123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947 |
- //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the SmallVector class.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_SMALLVECTOR_H
- #define LLVM_ADT_SMALLVECTOR_H
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Support/AlignOf.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/type_traits.h"
- #include <algorithm>
- #include <cassert>
- #include <cstddef>
- #include <cstdlib>
- #include <cstring>
- #include <initializer_list>
- #include <iterator>
- #include <memory>
- namespace llvm {
- /// This is all the non-templated stuff common to all SmallVectors.
- class SmallVectorBase {
- protected:
- void *BeginX, *EndX, *CapacityX;
- protected:
- SmallVectorBase(void *FirstEl, size_t Size)
- : BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl+Size) {}
- /// This is an implementation of the grow() method which only works
- /// on POD-like data types and is out of line to reduce code duplication.
- void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize);
- public:
- /// This returns size()*sizeof(T).
- size_t size_in_bytes() const {
- return size_t((char*)EndX - (char*)BeginX);
- }
- /// capacity_in_bytes - This returns capacity()*sizeof(T).
- size_t capacity_in_bytes() const {
- return size_t((char*)CapacityX - (char*)BeginX);
- }
- bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const { return BeginX == EndX; }
- };
- template <typename T, unsigned N> struct SmallVectorStorage;
- /// This is the part of SmallVectorTemplateBase which does not depend on whether
- /// the type T is a POD. The extra dummy template argument is used by ArrayRef
- /// to avoid unnecessarily requiring T to be complete.
- template <typename T, typename = void>
- class SmallVectorTemplateCommon : public SmallVectorBase {
- private:
- template <typename, unsigned> friend struct SmallVectorStorage;
- // Allocate raw space for N elements of type T. If T has a ctor or dtor, we
- // don't want it to be automatically run, so we need to represent the space as
- // something else. Use an array of char of sufficient alignment.
- typedef llvm::AlignedCharArrayUnion<T> U;
- U FirstEl;
- // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
- protected:
- SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {}
- void grow_pod(size_t MinSizeInBytes, size_t TSize) {
- SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize);
- }
- /// Return true if this is a smallvector which has not had dynamic
- /// memory allocated for it.
- bool isSmall() const {
- return BeginX == static_cast<const void*>(&FirstEl);
- }
- /// Put this vector in a state of being small.
- void resetToSmall() {
- BeginX = EndX = CapacityX = &FirstEl;
- }
- void setEnd(T *P) { this->EndX = P; }
- public:
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef T value_type;
- typedef T *iterator;
- typedef const T *const_iterator;
- typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
- typedef std::reverse_iterator<iterator> reverse_iterator;
- typedef T &reference;
- typedef const T &const_reference;
- typedef T *pointer;
- typedef const T *const_pointer;
- // forward iterator creation methods.
- iterator begin() { return (iterator)this->BeginX; }
- const_iterator begin() const { return (const_iterator)this->BeginX; }
- iterator end() { return (iterator)this->EndX; }
- const_iterator end() const { return (const_iterator)this->EndX; }
- protected:
- iterator capacity_ptr() { return (iterator)this->CapacityX; }
- const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
- public:
- // reverse iterator creation methods.
- reverse_iterator rbegin() { return reverse_iterator(end()); }
- const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
- reverse_iterator rend() { return reverse_iterator(begin()); }
- const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
- size_type size() const { return end()-begin(); }
- size_type max_size() const { return size_type(-1) / sizeof(T); }
- /// Return the total number of elements in the currently allocated buffer.
- size_t capacity() const { return capacity_ptr() - begin(); }
- /// Return a pointer to the vector's buffer, even if empty().
- pointer data() { return pointer(begin()); }
- /// Return a pointer to the vector's buffer, even if empty().
- const_pointer data() const { return const_pointer(begin()); }
- reference operator[](size_type idx) {
- assert(idx < size());
- return begin()[idx];
- }
- const_reference operator[](size_type idx) const {
- assert(idx < size());
- return begin()[idx];
- }
- reference front() {
- assert(!empty());
- return begin()[0];
- }
- const_reference front() const {
- assert(!empty());
- return begin()[0];
- }
- reference back() {
- assert(!empty());
- return end()[-1];
- }
- const_reference back() const {
- assert(!empty());
- return end()[-1];
- }
- };
- /// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
- /// implementations that are designed to work with non-POD-like T's.
- template <typename T, bool isPodLike>
- class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
- protected:
- SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
- static void destroy_range(T *S, T *E) {
- while (S != E) {
- --E;
- E->~T();
- }
- }
- /// Use move-assignment to move the range [I, E) onto the
- /// objects starting with "Dest". This is just <memory>'s
- /// std::move, but not all stdlibs actually provide that.
- template<typename It1, typename It2>
- static It2 move(It1 I, It1 E, It2 Dest) {
- for (; I != E; ++I, ++Dest)
- *Dest = ::std::move(*I);
- return Dest;
- }
- /// Use move-assignment to move the range
- /// [I, E) onto the objects ending at "Dest", moving objects
- /// in reverse order. This is just <algorithm>'s
- /// std::move_backward, but not all stdlibs actually provide that.
- template<typename It1, typename It2>
- static It2 move_backward(It1 I, It1 E, It2 Dest) {
- while (I != E)
- *--Dest = ::std::move(*--E);
- return Dest;
- }
- /// Move the range [I, E) into the uninitialized memory starting with "Dest",
- /// constructing elements as needed.
- template<typename It1, typename It2>
- static void uninitialized_move(It1 I, It1 E, It2 Dest) {
- for (; I != E; ++I, ++Dest)
- ::new ((void*) &*Dest) T(::std::move(*I));
- }
- /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
- /// constructing elements as needed.
- template<typename It1, typename It2>
- static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
- std::uninitialized_copy(I, E, Dest);
- }
- /// Grow the allocated memory (without initializing new elements), doubling
- /// the size of the allocated memory. Guarantees space for at least one more
- /// element, or MinSize more elements if specified.
- void grow(size_t MinSize = 0);
- public:
- void push_back(const T &Elt) {
- if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
- this->grow();
- ::new ((void*) this->end()) T(Elt);
- this->setEnd(this->end()+1);
- }
- void push_back(T &&Elt) {
- if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
- this->grow();
- ::new ((void*) this->end()) T(::std::move(Elt));
- this->setEnd(this->end()+1);
- }
- void pop_back() {
- this->setEnd(this->end()-1);
- this->end()->~T();
- }
- };
- // Define this out-of-line to dissuade the C++ compiler from inlining it.
- template <typename T, bool isPodLike>
- void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
- size_t CurCapacity = this->capacity();
- size_t CurSize = this->size();
- // Always grow, even from zero.
- size_t NewCapacity = size_t(NextPowerOf2(CurCapacity+2));
- if (NewCapacity < MinSize)
- NewCapacity = MinSize;
- T *NewElts = (T*)new char[NewCapacity*sizeof(T)]; // HLSL Change: Use overridable operator new
- // Move the elements over.
- this->uninitialized_move(this->begin(), this->end(), NewElts);
- // Destroy the original elements.
- destroy_range(this->begin(), this->end());
- // If this wasn't grown from the inline copy, deallocate the old space.
- if (!this->isSmall())
- delete[] (char*)this->begin(); // HLSL Change: Use overridable operator delete
- this->setEnd(NewElts+CurSize);
- this->BeginX = NewElts;
- this->CapacityX = this->begin()+NewCapacity;
- }
- /// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
- /// implementations that are designed to work with POD-like T's.
- template <typename T>
- class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
- protected:
- SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
- // No need to do a destroy loop for POD's.
- static void destroy_range(T *, T *) {}
- /// Use move-assignment to move the range [I, E) onto the
- /// objects starting with "Dest". For PODs, this is just memcpy.
- template<typename It1, typename It2>
- static It2 move(It1 I, It1 E, It2 Dest) {
- return ::std::copy(I, E, Dest);
- }
- /// Use move-assignment to move the range [I, E) onto the objects ending at
- /// "Dest", moving objects in reverse order.
- template<typename It1, typename It2>
- static It2 move_backward(It1 I, It1 E, It2 Dest) {
- return ::std::copy_backward(I, E, Dest);
- }
- /// Move the range [I, E) onto the uninitialized memory
- /// starting with "Dest", constructing elements into it as needed.
- template<typename It1, typename It2>
- static void uninitialized_move(It1 I, It1 E, It2 Dest) {
- // Just do a copy.
- uninitialized_copy(I, E, Dest);
- }
- /// Copy the range [I, E) onto the uninitialized memory
- /// starting with "Dest", constructing elements into it as needed.
- template<typename It1, typename It2>
- static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
- // Arbitrary iterator types; just use the basic implementation.
- std::uninitialized_copy(I, E, Dest);
- }
- /// Copy the range [I, E) onto the uninitialized memory
- /// starting with "Dest", constructing elements into it as needed.
- template <typename T1, typename T2>
- static void uninitialized_copy(
- T1 *I, T1 *E, T2 *Dest,
- typename std::enable_if<std::is_same<typename std::remove_const<T1>::type,
- T2>::value>::type * = nullptr) {
- // Use memcpy for PODs iterated by pointers (which includes SmallVector
- // iterators): std::uninitialized_copy optimizes to memmove, but we can
- // use memcpy here. Note that I and E are iterators and thus might be
- // invalid for memcpy if they are equal.
- if (I != E)
- memcpy(Dest, I, (E - I) * sizeof(T));
- }
- /// Double the size of the allocated memory, guaranteeing space for at
- /// least one more element or MinSize if specified.
- void grow(size_t MinSize = 0) {
- this->grow_pod(MinSize*sizeof(T), sizeof(T));
- }
- public:
- void push_back(const T &Elt) {
- if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
- this->grow();
- memcpy(this->end(), &Elt, sizeof(T));
- this->setEnd(this->end()+1);
- }
- void pop_back() {
- this->setEnd(this->end()-1);
- }
- };
- /// This class consists of common code factored out of the SmallVector class to
- /// reduce code duplication based on the SmallVector 'N' template parameter.
- template <typename T>
- class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
- typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
- SmallVectorImpl(const SmallVectorImpl&) = delete;
- public:
- typedef typename SuperClass::iterator iterator;
- typedef typename SuperClass::size_type size_type;
- protected:
- // Default ctor - Initialize to empty.
- explicit SmallVectorImpl(unsigned N)
- : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
- }
- public:
- ~SmallVectorImpl() {
- // Destroy the constructed elements in the vector.
- this->destroy_range(this->begin(), this->end());
- // If this wasn't grown from the inline copy, deallocate the old space.
- if (!this->isSmall())
- delete[] (char*)this->begin(); // HLSL Change: Use overridable operator delete
- }
- void clear() {
- this->destroy_range(this->begin(), this->end());
- this->EndX = this->BeginX;
- }
- void resize(size_type N) {
- if (N < this->size()) {
- this->destroy_range(this->begin()+N, this->end());
- this->setEnd(this->begin()+N);
- } else if (N > this->size()) {
- if (this->capacity() < N)
- this->grow(N);
- for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
- new (&*I) T();
- this->setEnd(this->begin()+N);
- }
- }
- void resize(size_type N, const T &NV) {
- if (N < this->size()) {
- this->destroy_range(this->begin()+N, this->end());
- this->setEnd(this->begin()+N);
- } else if (N > this->size()) {
- if (this->capacity() < N)
- this->grow(N);
- std::uninitialized_fill(this->end(), this->begin()+N, NV);
- this->setEnd(this->begin()+N);
- }
- }
- void reserve(size_type N) {
- if (this->capacity() < N)
- this->grow(N);
- }
- T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val() {
- T Result = ::std::move(this->back());
- this->pop_back();
- return Result;
- }
- void swap(SmallVectorImpl &RHS);
- /// Add the specified range to the end of the SmallVector.
- template<typename in_iter>
- void append(in_iter in_start, in_iter in_end) {
- size_type NumInputs = std::distance(in_start, in_end);
- // Grow allocated space if needed.
- if (NumInputs > size_type(this->capacity_ptr()-this->end()))
- this->grow(this->size()+NumInputs);
- // Copy the new elements over.
- this->uninitialized_copy(in_start, in_end, this->end());
- this->setEnd(this->end() + NumInputs);
- }
- /// Add the specified range to the end of the SmallVector.
- void append(size_type NumInputs, const T &Elt) {
- // Grow allocated space if needed.
- if (NumInputs > size_type(this->capacity_ptr()-this->end()))
- this->grow(this->size()+NumInputs);
- // Copy the new elements over.
- std::uninitialized_fill_n(this->end(), NumInputs, Elt);
- this->setEnd(this->end() + NumInputs);
- }
- void append(std::initializer_list<T> IL) {
- append(IL.begin(), IL.end());
- }
- void assign(size_type NumElts, const T &Elt) {
- clear();
- if (this->capacity() < NumElts)
- this->grow(NumElts);
- this->setEnd(this->begin()+NumElts);
- std::uninitialized_fill(this->begin(), this->end(), Elt);
- }
- void assign(std::initializer_list<T> IL) {
- clear();
- append(IL);
- }
- iterator erase(iterator I) {
- assert(I >= this->begin() && "Iterator to erase is out of bounds.");
- assert(I < this->end() && "Erasing at past-the-end iterator.");
- iterator N = I;
- // Shift all elts down one.
- this->move(I+1, this->end(), I);
- // Drop the last elt.
- this->pop_back();
- return(N);
- }
- iterator erase(iterator S, iterator E) {
- assert(S >= this->begin() && "Range to erase is out of bounds.");
- assert(S <= E && "Trying to erase invalid range.");
- assert(E <= this->end() && "Trying to erase past the end.");
- iterator N = S;
- // Shift all elts down.
- iterator I = this->move(E, this->end(), S);
- // Drop the last elts.
- this->destroy_range(I, this->end());
- this->setEnd(I);
- return(N);
- }
- iterator insert(iterator I, T &&Elt) {
- if (I == this->end()) { // Important special case for empty vector.
- this->push_back(::std::move(Elt));
- return this->end()-1;
- }
- assert(I >= this->begin() && "Insertion iterator is out of bounds.");
- assert(I <= this->end() && "Inserting past the end of the vector.");
- if (this->EndX >= this->CapacityX) {
- size_t EltNo = I-this->begin();
- this->grow();
- I = this->begin()+EltNo;
- }
- ::new ((void*) this->end()) T(::std::move(this->back()));
- // Push everything else over.
- this->move_backward(I, this->end()-1, this->end());
- this->setEnd(this->end()+1);
- // If we just moved the element we're inserting, be sure to update
- // the reference.
- T *EltPtr = &Elt;
- if (I <= EltPtr && EltPtr < this->EndX)
- ++EltPtr;
- *I = ::std::move(*EltPtr);
- return I;
- }
- iterator insert(iterator I, const T &Elt) {
- if (I == this->end()) { // Important special case for empty vector.
- this->push_back(Elt);
- return this->end()-1;
- }
- assert(I >= this->begin() && "Insertion iterator is out of bounds.");
- assert(I <= this->end() && "Inserting past the end of the vector.");
- if (this->EndX >= this->CapacityX) {
- size_t EltNo = I-this->begin();
- this->grow();
- I = this->begin()+EltNo;
- }
- ::new ((void*) this->end()) T(std::move(this->back()));
- // Push everything else over.
- this->move_backward(I, this->end()-1, this->end());
- this->setEnd(this->end()+1);
- // If we just moved the element we're inserting, be sure to update
- // the reference.
- const T *EltPtr = &Elt;
- if (I <= EltPtr && EltPtr < this->EndX)
- ++EltPtr;
- *I = *EltPtr;
- return I;
- }
- iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
- // Convert iterator to elt# to avoid invalidating iterator when we reserve()
- size_t InsertElt = I - this->begin();
- if (I == this->end()) { // Important special case for empty vector.
- append(NumToInsert, Elt);
- return this->begin()+InsertElt;
- }
- assert(I >= this->begin() && "Insertion iterator is out of bounds.");
- assert(I <= this->end() && "Inserting past the end of the vector.");
- // Ensure there is enough space.
- reserve(this->size() + NumToInsert);
- // Uninvalidate the iterator.
- I = this->begin()+InsertElt;
- // If there are more elements between the insertion point and the end of the
- // range than there are being inserted, we can use a simple approach to
- // insertion. Since we already reserved space, we know that this won't
- // reallocate the vector.
- if (size_t(this->end()-I) >= NumToInsert) {
- T *OldEnd = this->end();
- append(std::move_iterator<iterator>(this->end() - NumToInsert),
- std::move_iterator<iterator>(this->end()));
- // Copy the existing elements that get replaced.
- this->move_backward(I, OldEnd-NumToInsert, OldEnd);
- std::fill_n(I, NumToInsert, Elt);
- return I;
- }
- // Otherwise, we're inserting more elements than exist already, and we're
- // not inserting at the end.
- // Move over the elements that we're about to overwrite.
- T *OldEnd = this->end();
- this->setEnd(this->end() + NumToInsert);
- size_t NumOverwritten = OldEnd-I;
- this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
- // Replace the overwritten part.
- std::fill_n(I, NumOverwritten, Elt);
- // Insert the non-overwritten middle part.
- std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
- return I;
- }
- template<typename ItTy>
- iterator insert(iterator I, ItTy From, ItTy To) {
- // Convert iterator to elt# to avoid invalidating iterator when we reserve()
- size_t InsertElt = I - this->begin();
- if (I == this->end()) { // Important special case for empty vector.
- append(From, To);
- return this->begin()+InsertElt;
- }
- assert(I >= this->begin() && "Insertion iterator is out of bounds.");
- assert(I <= this->end() && "Inserting past the end of the vector.");
- size_t NumToInsert = std::distance(From, To);
- // Ensure there is enough space.
- reserve(this->size() + NumToInsert);
- // Uninvalidate the iterator.
- I = this->begin()+InsertElt;
- // If there are more elements between the insertion point and the end of the
- // range than there are being inserted, we can use a simple approach to
- // insertion. Since we already reserved space, we know that this won't
- // reallocate the vector.
- if (size_t(this->end()-I) >= NumToInsert) {
- T *OldEnd = this->end();
- append(std::move_iterator<iterator>(this->end() - NumToInsert),
- std::move_iterator<iterator>(this->end()));
- // Copy the existing elements that get replaced.
- this->move_backward(I, OldEnd-NumToInsert, OldEnd);
- std::copy(From, To, I);
- return I;
- }
- // Otherwise, we're inserting more elements than exist already, and we're
- // not inserting at the end.
- // Move over the elements that we're about to overwrite.
- T *OldEnd = this->end();
- this->setEnd(this->end() + NumToInsert);
- size_t NumOverwritten = OldEnd-I;
- this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
- // Replace the overwritten part.
- for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
- *J = *From;
- ++J; ++From;
- }
- // Insert the non-overwritten middle part.
- this->uninitialized_copy(From, To, OldEnd);
- return I;
- }
- void insert(iterator I, std::initializer_list<T> IL) {
- insert(I, IL.begin(), IL.end());
- }
- template <typename... ArgTypes> void emplace_back(ArgTypes &&... Args) {
- if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
- this->grow();
- ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
- this->setEnd(this->end() + 1);
- }
- SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
- SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
- bool operator==(const SmallVectorImpl &RHS) const {
- if (this->size() != RHS.size()) return false;
- return std::equal(this->begin(), this->end(), RHS.begin());
- }
- bool operator!=(const SmallVectorImpl &RHS) const {
- return !(*this == RHS);
- }
- bool operator<(const SmallVectorImpl &RHS) const {
- return std::lexicographical_compare(this->begin(), this->end(),
- RHS.begin(), RHS.end());
- }
- /// Set the array size to \p N, which the current array must have enough
- /// capacity for.
- ///
- /// This does not construct or destroy any elements in the vector.
- ///
- /// Clients can use this in conjunction with capacity() to write past the end
- /// of the buffer when they know that more elements are available, and only
- /// update the size later. This avoids the cost of value initializing elements
- /// which will only be overwritten.
- void set_size(size_type N) {
- assert(N <= this->capacity());
- this->setEnd(this->begin() + N);
- }
- };
- template <typename T>
- void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
- if (this == &RHS) return;
- // We can only avoid copying elements if neither vector is small.
- if (!this->isSmall() && !RHS.isSmall()) {
- std::swap(this->BeginX, RHS.BeginX);
- std::swap(this->EndX, RHS.EndX);
- std::swap(this->CapacityX, RHS.CapacityX);
- return;
- }
- if (RHS.size() > this->capacity())
- this->grow(RHS.size());
- if (this->size() > RHS.capacity())
- RHS.grow(this->size());
- // Swap the shared elements.
- size_t NumShared = this->size();
- if (NumShared > RHS.size()) NumShared = RHS.size();
- for (size_type i = 0; i != NumShared; ++i)
- std::swap((*this)[i], RHS[i]);
- // Copy over the extra elts.
- if (this->size() > RHS.size()) {
- size_t EltDiff = this->size() - RHS.size();
- this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
- RHS.setEnd(RHS.end()+EltDiff);
- this->destroy_range(this->begin()+NumShared, this->end());
- this->setEnd(this->begin()+NumShared);
- } else if (RHS.size() > this->size()) {
- size_t EltDiff = RHS.size() - this->size();
- this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
- this->setEnd(this->end() + EltDiff);
- this->destroy_range(RHS.begin()+NumShared, RHS.end());
- RHS.setEnd(RHS.begin()+NumShared);
- }
- }
- template <typename T>
- SmallVectorImpl<T> &SmallVectorImpl<T>::
- operator=(const SmallVectorImpl<T> &RHS) {
- // Avoid self-assignment.
- if (this == &RHS) return *this;
- // If we already have sufficient space, assign the common elements, then
- // destroy any excess.
- size_t RHSSize = RHS.size();
- size_t CurSize = this->size();
- if (CurSize >= RHSSize) {
- // Assign common elements.
- iterator NewEnd;
- if (RHSSize)
- NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
- else
- NewEnd = this->begin();
- // Destroy excess elements.
- this->destroy_range(NewEnd, this->end());
- // Trim.
- this->setEnd(NewEnd);
- return *this;
- }
- // If we have to grow to have enough elements, destroy the current elements.
- // This allows us to avoid copying them during the grow.
- // FIXME: don't do this if they're efficiently moveable.
- if (this->capacity() < RHSSize) {
- // Destroy current elements.
- this->destroy_range(this->begin(), this->end());
- this->setEnd(this->begin());
- CurSize = 0;
- this->grow(RHSSize);
- } else if (CurSize) {
- // Otherwise, use assignment for the already-constructed elements.
- std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
- }
- // Copy construct the new elements in place.
- this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
- this->begin()+CurSize);
- // Set end.
- this->setEnd(this->begin()+RHSSize);
- return *this;
- }
- template <typename T>
- SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
- // Avoid self-assignment.
- if (this == &RHS) return *this;
- // If the RHS isn't small, clear this vector and then steal its buffer.
- if (!RHS.isSmall()) {
- this->destroy_range(this->begin(), this->end());
- if (!this->isSmall()) delete[] (char*)this->begin(); // HLSL Change: Use overridable operator delete
- this->BeginX = RHS.BeginX;
- this->EndX = RHS.EndX;
- this->CapacityX = RHS.CapacityX;
- RHS.resetToSmall();
- return *this;
- }
- // If we already have sufficient space, assign the common elements, then
- // destroy any excess.
- size_t RHSSize = RHS.size();
- size_t CurSize = this->size();
- if (CurSize >= RHSSize) {
- // Assign common elements.
- iterator NewEnd = this->begin();
- if (RHSSize)
- NewEnd = this->move(RHS.begin(), RHS.end(), NewEnd);
- // Destroy excess elements and trim the bounds.
- this->destroy_range(NewEnd, this->end());
- this->setEnd(NewEnd);
- // Clear the RHS.
- RHS.clear();
- return *this;
- }
- // If we have to grow to have enough elements, destroy the current elements.
- // This allows us to avoid copying them during the grow.
- // FIXME: this may not actually make any sense if we can efficiently move
- // elements.
- if (this->capacity() < RHSSize) {
- // Destroy current elements.
- this->destroy_range(this->begin(), this->end());
- this->setEnd(this->begin());
- CurSize = 0;
- this->grow(RHSSize);
- } else if (CurSize) {
- // Otherwise, use assignment for the already-constructed elements.
- this->move(RHS.begin(), RHS.begin()+CurSize, this->begin());
- }
- // Move-construct the new elements in place.
- this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
- this->begin()+CurSize);
- // Set end.
- this->setEnd(this->begin()+RHSSize);
- RHS.clear();
- return *this;
- }
- /// Storage for the SmallVector elements which aren't contained in
- /// SmallVectorTemplateCommon. There are 'N-1' elements here. The remaining '1'
- /// element is in the base class. This is specialized for the N=1 and N=0 cases
- /// to avoid allocating unnecessary storage.
- template <typename T, unsigned N>
- struct SmallVectorStorage {
- typename SmallVectorTemplateCommon<T>::U InlineElts[N - 1];
- };
- template <typename T> struct SmallVectorStorage<T, 1> {};
- template <typename T> struct SmallVectorStorage<T, 0> {};
- /// This is a 'vector' (really, a variable-sized array), optimized
- /// for the case when the array is small. It contains some number of elements
- /// in-place, which allows it to avoid heap allocation when the actual number of
- /// elements is below that threshold. This allows normal "small" cases to be
- /// fast without losing generality for large inputs.
- ///
- /// Note that this does not attempt to be exception safe.
- ///
- template <typename T, unsigned N>
- class SmallVector : public SmallVectorImpl<T> {
- /// Inline space for elements which aren't stored in the base class.
- SmallVectorStorage<T, N> Storage;
- public:
- SmallVector() : SmallVectorImpl<T>(N) {
- }
- explicit SmallVector(size_t Size, const T &Value = T())
- : SmallVectorImpl<T>(N) {
- this->assign(Size, Value);
- }
- template<typename ItTy>
- SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
- this->append(S, E);
- }
- template <typename RangeTy>
- explicit SmallVector(const llvm::iterator_range<RangeTy> R)
- : SmallVectorImpl<T>(N) {
- this->append(R.begin(), R.end());
- }
- SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
- this->assign(IL);
- }
- SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
- if (!RHS.empty())
- SmallVectorImpl<T>::operator=(RHS);
- }
- const SmallVector &operator=(const SmallVector &RHS) {
- SmallVectorImpl<T>::operator=(RHS);
- return *this;
- }
- SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
- if (!RHS.empty())
- SmallVectorImpl<T>::operator=(::std::move(RHS));
- }
- const SmallVector &operator=(SmallVector &&RHS) {
- SmallVectorImpl<T>::operator=(::std::move(RHS));
- return *this;
- }
- SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
- if (!RHS.empty())
- SmallVectorImpl<T>::operator=(::std::move(RHS));
- }
- const SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
- SmallVectorImpl<T>::operator=(::std::move(RHS));
- return *this;
- }
- const SmallVector &operator=(std::initializer_list<T> IL) {
- this->assign(IL);
- return *this;
- }
- };
- template<typename T, unsigned N>
- static inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
- return X.capacity_in_bytes();
- }
- } // End llvm namespace
- namespace std {
- /// Implement std::swap in terms of SmallVector swap.
- template<typename T>
- inline void
- swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
- LHS.swap(RHS);
- }
- /// Implement std::swap in terms of SmallVector swap.
- template<typename T, unsigned N>
- inline void
- swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
- LHS.swap(RHS);
- }
- }
- #endif
|