DxilContainerAssembler.cpp 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950
  1. ///////////////////////////////////////////////////////////////////////////////
  2. // //
  3. // DxilContainerAssembler.cpp //
  4. // Copyright (C) Microsoft Corporation. All rights reserved. //
  5. // This file is distributed under the University of Illinois Open Source //
  6. // License. See LICENSE.TXT for details. //
  7. // //
  8. // Provides support for serializing a module into DXIL container structures. //
  9. // //
  10. ///////////////////////////////////////////////////////////////////////////////
  11. #include "llvm/ADT/MapVector.h"
  12. #include "llvm/IR/Module.h"
  13. #include "llvm/IR/DebugInfo.h"
  14. #include "llvm/Bitcode/ReaderWriter.h"
  15. #include "llvm/Support/MD5.h"
  16. #include "dxc/HLSL/DxilContainer.h"
  17. #include "dxc/HLSL/DxilModule.h"
  18. #include "dxc/HLSL/DxilShaderModel.h"
  19. #include "dxc/HLSL/DxilRootSignature.h"
  20. #include "dxc/Support/Global.h"
  21. #include "dxc/Support/Unicode.h"
  22. #include "dxc/Support/WinIncludes.h"
  23. #include "dxc/Support/FileIOHelper.h"
  24. #include "dxc/Support/dxcapi.impl.h"
  25. #include "dxc/HLSL/DxilPipelineStateValidation.h"
  26. #include <algorithm>
  27. #include <functional>
  28. using namespace llvm;
  29. using namespace hlsl;
  30. static DxilProgramSigSemantic KindToSystemValue(Semantic::Kind kind, DXIL::TessellatorDomain domain) {
  31. switch (kind) {
  32. case Semantic::Kind::Arbitrary: return DxilProgramSigSemantic::Undefined;
  33. case Semantic::Kind::VertexID: return DxilProgramSigSemantic::VertexID;
  34. case Semantic::Kind::InstanceID: return DxilProgramSigSemantic::InstanceID;
  35. case Semantic::Kind::Position: return DxilProgramSigSemantic::Position;
  36. case Semantic::Kind::Coverage: return DxilProgramSigSemantic::Coverage;
  37. case Semantic::Kind::InnerCoverage: return DxilProgramSigSemantic::InnerCoverage;
  38. case Semantic::Kind::PrimitiveID: return DxilProgramSigSemantic::PrimitiveID;
  39. case Semantic::Kind::SampleIndex: return DxilProgramSigSemantic::SampleIndex;
  40. case Semantic::Kind::IsFrontFace: return DxilProgramSigSemantic::IsFrontFace;
  41. case Semantic::Kind::RenderTargetArrayIndex: return DxilProgramSigSemantic::RenderTargetArrayIndex;
  42. case Semantic::Kind::ViewPortArrayIndex: return DxilProgramSigSemantic::ViewPortArrayIndex;
  43. case Semantic::Kind::ClipDistance: return DxilProgramSigSemantic::ClipDistance;
  44. case Semantic::Kind::CullDistance: return DxilProgramSigSemantic::CullDistance;
  45. case Semantic::Kind::Barycentrics: return DxilProgramSigSemantic::Barycentrics;
  46. case Semantic::Kind::TessFactor: {
  47. switch (domain) {
  48. case DXIL::TessellatorDomain::IsoLine:
  49. // Will bu updated to DetailTessFactor in next row.
  50. return DxilProgramSigSemantic::FinalLineDensityTessfactor;
  51. case DXIL::TessellatorDomain::Tri:
  52. return DxilProgramSigSemantic::FinalTriEdgeTessfactor;
  53. case DXIL::TessellatorDomain::Quad:
  54. return DxilProgramSigSemantic::FinalQuadEdgeTessfactor;
  55. }
  56. }
  57. case Semantic::Kind::InsideTessFactor: {
  58. switch (domain) {
  59. case DXIL::TessellatorDomain::IsoLine:
  60. DXASSERT(0, "invalid semantic");
  61. return DxilProgramSigSemantic::Undefined;
  62. case DXIL::TessellatorDomain::Tri:
  63. return DxilProgramSigSemantic::FinalTriInsideTessfactor;
  64. case DXIL::TessellatorDomain::Quad:
  65. return DxilProgramSigSemantic::FinalQuadInsideTessfactor;
  66. }
  67. }
  68. case Semantic::Kind::Invalid:
  69. return DxilProgramSigSemantic::Undefined;
  70. case Semantic::Kind::Target: return DxilProgramSigSemantic::Target;
  71. case Semantic::Kind::Depth: return DxilProgramSigSemantic::Depth;
  72. case Semantic::Kind::DepthLessEqual: return DxilProgramSigSemantic::DepthLE;
  73. case Semantic::Kind::DepthGreaterEqual: return DxilProgramSigSemantic::DepthGE;
  74. case Semantic::Kind::StencilRef:
  75. __fallthrough;
  76. default:
  77. DXASSERT(kind == Semantic::Kind::StencilRef, "else Invalid or switch is missing a case");
  78. return DxilProgramSigSemantic::StencilRef;
  79. }
  80. // TODO: Final_* values need mappings
  81. }
  82. static DxilProgramSigCompType CompTypeToSigCompType(hlsl::CompType value) {
  83. switch (value.GetKind()) {
  84. case CompType::Kind::I32: return DxilProgramSigCompType::SInt32;
  85. case CompType::Kind::U32: return DxilProgramSigCompType::UInt32;
  86. case CompType::Kind::F32: return DxilProgramSigCompType::Float32;
  87. case CompType::Kind::I16: return DxilProgramSigCompType::SInt16;
  88. case CompType::Kind::I64: return DxilProgramSigCompType::SInt64;
  89. case CompType::Kind::U16: return DxilProgramSigCompType::UInt16;
  90. case CompType::Kind::U64: return DxilProgramSigCompType::UInt64;
  91. case CompType::Kind::F16: return DxilProgramSigCompType::Float16;
  92. case CompType::Kind::F64: return DxilProgramSigCompType::Float64;
  93. case CompType::Kind::Invalid: __fallthrough;
  94. case CompType::Kind::I1: __fallthrough;
  95. default:
  96. return DxilProgramSigCompType::Unknown;
  97. }
  98. }
  99. static DxilProgramSigMinPrecision CompTypeToSigMinPrecision(hlsl::CompType value) {
  100. switch (value.GetKind()) {
  101. case CompType::Kind::I32: return DxilProgramSigMinPrecision::Default;
  102. case CompType::Kind::U32: return DxilProgramSigMinPrecision::Default;
  103. case CompType::Kind::F32: return DxilProgramSigMinPrecision::Default;
  104. case CompType::Kind::I1: return DxilProgramSigMinPrecision::Default;
  105. case CompType::Kind::U64: __fallthrough;
  106. case CompType::Kind::I64: __fallthrough;
  107. case CompType::Kind::F64: return DxilProgramSigMinPrecision::Default;
  108. case CompType::Kind::I16: return DxilProgramSigMinPrecision::SInt16;
  109. case CompType::Kind::U16: return DxilProgramSigMinPrecision::UInt16;
  110. case CompType::Kind::F16: return DxilProgramSigMinPrecision::Float16; // Float2_8 is not supported in DXIL.
  111. case CompType::Kind::Invalid: __fallthrough;
  112. default:
  113. return DxilProgramSigMinPrecision::Default;
  114. }
  115. }
  116. template <typename T>
  117. struct sort_second {
  118. bool operator()(const T &a, const T &b) {
  119. return std::less<decltype(a.second)>()(a.second, b.second);
  120. }
  121. };
  122. struct sort_sig {
  123. bool operator()(const DxilProgramSignatureElement &a,
  124. const DxilProgramSignatureElement &b) {
  125. return (a.Stream < b.Stream) |
  126. ((a.Stream == b.Stream) & (a.Register < b.Register));
  127. }
  128. };
  129. class DxilProgramSignatureWriter : public DxilPartWriter {
  130. private:
  131. const DxilSignature &m_signature;
  132. DXIL::TessellatorDomain m_domain;
  133. bool m_isInput;
  134. bool m_useMinPrecision;
  135. size_t m_fixedSize;
  136. typedef std::pair<const char *, uint32_t> NameOffsetPair;
  137. typedef llvm::SmallMapVector<const char *, uint32_t, 8> NameOffsetMap;
  138. uint32_t m_lastOffset;
  139. NameOffsetMap m_semanticNameOffsets;
  140. unsigned m_paramCount;
  141. const char *GetSemanticName(const hlsl::DxilSignatureElement *pElement) {
  142. DXASSERT_NOMSG(pElement != nullptr);
  143. DXASSERT(pElement->GetName() != nullptr, "else sig is malformed");
  144. return pElement->GetName();
  145. }
  146. uint32_t GetSemanticOffset(const hlsl::DxilSignatureElement *pElement) {
  147. const char *pName = GetSemanticName(pElement);
  148. NameOffsetMap::iterator nameOffset = m_semanticNameOffsets.find(pName);
  149. uint32_t result;
  150. if (nameOffset == m_semanticNameOffsets.end()) {
  151. result = m_lastOffset;
  152. m_semanticNameOffsets.insert(NameOffsetPair(pName, result));
  153. m_lastOffset += strlen(pName) + 1;
  154. }
  155. else {
  156. result = nameOffset->second;
  157. }
  158. return result;
  159. }
  160. void write(std::vector<DxilProgramSignatureElement> &orderedSig,
  161. const hlsl::DxilSignatureElement *pElement) {
  162. const std::vector<unsigned> &indexVec = pElement->GetSemanticIndexVec();
  163. unsigned eltCount = pElement->GetSemanticIndexVec().size();
  164. unsigned eltRows = 1;
  165. if (eltCount)
  166. eltRows = pElement->GetRows() / eltCount;
  167. DXASSERT_NOMSG(eltRows == 1);
  168. DxilProgramSignatureElement sig;
  169. memset(&sig, 0, sizeof(DxilProgramSignatureElement));
  170. sig.Stream = pElement->GetOutputStream();
  171. sig.SemanticName = GetSemanticOffset(pElement);
  172. sig.SystemValue = KindToSystemValue(pElement->GetKind(), m_domain);
  173. sig.CompType = CompTypeToSigCompType(pElement->GetCompType());
  174. sig.Register = pElement->GetStartRow();
  175. sig.Mask = pElement->GetColsAsMask();
  176. // Only mark exist channel write for output.
  177. // All channel not used for input.
  178. if (!m_isInput)
  179. sig.NeverWrites_Mask = ~(sig.Mask);
  180. else
  181. sig.AlwaysReads_Mask = 0;
  182. sig.MinPrecision = m_useMinPrecision
  183. ? CompTypeToSigMinPrecision(pElement->GetCompType())
  184. : DxilProgramSigMinPrecision::Default;
  185. for (unsigned i = 0; i < eltCount; ++i) {
  186. sig.SemanticIndex = indexVec[i];
  187. orderedSig.emplace_back(sig);
  188. if (pElement->IsAllocated())
  189. sig.Register += eltRows;
  190. if (sig.SystemValue == DxilProgramSigSemantic::FinalLineDensityTessfactor)
  191. sig.SystemValue = DxilProgramSigSemantic::FinalLineDetailTessfactor;
  192. }
  193. }
  194. void calcSizes() {
  195. // Calculate size for signature elements.
  196. const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
  197. uint32_t result = sizeof(DxilProgramSignature);
  198. m_paramCount = 0;
  199. for (size_t i = 0; i < elements.size(); ++i) {
  200. DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
  201. if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
  202. continue;
  203. unsigned semanticCount = elements[i]->GetSemanticIndexVec().size();
  204. result += semanticCount * sizeof(DxilProgramSignatureElement);
  205. m_paramCount += semanticCount;
  206. }
  207. m_fixedSize = result;
  208. m_lastOffset = m_fixedSize;
  209. // Calculate size for semantic strings.
  210. for (size_t i = 0; i < elements.size(); ++i) {
  211. GetSemanticOffset(elements[i].get());
  212. }
  213. }
  214. public:
  215. DxilProgramSignatureWriter(const DxilSignature &signature,
  216. DXIL::TessellatorDomain domain, bool isInput, bool UseMinPrecision)
  217. : m_signature(signature), m_domain(domain), m_isInput(isInput), m_useMinPrecision(UseMinPrecision) {
  218. calcSizes();
  219. }
  220. __override uint32_t size() const {
  221. return m_lastOffset;
  222. }
  223. __override void write(AbstractMemoryStream *pStream) {
  224. UINT64 startPos = pStream->GetPosition();
  225. const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
  226. DxilProgramSignature programSig;
  227. programSig.ParamCount = m_paramCount;
  228. programSig.ParamOffset = sizeof(DxilProgramSignature);
  229. IFT(WriteStreamValue(pStream, programSig));
  230. // Write structures in register order.
  231. std::vector<DxilProgramSignatureElement> orderedSig;
  232. for (size_t i = 0; i < elements.size(); ++i) {
  233. DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
  234. if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
  235. continue;
  236. write(orderedSig, elements[i].get());
  237. }
  238. std::sort(orderedSig.begin(), orderedSig.end(), sort_sig());
  239. for (size_t i = 0; i < orderedSig.size(); ++i) {
  240. DxilProgramSignatureElement &sigElt = orderedSig[i];
  241. IFT(WriteStreamValue(pStream, sigElt));
  242. }
  243. // Write strings in the offset order.
  244. std::vector<NameOffsetPair> ordered;
  245. ordered.assign(m_semanticNameOffsets.begin(), m_semanticNameOffsets.end());
  246. std::sort(ordered.begin(), ordered.end(), sort_second<NameOffsetPair>());
  247. for (size_t i = 0; i < ordered.size(); ++i) {
  248. const char *pName = ordered[i].first;
  249. ULONG cbWritten;
  250. UINT64 offsetPos = pStream->GetPosition();
  251. DXASSERT_LOCALVAR(offsetPos, offsetPos - startPos == ordered[i].second, "else str offset is incorrect");
  252. IFT(pStream->Write(pName, strlen(pName) + 1, &cbWritten));
  253. }
  254. // Verify we wrote the bytes we though we would.
  255. UINT64 endPos = pStream->GetPosition();
  256. DXASSERT_LOCALVAR(endPos - startPos, endPos - startPos == size(), "else size is incorrect");
  257. }
  258. };
  259. DxilPartWriter *hlsl::NewProgramSignatureWriter(const DxilModule &M, DXIL::SignatureKind Kind) {
  260. switch (Kind) {
  261. case DXIL::SignatureKind::Input:
  262. return new DxilProgramSignatureWriter(
  263. M.GetInputSignature(), M.GetTessellatorDomain(), true,
  264. !M.m_ShaderFlags.GetUseNativeLowPrecision());
  265. case DXIL::SignatureKind::Output:
  266. return new DxilProgramSignatureWriter(
  267. M.GetOutputSignature(), M.GetTessellatorDomain(), false,
  268. !M.m_ShaderFlags.GetUseNativeLowPrecision());
  269. case DXIL::SignatureKind::PatchConstant:
  270. return new DxilProgramSignatureWriter(
  271. M.GetPatchConstantSignature(), M.GetTessellatorDomain(),
  272. /*IsInput*/ M.GetShaderModel()->IsDS(),
  273. /*UseMinPrecision*/!M.m_ShaderFlags.GetUseNativeLowPrecision());
  274. }
  275. return nullptr;
  276. }
  277. class DxilProgramRootSignatureWriter : public DxilPartWriter {
  278. private:
  279. const RootSignatureHandle &m_Sig;
  280. public:
  281. DxilProgramRootSignatureWriter(const RootSignatureHandle &S) : m_Sig(S) {}
  282. uint32_t size() const {
  283. return m_Sig.GetSerializedSize();
  284. }
  285. void write(AbstractMemoryStream *pStream) {
  286. ULONG cbWritten;
  287. IFT(pStream->Write(m_Sig.GetSerializedBytes(), size(), &cbWritten));
  288. }
  289. };
  290. DxilPartWriter *hlsl::NewRootSignatureWriter(const RootSignatureHandle &S) {
  291. return new DxilProgramRootSignatureWriter(S);
  292. }
  293. class DxilFeatureInfoWriter : public DxilPartWriter {
  294. private:
  295. // Only save the shader properties after create class for it.
  296. DxilShaderFeatureInfo featureInfo;
  297. public:
  298. DxilFeatureInfoWriter(const DxilModule &M) {
  299. featureInfo.FeatureFlags = M.m_ShaderFlags.GetFeatureInfo();
  300. }
  301. __override uint32_t size() const {
  302. return sizeof(DxilShaderFeatureInfo);
  303. }
  304. __override void write(AbstractMemoryStream *pStream) {
  305. IFT(WriteStreamValue(pStream, featureInfo.FeatureFlags));
  306. }
  307. };
  308. DxilPartWriter *hlsl::NewFeatureInfoWriter(const DxilModule &M) {
  309. return new DxilFeatureInfoWriter(M);
  310. }
  311. class DxilPSVWriter : public DxilPartWriter {
  312. private:
  313. const DxilModule &m_Module;
  314. PSVInitInfo m_PSVInitInfo;
  315. DxilPipelineStateValidation m_PSV;
  316. uint32_t m_PSVBufferSize;
  317. SmallVector<char, 512> m_PSVBuffer;
  318. SmallVector<char, 256> m_StringBuffer;
  319. SmallVector<uint32_t, 8> m_SemanticIndexBuffer;
  320. std::vector<PSVSignatureElement0> m_SigInputElements;
  321. std::vector<PSVSignatureElement0> m_SigOutputElements;
  322. std::vector<PSVSignatureElement0> m_SigPatchConstantElements;
  323. void SetPSVSigElement(PSVSignatureElement0 &E, const DxilSignatureElement &SE) {
  324. memset(&E, 0, sizeof(PSVSignatureElement0));
  325. if (SE.GetKind() == DXIL::SemanticKind::Arbitrary && strlen(SE.GetName()) > 0) {
  326. E.SemanticName = (uint32_t)m_StringBuffer.size();
  327. StringRef Name(SE.GetName());
  328. m_StringBuffer.append(Name.size()+1, '\0');
  329. memcpy(m_StringBuffer.data() + E.SemanticName, Name.data(), Name.size());
  330. } else {
  331. // m_StringBuffer always starts with '\0' so offset 0 is empty string:
  332. E.SemanticName = 0;
  333. }
  334. // Search index buffer for matching semantic index sequence
  335. DXASSERT_NOMSG(SE.GetRows() == SE.GetSemanticIndexVec().size());
  336. auto &SemIdx = SE.GetSemanticIndexVec();
  337. bool match = false;
  338. for (uint32_t offset = 0; offset + SE.GetRows() - 1 < m_SemanticIndexBuffer.size(); offset++) {
  339. match = true;
  340. for (uint32_t row = 0; row < SE.GetRows(); row++) {
  341. if ((uint32_t)SemIdx[row] != m_SemanticIndexBuffer[offset + row]) {
  342. match = false;
  343. break;
  344. }
  345. }
  346. if (match) {
  347. E.SemanticIndexes = offset;
  348. break;
  349. }
  350. }
  351. if (!match) {
  352. E.SemanticIndexes = m_SemanticIndexBuffer.size();
  353. for (uint32_t row = 0; row < SemIdx.size(); row++) {
  354. m_SemanticIndexBuffer.push_back((uint32_t)SemIdx[row]);
  355. }
  356. }
  357. DXASSERT_NOMSG(SE.GetRows() <= 32);
  358. E.Rows = (uint8_t)SE.GetRows();
  359. DXASSERT_NOMSG(SE.GetCols() <= 4);
  360. E.ColsAndStart = (uint8_t)SE.GetCols() & 0xF;
  361. if (SE.IsAllocated()) {
  362. DXASSERT_NOMSG(SE.GetStartCol() < 4);
  363. DXASSERT_NOMSG(SE.GetStartRow() < 32);
  364. E.ColsAndStart |= 0x40 | (SE.GetStartCol() << 4);
  365. E.StartRow = (uint8_t)SE.GetStartRow();
  366. }
  367. E.SemanticKind = (uint8_t)SE.GetKind();
  368. E.ComponentType = (uint8_t)CompTypeToSigCompType(SE.GetCompType());
  369. E.InterpolationMode = (uint8_t)SE.GetInterpolationMode()->GetKind();
  370. DXASSERT_NOMSG(SE.GetOutputStream() < 4);
  371. E.DynamicMaskAndStream = (uint8_t)((SE.GetOutputStream() & 0x3) << 4);
  372. E.DynamicMaskAndStream |= (SE.GetDynIdxCompMask()) & 0xF;
  373. }
  374. const uint32_t *CopyViewIDState(const uint32_t *pSrc, uint32_t InputScalars, uint32_t OutputScalars, PSVComponentMask ViewIDMask, PSVDependencyTable IOTable) {
  375. unsigned MaskDwords = PSVComputeMaskDwordsFromVectors(PSVALIGN4(OutputScalars) / 4);
  376. if (ViewIDMask.IsValid()) {
  377. DXASSERT_NOMSG(!IOTable.Table || ViewIDMask.NumVectors == IOTable.OutputVectors);
  378. memcpy(ViewIDMask.Mask, pSrc, 4 * MaskDwords);
  379. pSrc += MaskDwords;
  380. }
  381. if (IOTable.IsValid() && IOTable.InputVectors && IOTable.OutputVectors) {
  382. DXASSERT_NOMSG((InputScalars <= IOTable.InputVectors * 4) && (IOTable.InputVectors * 4 - InputScalars < 4));
  383. DXASSERT_NOMSG((OutputScalars <= IOTable.OutputVectors * 4) && (IOTable.OutputVectors * 4 - OutputScalars < 4));
  384. memcpy(IOTable.Table, pSrc, 4 * MaskDwords * InputScalars);
  385. pSrc += MaskDwords * InputScalars;
  386. }
  387. return pSrc;
  388. }
  389. public:
  390. DxilPSVWriter(const DxilModule &module, uint32_t PSVVersion = 0)
  391. : m_Module(module),
  392. m_PSVInitInfo(PSVVersion)
  393. {
  394. unsigned ValMajor, ValMinor;
  395. m_Module.GetValidatorVersion(ValMajor, ValMinor);
  396. // Allow PSVVersion to be upgraded
  397. if (m_PSVInitInfo.PSVVersion < 1 && (ValMajor > 1 || (ValMajor == 1 && ValMinor >= 1)))
  398. m_PSVInitInfo.PSVVersion = 1;
  399. const ShaderModel *SM = m_Module.GetShaderModel();
  400. UINT uCBuffers = m_Module.GetCBuffers().size();
  401. UINT uSamplers = m_Module.GetSamplers().size();
  402. UINT uSRVs = m_Module.GetSRVs().size();
  403. UINT uUAVs = m_Module.GetUAVs().size();
  404. m_PSVInitInfo.ResourceCount = uCBuffers + uSamplers + uSRVs + uUAVs;
  405. if (m_PSVInitInfo.PSVVersion > 0) {
  406. m_PSVInitInfo.ShaderStage = (PSVShaderKind)SM->GetKind();
  407. // Copy Dxil Signatures
  408. m_StringBuffer.push_back('\0'); // For empty semantic name (system value)
  409. m_PSVInitInfo.SigInputElements = m_Module.GetInputSignature().GetElements().size();
  410. m_SigInputElements.resize(m_PSVInitInfo.SigInputElements);
  411. m_PSVInitInfo.SigOutputElements = m_Module.GetOutputSignature().GetElements().size();
  412. m_SigOutputElements.resize(m_PSVInitInfo.SigOutputElements);
  413. m_PSVInitInfo.SigPatchConstantElements = m_Module.GetPatchConstantSignature().GetElements().size();
  414. m_SigPatchConstantElements.resize(m_PSVInitInfo.SigPatchConstantElements);
  415. uint32_t i = 0;
  416. for (auto &SE : m_Module.GetInputSignature().GetElements()) {
  417. SetPSVSigElement(m_SigInputElements[i++], *(SE.get()));
  418. }
  419. i = 0;
  420. for (auto &SE : m_Module.GetOutputSignature().GetElements()) {
  421. SetPSVSigElement(m_SigOutputElements[i++], *(SE.get()));
  422. }
  423. i = 0;
  424. for (auto &SE : m_Module.GetPatchConstantSignature().GetElements()) {
  425. SetPSVSigElement(m_SigPatchConstantElements[i++], *(SE.get()));
  426. }
  427. // Set String and SemanticInput Tables
  428. m_PSVInitInfo.StringTable.Table = m_StringBuffer.data();
  429. m_PSVInitInfo.StringTable.Size = m_StringBuffer.size();
  430. m_PSVInitInfo.SemanticIndexTable.Table = m_SemanticIndexBuffer.data();
  431. m_PSVInitInfo.SemanticIndexTable.Entries = m_SemanticIndexBuffer.size();
  432. // Set up ViewID and signature dependency info
  433. m_PSVInitInfo.UsesViewID = m_Module.m_ShaderFlags.GetViewID() ? true : false;
  434. m_PSVInitInfo.SigInputVectors = m_Module.GetInputSignature().NumVectorsUsed(0);
  435. for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
  436. m_PSVInitInfo.SigOutputVectors[streamIndex] = m_Module.GetOutputSignature().NumVectorsUsed(streamIndex);
  437. }
  438. m_PSVInitInfo.SigPatchConstantVectors = m_PSVInitInfo.SigPatchConstantVectors = 0;
  439. if (SM->IsHS()) {
  440. m_PSVInitInfo.SigPatchConstantVectors = m_Module.GetPatchConstantSignature().NumVectorsUsed(0);
  441. }
  442. if (SM->IsDS()) {
  443. m_PSVInitInfo.SigPatchConstantVectors = m_Module.GetPatchConstantSignature().NumVectorsUsed(0);
  444. }
  445. }
  446. if (!m_PSV.InitNew(m_PSVInitInfo, nullptr, &m_PSVBufferSize)) {
  447. DXASSERT(false, "PSV InitNew failed computing size!");
  448. }
  449. }
  450. __override uint32_t size() const {
  451. return m_PSVBufferSize;
  452. }
  453. __override void write(AbstractMemoryStream *pStream) {
  454. m_PSVBuffer.resize(m_PSVBufferSize);
  455. if (!m_PSV.InitNew(m_PSVInitInfo, m_PSVBuffer.data(), &m_PSVBufferSize)) {
  456. DXASSERT(false, "PSV InitNew failed!");
  457. }
  458. DXASSERT_NOMSG(m_PSVBuffer.size() == m_PSVBufferSize);
  459. // Set DxilRuntimInfo
  460. PSVRuntimeInfo0* pInfo = m_PSV.GetPSVRuntimeInfo0();
  461. PSVRuntimeInfo1* pInfo1 = m_PSV.GetPSVRuntimeInfo1();
  462. const ShaderModel* SM = m_Module.GetShaderModel();
  463. pInfo->MinimumExpectedWaveLaneCount = 0;
  464. pInfo->MaximumExpectedWaveLaneCount = (UINT)-1;
  465. switch (SM->GetKind()) {
  466. case ShaderModel::Kind::Vertex: {
  467. pInfo->VS.OutputPositionPresent = 0;
  468. const DxilSignature &S = m_Module.GetOutputSignature();
  469. for (auto &&E : S.GetElements()) {
  470. if (E->GetKind() == Semantic::Kind::Position) {
  471. // Ideally, we might check never writes mask here,
  472. // but this is not yet part of the signature element in Dxil
  473. pInfo->VS.OutputPositionPresent = 1;
  474. break;
  475. }
  476. }
  477. break;
  478. }
  479. case ShaderModel::Kind::Hull: {
  480. pInfo->HS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
  481. pInfo->HS.OutputControlPointCount = (UINT)m_Module.GetOutputControlPointCount();
  482. pInfo->HS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
  483. pInfo->HS.TessellatorOutputPrimitive = (UINT)m_Module.GetTessellatorOutputPrimitive();
  484. break;
  485. }
  486. case ShaderModel::Kind::Domain: {
  487. pInfo->DS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
  488. pInfo->DS.OutputPositionPresent = 0;
  489. const DxilSignature &S = m_Module.GetOutputSignature();
  490. for (auto &&E : S.GetElements()) {
  491. if (E->GetKind() == Semantic::Kind::Position) {
  492. // Ideally, we might check never writes mask here,
  493. // but this is not yet part of the signature element in Dxil
  494. pInfo->DS.OutputPositionPresent = 1;
  495. break;
  496. }
  497. }
  498. pInfo->DS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
  499. break;
  500. }
  501. case ShaderModel::Kind::Geometry: {
  502. pInfo->GS.InputPrimitive = (UINT)m_Module.GetInputPrimitive();
  503. // NOTE: For OutputTopology, pick one from a used stream, or if none
  504. // are used, use stream 0, and set OutputStreamMask to 1.
  505. pInfo->GS.OutputTopology = (UINT)m_Module.GetStreamPrimitiveTopology();
  506. pInfo->GS.OutputStreamMask = m_Module.GetActiveStreamMask();
  507. if (pInfo->GS.OutputStreamMask == 0) {
  508. pInfo->GS.OutputStreamMask = 1; // This is what runtime expects.
  509. }
  510. pInfo->GS.OutputPositionPresent = 0;
  511. const DxilSignature &S = m_Module.GetOutputSignature();
  512. for (auto &&E : S.GetElements()) {
  513. if (E->GetKind() == Semantic::Kind::Position) {
  514. // Ideally, we might check never writes mask here,
  515. // but this is not yet part of the signature element in Dxil
  516. pInfo->GS.OutputPositionPresent = 1;
  517. break;
  518. }
  519. }
  520. break;
  521. }
  522. case ShaderModel::Kind::Pixel: {
  523. pInfo->PS.DepthOutput = 0;
  524. pInfo->PS.SampleFrequency = 0;
  525. {
  526. const DxilSignature &S = m_Module.GetInputSignature();
  527. for (auto &&E : S.GetElements()) {
  528. if (E->GetInterpolationMode()->IsAnySample() ||
  529. E->GetKind() == Semantic::Kind::SampleIndex) {
  530. pInfo->PS.SampleFrequency = 1;
  531. }
  532. }
  533. }
  534. {
  535. const DxilSignature &S = m_Module.GetOutputSignature();
  536. for (auto &&E : S.GetElements()) {
  537. if (E->IsAnyDepth()) {
  538. pInfo->PS.DepthOutput = 1;
  539. break;
  540. }
  541. }
  542. }
  543. break;
  544. }
  545. }
  546. // Set resource binding information
  547. UINT uResIndex = 0;
  548. for (auto &&R : m_Module.GetCBuffers()) {
  549. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  550. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  551. DXASSERT_NOMSG(pBindInfo);
  552. pBindInfo->ResType = (UINT)PSVResourceType::CBV;
  553. pBindInfo->Space = R->GetSpaceID();
  554. pBindInfo->LowerBound = R->GetLowerBound();
  555. pBindInfo->UpperBound = R->GetUpperBound();
  556. uResIndex++;
  557. }
  558. for (auto &&R : m_Module.GetSamplers()) {
  559. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  560. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  561. DXASSERT_NOMSG(pBindInfo);
  562. pBindInfo->ResType = (UINT)PSVResourceType::Sampler;
  563. pBindInfo->Space = R->GetSpaceID();
  564. pBindInfo->LowerBound = R->GetLowerBound();
  565. pBindInfo->UpperBound = R->GetUpperBound();
  566. uResIndex++;
  567. }
  568. for (auto &&R : m_Module.GetSRVs()) {
  569. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  570. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  571. DXASSERT_NOMSG(pBindInfo);
  572. if (R->IsStructuredBuffer()) {
  573. pBindInfo->ResType = (UINT)PSVResourceType::SRVStructured;
  574. } else if (R->IsRawBuffer()) {
  575. pBindInfo->ResType = (UINT)PSVResourceType::SRVRaw;
  576. } else {
  577. pBindInfo->ResType = (UINT)PSVResourceType::SRVTyped;
  578. }
  579. pBindInfo->Space = R->GetSpaceID();
  580. pBindInfo->LowerBound = R->GetLowerBound();
  581. pBindInfo->UpperBound = R->GetUpperBound();
  582. uResIndex++;
  583. }
  584. for (auto &&R : m_Module.GetUAVs()) {
  585. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  586. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  587. DXASSERT_NOMSG(pBindInfo);
  588. if (R->IsStructuredBuffer()) {
  589. if (R->HasCounter())
  590. pBindInfo->ResType = (UINT)PSVResourceType::UAVStructuredWithCounter;
  591. else
  592. pBindInfo->ResType = (UINT)PSVResourceType::UAVStructured;
  593. } else if (R->IsRawBuffer()) {
  594. pBindInfo->ResType = (UINT)PSVResourceType::UAVRaw;
  595. } else {
  596. pBindInfo->ResType = (UINT)PSVResourceType::UAVTyped;
  597. }
  598. pBindInfo->Space = R->GetSpaceID();
  599. pBindInfo->LowerBound = R->GetLowerBound();
  600. pBindInfo->UpperBound = R->GetUpperBound();
  601. uResIndex++;
  602. }
  603. DXASSERT_NOMSG(uResIndex == m_PSVInitInfo.ResourceCount);
  604. if (m_PSVInitInfo.PSVVersion > 0) {
  605. DXASSERT_NOMSG(pInfo1);
  606. // Write MaxVertexCount
  607. if (SM->IsGS()) {
  608. DXASSERT_NOMSG(m_Module.GetMaxVertexCount() <= 1024);
  609. pInfo1->MaxVertexCount = (uint16_t)m_Module.GetMaxVertexCount();
  610. }
  611. // Write Dxil Signature Elements
  612. for (unsigned i = 0; i < m_PSV.GetSigInputElements(); i++) {
  613. PSVSignatureElement0 *pInputElement = m_PSV.GetInputElement0(i);
  614. DXASSERT_NOMSG(pInputElement);
  615. memcpy(pInputElement, &m_SigInputElements[i], sizeof(PSVSignatureElement0));
  616. }
  617. for (unsigned i = 0; i < m_PSV.GetSigOutputElements(); i++) {
  618. PSVSignatureElement0 *pOutputElement = m_PSV.GetOutputElement0(i);
  619. DXASSERT_NOMSG(pOutputElement);
  620. memcpy(pOutputElement, &m_SigOutputElements[i], sizeof(PSVSignatureElement0));
  621. }
  622. for (unsigned i = 0; i < m_PSV.GetSigPatchConstantElements(); i++) {
  623. PSVSignatureElement0 *pPatchConstantElement = m_PSV.GetPatchConstantElement0(i);
  624. DXASSERT_NOMSG(pPatchConstantElement);
  625. memcpy(pPatchConstantElement, &m_SigPatchConstantElements[i], sizeof(PSVSignatureElement0));
  626. }
  627. // Gather ViewID dependency information
  628. auto &viewState = m_Module.GetViewIdState().GetSerialized();
  629. if (!viewState.empty()) {
  630. const uint32_t *pSrc = viewState.data();
  631. const uint32_t InputScalars = *(pSrc++);
  632. uint32_t OutputScalars[4];
  633. for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
  634. OutputScalars[streamIndex] = *(pSrc++);
  635. pSrc = CopyViewIDState(pSrc, InputScalars, OutputScalars[streamIndex], m_PSV.GetViewIDOutputMask(streamIndex), m_PSV.GetInputToOutputTable(streamIndex));
  636. if (!SM->IsGS())
  637. break;
  638. }
  639. if (SM->IsHS()) {
  640. const uint32_t PCScalars = *(pSrc++);
  641. pSrc = CopyViewIDState(pSrc, InputScalars, PCScalars, m_PSV.GetViewIDPCOutputMask(), m_PSV.GetInputToPCOutputTable());
  642. } else if (SM->IsDS()) {
  643. const uint32_t PCScalars = *(pSrc++);
  644. pSrc = CopyViewIDState(pSrc, PCScalars, OutputScalars[0], PSVComponentMask(), m_PSV.GetPCInputToOutputTable());
  645. }
  646. DXASSERT_NOMSG(viewState.data() + viewState.size() == pSrc);
  647. }
  648. }
  649. ULONG cbWritten;
  650. IFT(pStream->Write(m_PSVBuffer.data(), m_PSVBufferSize, &cbWritten));
  651. DXASSERT_NOMSG(cbWritten == m_PSVBufferSize);
  652. }
  653. };
  654. DxilPartWriter *hlsl::NewPSVWriter(const DxilModule &M, uint32_t PSVVersion) {
  655. return new DxilPSVWriter(M, PSVVersion);
  656. }
  657. class DxilContainerWriter_impl : public DxilContainerWriter {
  658. private:
  659. class DxilPart {
  660. public:
  661. DxilPartHeader Header;
  662. WriteFn Write;
  663. DxilPart(uint32_t fourCC, uint32_t size, WriteFn write) : Write(write) {
  664. Header.PartFourCC = fourCC;
  665. Header.PartSize = size;
  666. }
  667. };
  668. llvm::SmallVector<DxilPart, 8> m_Parts;
  669. public:
  670. __override void AddPart(uint32_t FourCC, uint32_t Size, WriteFn Write) {
  671. m_Parts.emplace_back(FourCC, Size, Write);
  672. }
  673. __override uint32_t size() const {
  674. uint32_t partSize = 0;
  675. for (auto &part : m_Parts) {
  676. partSize += part.Header.PartSize;
  677. }
  678. return (uint32_t)GetDxilContainerSizeFromParts((uint32_t)m_Parts.size(), partSize);
  679. }
  680. __override void write(AbstractMemoryStream *pStream) {
  681. DxilContainerHeader header;
  682. const uint32_t PartCount = (uint32_t)m_Parts.size();
  683. uint32_t containerSizeInBytes = size();
  684. InitDxilContainer(&header, PartCount, containerSizeInBytes);
  685. IFT(pStream->Reserve(header.ContainerSizeInBytes));
  686. IFT(WriteStreamValue(pStream, header));
  687. uint32_t offset = sizeof(header) + (uint32_t)GetOffsetTableSize(PartCount);
  688. for (auto &&part : m_Parts) {
  689. IFT(WriteStreamValue(pStream, offset));
  690. offset += sizeof(DxilPartHeader) + part.Header.PartSize;
  691. }
  692. for (auto &&part : m_Parts) {
  693. IFT(WriteStreamValue(pStream, part.Header));
  694. size_t start = pStream->GetPosition();
  695. part.Write(pStream);
  696. DXASSERT_LOCALVAR(start, pStream->GetPosition() - start == (size_t)part.Header.PartSize, "out of bound");
  697. }
  698. DXASSERT(containerSizeInBytes == (uint32_t)pStream->GetPosition(), "else stream size is incorrect");
  699. }
  700. };
  701. DxilContainerWriter *hlsl::NewDxilContainerWriter() {
  702. return new DxilContainerWriter_impl();
  703. }
  704. static bool HasDebugInfo(const Module &M) {
  705. for (Module::const_named_metadata_iterator NMI = M.named_metadata_begin(),
  706. NME = M.named_metadata_end();
  707. NMI != NME; ++NMI) {
  708. if (NMI->getName().startswith("llvm.dbg.")) {
  709. return true;
  710. }
  711. }
  712. return false;
  713. }
  714. static void GetPaddedProgramPartSize(AbstractMemoryStream *pStream,
  715. uint32_t &bitcodeInUInt32,
  716. uint32_t &bitcodePaddingBytes) {
  717. bitcodeInUInt32 = pStream->GetPtrSize();
  718. bitcodePaddingBytes = (bitcodeInUInt32 % 4);
  719. bitcodeInUInt32 = (bitcodeInUInt32 / 4) + (bitcodePaddingBytes ? 1 : 0);
  720. }
  721. static void WriteProgramPart(const ShaderModel *pModel,
  722. AbstractMemoryStream *pModuleBitcode,
  723. AbstractMemoryStream *pStream) {
  724. DXASSERT(pModel != nullptr, "else generation should have failed");
  725. DxilProgramHeader programHeader;
  726. uint32_t shaderVersion =
  727. EncodeVersion(pModel->GetKind(), pModel->GetMajor(), pModel->GetMinor());
  728. unsigned dxilMajor, dxilMinor;
  729. pModel->GetDxilVersion(dxilMajor, dxilMinor);
  730. uint32_t dxilVersion = DXIL::MakeDxilVersion(dxilMajor, dxilMinor);
  731. InitProgramHeader(programHeader, shaderVersion, dxilVersion, pModuleBitcode->GetPtrSize());
  732. uint32_t programInUInt32, programPaddingBytes;
  733. GetPaddedProgramPartSize(pModuleBitcode, programInUInt32,
  734. programPaddingBytes);
  735. ULONG cbWritten;
  736. IFT(WriteStreamValue(pStream, programHeader));
  737. IFT(pStream->Write(pModuleBitcode->GetPtr(), pModuleBitcode->GetPtrSize(),
  738. &cbWritten));
  739. if (programPaddingBytes) {
  740. uint32_t paddingValue = 0;
  741. IFT(pStream->Write(&paddingValue, programPaddingBytes, &cbWritten));
  742. }
  743. }
  744. void hlsl::SerializeDxilContainerForModule(DxilModule *pModule,
  745. AbstractMemoryStream *pModuleBitcode,
  746. AbstractMemoryStream *pFinalStream,
  747. SerializeDxilFlags Flags) {
  748. // TODO: add a flag to update the module and remove information that is not part
  749. // of DXIL proper and is used only to assemble the container.
  750. DXASSERT_NOMSG(pModule != nullptr);
  751. DXASSERT_NOMSG(pModuleBitcode != nullptr);
  752. DXASSERT_NOMSG(pFinalStream != nullptr);
  753. unsigned ValMajor, ValMinor;
  754. pModule->GetValidatorVersion(ValMajor, ValMinor);
  755. if (ValMajor == 1 && ValMinor == 0)
  756. Flags &= ~SerializeDxilFlags::IncludeDebugNamePart;
  757. DxilProgramSignatureWriter inputSigWriter(
  758. pModule->GetInputSignature(), pModule->GetTessellatorDomain(),
  759. /*IsInput*/ true,
  760. /*UseMinPrecision*/ !pModule->m_ShaderFlags.GetUseNativeLowPrecision());
  761. DxilProgramSignatureWriter outputSigWriter(
  762. pModule->GetOutputSignature(), pModule->GetTessellatorDomain(),
  763. /*IsInput*/ false,
  764. /*UseMinPrecision*/ !pModule->m_ShaderFlags.GetUseNativeLowPrecision());
  765. DxilPSVWriter PSVWriter(*pModule);
  766. DxilContainerWriter_impl writer;
  767. // Write the feature part.
  768. DxilFeatureInfoWriter featureInfoWriter(*pModule);
  769. writer.AddPart(DFCC_FeatureInfo, featureInfoWriter.size(), [&](AbstractMemoryStream *pStream) {
  770. featureInfoWriter.write(pStream);
  771. });
  772. // Write the input and output signature parts.
  773. writer.AddPart(DFCC_InputSignature, inputSigWriter.size(), [&](AbstractMemoryStream *pStream) {
  774. inputSigWriter.write(pStream);
  775. });
  776. writer.AddPart(DFCC_OutputSignature, outputSigWriter.size(), [&](AbstractMemoryStream *pStream) {
  777. outputSigWriter.write(pStream);
  778. });
  779. DxilProgramSignatureWriter patchConstantSigWriter(
  780. pModule->GetPatchConstantSignature(), pModule->GetTessellatorDomain(),
  781. /*IsInput*/ pModule->GetShaderModel()->IsDS(),
  782. /*UseMinPrecision*/ !pModule->m_ShaderFlags.GetUseNativeLowPrecision());
  783. if (pModule->GetPatchConstantSignature().GetElements().size()) {
  784. writer.AddPart(DFCC_PatchConstantSignature, patchConstantSigWriter.size(),
  785. [&](AbstractMemoryStream *pStream) {
  786. patchConstantSigWriter.write(pStream);
  787. });
  788. }
  789. // Write the DxilPipelineStateValidation (PSV0) part.
  790. writer.AddPart(DFCC_PipelineStateValidation, PSVWriter.size(), [&](AbstractMemoryStream *pStream) {
  791. PSVWriter.write(pStream);
  792. });
  793. // Write the root signature (RTS0) part.
  794. DxilProgramRootSignatureWriter rootSigWriter(pModule->GetRootSignature());
  795. CComPtr<AbstractMemoryStream> pInputProgramStream = pModuleBitcode;
  796. if (!pModule->GetRootSignature().IsEmpty()) {
  797. writer.AddPart(
  798. DFCC_RootSignature, rootSigWriter.size(),
  799. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  800. pModule->StripRootSignatureFromMetadata();
  801. pInputProgramStream.Release();
  802. IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pInputProgramStream));
  803. raw_stream_ostream outStream(pInputProgramStream.p);
  804. WriteBitcodeToFile(pModule->GetModule(), outStream, true);
  805. }
  806. // If we have debug information present, serialize it to a debug part, then use the stripped version as the canonical program version.
  807. CComPtr<AbstractMemoryStream> pProgramStream = pInputProgramStream;
  808. if (HasDebugInfo(*pModule->GetModule())) {
  809. uint32_t debugInUInt32, debugPaddingBytes;
  810. GetPaddedProgramPartSize(pInputProgramStream, debugInUInt32, debugPaddingBytes);
  811. if (Flags & SerializeDxilFlags::IncludeDebugInfoPart) {
  812. writer.AddPart(DFCC_ShaderDebugInfoDXIL, debugInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
  813. WriteProgramPart(pModule->GetShaderModel(), pInputProgramStream, pStream);
  814. });
  815. }
  816. pProgramStream.Release();
  817. llvm::StripDebugInfo(*pModule->GetModule());
  818. pModule->StripDebugRelatedCode();
  819. IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pProgramStream));
  820. raw_stream_ostream outStream(pProgramStream.p);
  821. WriteBitcodeToFile(pModule->GetModule(), outStream, true);
  822. if (Flags & SerializeDxilFlags::IncludeDebugNamePart) {
  823. CComPtr<AbstractMemoryStream> pHashStream;
  824. // If the debug name should be specific to the sources, base the name on the debug
  825. // bitcode, which will include the source references, line numbers, etc. Otherwise,
  826. // do it exclusively on the target shader bitcode.
  827. pHashStream = (int)(Flags & SerializeDxilFlags::DebugNameDependOnSource) ? pModuleBitcode : pProgramStream;
  828. const uint32_t DebugInfoNameHashLen = 32; // 32 chars of MD5
  829. const uint32_t DebugInfoNameSuffix = 4; // '.lld'
  830. const uint32_t DebugInfoNameNullAndPad = 4; // '\0\0\0\0'
  831. const uint32_t DebugInfoContentLen =
  832. sizeof(DxilShaderDebugName) + DebugInfoNameHashLen +
  833. DebugInfoNameSuffix + DebugInfoNameNullAndPad;
  834. writer.AddPart(DFCC_ShaderDebugName, DebugInfoContentLen, [&](AbstractMemoryStream *pStream) {
  835. DxilShaderDebugName NameContent;
  836. NameContent.Flags = 0;
  837. NameContent.NameLength = DebugInfoNameHashLen + DebugInfoNameSuffix;
  838. IFT(WriteStreamValue(pStream, NameContent));
  839. ArrayRef<uint8_t> Data((uint8_t *)pHashStream->GetPtr(), pHashStream->GetPtrSize());
  840. llvm::MD5 md5;
  841. llvm::MD5::MD5Result md5Result;
  842. SmallString<32> Hash;
  843. md5.update(Data);
  844. md5.final(md5Result);
  845. md5.stringifyResult(md5Result, Hash);
  846. ULONG cbWritten;
  847. IFT(pStream->Write(Hash.data(), Hash.size(), &cbWritten));
  848. const char SuffixAndPad[] = ".lld\0\0\0";
  849. IFT(pStream->Write(SuffixAndPad, _countof(SuffixAndPad), &cbWritten));
  850. });
  851. }
  852. }
  853. // Compute padded bitcode size.
  854. uint32_t programInUInt32, programPaddingBytes;
  855. GetPaddedProgramPartSize(pProgramStream, programInUInt32, programPaddingBytes);
  856. // Write the program part.
  857. writer.AddPart(DFCC_DXIL, programInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
  858. WriteProgramPart(pModule->GetShaderModel(), pProgramStream, pStream);
  859. });
  860. writer.write(pFinalStream);
  861. }
  862. void hlsl::SerializeDxilContainerForRootSignature(hlsl::RootSignatureHandle *pRootSigHandle,
  863. AbstractMemoryStream *pFinalStream) {
  864. DXASSERT_NOMSG(pRootSigHandle != nullptr);
  865. DXASSERT_NOMSG(pFinalStream != nullptr);
  866. DxilContainerWriter_impl writer;
  867. // Write the root signature (RTS0) part.
  868. DxilProgramRootSignatureWriter rootSigWriter(*pRootSigHandle);
  869. if (!pRootSigHandle->IsEmpty()) {
  870. writer.AddPart(
  871. DFCC_RootSignature, rootSigWriter.size(),
  872. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  873. }
  874. writer.write(pFinalStream);
  875. }