilShaderFeatureInfo);
  325. }
  326. void write(AbstractMemoryStream *pStream) override {
  327. IFT(WriteStreamValue(pStream, featureInfo.FeatureFlags));
  328. }
  329. };
  330. DxilPartWriter *hlsl::NewFeatureInfoWriter(const DxilModule &M) {
  331. return new DxilFeatureInfoWriter(M);
  332. }
  333. class DxilPSVWriter : public DxilPartWriter {
  334. private:
  335. const DxilModule &m_Module;
  336. PSVInitInfo m_PSVInitInfo;
  337. DxilPipelineStateValidation m_PSV;
  338. uint32_t m_PSVBufferSize;
  339. SmallVector<char, 512> m_PSVBuffer;
  340. SmallVector<char, 256> m_StringBuffer;
  341. SmallVector<uint32_t, 8> m_SemanticIndexBuffer;
  342. std::vector<PSVSignatureElement0> m_SigInputElements;
  343. std::vector<PSVSignatureElement0> m_SigOutputElements;
  344. std::vector<PSVSignatureElement0> m_SigPatchConstantElements;
  345. void SetPSVSigElement(PSVSignatureElement0 &E, const DxilSignatureElement &SE) {
  346. memset(&E, 0, sizeof(PSVSignatureElement0));
  347. if (SE.GetKind() == DXIL::SemanticKind::Arbitrary && strlen(SE.GetName()) > 0) {
  348. E.SemanticName = (uint32_t)m_StringBuffer.size();
  349. StringRef Name(SE.GetName());
  350. m_StringBuffer.append(Name.size()+1, '\0');
  351. memcpy(m_StringBuffer.data() + E.SemanticName, Name.data(), Name.size());
  352. } else {
  353. // m_StringBuffer always starts with '\0' so offset 0 is empty string:
  354. E.SemanticName = 0;
  355. }
  356. // Search index buffer for matching semantic index sequence
  357. DXASSERT_NOMSG(SE.GetRows() == SE.GetSemanticIndexVec().size());
  358. auto &SemIdx = SE.GetSemanticIndexVec();
  359. bool match = false;
  360. for (uint32_t offset = 0; offset + SE.GetRows() - 1 < m_SemanticIndexBuffer.size(); offset++) {
  361. match = true;
  362. for (uint32_t row = 0; row < SE.GetRows(); row++) {
  363. if ((uint32_t)SemIdx[row] != m_SemanticIndexBuffer[offset + row]) {
  364. match = false;
  365. break;
  366. }
  367. }
  368. if (match) {
  369. E.SemanticIndexes = offset;
  370. break;
  371. }
  372. }
  373. if (!match) {
  374. E.SemanticIndexes = m_SemanticIndexBuffer.size();
  375. for (uint32_t row = 0; row < SemIdx.size(); row++) {
  376. m_SemanticIndexBuffer.push_back((uint32_t)SemIdx[row]);
  377. }
  378. }
  379. DXASSERT_NOMSG(SE.GetRows() <= 32);
  380. E.Rows = (uint8_t)SE.GetRows();
  381. DXASSERT_NOMSG(SE.GetCols() <= 4);
  382. E.ColsAndStart = (uint8_t)SE.GetCols() & 0xF;
  383. if (SE.IsAllocated()) {
  384. DXASSERT_NOMSG(SE.GetStartCol() < 4);
  385. DXASSERT_NOMSG(SE.GetStartRow() < 32);
  386. E.ColsAndStart |= 0x40 | (SE.GetStartCol() << 4);
  387. E.StartRow = (uint8_t)SE.GetStartRow();
  388. }
  389. E.SemanticKind = (uint8_t)SE.GetKind();
  390. E.ComponentType = (uint8_t)CompTypeToSigCompType(SE.GetCompType());
  391. E.InterpolationMode = (uint8_t)SE.GetInterpolationMode()->GetKind();
  392. DXASSERT_NOMSG(SE.GetOutputStream() < 4);
  393. E.DynamicMaskAndStream = (uint8_t)((SE.GetOutputStream() & 0x3) << 4);
  394. E.DynamicMaskAndStream |= (SE.GetDynIdxCompMask()) & 0xF;
  395. }
  396. const uint32_t *CopyViewIDState(const uint32_t *pSrc, uint32_t InputScalars, uint32_t OutputScalars, PSVComponentMask ViewIDMask, PSVDependencyTable IOTable) {
  397. unsigned MaskDwords = PSVComputeMaskDwordsFromVectors(PSVALIGN4(OutputScalars) / 4);
  398. if (ViewIDMask.IsValid()) {
  399. DXASSERT_NOMSG(!IOTable.Table || ViewIDMask.NumVectors == IOTable.OutputVectors);
  400. memcpy(ViewIDMask.Mask, pSrc, 4 * MaskDwords);
  401. pSrc += MaskDwords;
  402. }
  403. if (IOTable.IsValid() && IOTable.InputVectors && IOTable.OutputVectors) {
  404. DXASSERT_NOMSG((InputScalars <= IOTable.InputVectors * 4) && (IOTable.InputVectors * 4 - InputScalars < 4));
  405. DXASSERT_NOMSG((OutputScalars <= IOTable.OutputVectors * 4) && (IOTable.OutputVectors * 4 - OutputScalars < 4));
  406. memcpy(IOTable.Table, pSrc, 4 * MaskDwords * InputScalars);
  407. pSrc += MaskDwords * InputScalars;
  408. }
  409. return pSrc;
  410. }
  411. public:
  412. DxilPSVWriter(const DxilModule &module, uint32_t PSVVersion = 0)
  413. : m_Module(module),
  414. m_PSVInitInfo(PSVVersion)
  415. {
  416. unsigned ValMajor, ValMinor;
  417. m_Module.GetValidatorVersion(ValMajor, ValMinor);
  418. // Allow PSVVersion to be upgraded
  419. if (m_PSVInitInfo.PSVVersion < 1 && (ValMajor > 1 || (ValMajor == 1 && ValMinor >= 1)))
  420. m_PSVInitInfo.PSVVersion = 1;
  421. const ShaderModel *SM = m_Module.GetShaderModel();
  422. UINT uCBuffers = m_Module.GetCBuffers().size();
  423. UINT uSamplers = m_Module.GetSamplers().size();
  424. UINT uSRVs = m_Module.GetSRVs().size();
  425. UINT uUAVs = m_Module.GetUAVs().size();
  426. m_PSVInitInfo.ResourceCount = uCBuffers + uSamplers + uSRVs + uUAVs;
  427. // TODO: for >= 6.2 version, create more efficient structure
  428. if (m_PSVInitInfo.PSVVersion > 0) {
  429. m_PSVInitInfo.ShaderStage = (PSVShaderKind)SM->GetKind();
  430. // Copy Dxil Signatures
  431. m_StringBuffer.push_back('\0'); // For empty semantic name (system value)
  432. m_PSVInitInfo.SigInputElements = m_Module.GetInputSignature().GetElements().size();
  433. m_SigInputElements.resize(m_PSVInitInfo.SigInputElements);
  434. m_PSVInitInfo.SigOutputElements = m_Module.GetOutputSignature().GetElements().size();
  435. m_SigOutputElements.resize(m_PSVInitInfo.SigOutputElements);
  436. m_PSVInitInfo.SigPatchConstantElements = m_Module.GetPatchConstantSignature().GetElements().size();
  437. m_SigPatchConstantElements.resize(m_PSVInitInfo.SigPatchConstantElements);
  438. uint32_t i = 0;
  439. for (auto &SE : m_Module.GetInputSignature().GetElements()) {
  440. SetPSVSigElement(m_SigInputElements[i++], *(SE.get()));
  441. }
  442. i = 0;
  443. for (auto &SE : m_Module.GetOutputSignature().GetElements()) {
  444. SetPSVSigElement(m_SigOutputElements[i++], *(SE.get()));
  445. }
  446. i = 0;
  447. for (auto &SE : m_Module.GetPatchConstantSignature().GetElements()) {
  448. SetPSVSigElement(m_SigPatchConstantElements[i++], *(SE.get()));
  449. }
  450. // Set String and SemanticInput Tables
  451. m_PSVInitInfo.StringTable.Table = m_StringBuffer.data();
  452. m_PSVInitInfo.StringTable.Size = m_StringBuffer.size();
  453. m_PSVInitInfo.SemanticIndexTable.Table = m_SemanticIndexBuffer.data();
  454. m_PSVInitInfo.SemanticIndexTable.Entries = m_SemanticIndexBuffer.size();
  455. // Set up ViewID and signature dependency info
  456. m_PSVInitInfo.UsesViewID = m_Module.m_ShaderFlags.GetViewID() ? true : false;
  457. m_PSVInitInfo.SigInputVectors = m_Module.GetInputSignature().NumVectorsUsed(0);
  458. for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
  459. m_PSVInitInfo.SigOutputVectors[streamIndex] = m_Module.GetOutputSignature().NumVectorsUsed(streamIndex);
  460. }
  461. m_PSVInitInfo.SigPatchConstantVectors = 0;
  462. if (SM->IsHS()) {
  463. m_PSVInitInfo.SigPatchConstantVectors = m_Module.GetPatchConstantSignature().NumVectorsUsed(0);
  464. }
  465. if (SM->IsDS()) {
  466. m_PSVInitInfo.SigPatchConstantVectors = m_Module.GetPatchConstantSignature().NumVectorsUsed(0);
  467. }
  468. }
  469. if (!m_PSV.InitNew(m_PSVInitInfo, nullptr, &m_PSVBufferSize)) {
  470. DXASSERT(false, "PSV InitNew failed computing size!");
  471. }
  472. }
  473. uint32_t size() const override {
  474. return m_PSVBufferSize;
  475. }
  476. void write(AbstractMemoryStream *pStream) override {
  477. m_PSVBuffer.resize(m_PSVBufferSize);
  478. if (!m_PSV.InitNew(m_PSVInitInfo, m_PSVBuffer.data(), &m_PSVBufferSize)) {
  479. DXASSERT(false, "PSV InitNew failed!");
  480. }
  481. DXASSERT_NOMSG(m_PSVBuffer.size() == m_PSVBufferSize);
  482. // Set DxilRuntimInfo
  483. PSVRuntimeInfo0* pInfo = m_PSV.GetPSVRuntimeInfo0();
  484. PSVRuntimeInfo1* pInfo1 = m_PSV.GetPSVRuntimeInfo1();
  485. const ShaderModel* SM = m_Module.GetShaderModel();
  486. pInfo->MinimumExpectedWaveLaneCount = 0;
  487. pInfo->MaximumExpectedWaveLaneCount = (UINT)-1;
  488. switch (SM->GetKind()) {
  489. case ShaderModel::Kind::Vertex: {
  490. pInfo->VS.OutputPositionPresent = 0;
  491. const DxilSignature &S = m_Module.GetOutputSignature();
  492. for (auto &&E : S.GetElements()) {
  493. if (E->GetKind() == Semantic::Kind::Position) {
  494. // Ideally, we might check never writes mask here,
  495. // but this is not yet part of the signature element in Dxil
  496. pInfo->VS.OutputPositionPresent = 1;
  497. break;
  498. }
  499. }
  500. break;
  501. }
  502. case ShaderModel::Kind::Hull: {
  503. pInfo->HS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
  504. pInfo->HS.OutputControlPointCount = (UINT)m_Module.GetOutputControlPointCount();
  505. pInfo->HS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
  506. pInfo->HS.TessellatorOutputPrimitive = (UINT)m_Module.GetTessellatorOutputPrimitive();
  507. break;
  508. }
  509. case ShaderModel::Kind::Domain: {
  510. pInfo->DS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
  511. pInfo->DS.OutputPositionPresent = 0;
  512. const DxilSignature &S = m_Module.GetOutputSignature();
  513. for (auto &&E : S.GetElements()) {
  514. if (E->GetKind() == Semantic::Kind::Position) {
  515. // Ideally, we might check never writes mask here,
  516. // but this is not yet part of the signature element in Dxil
  517. pInfo->DS.OutputPositionPresent = 1;
  518. break;
  519. }
  520. }
  521. pInfo->DS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
  522. break;
  523. }
  524. case ShaderModel::Kind::Geometry: {
  525. pInfo->GS.InputPrimitive = (UINT)m_Module.GetInputPrimitive();
  526. // NOTE: For OutputTopology, pick one from a used stream, or if none
  527. // are used, use stream 0, and set OutputStreamMask to 1.
  528. pInfo->GS.OutputTopology = (UINT)m_Module.GetStreamPrimitiveTopology();
  529. pInfo->GS.OutputStreamMask = m_Module.GetActiveStreamMask();
  530. if (pInfo->GS.OutputStreamMask == 0) {
  531. pInfo->GS.OutputStreamMask = 1; // This is what runtime expects.
  532. }
  533. pInfo->GS.OutputPositionPresent = 0;
  534. const DxilSignature &S = m_Module.GetOutputSignature();
  535. for (auto &&E : S.GetElements()) {
  536. if (E->GetKind() == Semantic::Kind::Position) {
  537. // Ideally, we might check never writes mask here,
  538. // but this is not yet part of the signature element in Dxil
  539. pInfo->GS.OutputPositionPresent = 1;
  540. break;
  541. }
  542. }
  543. break;
  544. }
  545. case ShaderModel::Kind::Pixel: {
  546. pInfo->PS.DepthOutput = 0;
  547. pInfo->PS.SampleFrequency = 0;
  548. {
  549. const DxilSignature &S = m_Module.GetInputSignature();
  550. for (auto &&E : S.GetElements()) {
  551. if (E->GetInterpolationMode()->IsAnySample() ||
  552. E->GetKind() == Semantic::Kind::SampleIndex) {
  553. pInfo->PS.SampleFrequency = 1;
  554. }
  555. }
  556. }
  557. {
  558. const DxilSignature &S = m_Module.GetOutputSignature();
  559. for (auto &&E : S.GetElements()) {
  560. if (E->IsAnyDepth()) {
  561. pInfo->PS.DepthOutput = 1;
  562. break;
  563. }
  564. }
  565. }
  566. break;
  567. }
  568. case ShaderModel::Kind::Compute:
  569. case ShaderModel::Kind::Library:
  570. case ShaderModel::Kind::Invalid:
  571. // Compute, Library, and Invalide not relevant to PSVRuntimeInfo0
  572. break;
  573. }
  574. // Set resource binding information
  575. UINT uResIndex = 0;
  576. for (auto &&R : m_Module.GetCBuffers()) {
  577. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  578. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  579. DXASSERT_NOMSG(pBindInfo);
  580. pBindInfo->ResType = (UINT)PSVResourceType::CBV;
  581. pBindInfo->Space = R->GetSpaceID();
  582. pBindInfo->LowerBound = R->GetLowerBound();
  583. pBindInfo->UpperBound = R->GetUpperBound();
  584. uResIndex++;
  585. }
  586. for (auto &&R : m_Module.GetSamplers()) {
  587. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  588. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  589. DXASSERT_NOMSG(pBindInfo);
  590. pBindInfo->ResType = (UINT)PSVResourceType::Sampler;
  591. pBindInfo->Space = R->GetSpaceID();
  592. pBindInfo->LowerBound = R->GetLowerBound();
  593. pBindInfo->UpperBound = R->GetUpperBound();
  594. uResIndex++;
  595. }
  596. for (auto &&R : m_Module.GetSRVs()) {
  597. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  598. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  599. DXASSERT_NOMSG(pBindInfo);
  600. if (R->IsStructuredBuffer()) {
  601. pBindInfo->ResType = (UINT)PSVResourceType::SRVStructured;
  602. } else if (R->IsRawBuffer()) {
  603. pBindInfo->ResType = (UINT)PSVResourceType::SRVRaw;
  604. } else {
  605. pBindInfo->ResType = (UINT)PSVResourceType::SRVTyped;
  606. }
  607. pBindInfo->Space = R->GetSpaceID();
  608. pBindInfo->LowerBound = R->GetLowerBound();
  609. pBindInfo->UpperBound = R->GetUpperBound();
  610. uResIndex++;
  611. }
  612. for (auto &&R : m_Module.GetUAVs()) {
  613. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  614. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  615. DXASSERT_NOMSG(pBindInfo);
  616. if (R->IsStructuredBuffer()) {
  617. if (R->HasCounter())
  618. pBindInfo->ResType = (UINT)PSVResourceType::UAVStructuredWithCounter;
  619. else
  620. pBindInfo->ResType = (UINT)PSVResourceType::UAVStructured;
  621. } else if (R->IsRawBuffer()) {
  622. pBindInfo->ResType = (UINT)PSVResourceType::UAVRaw;
  623. } else {
  624. pBindInfo->ResType = (UINT)PSVResourceType::UAVTyped;
  625. }
  626. pBindInfo->Space = R->GetSpaceID();
  627. pBindInfo->LowerBound = R->GetLowerBound();
  628. pBindInfo->UpperBound = R->GetUpperBound();
  629. uResIndex++;
  630. }
  631. DXASSERT_NOMSG(uResIndex == m_PSVInitInfo.ResourceCount);
  632. if (m_PSVInitInfo.PSVVersion > 0) {
  633. DXASSERT_NOMSG(pInfo1);
  634. // Write MaxVertexCount
  635. if (SM->IsGS()) {
  636. DXASSERT_NOMSG(m_Module.GetMaxVertexCount() <= 1024);
  637. pInfo1->MaxVertexCount = (uint16_t)m_Module.GetMaxVertexCount();
  638. }
  639. // Write Dxil Signature Elements
  640. for (unsigned i = 0; i < m_PSV.GetSigInputElements(); i++) {
  641. PSVSignatureElement0 *pInputElement = m_PSV.GetInputElement0(i);
  642. DXASSERT_NOMSG(pInputElement);
  643. memcpy(pInputElement, &m_SigInputElements[i], sizeof(PSVSignatureElement0));
  644. }
  645. for (unsigned i = 0; i < m_PSV.GetSigOutputElements(); i++) {
  646. PSVSignatureElement0 *pOutputElement = m_PSV.GetOutputElement0(i);
  647. DXASSERT_NOMSG(pOutputElement);
  648. memcpy(pOutputElement, &m_SigOutputElements[i], sizeof(PSVSignatureElement0));
  649. }
  650. for (unsigned i = 0; i < m_PSV.GetSigPatchConstantElements(); i++) {
  651. PSVSignatureElement0 *pPatchConstantElement = m_PSV.GetPatchConstantElement0(i);
  652. DXASSERT_NOMSG(pPatchConstantElement);
  653. memcpy(pPatchConstantElement, &m_SigPatchConstantElements[i], sizeof(PSVSignatureElement0));
  654. }
  655. // Gather ViewID dependency information
  656. auto &viewState = m_Module.GetSerializedViewIdState();
  657. if (!viewState.empty()) {
  658. const uint32_t *pSrc = viewState.data();
  659. const uint32_t InputScalars = *(pSrc++);
  660. uint32_t OutputScalars[4];
  661. for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
  662. OutputScalars[streamIndex] = *(pSrc++);
  663. pSrc = CopyViewIDState(pSrc, InputScalars, OutputScalars[streamIndex], m_PSV.GetViewIDOutputMask(streamIndex), m_PSV.GetInputToOutputTable(streamIndex));
  664. if (!SM->IsGS())
  665. break;
  666. }
  667. if (SM->IsHS()) {
  668. const uint32_t PCScalars = *(pSrc++);
  669. pSrc = CopyViewIDState(pSrc, InputScalars, PCScalars, m_PSV.GetViewIDPCOutputMask(), m_PSV.GetInputToPCOutputTable());
  670. } else if (SM->IsDS()) {
  671. const uint32_t PCScalars = *(pSrc++);
  672. pSrc = CopyViewIDState(pSrc, PCScalars, OutputScalars[0], PSVComponentMask(), m_PSV.GetPCInputToOutputTable());
  673. }
  674. DXASSERT_NOMSG(viewState.data() + viewState.size() == pSrc);
  675. }
  676. }
  677. ULONG cbWritten;
  678. IFT(pStream->Write(m_PSVBuffer.data(), m_PSVBufferSize, &cbWritten));
  679. DXASSERT_NOMSG(cbWritten == m_PSVBufferSize);
  680. }
  681. };
  682. // Size-checked writer
  683. // on overrun: throw buffer_overrun{};
  684. // on overlap: throw buffer_overlap{};
  685. class CheckedWriter {
  686. char *Ptr;
  687. size_t Size;
  688. size_t Offset;
  689. public:
  690. class exception : public std::exception {};
  691. class buffer_overrun : public exception {
  692. public:
  693. buffer_overrun() noexcept {}
  694. virtual const char * what() const noexcept override {
  695. return ("buffer_overrun");
  696. }
  697. };
  698. class buffer_overlap : public exception {
  699. public:
  700. buffer_overlap() noexcept {}
  701. virtual const char * what() const noexcept override {
  702. return ("buffer_overlap");
  703. }
  704. };
  705. CheckedWriter(void *ptr, size_t size) :
  706. Ptr(reinterpret_cast<char*>(ptr)), Size(size), Offset(0) {}
  707. size_t GetOffset() const { return Offset; }
  708. void Reset(size_t offset = 0) {
  709. if (offset >= Size) throw buffer_overrun{};
  710. Offset = offset;
  711. }
  712. // offset is absolute, ensure offset is >= current offset
  713. void Advance(size_t offset = 0) {
  714. if (offset < Offset) throw buffer_overlap{};
  715. if (offset >= Size) throw buffer_overrun{};
  716. Offset = offset;
  717. }
  718. void CheckBounds(size_t size) const {
  719. assert(Offset <= Size && "otherwise, offset larger than size");
  720. if (size > Size - Offset)
  721. throw buffer_overrun{};
  722. }
  723. template <typename T>
  724. T *Cast(size_t size = 0) {
  725. if (0 == size) size = sizeof(T);
  726. CheckBounds(size);
  727. return reinterpret_cast<T*>(Ptr + Offset);
  728. }
  729. // Map and Write advance Offset:
  730. template <typename T>
  731. T &Map() {
  732. const size_t size = sizeof(T);
  733. T * p = Cast<T>(size);
  734. Offset += size;
  735. return *p;
  736. }
  737. template <typename T>
  738. T *MapArray(size_t count = 1) {
  739. const size_t size = sizeof(T) * count;
  740. T *p = Cast<T>(size);
  741. Offset += size;
  742. return p;
  743. }
  744. template <typename T>
  745. void Write(const T &obj) {
  746. const size_t size = sizeof(T);
  747. *Cast<T>(size) = obj;
  748. Offset += size;
  749. }
  750. template <typename T>
  751. void WriteArray(const T *pArray, size_t count = 1) {
  752. const size_t size = sizeof(T) * count;
  753. memcpy(Cast<T>(size), pArray, size);
  754. Offset += size;
  755. }
  756. };
  757. // Like DXIL container, RDAT itself is a mini container that contains multiple RDAT parts
  758. class RDATPart {
  759. public:
  760. virtual uint32_t GetPartSize() const { return 0; }
  761. virtual void Write(void *ptr) {}
  762. virtual RuntimeDataPartType GetType() const { return RuntimeDataPartType::Invalid; }
  763. virtual ~RDATPart() {}
  764. };
  765. // Most RDAT parts are tables each containing a list of structures of same type.
  766. // Exceptions are string table and index table because each string or list of
  767. // indicies can be of different sizes.
  768. template <class T>
  769. class RDATTable : public RDATPart {
  770. protected:
  771. std::vector<T> m_rows;
  772. public:
  773. virtual void Insert(T *data) {}
  774. virtual ~RDATTable() {}
  775. void Insert(const T &data) {
  776. m_rows.push_back(data);
  777. }
  778. void Write(void *ptr) {
  779. char *pCur = (char*)ptr;
  780. RuntimeDataTableHeader &header = *reinterpret_cast<RuntimeDataTableHeader*>(pCur);
  781. header.RecordCount = m_rows.size();
  782. header.RecordStride = sizeof(T);
  783. pCur += sizeof(RuntimeDataTableHeader);
  784. memcpy(pCur, m_rows.data(), header.RecordCount * header.RecordStride);
  785. };
  786. uint32_t GetPartSize() const {
  787. if (m_rows.empty())
  788. return 0;
  789. return sizeof(RuntimeDataTableHeader) + m_rows.size() * sizeof(T);
  790. }
  791. };
  792. // Resource table will contain a list of RuntimeDataResourceInfo in order of
  793. // CBuffer, Sampler, SRV, and UAV resource classes.
  794. class ResourceTable : public RDATTable<RuntimeDataResourceInfo> {
  795. public:
  796. RuntimeDataPartType GetType() const { return RuntimeDataPartType::ResourceTable; }
  797. };
  798. class FunctionTable : public RDATTable<RuntimeDataFunctionInfo> {
  799. public:
  800. RuntimeDataPartType GetType() const { return RuntimeDataPartType::FunctionTable; }
  801. };
  802. class StringBufferPart : public RDATPart {
  803. private:
  804. StringMap<uint32_t> m_StringMap;
  805. SmallVector<char, 256> m_StringBuffer;
  806. public:
  807. StringBufferPart() : m_StringMap(), m_StringBuffer() {
  808. // Always start string table with null so empty/null strings have offset of zero
  809. m_StringBuffer.push_back('\0');
  810. }
  811. // returns the offset of the name inserted
  812. uint32_t Insert(StringRef name) {
  813. if (name.empty())
  814. return 0;
  815. // Don't add duplicate strings
  816. auto found = m_StringMap.find(name);
  817. if (found != m_StringMap.end())
  818. return found->second;
  819. uint32_t prevIndex = (uint32_t)m_StringBuffer.size();
  820. m_StringMap[name] = prevIndex;
  821. m_StringBuffer.reserve(m_StringBuffer.size() + name.size() + 1);
  822. m_StringBuffer.append(name.begin(), name.end());
  823. m_StringBuffer.push_back('\0');
  824. return prevIndex;
  825. }
  826. RuntimeDataPartType GetType() const { return RuntimeDataPartType::StringBuffer; }
  827. uint32_t GetPartSize() const { return m_StringBuffer.size(); }
  828. void Write(void *ptr) { memcpy(ptr, m_StringBuffer.data(), m_StringBuffer.size()); }
  829. };
  830. struct IndexArraysPart : public RDATPart {
  831. private:
  832. std::vector<uint32_t> m_IndexBuffer;
  833. // Use m_IndexSet with CmpIndices to avoid duplicate index arrays
  834. struct CmpIndices {
  835. const IndexArraysPart &Table;
  836. CmpIndices(const IndexArraysPart &table) : Table(table) {}
  837. bool operator()(uint32_t left, uint32_t right) const {
  838. const uint32_t *pLeft = Table.m_IndexBuffer.data() + left;
  839. const uint32_t *pRight = Table.m_IndexBuffer.data() + right;
  840. if (*pLeft != *pRight)
  841. return (*pLeft < *pRight);
  842. uint32_t count = *pLeft;
  843. for (unsigned i = 0; i < count; i++) {
  844. ++pLeft; ++pRight;
  845. if (*pLeft != *pRight)
  846. return (*pLeft < *pRight);
  847. }
  848. return false;
  849. }
  850. };
  851. std::set<uint32_t, CmpIndices> m_IndexSet;
  852. public:
  853. IndexArraysPart() : m_IndexBuffer(), m_IndexSet(*this) {}
  854. template <class iterator>
  855. uint32_t AddIndex(iterator begin, iterator end) {
  856. uint32_t newOffset = m_IndexBuffer.size();
  857. m_IndexBuffer.push_back(0); // Size: update after insertion
  858. m_IndexBuffer.insert(m_IndexBuffer.end(), begin, end);
  859. m_IndexBuffer[newOffset] = (m_IndexBuffer.size() - newOffset) - 1;
  860. // Check for duplicate, return new offset if not duplicate
  861. auto insertResult = m_IndexSet.insert(newOffset);
  862. if (insertResult.second)
  863. return newOffset;
  864. // Otherwise it was a duplicate, so chop off the size and return the original
  865. m_IndexBuffer.resize(newOffset);
  866. return *insertResult.first;
  867. }
  868. RuntimeDataPartType GetType() const { return RuntimeDataPartType::IndexArrays; }
  869. uint32_t GetPartSize() const {
  870. return sizeof(uint32_t) * m_IndexBuffer.size();
  871. }
  872. void Write(void *ptr) {
  873. memcpy(ptr, m_IndexBuffer.data(), m_IndexBuffer.size() * sizeof(uint32_t));
  874. }
  875. };
  876. class RawBytesPart : public RDATPart {
  877. private:
  878. std::unordered_map<const void *, uint32_t> m_PtrMap;
  879. std::vector<char> m_DataBuffer;
  880. public:
  881. RawBytesPart() : m_DataBuffer() {}
  882. uint32_t Insert(const void *pData, size_t dataSize) {
  883. auto it = m_PtrMap.find(pData);
  884. if (it != m_PtrMap.end())
  885. return it->second;
  886. if (dataSize + m_DataBuffer.size() > UINT_MAX)
  887. return UINT_MAX;
  888. uint32_t offset = (uint32_t)m_DataBuffer.size();
  889. m_DataBuffer.reserve(m_DataBuffer.size() + dataSize);
  890. m_DataBuffer.insert(m_DataBuffer.end(),
  891. (const char*)pData, (const char*)pData + dataSize);
  892. return offset;
  893. }
  894. RuntimeDataPartType GetType() const { return RuntimeDataPartType::RawBytes; }
  895. uint32_t GetPartSize() const { return m_DataBuffer.size(); }
  896. void Write(void *ptr) { memcpy(ptr, m_DataBuffer.data(), m_DataBuffer.size()); }
  897. };
  898. class SubobjectTable : public RDATTable<RuntimeDataSubobjectInfo> {
  899. public:
  900. RuntimeDataPartType GetType() const { return RuntimeDataPartType::SubobjectTable; }
  901. };
  902. using namespace DXIL;
  903. class DxilRDATWriter : public DxilPartWriter {
  904. private:
  905. const DxilModule &m_Module;
  906. SmallVector<char, 1024> m_RDATBuffer;
  907. std::vector<std::unique_ptr<RDATPart>> m_Parts;
  908. typedef llvm::SmallSetVector<uint32_t, 8> Indices;
  909. typedef std::unordered_map<const llvm::Function *, Indices> FunctionIndexMap;
  910. FunctionIndexMap m_FuncToResNameOffset; // list of resources used
  911. FunctionIndexMap m_FuncToDependencies; // list of unresolved functions used
  912. struct ShaderCompatInfo {
  913. ShaderCompatInfo()
  914. : minMajor(6), minMinor(0),
  915. mask(((unsigned)1 << (unsigned)DXIL::ShaderKind::Invalid) - 1)
  916. {}
  917. unsigned minMajor, minMinor, mask;
  918. };
  919. typedef std::unordered_map<const llvm::Function*, ShaderCompatInfo> FunctionShaderCompatMap;
  920. FunctionShaderCompatMap m_FuncToShaderCompat;
  921. void UpdateFunctionToShaderCompat(const llvm::Function* dxilFunc) {
  922. for (const auto &user : dxilFunc->users()) {
  923. if (const llvm::Instruction *I = dyn_cast<const llvm::Instruction>(user)) {
  924. // Find calling function
  925. const llvm::Function *F = cast<const llvm::Function>(I->getParent()->getParent());
  926. // Insert or lookup info
  927. ShaderCompatInfo &info = m_FuncToShaderCompat[F];
  928. OpCode opcode = OP::GetDxilOpFuncCallInst(I);
  929. unsigned major, minor, mask;
  930. // bWithTranslation = true for library modules
  931. OP::GetMinShaderModelAndMask(opcode, /*bWithTranslation*/true, major, minor, mask);
  932. if (major > info.minMajor) {
  933. info.minMajor = major;
  934. info.minMinor = minor;
  935. } else if (minor > info.minMinor) {
  936. info.minMinor = minor;
  937. }
  938. info.mask &= mask;
  939. }
  940. }
  941. }
  942. const llvm::Function *FindUsingFunction(const llvm::Value *User) {
  943. if (const llvm::Instruction *I = dyn_cast<const llvm::Instruction>(User)) {
  944. // Instruction should be inside a basic block, which is in a function
  945. return cast<const llvm::Function>(I->getParent()->getParent());
  946. }
  947. // User can be either instruction, constant, or operator. But User is an
  948. // operator only if constant is a scalar value, not resource pointer.
  949. const llvm::Constant *CU = cast<const llvm::Constant>(User);
  950. if (!CU->user_empty())
  951. return FindUsingFunction(*CU->user_begin());
  952. else
  953. return nullptr;
  954. }
  955. void UpdateFunctionToResourceInfo(const DxilResourceBase *resource,
  956. uint32_t offset) {
  957. Constant *var = resource->GetGlobalSymbol();
  958. if (var) {
  959. for (auto user : var->users()) {
  960. // Find the function.
  961. const llvm::Function *F = FindUsingFunction(user);
  962. if (!F)
  963. continue;
  964. if (m_FuncToResNameOffset.find(F) == m_FuncToResNameOffset.end()) {
  965. m_FuncToResNameOffset[F] = Indices();
  966. }
  967. m_FuncToResNameOffset[F].insert(offset);
  968. }
  969. }
  970. }
  971. void InsertToResourceTable(DxilResourceBase &resource,
  972. ResourceClass resourceClass,
  973. uint32_t &resourceIndex) {
  974. uint32_t stringIndex = m_pStringBufferPart->Insert(resource.GetGlobalName());
  975. UpdateFunctionToResourceInfo(&resource, resourceIndex++);
  976. RuntimeDataResourceInfo info = {};
  977. info.ID = resource.GetID();
  978. info.Class = static_cast<uint32_t>(resourceClass);
  979. info.Kind = static_cast<uint32_t>(resource.GetKind());
  980. info.Space = resource.GetSpaceID();
  981. info.LowerBound = resource.GetLowerBound();
  982. info.UpperBound = resource.GetUpperBound();
  983. info.Name = stringIndex;
  984. info.Flags = 0;
  985. if (ResourceClass::UAV == resourceClass) {
  986. DxilResource *pRes = static_cast<DxilResource*>(&resource);
  987. if (pRes->HasCounter())
  988. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVCounter);
  989. if (pRes->IsGloballyCoherent())
  990. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVGloballyCoherent);
  991. if (pRes->IsROV())
  992. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVRasterizerOrderedView);
  993. // TODO: add dynamic index flag
  994. }
  995. m_pResourceTable->Insert(info);
  996. }
  997. void UpdateResourceInfo() {
  998. // Try to allocate string table for resources. String table is a sequence
  999. // of strings delimited by \0
  1000. uint32_t resourceIndex = 0;
  1001. for (auto &resource : m_Module.GetCBuffers()) {
  1002. InsertToResourceTable(*resource.get(), ResourceClass::CBuffer, resourceIndex);
  1003. }
  1004. for (auto &resource : m_Module.GetSamplers()) {
  1005. InsertToResourceTable(*resource.get(), ResourceClass::Sampler, resourceIndex);
  1006. }
  1007. for (auto &resource : m_Module.GetSRVs()) {
  1008. InsertToResourceTable(*resource.get(), ResourceClass::SRV, resourceIndex);
  1009. }
  1010. for (auto &resource : m_Module.GetUAVs()) {
  1011. InsertToResourceTable(*resource.get(), ResourceClass::UAV, resourceIndex);
  1012. }
  1013. }
  1014. void UpdateFunctionDependency(llvm::Function *F) {
  1015. for (const auto &user : F->users()) {
  1016. const llvm::Function *userFunction = FindUsingFunction(user);
  1017. uint32_t index = m_pStringBufferPart->Insert(F->getName());
  1018. if (m_FuncToDependencies.find(userFunction) ==
  1019. m_FuncToDependencies.end()) {
  1020. m_FuncToDependencies[userFunction] =
  1021. Indices();
  1022. }
  1023. m_FuncToDependencies[userFunction].insert(index);
  1024. }
  1025. }
  1026. void UpdateFunctionInfo() {
  1027. for (auto &function : m_Module.GetModule()->getFunctionList()) {
  1028. if (function.isDeclaration() && !function.isIntrinsic()) {
  1029. if (OP::IsDxilOpFunc(&function)) {
  1030. // update min shader model and shader stage mask per function
  1031. UpdateFunctionToShaderCompat(&function);
  1032. } else {
  1033. // collect unresolved dependencies per function
  1034. UpdateFunctionDependency(&function);
  1035. }
  1036. }
  1037. }
  1038. for (auto &function : m_Module.GetModule()->getFunctionList()) {
  1039. if (!function.isDeclaration()) {
  1040. StringRef mangled = function.getName();
  1041. StringRef unmangled = hlsl::dxilutil::DemangleFunctionName(function.getName());
  1042. uint32_t mangledIndex = m_pStringBufferPart->Insert(mangled);
  1043. uint32_t unmangledIndex = m_pStringBufferPart->Insert(unmangled);
  1044. // Update resource Index
  1045. uint32_t resourceIndex = UINT_MAX;
  1046. uint32_t functionDependencies = UINT_MAX;
  1047. uint32_t payloadSizeInBytes = 0;
  1048. uint32_t attrSizeInBytes = 0;
  1049. uint32_t shaderKind = static_cast<uint32_t>(DXIL::ShaderKind::Library);
  1050. if (m_FuncToResNameOffset.find(&function) != m_FuncToResNameOffset.end())
  1051. resourceIndex =
  1052. m_pIndexArraysPart->AddIndex(m_FuncToResNameOffset[&function].begin(),
  1053. m_FuncToResNameOffset[&function].end());
  1054. if (m_FuncToDependencies.find(&function) != m_FuncToDependencies.end())
  1055. functionDependencies =
  1056. m_pIndexArraysPart->AddIndex(m_FuncToDependencies[&function].begin(),
  1057. m_FuncToDependencies[&function].end());
  1058. if (m_Module.HasDxilFunctionProps(&function)) {
  1059. auto props = m_Module.GetDxilFunctionProps(&function);
  1060. if (props.IsClosestHit() || props.IsAnyHit()) {
  1061. payloadSizeInBytes = props.ShaderProps.Ray.payloadSizeInBytes;
  1062. attrSizeInBytes = props.ShaderProps.Ray.attributeSizeInBytes;
  1063. }
  1064. else if (props.IsMiss()) {
  1065. payloadSizeInBytes = props.ShaderProps.Ray.payloadSizeInBytes;
  1066. }
  1067. else if (props.IsCallable()) {
  1068. payloadSizeInBytes = props.ShaderProps.Ray.paramSizeInBytes;
  1069. }
  1070. shaderKind = (uint32_t)props.shaderKind;
  1071. }
  1072. ShaderFlags flags = ShaderFlags::CollectShaderFlags(&function, &m_Module);
  1073. RuntimeDataFunctionInfo info = {};
  1074. info.Name = mangledIndex;
  1075. info.UnmangledName = unmangledIndex;
  1076. info.ShaderKind = shaderKind;
  1077. info.Resources = resourceIndex;
  1078. info.FunctionDependencies = functionDependencies;
  1079. info.PayloadSizeInBytes = payloadSizeInBytes;
  1080. info.AttributeSizeInBytes = attrSizeInBytes;
  1081. uint64_t featureFlags = flags.GetFeatureInfo();
  1082. info.FeatureInfo1 = featureFlags & 0xffffffff;
  1083. info.FeatureInfo2 = (featureFlags >> 32) & 0xffffffff;
  1084. // Init min target 6.0
  1085. unsigned minMajor = 6, minMinor = 0;
  1086. // Increase min target based on feature flags:
  1087. if (flags.GetUseNativeLowPrecision() && flags.GetLowPrecisionPresent()) {
  1088. minMinor = 2;
  1089. } else if (flags.GetBarycentrics() || flags.GetViewID()) {
  1090. minMinor = 1;
  1091. }
  1092. if ((DXIL::ShaderKind)shaderKind == DXIL::ShaderKind::Library) {
  1093. // Init mask to all kinds for library functions
  1094. info.ShaderStageFlag = ((unsigned)1 << (unsigned)DXIL::ShaderKind::Invalid) - 1;
  1095. } else {
  1096. // Init mask to current kind for shader functions
  1097. info.ShaderStageFlag = (unsigned)1 << shaderKind;
  1098. }
  1099. auto it = m_FuncToShaderCompat.find(&function);
  1100. if (it != m_FuncToShaderCompat.end()) {
  1101. auto &compatInfo = it->second;
  1102. if (compatInfo.minMajor > minMajor) {
  1103. minMajor = compatInfo.minMajor;
  1104. minMinor = compatInfo.minMinor;
  1105. } else if (compatInfo.minMinor > minMinor) {
  1106. minMinor = compatInfo.minMinor;
  1107. }
  1108. info.ShaderStageFlag &= compatInfo.mask;
  1109. }
  1110. info.MinShaderTarget = EncodeVersion((DXIL::ShaderKind)shaderKind, minMajor, minMinor);
  1111. m_pFunctionTable->Insert(info);
  1112. }
  1113. }
  1114. }
  1115. void UpdateSubobjectInfo() {
  1116. if (!m_Module.GetSubobjects())
  1117. return;
  1118. for (auto &it : m_Module.GetSubobjects()->GetSubobjects()) {
  1119. auto &obj = *it.second;
  1120. RuntimeDataSubobjectInfo info = {};
  1121. info.Name = m_pStringBufferPart->Insert(obj.GetName());
  1122. info.Kind = (uint32_t)obj.GetKind();
  1123. bool bLocalRS = false;
  1124. switch (obj.GetKind()) {
  1125. case DXIL::SubobjectKind::StateObjectConfig:
  1126. obj.GetStateObjectConfig(info.StateObjectConfig.Flags);
  1127. break;
  1128. case DXIL::SubobjectKind::LocalRootSignature:
  1129. bLocalRS = true;
  1130. __fallthrough;
  1131. case DXIL::SubobjectKind::GlobalRootSignature: {
  1132. const void *Data;
  1133. obj.GetRootSignature(bLocalRS, Data, info.RootSignature.SizeInBytes);
  1134. info.RootSignature.RawBytesOffset =
  1135. m_pRawBytesPart->Insert(Data, info.RootSignature.SizeInBytes);
  1136. break;
  1137. }
  1138. case DXIL::SubobjectKind::SubobjectToExportsAssociation: {
  1139. llvm::StringRef Subobject;
  1140. const char * const * Exports;
  1141. uint32_t NumExports;
  1142. std::vector<uint32_t> ExportIndices;
  1143. obj.GetSubobjectToExportsAssociation(Subobject, Exports, NumExports);
  1144. info.SubobjectToExportsAssociation.Subobject =
  1145. m_pStringBufferPart->Insert(Subobject);
  1146. ExportIndices.resize(NumExports);
  1147. for (unsigned i = 0; i < NumExports; ++i) {
  1148. ExportIndices[i] = m_pStringBufferPart->Insert(Exports[i]);
  1149. }
  1150. info.SubobjectToExportsAssociation.Exports =
  1151. m_pIndexArraysPart->AddIndex(
  1152. ExportIndices.begin(), ExportIndices.end());
  1153. break;
  1154. }
  1155. case DXIL::SubobjectKind::RaytracingShaderConfig:
  1156. obj.GetRaytracingShaderConfig(
  1157. info.RaytracingShaderConfig.MaxPayloadSizeInBytes,
  1158. info.RaytracingShaderConfig.MaxAttributeSizeInBytes);
  1159. break;
  1160. case DXIL::SubobjectKind::RaytracingPipelineConfig:
  1161. obj.GetRaytracingPipelineConfig(
  1162. info.RaytracingPipelineConfig.MaxTraceRecursionDepth);
  1163. break;
  1164. case DXIL::SubobjectKind::HitGroup:
  1165. HitGroupType hgType;
  1166. StringRef AnyHit;
  1167. StringRef ClosestHit;
  1168. StringRef Intersection;
  1169. obj.GetHitGroup(hgType, AnyHit, ClosestHit, Intersection);
  1170. info.HitGroup.Type = (uint32_t)hgType;
  1171. info.HitGroup.AnyHit = m_pStringBufferPart->Insert(AnyHit);
  1172. info.HitGroup.ClosestHit = m_pStringBufferPart->Insert(ClosestHit);
  1173. info.HitGroup.Intersection = m_pStringBufferPart->Insert(Intersection);
  1174. break;
  1175. }
  1176. m_pSubobjectTable->Insert(info);
  1177. }
  1178. }
  1179. void CreateParts() {
  1180. #define ADD_PART(type) \
  1181. m_Parts.emplace_back(llvm::make_unique<type>()); \
  1182. m_p##type = reinterpret_cast<type*>(m_Parts.back().get());
  1183. ADD_PART(StringBufferPart);
  1184. ADD_PART(ResourceTable);
  1185. ADD_PART(FunctionTable);
  1186. ADD_PART(IndexArraysPart);
  1187. ADD_PART(RawBytesPart);
  1188. ADD_PART(SubobjectTable);
  1189. #undef ADD_PART
  1190. }
  1191. StringBufferPart *m_pStringBufferPart;
  1192. IndexArraysPart *m_pIndexArraysPart;
  1193. RawBytesPart *m_pRawBytesPart;
  1194. FunctionTable *m_pFunctionTable;
  1195. ResourceTable *m_pResourceTable;
  1196. SubobjectTable *m_pSubobjectTable;
  1197. public:
  1198. DxilRDATWriter(const DxilModule &module, uint32_t InfoVersion = 0)
  1199. : m_Module(module), m_RDATBuffer(), m_Parts(), m_FuncToResNameOffset() {
  1200. CreateParts();
  1201. UpdateResourceInfo();
  1202. UpdateFunctionInfo();
  1203. UpdateSubobjectInfo();
  1204. // Delete any empty parts:
  1205. std::vector<std::unique_ptr<RDATPart>>::iterator it = m_Parts.begin();
  1206. while (it != m_Parts.end()) {
  1207. if (it->get()->GetPartSize() == 0) {
  1208. it = m_Parts.erase(it);
  1209. }
  1210. else
  1211. it++;
  1212. }
  1213. }
  1214. uint32_t size() const override {
  1215. // header + offset array
  1216. uint32_t total = sizeof(RuntimeDataHeader) + m_Parts.size() * sizeof(uint32_t);
  1217. // For each part: part header + part size
  1218. for (auto &part : m_Parts)
  1219. total += sizeof(RuntimeDataPartHeader) + PSVALIGN4(part->GetPartSize());
  1220. return total;
  1221. }
  1222. void write(AbstractMemoryStream *pStream) override {
  1223. try {
  1224. m_RDATBuffer.resize(size(), 0);
  1225. CheckedWriter W(m_RDATBuffer.data(), m_RDATBuffer.size());
  1226. // write RDAT header
  1227. RuntimeDataHeader &header = W.Map<RuntimeDataHeader>();
  1228. header.Version = RDAT_Version_10;
  1229. header.PartCount = m_Parts.size();
  1230. // map offsets
  1231. uint32_t *offsets = W.MapArray<uint32_t>(header.PartCount);
  1232. // write parts
  1233. unsigned i = 0;
  1234. for (auto &part : m_Parts) {
  1235. offsets[i++] = W.GetOffset();
  1236. RuntimeDataPartHeader &partHeader = W.Map<RuntimeDataPartHeader>();
  1237. partHeader.Type = part->GetType();
  1238. partHeader.Size = PSVALIGN4(part->GetPartSize());
  1239. DXASSERT(partHeader.Size, "otherwise, failed to remove empty part");
  1240. char *bytes = W.MapArray<char>(partHeader.Size);
  1241. part->Write(bytes);
  1242. }
  1243. }
  1244. catch (CheckedWriter::exception e) {
  1245. throw hlsl::Exception(DXC_E_GENERAL_INTERNAL_ERROR, e.what());
  1246. }
  1247. ULONG cbWritten;
  1248. IFT(pStream->Write(m_RDATBuffer.data(), m_RDATBuffer.size(), &cbWritten));
  1249. DXASSERT_NOMSG(cbWritten == m_RDATBuffer.size());
  1250. }
  1251. };
  1252. DxilPartWriter *hlsl::NewPSVWriter(const DxilModule &M, uint32_t PSVVersion) {
  1253. return new DxilPSVWriter(M, PSVVersion);
  1254. }
  1255. DxilPartWriter *hlsl::NewRDATWriter(const DxilModule &M, uint32_t InfoVersion) {
  1256. return new DxilRDATWriter(M, InfoVersion);
  1257. }
  1258. class DxilContainerWriter_impl : public DxilContainerWriter {
  1259. private:
  1260. class DxilPart {
  1261. public:
  1262. DxilPartHeader Header;
  1263. WriteFn Write;
  1264. DxilPart(uint32_t fourCC, uint32_t size, WriteFn write) : Write(write) {
  1265. Header.PartFourCC = fourCC;
  1266. Header.PartSize = size;
  1267. }
  1268. };
  1269. llvm::SmallVector<DxilPart, 8> m_Parts;
  1270. public:
  1271. void AddPart(uint32_t FourCC, uint32_t Size, WriteFn Write) override {
  1272. m_Parts.emplace_back(FourCC, Size, Write);
  1273. }
  1274. uint32_t size() const override {
  1275. uint32_t partSize = 0;
  1276. for (auto &part : m_Parts) {
  1277. partSize += part.Header.PartSize;
  1278. }
  1279. return (uint32_t)GetDxilContainerSizeFromParts((uint32_t)m_Parts.size(), partSize);
  1280. }
  1281. void write(AbstractMemoryStream *pStream) override {
  1282. DxilContainerHeader header;
  1283. const uint32_t PartCount = (uint32_t)m_Parts.size();
  1284. uint32_t containerSizeInBytes = size();
  1285. InitDxilContainer(&header, PartCount, containerSizeInBytes);
  1286. IFT(pStream->Reserve(header.ContainerSizeInBytes));
  1287. IFT(WriteStreamValue(pStream, header));
  1288. uint32_t offset = sizeof(header) + (uint32_t)GetOffsetTableSize(PartCount);
  1289. for (auto &&part : m_Parts) {
  1290. IFT(WriteStreamValue(pStream, offset));
  1291. offset += sizeof(DxilPartHeader) + part.Header.PartSize;
  1292. }
  1293. for (auto &&part : m_Parts) {
  1294. IFT(WriteStreamValue(pStream, part.Header));
  1295. size_t start = pStream->GetPosition();
  1296. part.Write(pStream);
  1297. DXASSERT_LOCALVAR(start, pStream->GetPosition() - start == (size_t)part.Header.PartSize, "out of bound");
  1298. }
  1299. DXASSERT(containerSizeInBytes == (uint32_t)pStream->GetPosition(), "else stream size is incorrect");
  1300. }
  1301. };
  1302. DxilContainerWriter *hlsl::NewDxilContainerWriter() {
  1303. return new DxilContainerWriter_impl();
  1304. }
  1305. static bool HasDebugInfo(const Module &M) {
  1306. for (Module::const_named_metadata_iterator NMI = M.named_metadata_begin(),
  1307. NME = M.named_metadata_end();
  1308. NMI != NME; ++NMI) {
  1309. if (NMI->getName().startswith("llvm.dbg.")) {
  1310. return true;
  1311. }
  1312. }
  1313. return false;
  1314. }
  1315. static void GetPaddedProgramPartSize(AbstractMemoryStream *pStream,
  1316. uint32_t &bitcodeInUInt32,
  1317. uint32_t &bitcodePaddingBytes) {
  1318. bitcodeInUInt32 = pStream->GetPtrSize();
  1319. bitcodePaddingBytes = (bitcodeInUInt32 % 4);
  1320. bitcodeInUInt32 = (bitcodeInUInt32 / 4) + (bitcodePaddingBytes ? 1 : 0);
  1321. }
  1322. static void WriteProgramPart(const ShaderModel *pModel,
  1323. AbstractMemoryStream *pModuleBitcode,
  1324. AbstractMemoryStream *pStream) {
  1325. DXASSERT(pModel != nullptr, "else generation should have failed");
  1326. DxilProgramHeader programHeader;
  1327. uint32_t shaderVersion =
  1328. EncodeVersion(pModel->GetKind(), pModel->GetMajor(), pModel->GetMinor());
  1329. unsigned dxilMajor, dxilMinor;
  1330. pModel->GetDxilVersion(dxilMajor, dxilMinor);
  1331. uint32_t dxilVersion = DXIL::MakeDxilVersion(dxilMajor, dxilMinor);
  1332. InitProgramHeader(programHeader, shaderVersion, dxilVersion, pModuleBitcode->GetPtrSize());
  1333. uint32_t programInUInt32, programPaddingBytes;
  1334. GetPaddedProgramPartSize(pModuleBitcode, programInUInt32,
  1335. programPaddingBytes);
  1336. ULONG cbWritten;
  1337. IFT(WriteStreamValue(pStream, programHeader));
  1338. IFT(pStream->Write(pModuleBitcode->GetPtr(), pModuleBitcode->GetPtrSize(),
  1339. &cbWritten));
  1340. if (programPaddingBytes) {
  1341. uint32_t paddingValue = 0;
  1342. IFT(pStream->Write(&paddingValue, programPaddingBytes, &cbWritten));
  1343. }
  1344. }
  1345. namespace {
  1346. class RootSignatureWriter : public DxilPartWriter {
  1347. private:
  1348. std::vector<uint8_t> m_Sig;
  1349. public:
  1350. RootSignatureWriter(std::vector<uint8_t> &&S) : m_Sig(std::move(S)) {}
  1351. uint32_t size() const { return m_Sig.size(); }
  1352. void write(AbstractMemoryStream *pStream) {
  1353. ULONG cbWritten;
  1354. IFT(pStream->Write(m_Sig.data(), size(), &cbWritten));
  1355. }
  1356. };
  1357. } // namespace
  1358. void hlsl::SerializeDxilContainerForModule(DxilModule *pModule,
  1359. AbstractMemoryStream *pModuleBitcode,
  1360. AbstractMemoryStream *pFinalStream,
  1361. llvm::StringRef DebugName,
  1362. SerializeDxilFlags Flags) {
  1363. // TODO: add a flag to update the module and remove information that is not part
  1364. // of DXIL proper and is used only to assemble the container.
  1365. DXASSERT_NOMSG(pModule != nullptr);
  1366. DXASSERT_NOMSG(pModuleBitcode != nullptr);
  1367. DXASSERT_NOMSG(pFinalStream != nullptr);
  1368. unsigned ValMajor, ValMinor;
  1369. pModule->GetValidatorVersion(ValMajor, ValMinor);
  1370. if (ValMajor == 1 && ValMinor == 0)
  1371. Flags &= ~SerializeDxilFlags::IncludeDebugNamePart;
  1372. DxilContainerWriter_impl writer;
  1373. // Write the feature part.
  1374. DxilFeatureInfoWriter featureInfoWriter(*pModule);
  1375. writer.AddPart(DFCC_FeatureInfo, featureInfoWriter.size(), [&](AbstractMemoryStream *pStream) {
  1376. featureInfoWriter.write(pStream);
  1377. });
  1378. std::unique_ptr<DxilProgramSignatureWriter> pInputSigWriter = nullptr;
  1379. std::unique_ptr<DxilProgramSignatureWriter> pOutputSigWriter = nullptr;
  1380. std::unique_ptr<DxilProgramSignatureWriter> pPatchConstantSigWriter = nullptr;
  1381. if (!pModule->GetShaderModel()->IsLib()) {
  1382. DXIL::TessellatorDomain domain = DXIL::TessellatorDomain::Undefined;
  1383. if (pModule->GetShaderModel()->IsHS() || pModule->GetShaderModel()->IsDS())
  1384. domain = pModule->GetTessellatorDomain();
  1385. pInputSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1386. pModule->GetInputSignature(), domain,
  1387. /*IsInput*/ true,
  1388. /*UseMinPrecision*/ pModule->GetUseMinPrecision());
  1389. pOutputSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1390. pModule->GetOutputSignature(), domain,
  1391. /*IsInput*/ false,
  1392. /*UseMinPrecision*/ pModule->GetUseMinPrecision());
  1393. // Write the input and output signature parts.
  1394. writer.AddPart(DFCC_InputSignature, pInputSigWriter->size(),
  1395. [&](AbstractMemoryStream *pStream) {
  1396. pInputSigWriter->write(pStream);
  1397. });
  1398. writer.AddPart(DFCC_OutputSignature, pOutputSigWriter->size(),
  1399. [&](AbstractMemoryStream *pStream) {
  1400. pOutputSigWriter->write(pStream);
  1401. });
  1402. pPatchConstantSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1403. pModule->GetPatchConstantSignature(), domain,
  1404. /*IsInput*/ pModule->GetShaderModel()->IsDS(),
  1405. /*UseMinPrecision*/ pModule->GetUseMinPrecision());
  1406. if (pModule->GetPatchConstantSignature().GetElements().size()) {
  1407. writer.AddPart(DFCC_PatchConstantSignature,
  1408. pPatchConstantSigWriter->size(),
  1409. [&](AbstractMemoryStream *pStream) {
  1410. pPatchConstantSigWriter->write(pStream);
  1411. });
  1412. }
  1413. }
  1414. std::unique_ptr<DxilRDATWriter> pRDATWriter = nullptr;
  1415. std::unique_ptr<DxilPSVWriter> pPSVWriter = nullptr;
  1416. unsigned int major, minor;
  1417. pModule->GetDxilVersion(major, minor);
  1418. RootSignatureWriter rootSigWriter(std::move(pModule->GetSerializedRootSignature())); // Grab RS here
  1419. DXASSERT_NOMSG(pModule->GetSerializedRootSignature().empty());
  1420. bool bMetadataStripped = false;
  1421. if (pModule->GetShaderModel()->IsLib()) {
  1422. DXASSERT(pModule->GetSerializedRootSignature().empty(),
  1423. "otherwise, library has root signature outside subobject definitions");
  1424. // Write the DxilRuntimeData (RDAT) part.
  1425. pRDATWriter = llvm::make_unique<DxilRDATWriter>(*pModule);
  1426. writer.AddPart(
  1427. DFCC_RuntimeData, pRDATWriter->size(),
  1428. [&](AbstractMemoryStream *pStream) { pRDATWriter->write(pStream); });
  1429. bMetadataStripped |= pModule->StripSubobjectsFromMetadata();
  1430. } else {
  1431. // Write the DxilPipelineStateValidation (PSV0) part.
  1432. pPSVWriter = llvm::make_unique<DxilPSVWriter>(*pModule);
  1433. writer.AddPart(
  1434. DFCC_PipelineStateValidation, pPSVWriter->size(),
  1435. [&](AbstractMemoryStream *pStream) { pPSVWriter->write(pStream); });
  1436. // Write the root signature (RTS0) part.
  1437. if (rootSigWriter.size()) {
  1438. writer.AddPart(
  1439. DFCC_RootSignature, rootSigWriter.size(),
  1440. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  1441. bMetadataStripped |= pModule->StripRootSignatureFromMetadata();
  1442. }
  1443. }
  1444. // If metadata was stripped, re-serialize the input module.
  1445. CComPtr<AbstractMemoryStream> pInputProgramStream = pModuleBitcode;
  1446. if (bMetadataStripped) {
  1447. pInputProgramStream.Release();
  1448. IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pInputProgramStream));
  1449. raw_stream_ostream outStream(pInputProgramStream.p);
  1450. WriteBitcodeToFile(pModule->GetModule(), outStream, true);
  1451. }
  1452. // If we have debug information present, serialize it to a debug part, then use the stripped version as the canonical program version.
  1453. CComPtr<AbstractMemoryStream> pProgramStream = pInputProgramStream;
  1454. bool bModuleStripped = false;
  1455. bool bHasDebugInfo = HasDebugInfo(*pModule->GetModule());
  1456. if (bHasDebugInfo) {
  1457. uint32_t debugInUInt32, debugPaddingBytes;
  1458. GetPaddedProgramPartSize(pInputProgramStream, debugInUInt32, debugPaddingBytes);
  1459. if (Flags & SerializeDxilFlags::IncludeDebugInfoPart) {
  1460. writer.AddPart(DFCC_ShaderDebugInfoDXIL, debugInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
  1461. WriteProgramPart(pModule->GetShaderModel(), pInputProgramStream, pStream);
  1462. });
  1463. }
  1464. llvm::StripDebugInfo(*pModule->GetModule());
  1465. pModule->StripDebugRelatedCode();
  1466. bModuleStripped = true;
  1467. } else {
  1468. // If no debug info, clear DebugNameDependOnSource
  1469. // (it's default, and this scenario can happen)
  1470. Flags &= ~SerializeDxilFlags::DebugNameDependOnSource;
  1471. }
  1472. if (Flags & SerializeDxilFlags::StripReflectionFromDxilPart) {
  1473. pModule->StripReflection();
  1474. bModuleStripped = true;
  1475. }
  1476. // If debug info or reflection was stripped, re-serialize the module.
  1477. if (bModuleStripped) {
  1478. pProgramStream.Release();
  1479. IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pProgramStream));
  1480. raw_stream_ostream outStream(pProgramStream.p);
  1481. WriteBitcodeToFile(pModule->GetModule(), outStream, true);
  1482. }
  1483. // Serialize debug name if requested.
  1484. CComPtr<AbstractMemoryStream> pHashStream;
  1485. std::string DebugNameStr; // Used if constructing name based on hash
  1486. if (Flags & SerializeDxilFlags::IncludeDebugNamePart) {
  1487. if (DebugName.empty()) {
  1488. // If the debug name should be specific to the sources, base the name on the debug
  1489. // bitcode, which will include the source references, line numbers, etc. Otherwise,
  1490. // do it exclusively on the target shader bitcode.
  1491. pHashStream = (int)(Flags & SerializeDxilFlags::DebugNameDependOnSource)
  1492. ? CComPtr<AbstractMemoryStream>(pModuleBitcode)
  1493. : CComPtr<AbstractMemoryStream>(pProgramStream);
  1494. ArrayRef<uint8_t> Data((uint8_t *)pHashStream->GetPtr(), pHashStream->GetPtrSize());
  1495. llvm::MD5 md5;
  1496. llvm::MD5::MD5Result md5Result;
  1497. SmallString<32> Hash;
  1498. md5.update(Data);
  1499. md5.final(md5Result);
  1500. md5.stringifyResult(md5Result, Hash);
  1501. DebugNameStr += Hash;
  1502. DebugNameStr += ".lld";
  1503. DebugName = DebugNameStr;
  1504. }
  1505. // Calculate the size of the blob part.
  1506. const uint32_t DebugInfoContentLen = PSVALIGN4(
  1507. sizeof(DxilShaderDebugName) + DebugName.size() + 1); // 1 for null
  1508. writer.AddPart(DFCC_ShaderDebugName, DebugInfoContentLen,
  1509. [DebugName]
  1510. (AbstractMemoryStream *pStream)
  1511. {
  1512. DxilShaderDebugName NameContent;
  1513. NameContent.Flags = 0;
  1514. NameContent.NameLength = DebugName.size();
  1515. IFT(WriteStreamValue(pStream, NameContent));
  1516. ULONG cbWritten;
  1517. IFT(pStream->Write(DebugName.begin(), DebugName.size(), &cbWritten));
  1518. const char Pad[] = { '\0','\0','\0','\0' };
  1519. // Always writes at least one null to align size
  1520. unsigned padLen = (4 - ((sizeof(DxilShaderDebugName) + cbWritten) & 0x3));
  1521. IFT(pStream->Write(Pad, padLen, &cbWritten));
  1522. });
  1523. }
  1524. // Compute padded bitcode size.
  1525. uint32_t programInUInt32, programPaddingBytes;
  1526. GetPaddedProgramPartSize(pProgramStream, programInUInt32, programPaddingBytes);
  1527. // Write the program part.
  1528. writer.AddPart(DFCC_DXIL, programInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
  1529. WriteProgramPart(pModule->GetShaderModel(), pProgramStream, pStream);
  1530. });
  1531. writer.write(pFinalStream);
  1532. }
  1533. void hlsl::SerializeDxilContainerForRootSignature(hlsl::RootSignatureHandle *pRootSigHandle,
  1534. AbstractMemoryStream *pFinalStream) {
  1535. DXASSERT_NOMSG(pRootSigHandle != nullptr);
  1536. DXASSERT_NOMSG(pFinalStream != nullptr);
  1537. DxilContainerWriter_impl writer;
  1538. // Write the root signature (RTS0) part.
  1539. DxilProgramRootSignatureWriter rootSigWriter(*pRootSigHandle);
  1540. if (!pRootSigHandle->IsEmpty()) {
  1541. writer.AddPart(
  1542. DFCC_RootSignature, rootSigWriter.size(),
  1543. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  1544. }
  1545. writer.write(pFinalStream);
  1546. }