2
0

DxilContainerAssembler.cpp 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509
  1. ///////////////////////////////////////////////////////////////////////////////
  2. // //
  3. // DxilContainerAssembler.cpp //
  4. // Copyright (C) Microsoft Corporation. All rights reserved. //
  5. // This file is distributed under the University of Illinois Open Source //
  6. // License. See LICENSE.TXT for details. //
  7. // //
  8. // Provides support for serializing a module into DXIL container structures. //
  9. // //
  10. ///////////////////////////////////////////////////////////////////////////////
  11. #include "llvm/ADT/MapVector.h"
  12. #include "llvm/ADT/SetVector.h"
  13. #include "llvm/IR/Module.h"
  14. #include "llvm/IR/DebugInfo.h"
  15. #include "llvm/Bitcode/ReaderWriter.h"
  16. #include "llvm/Support/MD5.h"
  17. #include "dxc/HLSL/DxilContainer.h"
  18. #include "dxc/HLSL/DxilModule.h"
  19. #include "dxc/HLSL/DxilShaderModel.h"
  20. #include "dxc/HLSL/DxilRootSignature.h"
  21. #include "dxc/HLSL/DxilUtil.h"
  22. #include "dxc/HLSL/DxilFunctionProps.h"
  23. #include "dxc/HLSL/DxilOperations.h"
  24. #include "dxc/Support/Global.h"
  25. #include "dxc/Support/Unicode.h"
  26. #include "dxc/Support/WinIncludes.h"
  27. #include "dxc/Support/FileIOHelper.h"
  28. #include "dxc/Support/dxcapi.impl.h"
  29. #include "dxc/HLSL/DxilPipelineStateValidation.h"
  30. #include "dxc/HLSL/DxilRuntimeReflection.h"
  31. #include <algorithm>
  32. #include <functional>
  33. using namespace llvm;
  34. using namespace hlsl;
  35. using namespace hlsl::RDAT;
  36. static DxilProgramSigSemantic KindToSystemValue(Semantic::Kind kind, DXIL::TessellatorDomain domain) {
  37. switch (kind) {
  38. case Semantic::Kind::Arbitrary: return DxilProgramSigSemantic::Undefined;
  39. case Semantic::Kind::VertexID: return DxilProgramSigSemantic::VertexID;
  40. case Semantic::Kind::InstanceID: return DxilProgramSigSemantic::InstanceID;
  41. case Semantic::Kind::Position: return DxilProgramSigSemantic::Position;
  42. case Semantic::Kind::Coverage: return DxilProgramSigSemantic::Coverage;
  43. case Semantic::Kind::InnerCoverage: return DxilProgramSigSemantic::InnerCoverage;
  44. case Semantic::Kind::PrimitiveID: return DxilProgramSigSemantic::PrimitiveID;
  45. case Semantic::Kind::SampleIndex: return DxilProgramSigSemantic::SampleIndex;
  46. case Semantic::Kind::IsFrontFace: return DxilProgramSigSemantic::IsFrontFace;
  47. case Semantic::Kind::RenderTargetArrayIndex: return DxilProgramSigSemantic::RenderTargetArrayIndex;
  48. case Semantic::Kind::ViewPortArrayIndex: return DxilProgramSigSemantic::ViewPortArrayIndex;
  49. case Semantic::Kind::ClipDistance: return DxilProgramSigSemantic::ClipDistance;
  50. case Semantic::Kind::CullDistance: return DxilProgramSigSemantic::CullDistance;
  51. case Semantic::Kind::Barycentrics: return DxilProgramSigSemantic::Barycentrics;
  52. case Semantic::Kind::TessFactor: {
  53. switch (domain) {
  54. case DXIL::TessellatorDomain::IsoLine:
  55. // Will bu updated to DetailTessFactor in next row.
  56. return DxilProgramSigSemantic::FinalLineDensityTessfactor;
  57. case DXIL::TessellatorDomain::Tri:
  58. return DxilProgramSigSemantic::FinalTriEdgeTessfactor;
  59. case DXIL::TessellatorDomain::Quad:
  60. return DxilProgramSigSemantic::FinalQuadEdgeTessfactor;
  61. default:
  62. // No other valid TesselatorDomain options.
  63. return DxilProgramSigSemantic::Undefined;
  64. }
  65. }
  66. case Semantic::Kind::InsideTessFactor: {
  67. switch (domain) {
  68. case DXIL::TessellatorDomain::IsoLine:
  69. DXASSERT(0, "invalid semantic");
  70. return DxilProgramSigSemantic::Undefined;
  71. case DXIL::TessellatorDomain::Tri:
  72. return DxilProgramSigSemantic::FinalTriInsideTessfactor;
  73. case DXIL::TessellatorDomain::Quad:
  74. return DxilProgramSigSemantic::FinalQuadInsideTessfactor;
  75. default:
  76. // No other valid DxilProgramSigSemantic options.
  77. return DxilProgramSigSemantic::Undefined;
  78. }
  79. }
  80. case Semantic::Kind::Invalid:
  81. return DxilProgramSigSemantic::Undefined;
  82. case Semantic::Kind::Target: return DxilProgramSigSemantic::Target;
  83. case Semantic::Kind::Depth: return DxilProgramSigSemantic::Depth;
  84. case Semantic::Kind::DepthLessEqual: return DxilProgramSigSemantic::DepthLE;
  85. case Semantic::Kind::DepthGreaterEqual: return DxilProgramSigSemantic::DepthGE;
  86. case Semantic::Kind::StencilRef:
  87. __fallthrough;
  88. default:
  89. DXASSERT(kind == Semantic::Kind::StencilRef, "else Invalid or switch is missing a case");
  90. return DxilProgramSigSemantic::StencilRef;
  91. }
  92. // TODO: Final_* values need mappings
  93. }
  94. static DxilProgramSigCompType CompTypeToSigCompType(hlsl::CompType value) {
  95. switch (value.GetKind()) {
  96. case CompType::Kind::I32: return DxilProgramSigCompType::SInt32;
  97. case CompType::Kind::U32: return DxilProgramSigCompType::UInt32;
  98. case CompType::Kind::F32: return DxilProgramSigCompType::Float32;
  99. case CompType::Kind::I16: return DxilProgramSigCompType::SInt16;
  100. case CompType::Kind::I64: return DxilProgramSigCompType::SInt64;
  101. case CompType::Kind::U16: return DxilProgramSigCompType::UInt16;
  102. case CompType::Kind::U64: return DxilProgramSigCompType::UInt64;
  103. case CompType::Kind::F16: return DxilProgramSigCompType::Float16;
  104. case CompType::Kind::F64: return DxilProgramSigCompType::Float64;
  105. case CompType::Kind::Invalid: __fallthrough;
  106. case CompType::Kind::I1: __fallthrough;
  107. default:
  108. return DxilProgramSigCompType::Unknown;
  109. }
  110. }
  111. static DxilProgramSigMinPrecision CompTypeToSigMinPrecision(hlsl::CompType value) {
  112. switch (value.GetKind()) {
  113. case CompType::Kind::I32: return DxilProgramSigMinPrecision::Default;
  114. case CompType::Kind::U32: return DxilProgramSigMinPrecision::Default;
  115. case CompType::Kind::F32: return DxilProgramSigMinPrecision::Default;
  116. case CompType::Kind::I1: return DxilProgramSigMinPrecision::Default;
  117. case CompType::Kind::U64: __fallthrough;
  118. case CompType::Kind::I64: __fallthrough;
  119. case CompType::Kind::F64: return DxilProgramSigMinPrecision::Default;
  120. case CompType::Kind::I16: return DxilProgramSigMinPrecision::SInt16;
  121. case CompType::Kind::U16: return DxilProgramSigMinPrecision::UInt16;
  122. case CompType::Kind::F16: return DxilProgramSigMinPrecision::Float16; // Float2_8 is not supported in DXIL.
  123. case CompType::Kind::Invalid: __fallthrough;
  124. default:
  125. return DxilProgramSigMinPrecision::Default;
  126. }
  127. }
  128. template <typename T>
  129. struct sort_second {
  130. bool operator()(const T &a, const T &b) {
  131. return std::less<decltype(a.second)>()(a.second, b.second);
  132. }
  133. };
  134. struct sort_sig {
  135. bool operator()(const DxilProgramSignatureElement &a,
  136. const DxilProgramSignatureElement &b) {
  137. return (a.Stream < b.Stream) |
  138. ((a.Stream == b.Stream) & (a.Register < b.Register));
  139. }
  140. };
  141. class DxilProgramSignatureWriter : public DxilPartWriter {
  142. private:
  143. const DxilSignature &m_signature;
  144. DXIL::TessellatorDomain m_domain;
  145. bool m_isInput;
  146. bool m_useMinPrecision;
  147. size_t m_fixedSize;
  148. typedef std::pair<const char *, uint32_t> NameOffsetPair;
  149. typedef llvm::SmallMapVector<const char *, uint32_t, 8> NameOffsetMap;
  150. uint32_t m_lastOffset;
  151. NameOffsetMap m_semanticNameOffsets;
  152. unsigned m_paramCount;
  153. const char *GetSemanticName(const hlsl::DxilSignatureElement *pElement) {
  154. DXASSERT_NOMSG(pElement != nullptr);
  155. DXASSERT(pElement->GetName() != nullptr, "else sig is malformed");
  156. return pElement->GetName();
  157. }
  158. uint32_t GetSemanticOffset(const hlsl::DxilSignatureElement *pElement) {
  159. const char *pName = GetSemanticName(pElement);
  160. NameOffsetMap::iterator nameOffset = m_semanticNameOffsets.find(pName);
  161. uint32_t result;
  162. if (nameOffset == m_semanticNameOffsets.end()) {
  163. result = m_lastOffset;
  164. m_semanticNameOffsets.insert(NameOffsetPair(pName, result));
  165. m_lastOffset += strlen(pName) + 1;
  166. }
  167. else {
  168. result = nameOffset->second;
  169. }
  170. return result;
  171. }
  172. void write(std::vector<DxilProgramSignatureElement> &orderedSig,
  173. const hlsl::DxilSignatureElement *pElement) {
  174. const std::vector<unsigned> &indexVec = pElement->GetSemanticIndexVec();
  175. unsigned eltCount = pElement->GetSemanticIndexVec().size();
  176. unsigned eltRows = 1;
  177. if (eltCount)
  178. eltRows = pElement->GetRows() / eltCount;
  179. DXASSERT_NOMSG(eltRows == 1);
  180. DxilProgramSignatureElement sig;
  181. memset(&sig, 0, sizeof(DxilProgramSignatureElement));
  182. sig.Stream = pElement->GetOutputStream();
  183. sig.SemanticName = GetSemanticOffset(pElement);
  184. sig.SystemValue = KindToSystemValue(pElement->GetKind(), m_domain);
  185. sig.CompType = CompTypeToSigCompType(pElement->GetCompType());
  186. sig.Register = pElement->GetStartRow();
  187. sig.Mask = pElement->GetColsAsMask();
  188. // Only mark exist channel write for output.
  189. // All channel not used for input.
  190. if (!m_isInput)
  191. sig.NeverWrites_Mask = ~(sig.Mask);
  192. else
  193. sig.AlwaysReads_Mask = 0;
  194. sig.MinPrecision = m_useMinPrecision
  195. ? CompTypeToSigMinPrecision(pElement->GetCompType())
  196. : DxilProgramSigMinPrecision::Default;
  197. for (unsigned i = 0; i < eltCount; ++i) {
  198. sig.SemanticIndex = indexVec[i];
  199. orderedSig.emplace_back(sig);
  200. if (pElement->IsAllocated())
  201. sig.Register += eltRows;
  202. if (sig.SystemValue == DxilProgramSigSemantic::FinalLineDensityTessfactor)
  203. sig.SystemValue = DxilProgramSigSemantic::FinalLineDetailTessfactor;
  204. }
  205. }
  206. void calcSizes() {
  207. // Calculate size for signature elements.
  208. const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
  209. uint32_t result = sizeof(DxilProgramSignature);
  210. m_paramCount = 0;
  211. for (size_t i = 0; i < elements.size(); ++i) {
  212. DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
  213. if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
  214. continue;
  215. unsigned semanticCount = elements[i]->GetSemanticIndexVec().size();
  216. result += semanticCount * sizeof(DxilProgramSignatureElement);
  217. m_paramCount += semanticCount;
  218. }
  219. m_fixedSize = result;
  220. m_lastOffset = m_fixedSize;
  221. // Calculate size for semantic strings.
  222. for (size_t i = 0; i < elements.size(); ++i) {
  223. GetSemanticOffset(elements[i].get());
  224. }
  225. }
  226. public:
  227. DxilProgramSignatureWriter(const DxilSignature &signature,
  228. DXIL::TessellatorDomain domain, bool isInput, bool UseMinPrecision)
  229. : m_signature(signature), m_domain(domain), m_isInput(isInput), m_useMinPrecision(UseMinPrecision) {
  230. calcSizes();
  231. }
  232. uint32_t size() const override {
  233. return m_lastOffset;
  234. }
  235. void write(AbstractMemoryStream *pStream) override {
  236. UINT64 startPos = pStream->GetPosition();
  237. const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
  238. DxilProgramSignature programSig;
  239. programSig.ParamCount = m_paramCount;
  240. programSig.ParamOffset = sizeof(DxilProgramSignature);
  241. IFT(WriteStreamValue(pStream, programSig));
  242. // Write structures in register order.
  243. std::vector<DxilProgramSignatureElement> orderedSig;
  244. for (size_t i = 0; i < elements.size(); ++i) {
  245. DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
  246. if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
  247. continue;
  248. write(orderedSig, elements[i].get());
  249. }
  250. std::sort(orderedSig.begin(), orderedSig.end(), sort_sig());
  251. for (size_t i = 0; i < orderedSig.size(); ++i) {
  252. DxilProgramSignatureElement &sigElt = orderedSig[i];
  253. IFT(WriteStreamValue(pStream, sigElt));
  254. }
  255. // Write strings in the offset order.
  256. std::vector<NameOffsetPair> ordered;
  257. ordered.assign(m_semanticNameOffsets.begin(), m_semanticNameOffsets.end());
  258. std::sort(ordered.begin(), ordered.end(), sort_second<NameOffsetPair>());
  259. for (size_t i = 0; i < ordered.size(); ++i) {
  260. const char *pName = ordered[i].first;
  261. ULONG cbWritten;
  262. UINT64 offsetPos = pStream->GetPosition();
  263. DXASSERT_LOCALVAR(offsetPos, offsetPos - startPos == ordered[i].second, "else str offset is incorrect");
  264. IFT(pStream->Write(pName, strlen(pName) + 1, &cbWritten));
  265. }
  266. // Verify we wrote the bytes we though we would.
  267. UINT64 endPos = pStream->GetPosition();
  268. DXASSERT_LOCALVAR(endPos - startPos, endPos - startPos == size(), "else size is incorrect");
  269. }
  270. };
  271. DxilPartWriter *hlsl::NewProgramSignatureWriter(const DxilModule &M, DXIL::SignatureKind Kind) {
  272. DXIL::TessellatorDomain domain = DXIL::TessellatorDomain::Undefined;
  273. if (M.GetShaderModel()->IsHS() || M.GetShaderModel()->IsDS())
  274. domain = M.GetTessellatorDomain();
  275. switch (Kind) {
  276. case DXIL::SignatureKind::Input:
  277. return new DxilProgramSignatureWriter(
  278. M.GetInputSignature(), domain, true,
  279. M.GetUseMinPrecision());
  280. case DXIL::SignatureKind::Output:
  281. return new DxilProgramSignatureWriter(
  282. M.GetOutputSignature(), domain, false,
  283. M.GetUseMinPrecision());
  284. case DXIL::SignatureKind::PatchConstant:
  285. return new DxilProgramSignatureWriter(
  286. M.GetPatchConstantSignature(), domain,
  287. /*IsInput*/ M.GetShaderModel()->IsDS(),
  288. /*UseMinPrecision*/M.GetUseMinPrecision());
  289. case DXIL::SignatureKind::Invalid:
  290. return nullptr;
  291. }
  292. return nullptr;
  293. }
  294. class DxilProgramRootSignatureWriter : public DxilPartWriter {
  295. private:
  296. const RootSignatureHandle &m_Sig;
  297. public:
  298. DxilProgramRootSignatureWriter(const RootSignatureHandle &S) : m_Sig(S) {}
  299. uint32_t size() const {
  300. return m_Sig.GetSerializedSize();
  301. }
  302. void write(AbstractMemoryStream *pStream) {
  303. ULONG cbWritten;
  304. IFT(pStream->Write(m_Sig.GetSerializedBytes(), size(), &cbWritten));
  305. }
  306. };
  307. DxilPartWriter *hlsl::NewRootSignatureWriter(const RootSignatureHandle &S) {
  308. return new DxilProgramRootSignatureWriter(S);
  309. }
  310. class DxilFeatureInfoWriter : public DxilPartWriter {
  311. private:
  312. // Only save the shader properties after create class for it.
  313. DxilShaderFeatureInfo featureInfo;
  314. public:
  315. DxilFeatureInfoWriter(const DxilModule &M) {
  316. featureInfo.FeatureFlags = M.m_ShaderFlags.GetFeatureInfo();
  317. }
  318. uint32_t size() const override {
  319. return sizeof(DxilShaderFeatureInfo);
  320. }
  321. void write(AbstractMemoryStream *pStream) override {
  322. IFT(WriteStreamValue(pStream, featureInfo.FeatureFlags));
  323. }
  324. };
  325. DxilPartWriter *hlsl::NewFeatureInfoWriter(const DxilModule &M) {
  326. return new DxilFeatureInfoWriter(M);
  327. }
  328. class DxilPSVWriter : public DxilPartWriter {
  329. private:
  330. const DxilModule &m_Module;
  331. PSVInitInfo m_PSVInitInfo;
  332. DxilPipelineStateValidation m_PSV;
  333. uint32_t m_PSVBufferSize;
  334. SmallVector<char, 512> m_PSVBuffer;
  335. SmallVector<char, 256> m_StringBuffer;
  336. SmallVector<uint32_t, 8> m_SemanticIndexBuffer;
  337. std::vector<PSVSignatureElement0> m_SigInputElements;
  338. std::vector<PSVSignatureElement0> m_SigOutputElements;
  339. std::vector<PSVSignatureElement0> m_SigPatchConstantElements;
  340. void SetPSVSigElement(PSVSignatureElement0 &E, const DxilSignatureElement &SE) {
  341. memset(&E, 0, sizeof(PSVSignatureElement0));
  342. if (SE.GetKind() == DXIL::SemanticKind::Arbitrary && strlen(SE.GetName()) > 0) {
  343. E.SemanticName = (uint32_t)m_StringBuffer.size();
  344. StringRef Name(SE.GetName());
  345. m_StringBuffer.append(Name.size()+1, '\0');
  346. memcpy(m_StringBuffer.data() + E.SemanticName, Name.data(), Name.size());
  347. } else {
  348. // m_StringBuffer always starts with '\0' so offset 0 is empty string:
  349. E.SemanticName = 0;
  350. }
  351. // Search index buffer for matching semantic index sequence
  352. DXASSERT_NOMSG(SE.GetRows() == SE.GetSemanticIndexVec().size());
  353. auto &SemIdx = SE.GetSemanticIndexVec();
  354. bool match = false;
  355. for (uint32_t offset = 0; offset + SE.GetRows() - 1 < m_SemanticIndexBuffer.size(); offset++) {
  356. match = true;
  357. for (uint32_t row = 0; row < SE.GetRows(); row++) {
  358. if ((uint32_t)SemIdx[row] != m_SemanticIndexBuffer[offset + row]) {
  359. match = false;
  360. break;
  361. }
  362. }
  363. if (match) {
  364. E.SemanticIndexes = offset;
  365. break;
  366. }
  367. }
  368. if (!match) {
  369. E.SemanticIndexes = m_SemanticIndexBuffer.size();
  370. for (uint32_t row = 0; row < SemIdx.size(); row++) {
  371. m_SemanticIndexBuffer.push_back((uint32_t)SemIdx[row]);
  372. }
  373. }
  374. DXASSERT_NOMSG(SE.GetRows() <= 32);
  375. E.Rows = (uint8_t)SE.GetRows();
  376. DXASSERT_NOMSG(SE.GetCols() <= 4);
  377. E.ColsAndStart = (uint8_t)SE.GetCols() & 0xF;
  378. if (SE.IsAllocated()) {
  379. DXASSERT_NOMSG(SE.GetStartCol() < 4);
  380. DXASSERT_NOMSG(SE.GetStartRow() < 32);
  381. E.ColsAndStart |= 0x40 | (SE.GetStartCol() << 4);
  382. E.StartRow = (uint8_t)SE.GetStartRow();
  383. }
  384. E.SemanticKind = (uint8_t)SE.GetKind();
  385. E.ComponentType = (uint8_t)CompTypeToSigCompType(SE.GetCompType());
  386. E.InterpolationMode = (uint8_t)SE.GetInterpolationMode()->GetKind();
  387. DXASSERT_NOMSG(SE.GetOutputStream() < 4);
  388. E.DynamicMaskAndStream = (uint8_t)((SE.GetOutputStream() & 0x3) << 4);
  389. E.DynamicMaskAndStream |= (SE.GetDynIdxCompMask()) & 0xF;
  390. }
  391. const uint32_t *CopyViewIDState(const uint32_t *pSrc, uint32_t InputScalars, uint32_t OutputScalars, PSVComponentMask ViewIDMask, PSVDependencyTable IOTable) {
  392. unsigned MaskDwords = PSVComputeMaskDwordsFromVectors(PSVALIGN4(OutputScalars) / 4);
  393. if (ViewIDMask.IsValid()) {
  394. DXASSERT_NOMSG(!IOTable.Table || ViewIDMask.NumVectors == IOTable.OutputVectors);
  395. memcpy(ViewIDMask.Mask, pSrc, 4 * MaskDwords);
  396. pSrc += MaskDwords;
  397. }
  398. if (IOTable.IsValid() && IOTable.InputVectors && IOTable.OutputVectors) {
  399. DXASSERT_NOMSG((InputScalars <= IOTable.InputVectors * 4) && (IOTable.InputVectors * 4 - InputScalars < 4));
  400. DXASSERT_NOMSG((OutputScalars <= IOTable.OutputVectors * 4) && (IOTable.OutputVectors * 4 - OutputScalars < 4));
  401. memcpy(IOTable.Table, pSrc, 4 * MaskDwords * InputScalars);
  402. pSrc += MaskDwords * InputScalars;
  403. }
  404. return pSrc;
  405. }
  406. public:
  407. DxilPSVWriter(const DxilModule &module, uint32_t PSVVersion = 0)
  408. : m_Module(module),
  409. m_PSVInitInfo(PSVVersion)
  410. {
  411. unsigned ValMajor, ValMinor;
  412. m_Module.GetValidatorVersion(ValMajor, ValMinor);
  413. // Allow PSVVersion to be upgraded
  414. if (m_PSVInitInfo.PSVVersion < 1 && (ValMajor > 1 || (ValMajor == 1 && ValMinor >= 1)))
  415. m_PSVInitInfo.PSVVersion = 1;
  416. const ShaderModel *SM = m_Module.GetShaderModel();
  417. UINT uCBuffers = m_Module.GetCBuffers().size();
  418. UINT uSamplers = m_Module.GetSamplers().size();
  419. UINT uSRVs = m_Module.GetSRVs().size();
  420. UINT uUAVs = m_Module.GetUAVs().size();
  421. m_PSVInitInfo.ResourceCount = uCBuffers + uSamplers + uSRVs + uUAVs;
  422. // TODO: for >= 6.2 version, create more efficient structure
  423. if (m_PSVInitInfo.PSVVersion > 0) {
  424. m_PSVInitInfo.ShaderStage = (PSVShaderKind)SM->GetKind();
  425. // Copy Dxil Signatures
  426. m_StringBuffer.push_back('\0'); // For empty semantic name (system value)
  427. m_PSVInitInfo.SigInputElements = m_Module.GetInputSignature().GetElements().size();
  428. m_SigInputElements.resize(m_PSVInitInfo.SigInputElements);
  429. m_PSVInitInfo.SigOutputElements = m_Module.GetOutputSignature().GetElements().size();
  430. m_SigOutputElements.resize(m_PSVInitInfo.SigOutputElements);
  431. m_PSVInitInfo.SigPatchConstantElements = m_Module.GetPatchConstantSignature().GetElements().size();
  432. m_SigPatchConstantElements.resize(m_PSVInitInfo.SigPatchConstantElements);
  433. uint32_t i = 0;
  434. for (auto &SE : m_Module.GetInputSignature().GetElements()) {
  435. SetPSVSigElement(m_SigInputElements[i++], *(SE.get()));
  436. }
  437. i = 0;
  438. for (auto &SE : m_Module.GetOutputSignature().GetElements()) {
  439. SetPSVSigElement(m_SigOutputElements[i++], *(SE.get()));
  440. }
  441. i = 0;
  442. for (auto &SE : m_Module.GetPatchConstantSignature().GetElements()) {
  443. SetPSVSigElement(m_SigPatchConstantElements[i++], *(SE.get()));
  444. }
  445. // Set String and SemanticInput Tables
  446. m_PSVInitInfo.StringTable.Table = m_StringBuffer.data();
  447. m_PSVInitInfo.StringTable.Size = m_StringBuffer.size();
  448. m_PSVInitInfo.SemanticIndexTable.Table = m_SemanticIndexBuffer.data();
  449. m_PSVInitInfo.SemanticIndexTable.Entries = m_SemanticIndexBuffer.size();
  450. // Set up ViewID and signature dependency info
  451. m_PSVInitInfo.UsesViewID = m_Module.m_ShaderFlags.GetViewID() ? true : false;
  452. m_PSVInitInfo.SigInputVectors = m_Module.GetInputSignature().NumVectorsUsed(0);
  453. for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
  454. m_PSVInitInfo.SigOutputVectors[streamIndex] = m_Module.GetOutputSignature().NumVectorsUsed(streamIndex);
  455. }
  456. m_PSVInitInfo.SigPatchConstantVectors = 0;
  457. if (SM->IsHS()) {
  458. m_PSVInitInfo.SigPatchConstantVectors = m_Module.GetPatchConstantSignature().NumVectorsUsed(0);
  459. }
  460. if (SM->IsDS()) {
  461. m_PSVInitInfo.SigPatchConstantVectors = m_Module.GetPatchConstantSignature().NumVectorsUsed(0);
  462. }
  463. }
  464. if (!m_PSV.InitNew(m_PSVInitInfo, nullptr, &m_PSVBufferSize)) {
  465. DXASSERT(false, "PSV InitNew failed computing size!");
  466. }
  467. }
  468. uint32_t size() const override {
  469. return m_PSVBufferSize;
  470. }
  471. void write(AbstractMemoryStream *pStream) override {
  472. m_PSVBuffer.resize(m_PSVBufferSize);
  473. if (!m_PSV.InitNew(m_PSVInitInfo, m_PSVBuffer.data(), &m_PSVBufferSize)) {
  474. DXASSERT(false, "PSV InitNew failed!");
  475. }
  476. DXASSERT_NOMSG(m_PSVBuffer.size() == m_PSVBufferSize);
  477. // Set DxilRuntimInfo
  478. PSVRuntimeInfo0* pInfo = m_PSV.GetPSVRuntimeInfo0();
  479. PSVRuntimeInfo1* pInfo1 = m_PSV.GetPSVRuntimeInfo1();
  480. const ShaderModel* SM = m_Module.GetShaderModel();
  481. pInfo->MinimumExpectedWaveLaneCount = 0;
  482. pInfo->MaximumExpectedWaveLaneCount = (UINT)-1;
  483. switch (SM->GetKind()) {
  484. case ShaderModel::Kind::Vertex: {
  485. pInfo->VS.OutputPositionPresent = 0;
  486. const DxilSignature &S = m_Module.GetOutputSignature();
  487. for (auto &&E : S.GetElements()) {
  488. if (E->GetKind() == Semantic::Kind::Position) {
  489. // Ideally, we might check never writes mask here,
  490. // but this is not yet part of the signature element in Dxil
  491. pInfo->VS.OutputPositionPresent = 1;
  492. break;
  493. }
  494. }
  495. break;
  496. }
  497. case ShaderModel::Kind::Hull: {
  498. pInfo->HS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
  499. pInfo->HS.OutputControlPointCount = (UINT)m_Module.GetOutputControlPointCount();
  500. pInfo->HS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
  501. pInfo->HS.TessellatorOutputPrimitive = (UINT)m_Module.GetTessellatorOutputPrimitive();
  502. break;
  503. }
  504. case ShaderModel::Kind::Domain: {
  505. pInfo->DS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
  506. pInfo->DS.OutputPositionPresent = 0;
  507. const DxilSignature &S = m_Module.GetOutputSignature();
  508. for (auto &&E : S.GetElements()) {
  509. if (E->GetKind() == Semantic::Kind::Position) {
  510. // Ideally, we might check never writes mask here,
  511. // but this is not yet part of the signature element in Dxil
  512. pInfo->DS.OutputPositionPresent = 1;
  513. break;
  514. }
  515. }
  516. pInfo->DS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
  517. break;
  518. }
  519. case ShaderModel::Kind::Geometry: {
  520. pInfo->GS.InputPrimitive = (UINT)m_Module.GetInputPrimitive();
  521. // NOTE: For OutputTopology, pick one from a used stream, or if none
  522. // are used, use stream 0, and set OutputStreamMask to 1.
  523. pInfo->GS.OutputTopology = (UINT)m_Module.GetStreamPrimitiveTopology();
  524. pInfo->GS.OutputStreamMask = m_Module.GetActiveStreamMask();
  525. if (pInfo->GS.OutputStreamMask == 0) {
  526. pInfo->GS.OutputStreamMask = 1; // This is what runtime expects.
  527. }
  528. pInfo->GS.OutputPositionPresent = 0;
  529. const DxilSignature &S = m_Module.GetOutputSignature();
  530. for (auto &&E : S.GetElements()) {
  531. if (E->GetKind() == Semantic::Kind::Position) {
  532. // Ideally, we might check never writes mask here,
  533. // but this is not yet part of the signature element in Dxil
  534. pInfo->GS.OutputPositionPresent = 1;
  535. break;
  536. }
  537. }
  538. break;
  539. }
  540. case ShaderModel::Kind::Pixel: {
  541. pInfo->PS.DepthOutput = 0;
  542. pInfo->PS.SampleFrequency = 0;
  543. {
  544. const DxilSignature &S = m_Module.GetInputSignature();
  545. for (auto &&E : S.GetElements()) {
  546. if (E->GetInterpolationMode()->IsAnySample() ||
  547. E->GetKind() == Semantic::Kind::SampleIndex) {
  548. pInfo->PS.SampleFrequency = 1;
  549. }
  550. }
  551. }
  552. {
  553. const DxilSignature &S = m_Module.GetOutputSignature();
  554. for (auto &&E : S.GetElements()) {
  555. if (E->IsAnyDepth()) {
  556. pInfo->PS.DepthOutput = 1;
  557. break;
  558. }
  559. }
  560. }
  561. break;
  562. }
  563. case ShaderModel::Kind::Compute:
  564. case ShaderModel::Kind::Library:
  565. case ShaderModel::Kind::Invalid:
  566. // Compute, Library, and Invalide not relevant to PSVRuntimeInfo0
  567. break;
  568. }
  569. // Set resource binding information
  570. UINT uResIndex = 0;
  571. for (auto &&R : m_Module.GetCBuffers()) {
  572. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  573. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  574. DXASSERT_NOMSG(pBindInfo);
  575. pBindInfo->ResType = (UINT)PSVResourceType::CBV;
  576. pBindInfo->Space = R->GetSpaceID();
  577. pBindInfo->LowerBound = R->GetLowerBound();
  578. pBindInfo->UpperBound = R->GetUpperBound();
  579. uResIndex++;
  580. }
  581. for (auto &&R : m_Module.GetSamplers()) {
  582. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  583. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  584. DXASSERT_NOMSG(pBindInfo);
  585. pBindInfo->ResType = (UINT)PSVResourceType::Sampler;
  586. pBindInfo->Space = R->GetSpaceID();
  587. pBindInfo->LowerBound = R->GetLowerBound();
  588. pBindInfo->UpperBound = R->GetUpperBound();
  589. uResIndex++;
  590. }
  591. for (auto &&R : m_Module.GetSRVs()) {
  592. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  593. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  594. DXASSERT_NOMSG(pBindInfo);
  595. if (R->IsStructuredBuffer()) {
  596. pBindInfo->ResType = (UINT)PSVResourceType::SRVStructured;
  597. } else if (R->IsRawBuffer()) {
  598. pBindInfo->ResType = (UINT)PSVResourceType::SRVRaw;
  599. } else {
  600. pBindInfo->ResType = (UINT)PSVResourceType::SRVTyped;
  601. }
  602. pBindInfo->Space = R->GetSpaceID();
  603. pBindInfo->LowerBound = R->GetLowerBound();
  604. pBindInfo->UpperBound = R->GetUpperBound();
  605. uResIndex++;
  606. }
  607. for (auto &&R : m_Module.GetUAVs()) {
  608. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  609. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  610. DXASSERT_NOMSG(pBindInfo);
  611. if (R->IsStructuredBuffer()) {
  612. if (R->HasCounter())
  613. pBindInfo->ResType = (UINT)PSVResourceType::UAVStructuredWithCounter;
  614. else
  615. pBindInfo->ResType = (UINT)PSVResourceType::UAVStructured;
  616. } else if (R->IsRawBuffer()) {
  617. pBindInfo->ResType = (UINT)PSVResourceType::UAVRaw;
  618. } else {
  619. pBindInfo->ResType = (UINT)PSVResourceType::UAVTyped;
  620. }
  621. pBindInfo->Space = R->GetSpaceID();
  622. pBindInfo->LowerBound = R->GetLowerBound();
  623. pBindInfo->UpperBound = R->GetUpperBound();
  624. uResIndex++;
  625. }
  626. DXASSERT_NOMSG(uResIndex == m_PSVInitInfo.ResourceCount);
  627. if (m_PSVInitInfo.PSVVersion > 0) {
  628. DXASSERT_NOMSG(pInfo1);
  629. // Write MaxVertexCount
  630. if (SM->IsGS()) {
  631. DXASSERT_NOMSG(m_Module.GetMaxVertexCount() <= 1024);
  632. pInfo1->MaxVertexCount = (uint16_t)m_Module.GetMaxVertexCount();
  633. }
  634. // Write Dxil Signature Elements
  635. for (unsigned i = 0; i < m_PSV.GetSigInputElements(); i++) {
  636. PSVSignatureElement0 *pInputElement = m_PSV.GetInputElement0(i);
  637. DXASSERT_NOMSG(pInputElement);
  638. memcpy(pInputElement, &m_SigInputElements[i], sizeof(PSVSignatureElement0));
  639. }
  640. for (unsigned i = 0; i < m_PSV.GetSigOutputElements(); i++) {
  641. PSVSignatureElement0 *pOutputElement = m_PSV.GetOutputElement0(i);
  642. DXASSERT_NOMSG(pOutputElement);
  643. memcpy(pOutputElement, &m_SigOutputElements[i], sizeof(PSVSignatureElement0));
  644. }
  645. for (unsigned i = 0; i < m_PSV.GetSigPatchConstantElements(); i++) {
  646. PSVSignatureElement0 *pPatchConstantElement = m_PSV.GetPatchConstantElement0(i);
  647. DXASSERT_NOMSG(pPatchConstantElement);
  648. memcpy(pPatchConstantElement, &m_SigPatchConstantElements[i], sizeof(PSVSignatureElement0));
  649. }
  650. // Gather ViewID dependency information
  651. auto &viewState = m_Module.GetViewIdState().GetSerialized();
  652. if (!viewState.empty()) {
  653. const uint32_t *pSrc = viewState.data();
  654. const uint32_t InputScalars = *(pSrc++);
  655. uint32_t OutputScalars[4];
  656. for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
  657. OutputScalars[streamIndex] = *(pSrc++);
  658. pSrc = CopyViewIDState(pSrc, InputScalars, OutputScalars[streamIndex], m_PSV.GetViewIDOutputMask(streamIndex), m_PSV.GetInputToOutputTable(streamIndex));
  659. if (!SM->IsGS())
  660. break;
  661. }
  662. if (SM->IsHS()) {
  663. const uint32_t PCScalars = *(pSrc++);
  664. pSrc = CopyViewIDState(pSrc, InputScalars, PCScalars, m_PSV.GetViewIDPCOutputMask(), m_PSV.GetInputToPCOutputTable());
  665. } else if (SM->IsDS()) {
  666. const uint32_t PCScalars = *(pSrc++);
  667. pSrc = CopyViewIDState(pSrc, PCScalars, OutputScalars[0], PSVComponentMask(), m_PSV.GetPCInputToOutputTable());
  668. }
  669. DXASSERT_NOMSG(viewState.data() + viewState.size() == pSrc);
  670. }
  671. }
  672. ULONG cbWritten;
  673. IFT(pStream->Write(m_PSVBuffer.data(), m_PSVBufferSize, &cbWritten));
  674. DXASSERT_NOMSG(cbWritten == m_PSVBufferSize);
  675. }
  676. };
  677. // Size-checked writer
  678. // on overrun: throw buffer_overrun{};
  679. // on overlap: throw buffer_overlap{};
  680. class CheckedWriter {
  681. char *Ptr;
  682. size_t Size;
  683. size_t Offset;
  684. public:
  685. class exception : public std::exception {};
  686. class buffer_overrun : public exception {
  687. public:
  688. buffer_overrun() noexcept {}
  689. virtual const char * what() const noexcept override {
  690. return ("buffer_overrun");
  691. }
  692. };
  693. class buffer_overlap : public exception {
  694. public:
  695. buffer_overlap() noexcept {}
  696. virtual const char * what() const noexcept override {
  697. return ("buffer_overlap");
  698. }
  699. };
  700. CheckedWriter(void *ptr, size_t size) :
  701. Ptr(reinterpret_cast<char*>(ptr)), Size(size), Offset(0) {}
  702. size_t GetOffset() const { return Offset; }
  703. void Reset(size_t offset = 0) {
  704. if (offset >= Size) throw buffer_overrun{};
  705. Offset = offset;
  706. }
  707. // offset is absolute, ensure offset is >= current offset
  708. void Advance(size_t offset = 0) {
  709. if (offset < Offset) throw buffer_overlap{};
  710. if (offset >= Size) throw buffer_overrun{};
  711. Offset = offset;
  712. }
  713. void CheckBounds(size_t size) const {
  714. assert(Offset <= Size && "otherwise, offset larger than size");
  715. if (size > Size - Offset)
  716. throw buffer_overrun{};
  717. }
  718. template <typename T>
  719. T *Cast(size_t size = 0) {
  720. if (0 == size) size = sizeof(T);
  721. CheckBounds(size);
  722. return reinterpret_cast<T*>(Ptr + Offset);
  723. }
  724. // Map and Write advance Offset:
  725. template <typename T>
  726. T &Map() {
  727. const size_t size = sizeof(T);
  728. T * p = Cast<T>(size);
  729. Offset += size;
  730. return *p;
  731. }
  732. template <typename T>
  733. T *MapArray(size_t count = 1) {
  734. const size_t size = sizeof(T) * count;
  735. T *p = Cast<T>(size);
  736. Offset += size;
  737. return p;
  738. }
  739. template <typename T>
  740. void Write(const T &obj) {
  741. const size_t size = sizeof(T);
  742. *Cast<T>(size) = obj;
  743. Offset += size;
  744. }
  745. template <typename T>
  746. void WriteArray(const T *pArray, size_t count = 1) {
  747. const size_t size = sizeof(T) * count;
  748. memcpy(Cast<T>(size), pArray, size);
  749. Offset += size;
  750. }
  751. };
  752. // Like DXIL container, RDAT itself is a mini container that contains multiple RDAT parts
  753. class RDATPart {
  754. public:
  755. virtual uint32_t GetPartSize() const { return 0; }
  756. virtual void Write(void *ptr) {}
  757. virtual RuntimeDataPartType GetType() const { return RuntimeDataPartType::Invalid; }
  758. virtual ~RDATPart() {}
  759. };
  760. // Most RDAT parts are tables each containing a list of structures of same type.
  761. // Exceptions are string table and index table because each string or list of
  762. // indicies can be of different sizes.
  763. template <class T>
  764. class RDATTable : public RDATPart {
  765. protected:
  766. std::vector<T> m_rows;
  767. public:
  768. virtual void Insert(T *data) {}
  769. virtual ~RDATTable() {}
  770. void Insert(const T &data) {
  771. m_rows.push_back(data);
  772. }
  773. void Write(void *ptr) {
  774. char *pCur = (char*)ptr;
  775. RuntimeDataTableHeader &header = *reinterpret_cast<RuntimeDataTableHeader*>(pCur);
  776. header.RecordCount = m_rows.size();
  777. header.RecordStride = sizeof(T);
  778. pCur += sizeof(RuntimeDataTableHeader);
  779. memcpy(pCur, m_rows.data(), header.RecordCount * header.RecordStride);
  780. };
  781. uint32_t GetPartSize() const {
  782. if (m_rows.empty())
  783. return 0;
  784. return sizeof(RuntimeDataTableHeader) + m_rows.size() * sizeof(T);
  785. }
  786. };
  787. // Resource table will contain a list of RuntimeDataResourceInfo in order of
  788. // CBuffer, Sampler, SRV, and UAV resource classes.
  789. class ResourceTable : public RDATTable<RuntimeDataResourceInfo> {
  790. public:
  791. RuntimeDataPartType GetType() const { return RuntimeDataPartType::ResourceTable; }
  792. };
  793. class FunctionTable : public RDATTable<RuntimeDataFunctionInfo> {
  794. public:
  795. RuntimeDataPartType GetType() const { return RuntimeDataPartType::FunctionTable; }
  796. };
  797. class StringBufferPart : public RDATPart {
  798. private:
  799. StringMap<uint32_t> m_StringMap;
  800. SmallVector<char, 256> m_StringBuffer;
  801. uint32_t curIndex;
  802. public:
  803. StringBufferPart() : m_StringMap(), m_StringBuffer(), curIndex(0) {
  804. // Always start string table with null so empty/null strings have offset of zero
  805. m_StringBuffer.push_back('\0');
  806. }
  807. // returns the offset of the name inserted
  808. uint32_t Insert(StringRef name) {
  809. if (name.empty())
  810. return 0;
  811. // Don't add duplicate strings
  812. auto found = m_StringMap.find(name);
  813. if (found != m_StringMap.end())
  814. return found->second;
  815. uint32_t prevIndex = (uint32_t)m_StringBuffer.size();
  816. m_StringMap[name] = prevIndex;
  817. m_StringBuffer.reserve(m_StringBuffer.size() + name.size() + 1);
  818. m_StringBuffer.append(name.begin(), name.end());
  819. m_StringBuffer.push_back('\0');
  820. return prevIndex;
  821. }
  822. RuntimeDataPartType GetType() const { return RuntimeDataPartType::StringBuffer; }
  823. uint32_t GetPartSize() const { return m_StringBuffer.size(); }
  824. void Write(void *ptr) { memcpy(ptr, m_StringBuffer.data(), m_StringBuffer.size()); }
  825. };
  826. struct IndexArraysPart : public RDATPart {
  827. private:
  828. std::vector<uint32_t> m_IndexBuffer;
  829. // Use m_IndexSet with CmpIndices to avoid duplicate index arrays
  830. struct CmpIndices {
  831. const IndexArraysPart &Table;
  832. CmpIndices(const IndexArraysPart &table) : Table(table) {}
  833. bool operator()(uint32_t left, uint32_t right) const {
  834. const uint32_t *pLeft = Table.m_IndexBuffer.data() + left;
  835. const uint32_t *pRight = Table.m_IndexBuffer.data() + right;
  836. if (*pLeft != *pRight)
  837. return (*pLeft < *pRight);
  838. uint32_t count = *pLeft;
  839. for (unsigned i = 0; i < count; i++) {
  840. ++pLeft; ++pRight;
  841. if (*pLeft != *pRight)
  842. return (*pLeft < *pRight);
  843. }
  844. return false;
  845. }
  846. };
  847. std::set<uint32_t, CmpIndices> m_IndexSet;
  848. public:
  849. IndexArraysPart() : m_IndexBuffer(), m_IndexSet(*this) {}
  850. template <class iterator>
  851. uint32_t AddIndex(iterator begin, iterator end) {
  852. uint32_t newOffset = m_IndexBuffer.size();
  853. m_IndexBuffer.push_back(0); // Size: update after insertion
  854. m_IndexBuffer.insert(m_IndexBuffer.end(), begin, end);
  855. m_IndexBuffer[newOffset] = (m_IndexBuffer.size() - newOffset) - 1;
  856. // Check for duplicate, return new offset if not duplicate
  857. auto insertResult = m_IndexSet.insert(newOffset);
  858. if (insertResult.second)
  859. return newOffset;
  860. // Otherwise it was a duplicate, so chop off the size and return the original
  861. m_IndexBuffer.resize(newOffset);
  862. return *insertResult.first;
  863. }
  864. RuntimeDataPartType GetType() const { return RuntimeDataPartType::IndexArrays; }
  865. uint32_t GetPartSize() const {
  866. return sizeof(uint32_t) * m_IndexBuffer.size();
  867. }
  868. void Write(void *ptr) {
  869. memcpy(ptr, m_IndexBuffer.data(), m_IndexBuffer.size() * sizeof(uint32_t));
  870. }
  871. };
  872. using namespace DXIL;
  873. class DxilRDATWriter : public DxilPartWriter {
  874. private:
  875. const DxilModule &m_Module;
  876. SmallVector<char, 1024> m_RDATBuffer;
  877. std::vector<std::unique_ptr<RDATPart>> m_Parts;
  878. typedef llvm::SmallSetVector<uint32_t, 8> Indices;
  879. typedef std::unordered_map<const llvm::Function *, Indices> FunctionIndexMap;
  880. FunctionIndexMap m_FuncToResNameOffset; // list of resources used
  881. FunctionIndexMap m_FuncToDependencies; // list of unresolved functions used
  882. struct ShaderCompatInfo {
  883. ShaderCompatInfo()
  884. : minMajor(6), minMinor(0),
  885. mask(((unsigned)1 << (unsigned)DXIL::ShaderKind::Invalid) - 1)
  886. {}
  887. unsigned minMajor, minMinor, mask;
  888. };
  889. typedef std::unordered_map<const llvm::Function*, ShaderCompatInfo> FunctionShaderCompatMap;
  890. FunctionShaderCompatMap m_FuncToShaderCompat;
  891. void UpdateFunctionToShaderCompat(const llvm::Function* dxilFunc) {
  892. for (const auto &user : dxilFunc->users()) {
  893. if (const llvm::Instruction *I = dyn_cast<const llvm::Instruction>(user)) {
  894. // Find calling function
  895. const llvm::Function *F = cast<const llvm::Function>(I->getParent()->getParent());
  896. // Insert or lookup info
  897. ShaderCompatInfo &info = m_FuncToShaderCompat[F];
  898. OpCode opcode = OP::GetDxilOpFuncCallInst(I);
  899. unsigned major, minor, mask;
  900. // bWithTranslation = true for library modules
  901. OP::GetMinShaderModelAndMask(opcode, /*bWithTranslation*/true, major, minor, mask);
  902. if (major > info.minMajor) {
  903. info.minMajor = major;
  904. info.minMinor = minor;
  905. } else if (minor > info.minMinor) {
  906. info.minMinor = minor;
  907. }
  908. info.mask &= mask;
  909. }
  910. }
  911. }
  912. const llvm::Function *FindUsingFunction(const llvm::Value *User) {
  913. if (const llvm::Instruction *I = dyn_cast<const llvm::Instruction>(User)) {
  914. // Instruction should be inside a basic block, which is in a function
  915. return cast<const llvm::Function>(I->getParent()->getParent());
  916. }
  917. // User can be either instruction, constant, or operator. But User is an
  918. // operator only if constant is a scalar value, not resource pointer.
  919. const llvm::Constant *CU = cast<const llvm::Constant>(User);
  920. if (!CU->user_empty())
  921. return FindUsingFunction(*CU->user_begin());
  922. else
  923. return nullptr;
  924. }
  925. void UpdateFunctionToResourceInfo(const DxilResourceBase *resource,
  926. uint32_t offset) {
  927. Constant *var = resource->GetGlobalSymbol();
  928. if (var) {
  929. for (auto user : var->users()) {
  930. // Find the function.
  931. const llvm::Function *F = FindUsingFunction(user);
  932. if (!F)
  933. continue;
  934. if (m_FuncToResNameOffset.find(F) == m_FuncToResNameOffset.end()) {
  935. m_FuncToResNameOffset[F] = Indices();
  936. }
  937. m_FuncToResNameOffset[F].insert(offset);
  938. }
  939. }
  940. }
  941. void InsertToResourceTable(DxilResourceBase &resource,
  942. ResourceClass resourceClass,
  943. ResourceTable &resourceTable,
  944. StringBufferPart &stringBufferPart,
  945. uint32_t &resourceIndex) {
  946. uint32_t stringIndex = stringBufferPart.Insert(resource.GetGlobalName());
  947. UpdateFunctionToResourceInfo(&resource, resourceIndex++);
  948. RuntimeDataResourceInfo info = {};
  949. info.ID = resource.GetID();
  950. info.Class = static_cast<uint32_t>(resourceClass);
  951. info.Kind = static_cast<uint32_t>(resource.GetKind());
  952. info.Space = resource.GetSpaceID();
  953. info.LowerBound = resource.GetLowerBound();
  954. info.UpperBound = resource.GetUpperBound();
  955. info.Name = stringIndex;
  956. info.Flags = 0;
  957. if (ResourceClass::UAV == resourceClass) {
  958. DxilResource *pRes = static_cast<DxilResource*>(&resource);
  959. if (pRes->HasCounter())
  960. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVCounter);
  961. if (pRes->IsGloballyCoherent())
  962. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVGloballyCoherent);
  963. if (pRes->IsROV())
  964. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVRasterizerOrderedView);
  965. // TODO: add dynamic index flag
  966. }
  967. resourceTable.Insert(info);
  968. }
  969. void UpdateResourceInfo(StringBufferPart &stringBufferPart) {
  970. // Try to allocate string table for resources. String table is a sequence
  971. // of strings delimited by \0
  972. m_Parts.emplace_back(std::make_unique<ResourceTable>());
  973. ResourceTable &resourceTable = *reinterpret_cast<ResourceTable*>(m_Parts.back().get());
  974. uint32_t resourceIndex = 0;
  975. for (auto &resource : m_Module.GetCBuffers()) {
  976. InsertToResourceTable(*resource.get(), ResourceClass::CBuffer, resourceTable, stringBufferPart,
  977. resourceIndex);
  978. }
  979. for (auto &resource : m_Module.GetSamplers()) {
  980. InsertToResourceTable(*resource.get(), ResourceClass::Sampler, resourceTable, stringBufferPart,
  981. resourceIndex);
  982. }
  983. for (auto &resource : m_Module.GetSRVs()) {
  984. InsertToResourceTable(*resource.get(), ResourceClass::SRV, resourceTable, stringBufferPart,
  985. resourceIndex);
  986. }
  987. for (auto &resource : m_Module.GetUAVs()) {
  988. InsertToResourceTable(*resource.get(), ResourceClass::UAV, resourceTable, stringBufferPart,
  989. resourceIndex);
  990. }
  991. }
  992. void UpdateFunctionDependency(llvm::Function *F, StringBufferPart &stringBufferPart) {
  993. for (const auto &user : F->users()) {
  994. const llvm::Function *userFunction = FindUsingFunction(user);
  995. uint32_t index = stringBufferPart.Insert(F->getName());
  996. if (m_FuncToDependencies.find(userFunction) ==
  997. m_FuncToDependencies.end()) {
  998. m_FuncToDependencies[userFunction] =
  999. Indices();
  1000. }
  1001. m_FuncToDependencies[userFunction].insert(index);
  1002. }
  1003. }
  1004. void UpdateFunctionInfo(StringBufferPart &stringBufferPart) {
  1005. m_Parts.emplace_back(std::make_unique<FunctionTable>());
  1006. FunctionTable &functionTable = *reinterpret_cast<FunctionTable*>(m_Parts.back().get());
  1007. m_Parts.emplace_back(std::make_unique<IndexArraysPart>());
  1008. IndexArraysPart &indexArraysPart = *reinterpret_cast<IndexArraysPart*>(m_Parts.back().get());
  1009. for (auto &function : m_Module.GetModule()->getFunctionList()) {
  1010. if (function.isDeclaration() && !function.isIntrinsic()) {
  1011. if (OP::IsDxilOpFunc(&function)) {
  1012. // update min shader model and shader stage mask per function
  1013. UpdateFunctionToShaderCompat(&function);
  1014. } else {
  1015. // collect unresolved dependencies per function
  1016. UpdateFunctionDependency(&function, stringBufferPart);
  1017. }
  1018. }
  1019. }
  1020. for (auto &function : m_Module.GetModule()->getFunctionList()) {
  1021. if (!function.isDeclaration()) {
  1022. StringRef mangled = function.getName();
  1023. StringRef unmangled = hlsl::dxilutil::DemangleFunctionName(function.getName());
  1024. uint32_t mangledIndex = stringBufferPart.Insert(mangled);
  1025. uint32_t unmangledIndex = stringBufferPart.Insert(unmangled);
  1026. // Update resource Index
  1027. uint32_t resourceIndex = UINT_MAX;
  1028. uint32_t functionDependencies = UINT_MAX;
  1029. uint32_t payloadSizeInBytes = 0;
  1030. uint32_t attrSizeInBytes = 0;
  1031. uint32_t shaderKind = static_cast<uint32_t>(DXIL::ShaderKind::Library);
  1032. if (m_FuncToResNameOffset.find(&function) != m_FuncToResNameOffset.end())
  1033. resourceIndex =
  1034. indexArraysPart.AddIndex(m_FuncToResNameOffset[&function].begin(),
  1035. m_FuncToResNameOffset[&function].end());
  1036. if (m_FuncToDependencies.find(&function) != m_FuncToDependencies.end())
  1037. functionDependencies =
  1038. indexArraysPart.AddIndex(m_FuncToDependencies[&function].begin(),
  1039. m_FuncToDependencies[&function].end());
  1040. if (m_Module.HasDxilFunctionProps(&function)) {
  1041. auto props = m_Module.GetDxilFunctionProps(&function);
  1042. if (props.IsClosestHit() || props.IsAnyHit()) {
  1043. payloadSizeInBytes = props.ShaderProps.Ray.payloadSizeInBytes;
  1044. attrSizeInBytes = props.ShaderProps.Ray.attributeSizeInBytes;
  1045. }
  1046. else if (props.IsMiss()) {
  1047. payloadSizeInBytes = props.ShaderProps.Ray.payloadSizeInBytes;
  1048. }
  1049. else if (props.IsCallable()) {
  1050. payloadSizeInBytes = props.ShaderProps.Ray.paramSizeInBytes;
  1051. }
  1052. shaderKind = (uint32_t)props.shaderKind;
  1053. }
  1054. ShaderFlags flags = ShaderFlags::CollectShaderFlags(&function, &m_Module);
  1055. RuntimeDataFunctionInfo info = {};
  1056. info.Name = mangledIndex;
  1057. info.UnmangledName = unmangledIndex;
  1058. info.ShaderKind = shaderKind;
  1059. info.Resources = resourceIndex;
  1060. info.FunctionDependencies = functionDependencies;
  1061. info.PayloadSizeInBytes = payloadSizeInBytes;
  1062. info.AttributeSizeInBytes = attrSizeInBytes;
  1063. uint64_t featureFlags = flags.GetFeatureInfo();
  1064. info.FeatureInfo1 = featureFlags & 0xffffffff;
  1065. info.FeatureInfo2 = (featureFlags >> 32) & 0xffffffff;
  1066. // Init min target 6.0
  1067. unsigned minMajor = 6, minMinor = 0;
  1068. // Increase min target based on feature flags:
  1069. if (flags.GetUseNativeLowPrecision() && flags.GetLowPrecisionPresent()) {
  1070. minMinor = 2;
  1071. } else if (flags.GetBarycentrics() || flags.GetViewID()) {
  1072. minMinor = 1;
  1073. }
  1074. if ((DXIL::ShaderKind)shaderKind == DXIL::ShaderKind::Library) {
  1075. // Init mask to all kinds for library functions
  1076. info.ShaderStageFlag = ((unsigned)1 << (unsigned)DXIL::ShaderKind::Invalid) - 1;
  1077. } else {
  1078. // Init mask to current kind for shader functions
  1079. info.ShaderStageFlag = (unsigned)1 << shaderKind;
  1080. }
  1081. auto it = m_FuncToShaderCompat.find(&function);
  1082. if (it != m_FuncToShaderCompat.end()) {
  1083. auto &compatInfo = it->second;
  1084. if (compatInfo.minMajor > minMajor) {
  1085. minMajor = compatInfo.minMajor;
  1086. minMinor = compatInfo.minMinor;
  1087. } else if (compatInfo.minMinor > minMinor) {
  1088. minMinor = compatInfo.minMinor;
  1089. }
  1090. info.ShaderStageFlag &= compatInfo.mask;
  1091. }
  1092. info.MinShaderTarget = EncodeVersion((DXIL::ShaderKind)shaderKind, minMajor, minMinor);
  1093. functionTable.Insert(info);
  1094. }
  1095. }
  1096. }
  1097. public:
  1098. DxilRDATWriter(const DxilModule &module, uint32_t InfoVersion = 0)
  1099. : m_Module(module), m_RDATBuffer(), m_Parts(), m_FuncToResNameOffset() {
  1100. // It's important to keep the order of this update
  1101. m_Parts.emplace_back(std::make_unique<StringBufferPart>());
  1102. StringBufferPart &stringBufferPart = *reinterpret_cast<StringBufferPart*>(m_Parts.back().get());
  1103. UpdateResourceInfo(stringBufferPart);
  1104. UpdateFunctionInfo(stringBufferPart);
  1105. // Delete any empty parts:
  1106. std::vector<std::unique_ptr<RDATPart>>::iterator it = m_Parts.begin();
  1107. while (it != m_Parts.end()) {
  1108. if (it->get()->GetPartSize() == 0) {
  1109. it = m_Parts.erase(it);
  1110. }
  1111. else
  1112. it++;
  1113. }
  1114. }
  1115. __override uint32_t size() const {
  1116. // header + offset array
  1117. uint32_t total = sizeof(RuntimeDataHeader) + m_Parts.size() * sizeof(uint32_t);
  1118. // For each part: part header + part size
  1119. for (auto &part : m_Parts)
  1120. total += sizeof(RuntimeDataPartHeader) + PSVALIGN4(part->GetPartSize());
  1121. return total;
  1122. }
  1123. __override void write(AbstractMemoryStream *pStream) {
  1124. try {
  1125. m_RDATBuffer.resize(size(), 0);
  1126. CheckedWriter W(m_RDATBuffer.data(), m_RDATBuffer.size());
  1127. // write RDAT header
  1128. RuntimeDataHeader &header = W.Map<RuntimeDataHeader>();
  1129. header.Version = RDAT_Version_0;
  1130. header.PartCount = m_Parts.size();
  1131. // map offsets
  1132. uint32_t *offsets = W.MapArray<uint32_t>(header.PartCount);
  1133. // write parts
  1134. unsigned i = 0;
  1135. for (auto &part : m_Parts) {
  1136. offsets[i++] = W.GetOffset();
  1137. RuntimeDataPartHeader &partHeader = W.Map<RuntimeDataPartHeader>();
  1138. partHeader.Type = part->GetType();
  1139. partHeader.Size = PSVALIGN4(part->GetPartSize());
  1140. DXASSERT(partHeader.Size, "otherwise, failed to remove empty part");
  1141. char *bytes = W.MapArray<char>(partHeader.Size);
  1142. part->Write(bytes);
  1143. }
  1144. }
  1145. catch (CheckedWriter::exception e) {
  1146. throw hlsl::Exception(DXC_E_GENERAL_INTERNAL_ERROR, e.what());
  1147. }
  1148. ULONG cbWritten;
  1149. IFT(pStream->Write(m_RDATBuffer.data(), m_RDATBuffer.size(), &cbWritten));
  1150. DXASSERT_NOMSG(cbWritten == m_RDATBuffer.size());
  1151. }
  1152. };
  1153. DxilPartWriter *hlsl::NewPSVWriter(const DxilModule &M, uint32_t PSVVersion) {
  1154. return new DxilPSVWriter(M, PSVVersion);
  1155. }
  1156. class DxilContainerWriter_impl : public DxilContainerWriter {
  1157. private:
  1158. class DxilPart {
  1159. public:
  1160. DxilPartHeader Header;
  1161. WriteFn Write;
  1162. DxilPart(uint32_t fourCC, uint32_t size, WriteFn write) : Write(write) {
  1163. Header.PartFourCC = fourCC;
  1164. Header.PartSize = size;
  1165. }
  1166. };
  1167. llvm::SmallVector<DxilPart, 8> m_Parts;
  1168. public:
  1169. void AddPart(uint32_t FourCC, uint32_t Size, WriteFn Write) override {
  1170. m_Parts.emplace_back(FourCC, Size, Write);
  1171. }
  1172. uint32_t size() const override {
  1173. uint32_t partSize = 0;
  1174. for (auto &part : m_Parts) {
  1175. partSize += part.Header.PartSize;
  1176. }
  1177. return (uint32_t)GetDxilContainerSizeFromParts((uint32_t)m_Parts.size(), partSize);
  1178. }
  1179. void write(AbstractMemoryStream *pStream) override {
  1180. DxilContainerHeader header;
  1181. const uint32_t PartCount = (uint32_t)m_Parts.size();
  1182. uint32_t containerSizeInBytes = size();
  1183. InitDxilContainer(&header, PartCount, containerSizeInBytes);
  1184. IFT(pStream->Reserve(header.ContainerSizeInBytes));
  1185. IFT(WriteStreamValue(pStream, header));
  1186. uint32_t offset = sizeof(header) + (uint32_t)GetOffsetTableSize(PartCount);
  1187. for (auto &&part : m_Parts) {
  1188. IFT(WriteStreamValue(pStream, offset));
  1189. offset += sizeof(DxilPartHeader) + part.Header.PartSize;
  1190. }
  1191. for (auto &&part : m_Parts) {
  1192. IFT(WriteStreamValue(pStream, part.Header));
  1193. size_t start = pStream->GetPosition();
  1194. part.Write(pStream);
  1195. DXASSERT_LOCALVAR(start, pStream->GetPosition() - start == (size_t)part.Header.PartSize, "out of bound");
  1196. }
  1197. DXASSERT(containerSizeInBytes == (uint32_t)pStream->GetPosition(), "else stream size is incorrect");
  1198. }
  1199. };
  1200. DxilContainerWriter *hlsl::NewDxilContainerWriter() {
  1201. return new DxilContainerWriter_impl();
  1202. }
  1203. static bool HasDebugInfo(const Module &M) {
  1204. for (Module::const_named_metadata_iterator NMI = M.named_metadata_begin(),
  1205. NME = M.named_metadata_end();
  1206. NMI != NME; ++NMI) {
  1207. if (NMI->getName().startswith("llvm.dbg.")) {
  1208. return true;
  1209. }
  1210. }
  1211. return false;
  1212. }
  1213. static void GetPaddedProgramPartSize(AbstractMemoryStream *pStream,
  1214. uint32_t &bitcodeInUInt32,
  1215. uint32_t &bitcodePaddingBytes) {
  1216. bitcodeInUInt32 = pStream->GetPtrSize();
  1217. bitcodePaddingBytes = (bitcodeInUInt32 % 4);
  1218. bitcodeInUInt32 = (bitcodeInUInt32 / 4) + (bitcodePaddingBytes ? 1 : 0);
  1219. }
  1220. static void WriteProgramPart(const ShaderModel *pModel,
  1221. AbstractMemoryStream *pModuleBitcode,
  1222. AbstractMemoryStream *pStream) {
  1223. DXASSERT(pModel != nullptr, "else generation should have failed");
  1224. DxilProgramHeader programHeader;
  1225. uint32_t shaderVersion =
  1226. EncodeVersion(pModel->GetKind(), pModel->GetMajor(), pModel->GetMinor());
  1227. unsigned dxilMajor, dxilMinor;
  1228. pModel->GetDxilVersion(dxilMajor, dxilMinor);
  1229. uint32_t dxilVersion = DXIL::MakeDxilVersion(dxilMajor, dxilMinor);
  1230. InitProgramHeader(programHeader, shaderVersion, dxilVersion, pModuleBitcode->GetPtrSize());
  1231. uint32_t programInUInt32, programPaddingBytes;
  1232. GetPaddedProgramPartSize(pModuleBitcode, programInUInt32,
  1233. programPaddingBytes);
  1234. ULONG cbWritten;
  1235. IFT(WriteStreamValue(pStream, programHeader));
  1236. IFT(pStream->Write(pModuleBitcode->GetPtr(), pModuleBitcode->GetPtrSize(),
  1237. &cbWritten));
  1238. if (programPaddingBytes) {
  1239. uint32_t paddingValue = 0;
  1240. IFT(pStream->Write(&paddingValue, programPaddingBytes, &cbWritten));
  1241. }
  1242. }
  1243. void hlsl::SerializeDxilContainerForModule(DxilModule *pModule,
  1244. AbstractMemoryStream *pModuleBitcode,
  1245. AbstractMemoryStream *pFinalStream,
  1246. SerializeDxilFlags Flags) {
  1247. // TODO: add a flag to update the module and remove information that is not part
  1248. // of DXIL proper and is used only to assemble the container.
  1249. DXASSERT_NOMSG(pModule != nullptr);
  1250. DXASSERT_NOMSG(pModuleBitcode != nullptr);
  1251. DXASSERT_NOMSG(pFinalStream != nullptr);
  1252. unsigned ValMajor, ValMinor;
  1253. pModule->GetValidatorVersion(ValMajor, ValMinor);
  1254. if (ValMajor == 1 && ValMinor == 0)
  1255. Flags &= ~SerializeDxilFlags::IncludeDebugNamePart;
  1256. DxilContainerWriter_impl writer;
  1257. // Write the feature part.
  1258. DxilFeatureInfoWriter featureInfoWriter(*pModule);
  1259. writer.AddPart(DFCC_FeatureInfo, featureInfoWriter.size(), [&](AbstractMemoryStream *pStream) {
  1260. featureInfoWriter.write(pStream);
  1261. });
  1262. std::unique_ptr<DxilProgramSignatureWriter> pInputSigWriter = nullptr;
  1263. std::unique_ptr<DxilProgramSignatureWriter> pOutputSigWriter = nullptr;
  1264. std::unique_ptr<DxilProgramSignatureWriter> pPatchConstantSigWriter = nullptr;
  1265. if (!pModule->GetShaderModel()->IsLib()) {
  1266. DXIL::TessellatorDomain domain = DXIL::TessellatorDomain::Undefined;
  1267. if (pModule->GetShaderModel()->IsHS() || pModule->GetShaderModel()->IsDS())
  1268. domain = pModule->GetTessellatorDomain();
  1269. pInputSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1270. pModule->GetInputSignature(), domain,
  1271. /*IsInput*/ true,
  1272. /*UseMinPrecision*/ pModule->GetUseMinPrecision());
  1273. pOutputSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1274. pModule->GetOutputSignature(), domain,
  1275. /*IsInput*/ false,
  1276. /*UseMinPrecision*/ pModule->GetUseMinPrecision());
  1277. // Write the input and output signature parts.
  1278. writer.AddPart(DFCC_InputSignature, pInputSigWriter->size(),
  1279. [&](AbstractMemoryStream *pStream) {
  1280. pInputSigWriter->write(pStream);
  1281. });
  1282. writer.AddPart(DFCC_OutputSignature, pOutputSigWriter->size(),
  1283. [&](AbstractMemoryStream *pStream) {
  1284. pOutputSigWriter->write(pStream);
  1285. });
  1286. pPatchConstantSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1287. pModule->GetPatchConstantSignature(), domain,
  1288. /*IsInput*/ pModule->GetShaderModel()->IsDS(),
  1289. /*UseMinPrecision*/ pModule->GetUseMinPrecision());
  1290. if (pModule->GetPatchConstantSignature().GetElements().size()) {
  1291. writer.AddPart(DFCC_PatchConstantSignature,
  1292. pPatchConstantSigWriter->size(),
  1293. [&](AbstractMemoryStream *pStream) {
  1294. pPatchConstantSigWriter->write(pStream);
  1295. });
  1296. }
  1297. }
  1298. // Write the DxilPipelineStateValidation (PSV0) part.
  1299. std::unique_ptr<DxilRDATWriter> pRDATWriter = nullptr;
  1300. std::unique_ptr<DxilPSVWriter> pPSVWriter = nullptr;
  1301. unsigned int major, minor;
  1302. pModule->GetDxilVersion(major, minor);
  1303. if (pModule->GetShaderModel()->IsLib()) {
  1304. pRDATWriter = llvm::make_unique<DxilRDATWriter>(*pModule);
  1305. writer.AddPart(
  1306. DFCC_RuntimeData, pRDATWriter->size(),
  1307. [&](AbstractMemoryStream *pStream) { pRDATWriter->write(pStream); });
  1308. } else if (!pModule->GetShaderModel()->IsLib()) {
  1309. pPSVWriter = llvm::make_unique<DxilPSVWriter>(*pModule);
  1310. writer.AddPart(
  1311. DFCC_PipelineStateValidation, pPSVWriter->size(),
  1312. [&](AbstractMemoryStream *pStream) { pPSVWriter->write(pStream); });
  1313. }
  1314. // Write the root signature (RTS0) part.
  1315. DxilProgramRootSignatureWriter rootSigWriter(pModule->GetRootSignature());
  1316. CComPtr<AbstractMemoryStream> pInputProgramStream = pModuleBitcode;
  1317. if (!pModule->GetRootSignature().IsEmpty()) {
  1318. writer.AddPart(
  1319. DFCC_RootSignature, rootSigWriter.size(),
  1320. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  1321. pModule->StripRootSignatureFromMetadata();
  1322. pInputProgramStream.Release();
  1323. IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pInputProgramStream));
  1324. raw_stream_ostream outStream(pInputProgramStream.p);
  1325. WriteBitcodeToFile(pModule->GetModule(), outStream, true);
  1326. }
  1327. // If we have debug information present, serialize it to a debug part, then use the stripped version as the canonical program version.
  1328. CComPtr<AbstractMemoryStream> pProgramStream = pInputProgramStream;
  1329. if (HasDebugInfo(*pModule->GetModule())) {
  1330. uint32_t debugInUInt32, debugPaddingBytes;
  1331. GetPaddedProgramPartSize(pInputProgramStream, debugInUInt32, debugPaddingBytes);
  1332. if (Flags & SerializeDxilFlags::IncludeDebugInfoPart) {
  1333. writer.AddPart(DFCC_ShaderDebugInfoDXIL, debugInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
  1334. WriteProgramPart(pModule->GetShaderModel(), pInputProgramStream, pStream);
  1335. });
  1336. }
  1337. pProgramStream.Release();
  1338. llvm::StripDebugInfo(*pModule->GetModule());
  1339. pModule->StripDebugRelatedCode();
  1340. IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pProgramStream));
  1341. raw_stream_ostream outStream(pProgramStream.p);
  1342. WriteBitcodeToFile(pModule->GetModule(), outStream, true);
  1343. if (Flags & SerializeDxilFlags::IncludeDebugNamePart) {
  1344. CComPtr<AbstractMemoryStream> pHashStream;
  1345. // If the debug name should be specific to the sources, base the name on the debug
  1346. // bitcode, which will include the source references, line numbers, etc. Otherwise,
  1347. // do it exclusively on the target shader bitcode.
  1348. pHashStream = (int)(Flags & SerializeDxilFlags::DebugNameDependOnSource)
  1349. ? CComPtr<AbstractMemoryStream>(pModuleBitcode)
  1350. : CComPtr<AbstractMemoryStream>(pProgramStream);
  1351. const uint32_t DebugInfoNameHashLen = 32; // 32 chars of MD5
  1352. const uint32_t DebugInfoNameSuffix = 4; // '.lld'
  1353. const uint32_t DebugInfoNameNullAndPad = 4; // '\0\0\0\0'
  1354. const uint32_t DebugInfoContentLen =
  1355. sizeof(DxilShaderDebugName) + DebugInfoNameHashLen +
  1356. DebugInfoNameSuffix + DebugInfoNameNullAndPad;
  1357. writer.AddPart(DFCC_ShaderDebugName, DebugInfoContentLen, [&](AbstractMemoryStream *pStream) {
  1358. DxilShaderDebugName NameContent;
  1359. NameContent.Flags = 0;
  1360. NameContent.NameLength = DebugInfoNameHashLen + DebugInfoNameSuffix;
  1361. IFT(WriteStreamValue(pStream, NameContent));
  1362. ArrayRef<uint8_t> Data((uint8_t *)pHashStream->GetPtr(), pHashStream->GetPtrSize());
  1363. llvm::MD5 md5;
  1364. llvm::MD5::MD5Result md5Result;
  1365. SmallString<32> Hash;
  1366. md5.update(Data);
  1367. md5.final(md5Result);
  1368. md5.stringifyResult(md5Result, Hash);
  1369. ULONG cbWritten;
  1370. IFT(pStream->Write(Hash.data(), Hash.size(), &cbWritten));
  1371. const char SuffixAndPad[] = ".lld\0\0\0";
  1372. IFT(pStream->Write(SuffixAndPad, _countof(SuffixAndPad), &cbWritten));
  1373. });
  1374. }
  1375. }
  1376. // Compute padded bitcode size.
  1377. uint32_t programInUInt32, programPaddingBytes;
  1378. GetPaddedProgramPartSize(pProgramStream, programInUInt32, programPaddingBytes);
  1379. // Write the program part.
  1380. writer.AddPart(DFCC_DXIL, programInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
  1381. WriteProgramPart(pModule->GetShaderModel(), pProgramStream, pStream);
  1382. });
  1383. writer.write(pFinalStream);
  1384. }
  1385. void hlsl::SerializeDxilContainerForRootSignature(hlsl::RootSignatureHandle *pRootSigHandle,
  1386. AbstractMemoryStream *pFinalStream) {
  1387. DXASSERT_NOMSG(pRootSigHandle != nullptr);
  1388. DXASSERT_NOMSG(pFinalStream != nullptr);
  1389. DxilContainerWriter_impl writer;
  1390. // Write the root signature (RTS0) part.
  1391. DxilProgramRootSignatureWriter rootSigWriter(*pRootSigHandle);
  1392. if (!pRootSigHandle->IsEmpty()) {
  1393. writer.AddPart(
  1394. DFCC_RootSignature, rootSigWriter.size(),
  1395. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  1396. }
  1397. writer.write(pFinalStream);
  1398. }