| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495 |
- //===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- // The InductiveRangeCheckElimination pass splits a loop's iteration space into
- // three disjoint ranges. It does that in a way such that the loop running in
- // the middle loop provably does not need range checks. As an example, it will
- // convert
- //
- // len = < known positive >
- // for (i = 0; i < n; i++) {
- // if (0 <= i && i < len) {
- // do_something();
- // } else {
- // throw_out_of_bounds();
- // }
- // }
- //
- // to
- //
- // len = < known positive >
- // limit = smin(n, len)
- // // no first segment
- // for (i = 0; i < limit; i++) {
- // if (0 <= i && i < len) { // this check is fully redundant
- // do_something();
- // } else {
- // throw_out_of_bounds();
- // }
- // }
- // for (i = limit; i < n; i++) {
- // if (0 <= i && i < len) {
- // do_something();
- // } else {
- // throw_out_of_bounds();
- // }
- // }
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/Optional.h"
- #include "llvm/Analysis/BranchProbabilityInfo.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpander.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/IR/Verifier.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Utils/SimplifyIndVar.h"
- #include "llvm/Transforms/Utils/UnrollLoop.h"
- #include <array>
- using namespace llvm;
- static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
- cl::init(64));
- static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
- cl::init(false));
- static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
- cl::init(false));
- static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
- cl::Hidden, cl::init(10));
- #define DEBUG_TYPE "irce"
- namespace {
- /// An inductive range check is conditional branch in a loop with
- ///
- /// 1. a very cold successor (i.e. the branch jumps to that successor very
- /// rarely)
- ///
- /// and
- ///
- /// 2. a condition that is provably true for some contiguous range of values
- /// taken by the containing loop's induction variable.
- ///
- class InductiveRangeCheck {
- // Classifies a range check
- enum RangeCheckKind : unsigned {
- // Range check of the form "0 <= I".
- RANGE_CHECK_LOWER = 1,
- // Range check of the form "I < L" where L is known positive.
- RANGE_CHECK_UPPER = 2,
- // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER
- // conditions.
- RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER,
- // Unrecognized range check condition.
- RANGE_CHECK_UNKNOWN = (unsigned)-1
- };
- static const char *rangeCheckKindToStr(RangeCheckKind);
- const SCEV *Offset;
- const SCEV *Scale;
- Value *Length;
- BranchInst *Branch;
- RangeCheckKind Kind;
- static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
- ScalarEvolution &SE, Value *&Index,
- Value *&Length);
- static InductiveRangeCheck::RangeCheckKind
- parseRangeCheck(Loop *L, ScalarEvolution &SE, Value *Condition,
- const SCEV *&Index, Value *&UpperLimit);
- InductiveRangeCheck() :
- Offset(nullptr), Scale(nullptr), Length(nullptr), Branch(nullptr) { }
- public:
- const SCEV *getOffset() const { return Offset; }
- const SCEV *getScale() const { return Scale; }
- Value *getLength() const { return Length; }
- void print(raw_ostream &OS) const {
- OS << "InductiveRangeCheck:\n";
- OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n";
- OS << " Offset: ";
- Offset->print(OS);
- OS << " Scale: ";
- Scale->print(OS);
- OS << " Length: ";
- if (Length)
- Length->print(OS);
- else
- OS << "(null)";
- OS << "\n Branch: ";
- getBranch()->print(OS);
- OS << "\n";
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void dump() {
- print(dbgs());
- }
- #endif
- BranchInst *getBranch() const { return Branch; }
- /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
- /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
- class Range {
- const SCEV *Begin;
- const SCEV *End;
- public:
- Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
- assert(Begin->getType() == End->getType() && "ill-typed range!");
- }
- Type *getType() const { return Begin->getType(); }
- const SCEV *getBegin() const { return Begin; }
- const SCEV *getEnd() const { return End; }
- };
- typedef SpecificBumpPtrAllocator<InductiveRangeCheck> AllocatorTy;
- /// This is the value the condition of the branch needs to evaluate to for the
- /// branch to take the hot successor (see (1) above).
- bool getPassingDirection() { return true; }
- /// Computes a range for the induction variable (IndVar) in which the range
- /// check is redundant and can be constant-folded away. The induction
- /// variable is not required to be the canonical {0,+,1} induction variable.
- Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
- const SCEVAddRecExpr *IndVar,
- IRBuilder<> &B) const;
- /// Create an inductive range check out of BI if possible, else return
- /// nullptr.
- static InductiveRangeCheck *create(AllocatorTy &Alloc, BranchInst *BI,
- Loop *L, ScalarEvolution &SE,
- BranchProbabilityInfo &BPI);
- };
- class InductiveRangeCheckElimination : public LoopPass {
- InductiveRangeCheck::AllocatorTy Allocator;
- public:
- static char ID;
- InductiveRangeCheckElimination() : LoopPass(ID) {
- initializeInductiveRangeCheckEliminationPass(
- *PassRegistry::getPassRegistry());
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequiredID(LCSSAID);
- AU.addRequired<ScalarEvolution>();
- AU.addRequired<BranchProbabilityInfo>();
- }
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
- };
- char InductiveRangeCheckElimination::ID = 0;
- }
- INITIALIZE_PASS(InductiveRangeCheckElimination, "irce",
- "Inductive range check elimination", false, false)
- const char *InductiveRangeCheck::rangeCheckKindToStr(
- InductiveRangeCheck::RangeCheckKind RCK) {
- switch (RCK) {
- case InductiveRangeCheck::RANGE_CHECK_UNKNOWN:
- return "RANGE_CHECK_UNKNOWN";
- case InductiveRangeCheck::RANGE_CHECK_UPPER:
- return "RANGE_CHECK_UPPER";
- case InductiveRangeCheck::RANGE_CHECK_LOWER:
- return "RANGE_CHECK_LOWER";
- case InductiveRangeCheck::RANGE_CHECK_BOTH:
- return "RANGE_CHECK_BOTH";
- }
- llvm_unreachable("unknown range check type!");
- }
- /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI`
- /// cannot
- /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set
- /// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value
- /// being
- /// range checked, and set `Length` to the upper limit `Index` is being range
- /// checked with if (and only if) the range check type is stronger or equal to
- /// RANGE_CHECK_UPPER.
- ///
- InductiveRangeCheck::RangeCheckKind
- InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
- ScalarEvolution &SE, Value *&Index,
- Value *&Length) {
- auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) {
- const SCEV *S = SE.getSCEV(V);
- if (isa<SCEVCouldNotCompute>(S))
- return false;
- return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant &&
- SE.isKnownNonNegative(S);
- };
- using namespace llvm::PatternMatch;
- ICmpInst::Predicate Pred = ICI->getPredicate();
- Value *LHS = ICI->getOperand(0);
- Value *RHS = ICI->getOperand(1);
- switch (Pred) {
- default:
- return RANGE_CHECK_UNKNOWN;
- case ICmpInst::ICMP_SLE:
- std::swap(LHS, RHS);
- // fallthrough
- case ICmpInst::ICMP_SGE:
- if (match(RHS, m_ConstantInt<0>())) {
- Index = LHS;
- return RANGE_CHECK_LOWER;
- }
- return RANGE_CHECK_UNKNOWN;
- case ICmpInst::ICMP_SLT:
- std::swap(LHS, RHS);
- // fallthrough
- case ICmpInst::ICMP_SGT:
- if (match(RHS, m_ConstantInt<-1>())) {
- Index = LHS;
- return RANGE_CHECK_LOWER;
- }
- if (IsNonNegativeAndNotLoopVarying(LHS)) {
- Index = RHS;
- Length = LHS;
- return RANGE_CHECK_UPPER;
- }
- return RANGE_CHECK_UNKNOWN;
- case ICmpInst::ICMP_ULT:
- std::swap(LHS, RHS);
- // fallthrough
- case ICmpInst::ICMP_UGT:
- if (IsNonNegativeAndNotLoopVarying(LHS)) {
- Index = RHS;
- Length = LHS;
- return RANGE_CHECK_BOTH;
- }
- return RANGE_CHECK_UNKNOWN;
- }
- llvm_unreachable("default clause returns!");
- }
- /// Parses an arbitrary condition into a range check. `Length` is set only if
- /// the range check is recognized to be `RANGE_CHECK_UPPER` or stronger.
- InductiveRangeCheck::RangeCheckKind
- InductiveRangeCheck::parseRangeCheck(Loop *L, ScalarEvolution &SE,
- Value *Condition, const SCEV *&Index,
- Value *&Length) {
- using namespace llvm::PatternMatch;
- Value *A = nullptr;
- Value *B = nullptr;
- if (match(Condition, m_And(m_Value(A), m_Value(B)))) {
- Value *IndexA = nullptr, *IndexB = nullptr;
- Value *LengthA = nullptr, *LengthB = nullptr;
- ICmpInst *ICmpA = dyn_cast<ICmpInst>(A), *ICmpB = dyn_cast<ICmpInst>(B);
- if (!ICmpA || !ICmpB)
- return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
- auto RCKindA = parseRangeCheckICmp(L, ICmpA, SE, IndexA, LengthA);
- auto RCKindB = parseRangeCheckICmp(L, ICmpB, SE, IndexB, LengthB);
- if (RCKindA == InductiveRangeCheck::RANGE_CHECK_UNKNOWN ||
- RCKindB == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
- return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
- if (IndexA != IndexB)
- return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
- if (LengthA != nullptr && LengthB != nullptr && LengthA != LengthB)
- return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
- Index = SE.getSCEV(IndexA);
- if (isa<SCEVCouldNotCompute>(Index))
- return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
- Length = LengthA == nullptr ? LengthB : LengthA;
- return (InductiveRangeCheck::RangeCheckKind)(RCKindA | RCKindB);
- }
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
- Value *IndexVal = nullptr;
- auto RCKind = parseRangeCheckICmp(L, ICI, SE, IndexVal, Length);
- if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
- return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
- Index = SE.getSCEV(IndexVal);
- if (isa<SCEVCouldNotCompute>(Index))
- return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
- return RCKind;
- }
- return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
- }
- InductiveRangeCheck *
- InductiveRangeCheck::create(InductiveRangeCheck::AllocatorTy &A, BranchInst *BI,
- Loop *L, ScalarEvolution &SE,
- BranchProbabilityInfo &BPI) {
- if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
- return nullptr;
- BranchProbability LikelyTaken(15, 16);
- if (BPI.getEdgeProbability(BI->getParent(), (unsigned) 0) < LikelyTaken)
- return nullptr;
- Value *Length = nullptr;
- const SCEV *IndexSCEV = nullptr;
- auto RCKind = InductiveRangeCheck::parseRangeCheck(L, SE, BI->getCondition(),
- IndexSCEV, Length);
- if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
- return nullptr;
- assert(IndexSCEV && "contract with SplitRangeCheckCondition!");
- assert((!(RCKind & InductiveRangeCheck::RANGE_CHECK_UPPER) || Length) &&
- "contract with SplitRangeCheckCondition!");
- const SCEVAddRecExpr *IndexAddRec = dyn_cast<SCEVAddRecExpr>(IndexSCEV);
- bool IsAffineIndex =
- IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
- if (!IsAffineIndex)
- return nullptr;
- InductiveRangeCheck *IRC = new (A.Allocate()) InductiveRangeCheck;
- IRC->Length = Length;
- IRC->Offset = IndexAddRec->getStart();
- IRC->Scale = IndexAddRec->getStepRecurrence(SE);
- IRC->Branch = BI;
- IRC->Kind = RCKind;
- return IRC;
- }
- namespace {
- // Keeps track of the structure of a loop. This is similar to llvm::Loop,
- // except that it is more lightweight and can track the state of a loop through
- // changing and potentially invalid IR. This structure also formalizes the
- // kinds of loops we can deal with -- ones that have a single latch that is also
- // an exiting block *and* have a canonical induction variable.
- struct LoopStructure {
- const char *Tag;
- BasicBlock *Header;
- BasicBlock *Latch;
- // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
- // successor is `LatchExit', the exit block of the loop.
- BranchInst *LatchBr;
- BasicBlock *LatchExit;
- unsigned LatchBrExitIdx;
- Value *IndVarNext;
- Value *IndVarStart;
- Value *LoopExitAt;
- bool IndVarIncreasing;
- LoopStructure()
- : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
- LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr),
- IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {}
- template <typename M> LoopStructure map(M Map) const {
- LoopStructure Result;
- Result.Tag = Tag;
- Result.Header = cast<BasicBlock>(Map(Header));
- Result.Latch = cast<BasicBlock>(Map(Latch));
- Result.LatchBr = cast<BranchInst>(Map(LatchBr));
- Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
- Result.LatchBrExitIdx = LatchBrExitIdx;
- Result.IndVarNext = Map(IndVarNext);
- Result.IndVarStart = Map(IndVarStart);
- Result.LoopExitAt = Map(LoopExitAt);
- Result.IndVarIncreasing = IndVarIncreasing;
- return Result;
- }
- static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
- BranchProbabilityInfo &BPI,
- Loop &,
- const char *&);
- };
- /// This class is used to constrain loops to run within a given iteration space.
- /// The algorithm this class implements is given a Loop and a range [Begin,
- /// End). The algorithm then tries to break out a "main loop" out of the loop
- /// it is given in a way that the "main loop" runs with the induction variable
- /// in a subset of [Begin, End). The algorithm emits appropriate pre and post
- /// loops to run any remaining iterations. The pre loop runs any iterations in
- /// which the induction variable is < Begin, and the post loop runs any
- /// iterations in which the induction variable is >= End.
- ///
- class LoopConstrainer {
- // The representation of a clone of the original loop we started out with.
- struct ClonedLoop {
- // The cloned blocks
- std::vector<BasicBlock *> Blocks;
- // `Map` maps values in the clonee into values in the cloned version
- ValueToValueMapTy Map;
- // An instance of `LoopStructure` for the cloned loop
- LoopStructure Structure;
- };
- // Result of rewriting the range of a loop. See changeIterationSpaceEnd for
- // more details on what these fields mean.
- struct RewrittenRangeInfo {
- BasicBlock *PseudoExit;
- BasicBlock *ExitSelector;
- std::vector<PHINode *> PHIValuesAtPseudoExit;
- PHINode *IndVarEnd;
- RewrittenRangeInfo()
- : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
- };
- // Calculated subranges we restrict the iteration space of the main loop to.
- // See the implementation of `calculateSubRanges' for more details on how
- // these fields are computed. `LowLimit` is None if there is no restriction
- // on low end of the restricted iteration space of the main loop. `HighLimit`
- // is None if there is no restriction on high end of the restricted iteration
- // space of the main loop.
- struct SubRanges {
- Optional<const SCEV *> LowLimit;
- Optional<const SCEV *> HighLimit;
- };
- // A utility function that does a `replaceUsesOfWith' on the incoming block
- // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
- // incoming block list with `ReplaceBy'.
- static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
- BasicBlock *ReplaceBy);
- // Compute a safe set of limits for the main loop to run in -- effectively the
- // intersection of `Range' and the iteration space of the original loop.
- // Return None if unable to compute the set of subranges.
- //
- Optional<SubRanges> calculateSubRanges() const;
- // Clone `OriginalLoop' and return the result in CLResult. The IR after
- // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
- // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
- // but there is no such edge.
- //
- void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
- // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
- // iteration space of the rewritten loop ends at ExitLoopAt. The start of the
- // iteration space is not changed. `ExitLoopAt' is assumed to be slt
- // `OriginalHeaderCount'.
- //
- // If there are iterations left to execute, control is made to jump to
- // `ContinuationBlock', otherwise they take the normal loop exit. The
- // returned `RewrittenRangeInfo' object is populated as follows:
- //
- // .PseudoExit is a basic block that unconditionally branches to
- // `ContinuationBlock'.
- //
- // .ExitSelector is a basic block that decides, on exit from the loop,
- // whether to branch to the "true" exit or to `PseudoExit'.
- //
- // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
- // for each PHINode in the loop header on taking the pseudo exit.
- //
- // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
- // preheader because it is made to branch to the loop header only
- // conditionally.
- //
- RewrittenRangeInfo
- changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
- Value *ExitLoopAt,
- BasicBlock *ContinuationBlock) const;
- // The loop denoted by `LS' has `OldPreheader' as its preheader. This
- // function creates a new preheader for `LS' and returns it.
- //
- BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
- const char *Tag) const;
- // `ContinuationBlockAndPreheader' was the continuation block for some call to
- // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
- // This function rewrites the PHI nodes in `LS.Header' to start with the
- // correct value.
- void rewriteIncomingValuesForPHIs(
- LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
- const LoopConstrainer::RewrittenRangeInfo &RRI) const;
- // Even though we do not preserve any passes at this time, we at least need to
- // keep the parent loop structure consistent. The `LPPassManager' seems to
- // verify this after running a loop pass. This function adds the list of
- // blocks denoted by BBs to this loops parent loop if required.
- void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
- // Some global state.
- Function &F;
- LLVMContext &Ctx;
- ScalarEvolution &SE;
- // Information about the original loop we started out with.
- Loop &OriginalLoop;
- LoopInfo &OriginalLoopInfo;
- const SCEV *LatchTakenCount;
- BasicBlock *OriginalPreheader;
- // The preheader of the main loop. This may or may not be different from
- // `OriginalPreheader'.
- BasicBlock *MainLoopPreheader;
- // The range we need to run the main loop in.
- InductiveRangeCheck::Range Range;
- // The structure of the main loop (see comment at the beginning of this class
- // for a definition)
- LoopStructure MainLoopStructure;
- public:
- LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS,
- ScalarEvolution &SE, InductiveRangeCheck::Range R)
- : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
- SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr),
- OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R),
- MainLoopStructure(LS) {}
- // Entry point for the algorithm. Returns true on success.
- bool run();
- };
- }
- void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
- BasicBlock *ReplaceBy) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingBlock(i) == Block)
- PN->setIncomingBlock(i, ReplaceBy);
- }
- static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) {
- APInt SMax =
- APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
- return SE.getSignedRange(S).contains(SMax) &&
- SE.getUnsignedRange(S).contains(SMax);
- }
- static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) {
- APInt SMin =
- APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth());
- return SE.getSignedRange(S).contains(SMin) &&
- SE.getUnsignedRange(S).contains(SMin);
- }
- Optional<LoopStructure>
- LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI,
- Loop &L, const char *&FailureReason) {
- assert(L.isLoopSimplifyForm() && "should follow from addRequired<>");
- BasicBlock *Latch = L.getLoopLatch();
- if (!L.isLoopExiting(Latch)) {
- FailureReason = "no loop latch";
- return None;
- }
- BasicBlock *Header = L.getHeader();
- BasicBlock *Preheader = L.getLoopPreheader();
- if (!Preheader) {
- FailureReason = "no preheader";
- return None;
- }
- BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin());
- if (!LatchBr || LatchBr->isUnconditional()) {
- FailureReason = "latch terminator not conditional branch";
- return None;
- }
- unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
- BranchProbability ExitProbability =
- BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
- if (ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
- FailureReason = "short running loop, not profitable";
- return None;
- }
- ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
- if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
- FailureReason = "latch terminator branch not conditional on integral icmp";
- return None;
- }
- const SCEV *LatchCount = SE.getExitCount(&L, Latch);
- if (isa<SCEVCouldNotCompute>(LatchCount)) {
- FailureReason = "could not compute latch count";
- return None;
- }
- ICmpInst::Predicate Pred = ICI->getPredicate();
- Value *LeftValue = ICI->getOperand(0);
- const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
- IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
- Value *RightValue = ICI->getOperand(1);
- const SCEV *RightSCEV = SE.getSCEV(RightValue);
- // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
- if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
- if (isa<SCEVAddRecExpr>(RightSCEV)) {
- std::swap(LeftSCEV, RightSCEV);
- std::swap(LeftValue, RightValue);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- } else {
- FailureReason = "no add recurrences in the icmp";
- return None;
- }
- }
- auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
- if (AR->getNoWrapFlags(SCEV::FlagNSW))
- return true;
- IntegerType *Ty = cast<IntegerType>(AR->getType());
- IntegerType *WideTy =
- IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
- const SCEVAddRecExpr *ExtendAfterOp =
- dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
- if (ExtendAfterOp) {
- const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
- const SCEV *ExtendedStep =
- SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
- bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
- ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
- if (NoSignedWrap)
- return true;
- }
- // We may have proved this when computing the sign extension above.
- return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
- };
- auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) {
- if (!AR->isAffine())
- return false;
- // Currently we only work with induction variables that have been proved to
- // not wrap. This restriction can potentially be lifted in the future.
- if (!HasNoSignedWrap(AR))
- return false;
- if (const SCEVConstant *StepExpr =
- dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
- ConstantInt *StepCI = StepExpr->getValue();
- if (StepCI->isOne() || StepCI->isMinusOne()) {
- IsIncreasing = StepCI->isOne();
- return true;
- }
- }
- return false;
- };
- // `ICI` is interpreted as taking the backedge if the *next* value of the
- // induction variable satisfies some constraint.
- const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV);
- bool IsIncreasing = false;
- if (!IsInductionVar(IndVarNext, IsIncreasing)) {
- FailureReason = "LHS in icmp not induction variable";
- return None;
- }
- ConstantInt *One = ConstantInt::get(IndVarTy, 1);
- // TODO: generalize the predicates here to also match their unsigned variants.
- if (IsIncreasing) {
- bool FoundExpectedPred =
- (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) ||
- (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0);
- if (!FoundExpectedPred) {
- FailureReason = "expected icmp slt semantically, found something else";
- return None;
- }
- if (LatchBrExitIdx == 0) {
- if (CanBeSMax(SE, RightSCEV)) {
- // TODO: this restriction is easily removable -- we just have to
- // remember that the icmp was an slt and not an sle.
- FailureReason = "limit may overflow when coercing sle to slt";
- return None;
- }
- IRBuilder<> B(&*Preheader->rbegin());
- RightValue = B.CreateAdd(RightValue, One);
- }
- } else {
- bool FoundExpectedPred =
- (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) ||
- (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0);
- if (!FoundExpectedPred) {
- FailureReason = "expected icmp sgt semantically, found something else";
- return None;
- }
- if (LatchBrExitIdx == 0) {
- if (CanBeSMin(SE, RightSCEV)) {
- // TODO: this restriction is easily removable -- we just have to
- // remember that the icmp was an sgt and not an sge.
- FailureReason = "limit may overflow when coercing sge to sgt";
- return None;
- }
- IRBuilder<> B(&*Preheader->rbegin());
- RightValue = B.CreateSub(RightValue, One);
- }
- }
- const SCEV *StartNext = IndVarNext->getStart();
- const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE));
- const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
- BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
- assert(SE.getLoopDisposition(LatchCount, &L) ==
- ScalarEvolution::LoopInvariant &&
- "loop variant exit count doesn't make sense!");
- assert(!L.contains(LatchExit) && "expected an exit block!");
- const DataLayout &DL = Preheader->getModule()->getDataLayout();
- Value *IndVarStartV =
- SCEVExpander(SE, DL, "irce")
- .expandCodeFor(IndVarStart, IndVarTy, &*Preheader->rbegin());
- IndVarStartV->setName("indvar.start");
- LoopStructure Result;
- Result.Tag = "main";
- Result.Header = Header;
- Result.Latch = Latch;
- Result.LatchBr = LatchBr;
- Result.LatchExit = LatchExit;
- Result.LatchBrExitIdx = LatchBrExitIdx;
- Result.IndVarStart = IndVarStartV;
- Result.IndVarNext = LeftValue;
- Result.IndVarIncreasing = IsIncreasing;
- Result.LoopExitAt = RightValue;
- FailureReason = nullptr;
- return Result;
- }
- Optional<LoopConstrainer::SubRanges>
- LoopConstrainer::calculateSubRanges() const {
- IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
- if (Range.getType() != Ty)
- return None;
- LoopConstrainer::SubRanges Result;
- // I think we can be more aggressive here and make this nuw / nsw if the
- // addition that feeds into the icmp for the latch's terminating branch is nuw
- // / nsw. In any case, a wrapping 2's complement addition is safe.
- ConstantInt *One = ConstantInt::get(Ty, 1);
- const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
- const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
- bool Increasing = MainLoopStructure.IndVarIncreasing;
- // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the
- // range of values the induction variable takes.
- const SCEV *Smallest = nullptr, *Greatest = nullptr;
- if (Increasing) {
- Smallest = Start;
- Greatest = End;
- } else {
- // These two computations may sign-overflow. Here is why that is okay:
- //
- // We know that the induction variable does not sign-overflow on any
- // iteration except the last one, and it starts at `Start` and ends at
- // `End`, decrementing by one every time.
- //
- // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
- // induction variable is decreasing we know that that the smallest value
- // the loop body is actually executed with is `INT_SMIN` == `Smallest`.
- //
- // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In
- // that case, `Clamp` will always return `Smallest` and
- // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
- // will be an empty range. Returning an empty range is always safe.
- //
- Smallest = SE.getAddExpr(End, SE.getSCEV(One));
- Greatest = SE.getAddExpr(Start, SE.getSCEV(One));
- }
- auto Clamp = [this, Smallest, Greatest](const SCEV *S) {
- return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S));
- };
- // In some cases we can prove that we don't need a pre or post loop
- bool ProvablyNoPreloop =
- SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest);
- if (!ProvablyNoPreloop)
- Result.LowLimit = Clamp(Range.getBegin());
- bool ProvablyNoPostLoop =
- SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd());
- if (!ProvablyNoPostLoop)
- Result.HighLimit = Clamp(Range.getEnd());
- return Result;
- }
- void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
- const char *Tag) const {
- for (BasicBlock *BB : OriginalLoop.getBlocks()) {
- BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
- Result.Blocks.push_back(Clone);
- Result.Map[BB] = Clone;
- }
- auto GetClonedValue = [&Result](Value *V) {
- assert(V && "null values not in domain!");
- auto It = Result.Map.find(V);
- if (It == Result.Map.end())
- return V;
- return static_cast<Value *>(It->second);
- };
- Result.Structure = MainLoopStructure.map(GetClonedValue);
- Result.Structure.Tag = Tag;
- for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
- BasicBlock *ClonedBB = Result.Blocks[i];
- BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
- assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
- for (Instruction &I : *ClonedBB)
- RemapInstruction(&I, Result.Map,
- RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
- // Exit blocks will now have one more predecessor and their PHI nodes need
- // to be edited to reflect that. No phi nodes need to be introduced because
- // the loop is in LCSSA.
- for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB);
- SBBI != SBBE; ++SBBI) {
- if (OriginalLoop.contains(*SBBI))
- continue; // not an exit block
- for (Instruction &I : **SBBI) {
- if (!isa<PHINode>(&I))
- break;
- PHINode *PN = cast<PHINode>(&I);
- Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
- PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
- }
- }
- }
- }
- LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
- const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
- BasicBlock *ContinuationBlock) const {
- // We start with a loop with a single latch:
- //
- // +--------------------+
- // | |
- // | preheader |
- // | |
- // +--------+-----------+
- // | ----------------\
- // | / |
- // +--------v----v------+ |
- // | | |
- // | header | |
- // | | |
- // +--------------------+ |
- // |
- // ..... |
- // |
- // +--------------------+ |
- // | | |
- // | latch >----------/
- // | |
- // +-------v------------+
- // |
- // |
- // | +--------------------+
- // | | |
- // +---> original exit |
- // | |
- // +--------------------+
- //
- // We change the control flow to look like
- //
- //
- // +--------------------+
- // | |
- // | preheader >-------------------------+
- // | | |
- // +--------v-----------+ |
- // | /-------------+ |
- // | / | |
- // +--------v--v--------+ | |
- // | | | |
- // | header | | +--------+ |
- // | | | | | |
- // +--------------------+ | | +-----v-----v-----------+
- // | | | |
- // | | | .pseudo.exit |
- // | | | |
- // | | +-----------v-----------+
- // | | |
- // ..... | | |
- // | | +--------v-------------+
- // +--------------------+ | | | |
- // | | | | | ContinuationBlock |
- // | latch >------+ | | |
- // | | | +----------------------+
- // +---------v----------+ |
- // | |
- // | |
- // | +---------------^-----+
- // | | |
- // +-----> .exit.selector |
- // | |
- // +----------v----------+
- // |
- // +--------------------+ |
- // | | |
- // | original exit <----+
- // | |
- // +--------------------+
- //
- RewrittenRangeInfo RRI;
- auto BBInsertLocation = std::next(Function::iterator(LS.Latch));
- RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
- &F, BBInsertLocation);
- RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
- BBInsertLocation);
- BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin());
- bool Increasing = LS.IndVarIncreasing;
- IRBuilder<> B(PreheaderJump);
- // EnterLoopCond - is it okay to start executing this `LS'?
- Value *EnterLoopCond = Increasing
- ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
- : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt);
- B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
- PreheaderJump->eraseFromParent();
- LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
- B.SetInsertPoint(LS.LatchBr);
- Value *TakeBackedgeLoopCond =
- Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt)
- : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt);
- Value *CondForBranch = LS.LatchBrExitIdx == 1
- ? TakeBackedgeLoopCond
- : B.CreateNot(TakeBackedgeLoopCond);
- LS.LatchBr->setCondition(CondForBranch);
- B.SetInsertPoint(RRI.ExitSelector);
- // IterationsLeft - are there any more iterations left, given the original
- // upper bound on the induction variable? If not, we branch to the "real"
- // exit.
- Value *IterationsLeft = Increasing
- ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt)
- : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt);
- B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
- BranchInst *BranchToContinuation =
- BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
- // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
- // each of the PHI nodes in the loop header. This feeds into the initial
- // value of the same PHI nodes if/when we continue execution.
- for (Instruction &I : *LS.Header) {
- if (!isa<PHINode>(&I))
- break;
- PHINode *PN = cast<PHINode>(&I);
- PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
- BranchToContinuation);
- NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
- NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
- RRI.ExitSelector);
- RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
- }
- RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end",
- BranchToContinuation);
- RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
- RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector);
- // The latch exit now has a branch from `RRI.ExitSelector' instead of
- // `LS.Latch'. The PHI nodes need to be updated to reflect that.
- for (Instruction &I : *LS.LatchExit) {
- if (PHINode *PN = dyn_cast<PHINode>(&I))
- replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
- else
- break;
- }
- return RRI;
- }
- void LoopConstrainer::rewriteIncomingValuesForPHIs(
- LoopStructure &LS, BasicBlock *ContinuationBlock,
- const LoopConstrainer::RewrittenRangeInfo &RRI) const {
- unsigned PHIIndex = 0;
- for (Instruction &I : *LS.Header) {
- if (!isa<PHINode>(&I))
- break;
- PHINode *PN = cast<PHINode>(&I);
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
- if (PN->getIncomingBlock(i) == ContinuationBlock)
- PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
- }
- LS.IndVarStart = RRI.IndVarEnd;
- }
- BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
- BasicBlock *OldPreheader,
- const char *Tag) const {
- BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
- BranchInst::Create(LS.Header, Preheader);
- for (Instruction &I : *LS.Header) {
- if (!isa<PHINode>(&I))
- break;
- PHINode *PN = cast<PHINode>(&I);
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
- replacePHIBlock(PN, OldPreheader, Preheader);
- }
- return Preheader;
- }
- void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
- Loop *ParentLoop = OriginalLoop.getParentLoop();
- if (!ParentLoop)
- return;
- for (BasicBlock *BB : BBs)
- ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo);
- }
- bool LoopConstrainer::run() {
- BasicBlock *Preheader = nullptr;
- LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
- Preheader = OriginalLoop.getLoopPreheader();
- assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
- "preconditions!");
- OriginalPreheader = Preheader;
- MainLoopPreheader = Preheader;
- Optional<SubRanges> MaybeSR = calculateSubRanges();
- if (!MaybeSR.hasValue()) {
- DEBUG(dbgs() << "irce: could not compute subranges\n");
- return false;
- }
- SubRanges SR = MaybeSR.getValue();
- bool Increasing = MainLoopStructure.IndVarIncreasing;
- IntegerType *IVTy =
- cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
- SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
- Instruction *InsertPt = OriginalPreheader->getTerminator();
- // It would have been better to make `PreLoop' and `PostLoop'
- // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
- // constructor.
- ClonedLoop PreLoop, PostLoop;
- bool NeedsPreLoop =
- Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
- bool NeedsPostLoop =
- Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
- Value *ExitPreLoopAt = nullptr;
- Value *ExitMainLoopAt = nullptr;
- const SCEVConstant *MinusOneS =
- cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
- if (NeedsPreLoop) {
- const SCEV *ExitPreLoopAtSCEV = nullptr;
- if (Increasing)
- ExitPreLoopAtSCEV = *SR.LowLimit;
- else {
- if (CanBeSMin(SE, *SR.HighLimit)) {
- DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
- << "preloop exit limit. HighLimit = " << *(*SR.HighLimit)
- << "\n");
- return false;
- }
- ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
- }
- ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
- ExitPreLoopAt->setName("exit.preloop.at");
- }
- if (NeedsPostLoop) {
- const SCEV *ExitMainLoopAtSCEV = nullptr;
- if (Increasing)
- ExitMainLoopAtSCEV = *SR.HighLimit;
- else {
- if (CanBeSMin(SE, *SR.LowLimit)) {
- DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
- << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit)
- << "\n");
- return false;
- }
- ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
- }
- ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
- ExitMainLoopAt->setName("exit.mainloop.at");
- }
- // We clone these ahead of time so that we don't have to deal with changing
- // and temporarily invalid IR as we transform the loops.
- if (NeedsPreLoop)
- cloneLoop(PreLoop, "preloop");
- if (NeedsPostLoop)
- cloneLoop(PostLoop, "postloop");
- RewrittenRangeInfo PreLoopRRI;
- if (NeedsPreLoop) {
- Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
- PreLoop.Structure.Header);
- MainLoopPreheader =
- createPreheader(MainLoopStructure, Preheader, "mainloop");
- PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
- ExitPreLoopAt, MainLoopPreheader);
- rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
- PreLoopRRI);
- }
- BasicBlock *PostLoopPreheader = nullptr;
- RewrittenRangeInfo PostLoopRRI;
- if (NeedsPostLoop) {
- PostLoopPreheader =
- createPreheader(PostLoop.Structure, Preheader, "postloop");
- PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
- ExitMainLoopAt, PostLoopPreheader);
- rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
- PostLoopRRI);
- }
- BasicBlock *NewMainLoopPreheader =
- MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
- BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit,
- PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
- PostLoopRRI.ExitSelector, NewMainLoopPreheader};
- // Some of the above may be nullptr, filter them out before passing to
- // addToParentLoopIfNeeded.
- auto NewBlocksEnd =
- std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
- addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
- addToParentLoopIfNeeded(PreLoop.Blocks);
- addToParentLoopIfNeeded(PostLoop.Blocks);
- return true;
- }
- /// Computes and returns a range of values for the induction variable (IndVar)
- /// in which the range check can be safely elided. If it cannot compute such a
- /// range, returns None.
- Optional<InductiveRangeCheck::Range>
- InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
- const SCEVAddRecExpr *IndVar,
- IRBuilder<> &) const {
- // IndVar is of the form "A + B * I" (where "I" is the canonical induction
- // variable, that may or may not exist as a real llvm::Value in the loop) and
- // this inductive range check is a range check on the "C + D * I" ("C" is
- // getOffset() and "D" is getScale()). We rewrite the value being range
- // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
- // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code
- // can be generalized as needed.
- //
- // The actual inequalities we solve are of the form
- //
- // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
- //
- // The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions
- // and subtractions are twos-complement wrapping and comparisons are signed.
- //
- // Proof:
- //
- // If there exists IndVar such that -M <= IndVar < (L - M) then it follows
- // that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows
- // then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have
- // overflown.
- //
- // This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t.
- // Hence 0 <= (IndVar + M) < L
- // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
- // 127, IndVar = 126 and L = -2 in an i8 world.
- if (!IndVar->isAffine())
- return None;
- const SCEV *A = IndVar->getStart();
- const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
- if (!B)
- return None;
- const SCEV *C = getOffset();
- const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
- if (D != B)
- return None;
- ConstantInt *ConstD = D->getValue();
- if (!(ConstD->isMinusOne() || ConstD->isOne()))
- return None;
- const SCEV *M = SE.getMinusSCEV(C, A);
- const SCEV *Begin = SE.getNegativeSCEV(M);
- const SCEV *UpperLimit = nullptr;
- // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
- // We can potentially do much better here.
- if (Value *V = getLength()) {
- UpperLimit = SE.getSCEV(V);
- } else {
- assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!");
- unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
- UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
- }
- const SCEV *End = SE.getMinusSCEV(UpperLimit, M);
- return InductiveRangeCheck::Range(Begin, End);
- }
- static Optional<InductiveRangeCheck::Range>
- IntersectRange(ScalarEvolution &SE,
- const Optional<InductiveRangeCheck::Range> &R1,
- const InductiveRangeCheck::Range &R2, IRBuilder<> &B) {
- if (!R1.hasValue())
- return R2;
- auto &R1Value = R1.getValue();
- // TODO: we could widen the smaller range and have this work; but for now we
- // bail out to keep things simple.
- if (R1Value.getType() != R2.getType())
- return None;
- const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
- const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
- return InductiveRangeCheck::Range(NewBegin, NewEnd);
- }
- bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
- if (L->getBlocks().size() >= LoopSizeCutoff) {
- DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
- return false;
- }
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!Preheader) {
- DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
- return false;
- }
- LLVMContext &Context = Preheader->getContext();
- InductiveRangeCheck::AllocatorTy IRCAlloc;
- SmallVector<InductiveRangeCheck *, 16> RangeChecks;
- ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
- BranchProbabilityInfo &BPI = getAnalysis<BranchProbabilityInfo>();
- for (auto BBI : L->getBlocks())
- if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
- if (InductiveRangeCheck *IRC =
- InductiveRangeCheck::create(IRCAlloc, TBI, L, SE, BPI))
- RangeChecks.push_back(IRC);
- if (RangeChecks.empty())
- return false;
- auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
- OS << "irce: looking at loop "; L->print(OS);
- OS << "irce: loop has " << RangeChecks.size()
- << " inductive range checks: \n";
- for (InductiveRangeCheck *IRC : RangeChecks)
- IRC->print(OS);
- };
- DEBUG(PrintRecognizedRangeChecks(dbgs()));
- if (PrintRangeChecks)
- PrintRecognizedRangeChecks(errs());
- const char *FailureReason = nullptr;
- Optional<LoopStructure> MaybeLoopStructure =
- LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
- if (!MaybeLoopStructure.hasValue()) {
- DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
- << "\n";);
- return false;
- }
- LoopStructure LS = MaybeLoopStructure.getValue();
- bool Increasing = LS.IndVarIncreasing;
- const SCEV *MinusOne =
- SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true);
- const SCEVAddRecExpr *IndVar =
- cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne));
- Optional<InductiveRangeCheck::Range> SafeIterRange;
- Instruction *ExprInsertPt = Preheader->getTerminator();
- SmallVector<InductiveRangeCheck *, 4> RangeChecksToEliminate;
- IRBuilder<> B(ExprInsertPt);
- for (InductiveRangeCheck *IRC : RangeChecks) {
- auto Result = IRC->computeSafeIterationSpace(SE, IndVar, B);
- if (Result.hasValue()) {
- auto MaybeSafeIterRange =
- IntersectRange(SE, SafeIterRange, Result.getValue(), B);
- if (MaybeSafeIterRange.hasValue()) {
- RangeChecksToEliminate.push_back(IRC);
- SafeIterRange = MaybeSafeIterRange.getValue();
- }
- }
- }
- if (!SafeIterRange.hasValue())
- return false;
- LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LS,
- SE, SafeIterRange.getValue());
- bool Changed = LC.run();
- if (Changed) {
- auto PrintConstrainedLoopInfo = [L]() {
- dbgs() << "irce: in function ";
- dbgs() << L->getHeader()->getParent()->getName() << ": ";
- dbgs() << "constrained ";
- L->print(dbgs());
- };
- DEBUG(PrintConstrainedLoopInfo());
- if (PrintChangedLoops)
- PrintConstrainedLoopInfo();
- // Optimize away the now-redundant range checks.
- for (InductiveRangeCheck *IRC : RangeChecksToEliminate) {
- ConstantInt *FoldedRangeCheck = IRC->getPassingDirection()
- ? ConstantInt::getTrue(Context)
- : ConstantInt::getFalse(Context);
- IRC->getBranch()->setCondition(FoldedRangeCheck);
- }
- }
- return Changed;
- }
- Pass *llvm::createInductiveRangeCheckEliminationPass() {
- return new InductiveRangeCheckElimination;
- }
|