| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304 |
- //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the TargetRegisterInfo interface.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Target/TargetRegisterInfo.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/VirtRegMap.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
- regclass_iterator RCB, regclass_iterator RCE,
- const char *const *SRINames,
- const unsigned *SRILaneMasks,
- unsigned SRICoveringLanes)
- : InfoDesc(ID), SubRegIndexNames(SRINames),
- SubRegIndexLaneMasks(SRILaneMasks),
- RegClassBegin(RCB), RegClassEnd(RCE),
- CoveringLanes(SRICoveringLanes) {
- }
- TargetRegisterInfo::~TargetRegisterInfo() {}
- void PrintReg::print(raw_ostream &OS) const {
- if (!Reg)
- OS << "%noreg";
- else if (TargetRegisterInfo::isStackSlot(Reg))
- OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
- else if (TargetRegisterInfo::isVirtualRegister(Reg))
- OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
- else if (TRI && Reg < TRI->getNumRegs())
- OS << '%' << TRI->getName(Reg);
- else
- OS << "%physreg" << Reg;
- if (SubIdx) {
- if (TRI)
- OS << ':' << TRI->getSubRegIndexName(SubIdx);
- else
- OS << ":sub(" << SubIdx << ')';
- }
- }
- void PrintRegUnit::print(raw_ostream &OS) const {
- // Generic printout when TRI is missing.
- if (!TRI) {
- OS << "Unit~" << Unit;
- return;
- }
- // Check for invalid register units.
- if (Unit >= TRI->getNumRegUnits()) {
- OS << "BadUnit~" << Unit;
- return;
- }
- // Normal units have at least one root.
- MCRegUnitRootIterator Roots(Unit, TRI);
- assert(Roots.isValid() && "Unit has no roots.");
- OS << TRI->getName(*Roots);
- for (++Roots; Roots.isValid(); ++Roots)
- OS << '~' << TRI->getName(*Roots);
- }
- void PrintVRegOrUnit::print(raw_ostream &OS) const {
- if (TRI && TRI->isVirtualRegister(Unit)) {
- OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Unit);
- return;
- }
- PrintRegUnit::print(OS);
- }
- /// getAllocatableClass - Return the maximal subclass of the given register
- /// class that is alloctable, or NULL.
- const TargetRegisterClass *
- TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
- if (!RC || RC->isAllocatable())
- return RC;
- const unsigned *SubClass = RC->getSubClassMask();
- for (unsigned Base = 0, BaseE = getNumRegClasses();
- Base < BaseE; Base += 32) {
- unsigned Idx = Base;
- for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) {
- unsigned Offset = countTrailingZeros(Mask);
- const TargetRegisterClass *SubRC = getRegClass(Idx + Offset);
- if (SubRC->isAllocatable())
- return SubRC;
- Mask >>= Offset;
- Idx += Offset + 1;
- }
- }
- return nullptr;
- }
- /// getMinimalPhysRegClass - Returns the Register Class of a physical
- /// register of the given type, picking the most sub register class of
- /// the right type that contains this physreg.
- const TargetRegisterClass *
- TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const {
- assert(isPhysicalRegister(reg) && "reg must be a physical register");
- // Pick the most sub register class of the right type that contains
- // this physreg.
- const TargetRegisterClass* BestRC = nullptr;
- for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
- const TargetRegisterClass* RC = *I;
- if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
- (!BestRC || BestRC->hasSubClass(RC)))
- BestRC = RC;
- }
- assert(BestRC && "Couldn't find the register class");
- return BestRC;
- }
- /// getAllocatableSetForRC - Toggle the bits that represent allocatable
- /// registers for the specific register class.
- static void getAllocatableSetForRC(const MachineFunction &MF,
- const TargetRegisterClass *RC, BitVector &R){
- assert(RC->isAllocatable() && "invalid for nonallocatable sets");
- ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
- for (unsigned i = 0; i != Order.size(); ++i)
- R.set(Order[i]);
- }
- BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
- const TargetRegisterClass *RC) const {
- BitVector Allocatable(getNumRegs());
- if (RC) {
- // A register class with no allocatable subclass returns an empty set.
- const TargetRegisterClass *SubClass = getAllocatableClass(RC);
- if (SubClass)
- getAllocatableSetForRC(MF, SubClass, Allocatable);
- } else {
- for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
- E = regclass_end(); I != E; ++I)
- if ((*I)->isAllocatable())
- getAllocatableSetForRC(MF, *I, Allocatable);
- }
- // Mask out the reserved registers
- BitVector Reserved = getReservedRegs(MF);
- Allocatable &= Reserved.flip();
- return Allocatable;
- }
- static inline
- const TargetRegisterClass *firstCommonClass(const uint32_t *A,
- const uint32_t *B,
- const TargetRegisterInfo *TRI) {
- for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
- if (unsigned Common = *A++ & *B++)
- return TRI->getRegClass(I + countTrailingZeros(Common));
- return nullptr;
- }
- const TargetRegisterClass *
- TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
- const TargetRegisterClass *B) const {
- // First take care of the trivial cases.
- if (A == B)
- return A;
- if (!A || !B)
- return nullptr;
- // Register classes are ordered topologically, so the largest common
- // sub-class it the common sub-class with the smallest ID.
- return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
- }
- const TargetRegisterClass *
- TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
- const TargetRegisterClass *B,
- unsigned Idx) const {
- assert(A && B && "Missing register class");
- assert(Idx && "Bad sub-register index");
- // Find Idx in the list of super-register indices.
- for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
- if (RCI.getSubReg() == Idx)
- // The bit mask contains all register classes that are projected into B
- // by Idx. Find a class that is also a sub-class of A.
- return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
- return nullptr;
- }
- const TargetRegisterClass *TargetRegisterInfo::
- getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
- const TargetRegisterClass *RCB, unsigned SubB,
- unsigned &PreA, unsigned &PreB) const {
- assert(RCA && SubA && RCB && SubB && "Invalid arguments");
- // Search all pairs of sub-register indices that project into RCA and RCB
- // respectively. This is quadratic, but usually the sets are very small. On
- // most targets like X86, there will only be a single sub-register index
- // (e.g., sub_16bit projecting into GR16).
- //
- // The worst case is a register class like DPR on ARM.
- // We have indices dsub_0..dsub_7 projecting into that class.
- //
- // It is very common that one register class is a sub-register of the other.
- // Arrange for RCA to be the larger register so the answer will be found in
- // the first iteration. This makes the search linear for the most common
- // case.
- const TargetRegisterClass *BestRC = nullptr;
- unsigned *BestPreA = &PreA;
- unsigned *BestPreB = &PreB;
- if (RCA->getSize() < RCB->getSize()) {
- std::swap(RCA, RCB);
- std::swap(SubA, SubB);
- std::swap(BestPreA, BestPreB);
- }
- // Also terminate the search one we have found a register class as small as
- // RCA.
- unsigned MinSize = RCA->getSize();
- for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
- unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
- for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
- // Check if a common super-register class exists for this index pair.
- const TargetRegisterClass *RC =
- firstCommonClass(IA.getMask(), IB.getMask(), this);
- if (!RC || RC->getSize() < MinSize)
- continue;
- // The indexes must compose identically: PreA+SubA == PreB+SubB.
- unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
- if (FinalA != FinalB)
- continue;
- // Is RC a better candidate than BestRC?
- if (BestRC && RC->getSize() >= BestRC->getSize())
- continue;
- // Yes, RC is the smallest super-register seen so far.
- BestRC = RC;
- *BestPreA = IA.getSubReg();
- *BestPreB = IB.getSubReg();
- // Bail early if we reached MinSize. We won't find a better candidate.
- if (BestRC->getSize() == MinSize)
- return BestRC;
- }
- }
- return BestRC;
- }
- // Compute target-independent register allocator hints to help eliminate copies.
- void
- TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
- ArrayRef<MCPhysReg> Order,
- SmallVectorImpl<MCPhysReg> &Hints,
- const MachineFunction &MF,
- const VirtRegMap *VRM) const {
- const MachineRegisterInfo &MRI = MF.getRegInfo();
- std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
- // Hints with HintType != 0 were set by target-dependent code.
- // Such targets must provide their own implementation of
- // TRI::getRegAllocationHints to interpret those hint types.
- assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
- // Target-independent hints are either a physical or a virtual register.
- unsigned Phys = Hint.second;
- if (VRM && isVirtualRegister(Phys))
- Phys = VRM->getPhys(Phys);
- // Check that Phys is a valid hint in VirtReg's register class.
- if (!isPhysicalRegister(Phys))
- return;
- if (MRI.isReserved(Phys))
- return;
- // Check that Phys is in the allocation order. We shouldn't heed hints
- // from VirtReg's register class if they aren't in the allocation order. The
- // target probably has a reason for removing the register.
- if (std::find(Order.begin(), Order.end(), Phys) == Order.end())
- return;
- // All clear, tell the register allocator to prefer this register.
- Hints.push_back(Phys);
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void
- TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex,
- const TargetRegisterInfo *TRI) {
- dbgs() << PrintReg(Reg, TRI, SubRegIndex) << "\n";
- }
- #endif
|