LangIntro.rst 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615
  1. ==============================
  2. TableGen Language Introduction
  3. ==============================
  4. .. contents::
  5. :local:
  6. .. warning::
  7. This document is extremely rough. If you find something lacking, please
  8. fix it, file a documentation bug, or ask about it on llvm-dev.
  9. Introduction
  10. ============
  11. This document is not meant to be a normative spec about the TableGen language
  12. in and of itself (i.e. how to understand a given construct in terms of how
  13. it affects the final set of records represented by the TableGen file). For
  14. the formal language specification, see :doc:`LangRef`.
  15. TableGen syntax
  16. ===============
  17. TableGen doesn't care about the meaning of data (that is up to the backend to
  18. define), but it does care about syntax, and it enforces a simple type system.
  19. This section describes the syntax and the constructs allowed in a TableGen file.
  20. TableGen primitives
  21. -------------------
  22. TableGen comments
  23. ^^^^^^^^^^^^^^^^^
  24. TableGen supports C++ style "``//``" comments, which run to the end of the
  25. line, and it also supports **nestable** "``/* */``" comments.
  26. .. _TableGen type:
  27. The TableGen type system
  28. ^^^^^^^^^^^^^^^^^^^^^^^^
  29. TableGen files are strongly typed, in a simple (but complete) type-system.
  30. These types are used to perform automatic conversions, check for errors, and to
  31. help interface designers constrain the input that they allow. Every `value
  32. definition`_ is required to have an associated type.
  33. TableGen supports a mixture of very low-level types (such as ``bit``) and very
  34. high-level types (such as ``dag``). This flexibility is what allows it to
  35. describe a wide range of information conveniently and compactly. The TableGen
  36. types are:
  37. ``bit``
  38. A 'bit' is a boolean value that can hold either 0 or 1.
  39. ``int``
  40. The 'int' type represents a simple 32-bit integer value, such as 5.
  41. ``string``
  42. The 'string' type represents an ordered sequence of characters of arbitrary
  43. length.
  44. ``bits<n>``
  45. A 'bits' type is an arbitrary, but fixed, size integer that is broken up
  46. into individual bits. This type is useful because it can handle some bits
  47. being defined while others are undefined.
  48. ``list<ty>``
  49. This type represents a list whose elements are some other type. The
  50. contained type is arbitrary: it can even be another list type.
  51. Class type
  52. Specifying a class name in a type context means that the defined value must
  53. be a subclass of the specified class. This is useful in conjunction with
  54. the ``list`` type, for example, to constrain the elements of the list to a
  55. common base class (e.g., a ``list<Register>`` can only contain definitions
  56. derived from the "``Register``" class).
  57. ``dag``
  58. This type represents a nestable directed graph of elements.
  59. To date, these types have been sufficient for describing things that TableGen
  60. has been used for, but it is straight-forward to extend this list if needed.
  61. .. _TableGen expressions:
  62. TableGen values and expressions
  63. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  64. TableGen allows for a pretty reasonable number of different expression forms
  65. when building up values. These forms allow the TableGen file to be written in a
  66. natural syntax and flavor for the application. The current expression forms
  67. supported include:
  68. ``?``
  69. uninitialized field
  70. ``0b1001011``
  71. binary integer value.
  72. Note that this is sized by the number of bits given and will not be
  73. silently extended/truncated.
  74. ``07654321``
  75. octal integer value (indicated by a leading 0)
  76. ``7``
  77. decimal integer value
  78. ``0x7F``
  79. hexadecimal integer value
  80. ``"foo"``
  81. string value
  82. ``[{ ... }]``
  83. usually called a "code fragment", but is just a multiline string literal
  84. ``[ X, Y, Z ]<type>``
  85. list value. <type> is the type of the list element and is usually optional.
  86. In rare cases, TableGen is unable to deduce the element type in which case
  87. the user must specify it explicitly.
  88. ``{ a, b, 0b10 }``
  89. initializer for a "bits<4>" value.
  90. 1-bit from "a", 1-bit from "b", 2-bits from 0b10.
  91. ``value``
  92. value reference
  93. ``value{17}``
  94. access to one bit of a value
  95. ``value{15-17}``
  96. access to multiple bits of a value
  97. ``DEF``
  98. reference to a record definition
  99. ``CLASS<val list>``
  100. reference to a new anonymous definition of CLASS with the specified template
  101. arguments.
  102. ``X.Y``
  103. reference to the subfield of a value
  104. ``list[4-7,17,2-3]``
  105. A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from it.
  106. Elements may be included multiple times.
  107. ``foreach <var> = [ <list> ] in { <body> }``
  108. ``foreach <var> = [ <list> ] in <def>``
  109. Replicate <body> or <def>, replacing instances of <var> with each value
  110. in <list>. <var> is scoped at the level of the ``foreach`` loop and must
  111. not conflict with any other object introduced in <body> or <def>. Currently
  112. only ``def``\s are expanded within <body>.
  113. ``foreach <var> = 0-15 in ...``
  114. ``foreach <var> = {0-15,32-47} in ...``
  115. Loop over ranges of integers. The braces are required for multiple ranges.
  116. ``(DEF a, b)``
  117. a dag value. The first element is required to be a record definition, the
  118. remaining elements in the list may be arbitrary other values, including
  119. nested ```dag``' values.
  120. ``!listconcat(a, b, ...)``
  121. A list value that is the result of concatenating the 'a' and 'b' lists.
  122. The lists must have the same element type.
  123. More than two arguments are accepted with the result being the concatenation
  124. of all the lists given.
  125. ``!strconcat(a, b, ...)``
  126. A string value that is the result of concatenating the 'a' and 'b' strings.
  127. More than two arguments are accepted with the result being the concatenation
  128. of all the strings given.
  129. ``str1#str2``
  130. "#" (paste) is a shorthand for !strconcat. It may concatenate things that
  131. are not quoted strings, in which case an implicit !cast<string> is done on
  132. the operand of the paste.
  133. ``!cast<type>(a)``
  134. A symbol of type *type* obtained by looking up the string 'a' in the symbol
  135. table. If the type of 'a' does not match *type*, TableGen aborts with an
  136. error. !cast<string> is a special case in that the argument must be an
  137. object defined by a 'def' construct.
  138. ``!subst(a, b, c)``
  139. If 'a' and 'b' are of string type or are symbol references, substitute 'b'
  140. for 'a' in 'c.' This operation is analogous to $(subst) in GNU make.
  141. ``!foreach(a, b, c)``
  142. For each member of dag or list 'b' apply operator 'c.' 'a' is a dummy
  143. variable that should be declared as a member variable of an instantiated
  144. class. This operation is analogous to $(foreach) in GNU make.
  145. ``!head(a)``
  146. The first element of list 'a.'
  147. ``!tail(a)``
  148. The 2nd-N elements of list 'a.'
  149. ``!empty(a)``
  150. An integer {0,1} indicating whether list 'a' is empty.
  151. ``!if(a,b,c)``
  152. 'b' if the result of 'int' or 'bit' operator 'a' is nonzero, 'c' otherwise.
  153. ``!eq(a,b)``
  154. 'bit 1' if string a is equal to string b, 0 otherwise. This only operates
  155. on string, int and bit objects. Use !cast<string> to compare other types of
  156. objects.
  157. ``!shl(a,b)`` ``!srl(a,b)`` ``!sra(a,b)`` ``!add(a,b)`` ``!and(a,b)``
  158. The usual binary and arithmetic operators.
  159. Note that all of the values have rules specifying how they convert to values
  160. for different types. These rules allow you to assign a value like "``7``"
  161. to a "``bits<4>``" value, for example.
  162. Classes and definitions
  163. -----------------------
  164. As mentioned in the :doc:`introduction <index>`, classes and definitions (collectively known as
  165. 'records') in TableGen are the main high-level unit of information that TableGen
  166. collects. Records are defined with a ``def`` or ``class`` keyword, the record
  167. name, and an optional list of "`template arguments`_". If the record has
  168. superclasses, they are specified as a comma separated list that starts with a
  169. colon character ("``:``"). If `value definitions`_ or `let expressions`_ are
  170. needed for the class, they are enclosed in curly braces ("``{}``"); otherwise,
  171. the record ends with a semicolon.
  172. Here is a simple TableGen file:
  173. .. code-block:: llvm
  174. class C { bit V = 1; }
  175. def X : C;
  176. def Y : C {
  177. string Greeting = "hello";
  178. }
  179. This example defines two definitions, ``X`` and ``Y``, both of which derive from
  180. the ``C`` class. Because of this, they both get the ``V`` bit value. The ``Y``
  181. definition also gets the Greeting member as well.
  182. In general, classes are useful for collecting together the commonality between a
  183. group of records and isolating it in a single place. Also, classes permit the
  184. specification of default values for their subclasses, allowing the subclasses to
  185. override them as they wish.
  186. .. _value definition:
  187. .. _value definitions:
  188. Value definitions
  189. ^^^^^^^^^^^^^^^^^
  190. Value definitions define named entries in records. A value must be defined
  191. before it can be referred to as the operand for another value definition or
  192. before the value is reset with a `let expression`_. A value is defined by
  193. specifying a `TableGen type`_ and a name. If an initial value is available, it
  194. may be specified after the type with an equal sign. Value definitions require
  195. terminating semicolons.
  196. .. _let expression:
  197. .. _let expressions:
  198. .. _"let" expressions within a record:
  199. 'let' expressions
  200. ^^^^^^^^^^^^^^^^^
  201. A record-level let expression is used to change the value of a value definition
  202. in a record. This is primarily useful when a superclass defines a value that a
  203. derived class or definition wants to override. Let expressions consist of the
  204. '``let``' keyword followed by a value name, an equal sign ("``=``"), and a new
  205. value. For example, a new class could be added to the example above, redefining
  206. the ``V`` field for all of its subclasses:
  207. .. code-block:: llvm
  208. class D : C { let V = 0; }
  209. def Z : D;
  210. In this case, the ``Z`` definition will have a zero value for its ``V`` value,
  211. despite the fact that it derives (indirectly) from the ``C`` class, because the
  212. ``D`` class overrode its value.
  213. .. _template arguments:
  214. Class template arguments
  215. ^^^^^^^^^^^^^^^^^^^^^^^^
  216. TableGen permits the definition of parameterized classes as well as normal
  217. concrete classes. Parameterized TableGen classes specify a list of variable
  218. bindings (which may optionally have defaults) that are bound when used. Here is
  219. a simple example:
  220. .. code-block:: llvm
  221. class FPFormat<bits<3> val> {
  222. bits<3> Value = val;
  223. }
  224. def NotFP : FPFormat<0>;
  225. def ZeroArgFP : FPFormat<1>;
  226. def OneArgFP : FPFormat<2>;
  227. def OneArgFPRW : FPFormat<3>;
  228. def TwoArgFP : FPFormat<4>;
  229. def CompareFP : FPFormat<5>;
  230. def CondMovFP : FPFormat<6>;
  231. def SpecialFP : FPFormat<7>;
  232. In this case, template arguments are used as a space efficient way to specify a
  233. list of "enumeration values", each with a "``Value``" field set to the specified
  234. integer.
  235. The more esoteric forms of `TableGen expressions`_ are useful in conjunction
  236. with template arguments. As an example:
  237. .. code-block:: llvm
  238. class ModRefVal<bits<2> val> {
  239. bits<2> Value = val;
  240. }
  241. def None : ModRefVal<0>;
  242. def Mod : ModRefVal<1>;
  243. def Ref : ModRefVal<2>;
  244. def ModRef : ModRefVal<3>;
  245. class Value<ModRefVal MR> {
  246. // Decode some information into a more convenient format, while providing
  247. // a nice interface to the user of the "Value" class.
  248. bit isMod = MR.Value{0};
  249. bit isRef = MR.Value{1};
  250. // other stuff...
  251. }
  252. // Example uses
  253. def bork : Value<Mod>;
  254. def zork : Value<Ref>;
  255. def hork : Value<ModRef>;
  256. This is obviously a contrived example, but it shows how template arguments can
  257. be used to decouple the interface provided to the user of the class from the
  258. actual internal data representation expected by the class. In this case,
  259. running ``llvm-tblgen`` on the example prints the following definitions:
  260. .. code-block:: llvm
  261. def bork { // Value
  262. bit isMod = 1;
  263. bit isRef = 0;
  264. }
  265. def hork { // Value
  266. bit isMod = 1;
  267. bit isRef = 1;
  268. }
  269. def zork { // Value
  270. bit isMod = 0;
  271. bit isRef = 1;
  272. }
  273. This shows that TableGen was able to dig into the argument and extract a piece
  274. of information that was requested by the designer of the "Value" class. For
  275. more realistic examples, please see existing users of TableGen, such as the X86
  276. backend.
  277. Multiclass definitions and instances
  278. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  279. While classes with template arguments are a good way to factor commonality
  280. between two instances of a definition, multiclasses allow a convenient notation
  281. for defining multiple definitions at once (instances of implicitly constructed
  282. classes). For example, consider an 3-address instruction set whose instructions
  283. come in two forms: "``reg = reg op reg``" and "``reg = reg op imm``"
  284. (e.g. SPARC). In this case, you'd like to specify in one place that this
  285. commonality exists, then in a separate place indicate what all the ops are.
  286. Here is an example TableGen fragment that shows this idea:
  287. .. code-block:: llvm
  288. def ops;
  289. def GPR;
  290. def Imm;
  291. class inst<int opc, string asmstr, dag operandlist>;
  292. multiclass ri_inst<int opc, string asmstr> {
  293. def _rr : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
  294. (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
  295. def _ri : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
  296. (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
  297. }
  298. // Instantiations of the ri_inst multiclass.
  299. defm ADD : ri_inst<0b111, "add">;
  300. defm SUB : ri_inst<0b101, "sub">;
  301. defm MUL : ri_inst<0b100, "mul">;
  302. ...
  303. The name of the resultant definitions has the multidef fragment names appended
  304. to them, so this defines ``ADD_rr``, ``ADD_ri``, ``SUB_rr``, etc. A defm may
  305. inherit from multiple multiclasses, instantiating definitions from each
  306. multiclass. Using a multiclass this way is exactly equivalent to instantiating
  307. the classes multiple times yourself, e.g. by writing:
  308. .. code-block:: llvm
  309. def ops;
  310. def GPR;
  311. def Imm;
  312. class inst<int opc, string asmstr, dag operandlist>;
  313. class rrinst<int opc, string asmstr>
  314. : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
  315. (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
  316. class riinst<int opc, string asmstr>
  317. : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
  318. (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
  319. // Instantiations of the ri_inst multiclass.
  320. def ADD_rr : rrinst<0b111, "add">;
  321. def ADD_ri : riinst<0b111, "add">;
  322. def SUB_rr : rrinst<0b101, "sub">;
  323. def SUB_ri : riinst<0b101, "sub">;
  324. def MUL_rr : rrinst<0b100, "mul">;
  325. def MUL_ri : riinst<0b100, "mul">;
  326. ...
  327. A ``defm`` can also be used inside a multiclass providing several levels of
  328. multiclass instantiations.
  329. .. code-block:: llvm
  330. class Instruction<bits<4> opc, string Name> {
  331. bits<4> opcode = opc;
  332. string name = Name;
  333. }
  334. multiclass basic_r<bits<4> opc> {
  335. def rr : Instruction<opc, "rr">;
  336. def rm : Instruction<opc, "rm">;
  337. }
  338. multiclass basic_s<bits<4> opc> {
  339. defm SS : basic_r<opc>;
  340. defm SD : basic_r<opc>;
  341. def X : Instruction<opc, "x">;
  342. }
  343. multiclass basic_p<bits<4> opc> {
  344. defm PS : basic_r<opc>;
  345. defm PD : basic_r<opc>;
  346. def Y : Instruction<opc, "y">;
  347. }
  348. defm ADD : basic_s<0xf>, basic_p<0xf>;
  349. ...
  350. // Results
  351. def ADDPDrm { ...
  352. def ADDPDrr { ...
  353. def ADDPSrm { ...
  354. def ADDPSrr { ...
  355. def ADDSDrm { ...
  356. def ADDSDrr { ...
  357. def ADDY { ...
  358. def ADDX { ...
  359. ``defm`` declarations can inherit from classes too, the rule to follow is that
  360. the class list must start after the last multiclass, and there must be at least
  361. one multiclass before them.
  362. .. code-block:: llvm
  363. class XD { bits<4> Prefix = 11; }
  364. class XS { bits<4> Prefix = 12; }
  365. class I<bits<4> op> {
  366. bits<4> opcode = op;
  367. }
  368. multiclass R {
  369. def rr : I<4>;
  370. def rm : I<2>;
  371. }
  372. multiclass Y {
  373. defm SS : R, XD;
  374. defm SD : R, XS;
  375. }
  376. defm Instr : Y;
  377. // Results
  378. def InstrSDrm {
  379. bits<4> opcode = { 0, 0, 1, 0 };
  380. bits<4> Prefix = { 1, 1, 0, 0 };
  381. }
  382. ...
  383. def InstrSSrr {
  384. bits<4> opcode = { 0, 1, 0, 0 };
  385. bits<4> Prefix = { 1, 0, 1, 1 };
  386. }
  387. File scope entities
  388. -------------------
  389. File inclusion
  390. ^^^^^^^^^^^^^^
  391. TableGen supports the '``include``' token, which textually substitutes the
  392. specified file in place of the include directive. The filename should be
  393. specified as a double quoted string immediately after the '``include``' keyword.
  394. Example:
  395. .. code-block:: llvm
  396. include "foo.td"
  397. 'let' expressions
  398. ^^^^^^^^^^^^^^^^^
  399. "Let" expressions at file scope are similar to `"let" expressions within a
  400. record`_, except they can specify a value binding for multiple records at a
  401. time, and may be useful in certain other cases. File-scope let expressions are
  402. really just another way that TableGen allows the end-user to factor out
  403. commonality from the records.
  404. File-scope "let" expressions take a comma-separated list of bindings to apply,
  405. and one or more records to bind the values in. Here are some examples:
  406. .. code-block:: llvm
  407. let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in
  408. def RET : I<0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]>;
  409. let isCall = 1 in
  410. // All calls clobber the non-callee saved registers...
  411. let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
  412. MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
  413. XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] in {
  414. def CALLpcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops),
  415. "call\t${dst:call}", []>;
  416. def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops),
  417. "call\t{*}$dst", [(X86call GR32:$dst)]>;
  418. def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
  419. "call\t{*}$dst", []>;
  420. }
  421. File-scope "let" expressions are often useful when a couple of definitions need
  422. to be added to several records, and the records do not otherwise need to be
  423. opened, as in the case with the ``CALL*`` instructions above.
  424. It's also possible to use "let" expressions inside multiclasses, providing more
  425. ways to factor out commonality from the records, specially if using several
  426. levels of multiclass instantiations. This also avoids the need of using "let"
  427. expressions within subsequent records inside a multiclass.
  428. .. code-block:: llvm
  429. multiclass basic_r<bits<4> opc> {
  430. let Predicates = [HasSSE2] in {
  431. def rr : Instruction<opc, "rr">;
  432. def rm : Instruction<opc, "rm">;
  433. }
  434. let Predicates = [HasSSE3] in
  435. def rx : Instruction<opc, "rx">;
  436. }
  437. multiclass basic_ss<bits<4> opc> {
  438. let IsDouble = 0 in
  439. defm SS : basic_r<opc>;
  440. let IsDouble = 1 in
  441. defm SD : basic_r<opc>;
  442. }
  443. defm ADD : basic_ss<0xf>;
  444. Looping
  445. ^^^^^^^
  446. TableGen supports the '``foreach``' block, which textually replicates the loop
  447. body, substituting iterator values for iterator references in the body.
  448. Example:
  449. .. code-block:: llvm
  450. foreach i = [0, 1, 2, 3] in {
  451. def R#i : Register<...>;
  452. def F#i : Register<...>;
  453. }
  454. This will create objects ``R0``, ``R1``, ``R2`` and ``R3``. ``foreach`` blocks
  455. may be nested. If there is only one item in the body the braces may be
  456. elided:
  457. .. code-block:: llvm
  458. foreach i = [0, 1, 2, 3] in
  459. def R#i : Register<...>;
  460. Code Generator backend info
  461. ===========================
  462. Expressions used by code generator to describe instructions and isel patterns:
  463. ``(implicit a)``
  464. an implicitly defined physical register. This tells the dag instruction
  465. selection emitter the input pattern's extra definitions matches implicit
  466. physical register definitions.