| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109 |
- //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass implements an idiom recognizer that transforms simple loops into a
- // non-loop form. In cases that this kicks in, it can be a significant
- // performance win.
- //
- //===----------------------------------------------------------------------===//
- //
- // TODO List:
- //
- // Future loop memory idioms to recognize:
- // memcmp, memmove, strlen, etc.
- // Future floating point idioms to recognize in -ffast-math mode:
- // fpowi
- // Future integer operation idioms to recognize:
- // ctpop, ctlz, cttz
- //
- // Beware that isel's default lowering for ctpop is highly inefficient for
- // i64 and larger types when i64 is legal and the value has few bits set. It
- // would be good to enhance isel to emit a loop for ctpop in this case.
- //
- // We should enhance the memset/memcpy recognition to handle multiple stores in
- // the loop. This would handle things like:
- // void foo(_Complex float *P)
- // for (i) { __real__(*P) = 0; __imag__(*P) = 0; }
- //
- // We should enhance this to handle negative strides through memory.
- // Alternatively (and perhaps better) we could rely on an earlier pass to force
- // forward iteration through memory, which is generally better for cache
- // behavior. Negative strides *do* happen for memset/memcpy loops.
- //
- // This could recognize common matrix multiplies and dot product idioms and
- // replace them with calls to BLAS (if linked in??).
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/ScalarEvolutionExpander.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Module.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/Local.h"
- using namespace llvm;
- #define DEBUG_TYPE "loop-idiom"
- STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
- STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
- namespace {
- class LoopIdiomRecognize;
- /// This class defines some utility functions for loop idiom recognization.
- class LIRUtil {
- public:
- /// Return true iff the block contains nothing but an uncondition branch
- /// (aka goto instruction).
- static bool isAlmostEmpty(BasicBlock *);
- static BranchInst *getBranch(BasicBlock *BB) {
- return dyn_cast<BranchInst>(BB->getTerminator());
- }
- /// Derive the precondition block (i.e the block that guards the loop
- /// preheader) from the given preheader.
- static BasicBlock *getPrecondBb(BasicBlock *PreHead);
- };
- /// This class is to recoginize idioms of population-count conducted in
- /// a noncountable loop. Currently it only recognizes this pattern:
- /// \code
- /// while(x) {cnt++; ...; x &= x - 1; ...}
- /// \endcode
- class NclPopcountRecognize {
- LoopIdiomRecognize &LIR;
- Loop *CurLoop;
- BasicBlock *PreCondBB;
- typedef IRBuilder<> IRBuilderTy;
- public:
- explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR);
- bool recognize();
- private:
- /// Take a glimpse of the loop to see if we need to go ahead recoginizing
- /// the idiom.
- bool preliminaryScreen();
- /// Check if the given conditional branch is based on the comparison
- /// between a variable and zero, and if the variable is non-zero, the
- /// control yields to the loop entry. If the branch matches the behavior,
- /// the variable involved in the comparion is returned. This function will
- /// be called to see if the precondition and postcondition of the loop
- /// are in desirable form.
- Value *matchCondition(BranchInst *Br, BasicBlock *NonZeroTarget) const;
- /// Return true iff the idiom is detected in the loop. and 1) \p CntInst
- /// is set to the instruction counting the population bit. 2) \p CntPhi
- /// is set to the corresponding phi node. 3) \p Var is set to the value
- /// whose population bits are being counted.
- bool detectIdiom
- (Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const;
- /// Insert ctpop intrinsic function and some obviously dead instructions.
- void transform(Instruction *CntInst, PHINode *CntPhi, Value *Var);
- /// Create llvm.ctpop.* intrinsic function.
- CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL);
- };
- class LoopIdiomRecognize : public LoopPass {
- Loop *CurLoop;
- DominatorTree *DT;
- ScalarEvolution *SE;
- TargetLibraryInfo *TLI;
- const TargetTransformInfo *TTI;
- public:
- static char ID;
- explicit LoopIdiomRecognize() : LoopPass(ID) {
- initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
- DT = nullptr;
- SE = nullptr;
- TLI = nullptr;
- TTI = nullptr;
- }
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
- bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
- SmallVectorImpl<BasicBlock*> &ExitBlocks);
- bool processLoopStore(StoreInst *SI, const SCEV *BECount);
- bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
- bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
- unsigned StoreAlignment,
- Value *SplatValue, Instruction *TheStore,
- const SCEVAddRecExpr *Ev,
- const SCEV *BECount);
- bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
- const SCEVAddRecExpr *StoreEv,
- const SCEVAddRecExpr *LoadEv,
- const SCEV *BECount);
- /// This transformation requires natural loop information & requires that
- /// loop preheaders be inserted into the CFG.
- ///
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addRequiredID(LoopSimplifyID);
- AU.addPreservedID(LoopSimplifyID);
- AU.addRequiredID(LCSSAID);
- AU.addPreservedID(LCSSAID);
- AU.addRequired<AliasAnalysis>();
- AU.addPreserved<AliasAnalysis>();
- AU.addRequired<ScalarEvolution>();
- AU.addPreserved<ScalarEvolution>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- }
- DominatorTree *getDominatorTree() {
- return DT ? DT
- : (DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree());
- }
- ScalarEvolution *getScalarEvolution() {
- return SE ? SE : (SE = &getAnalysis<ScalarEvolution>());
- }
- TargetLibraryInfo *getTargetLibraryInfo() {
- if (!TLI)
- TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- return TLI;
- }
- const TargetTransformInfo *getTargetTransformInfo() {
- return TTI ? TTI
- : (TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
- *CurLoop->getHeader()->getParent()));
- }
- Loop *getLoop() const { return CurLoop; }
- private:
- bool runOnNoncountableLoop();
- bool runOnCountableLoop();
- };
- }
- char LoopIdiomRecognize::ID = 0;
- INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
- INITIALIZE_PASS_DEPENDENCY(LCSSA)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
- false, false)
- Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
- /// deleteDeadInstruction - Delete this instruction. Before we do, go through
- /// and zero out all the operands of this instruction. If any of them become
- /// dead, delete them and the computation tree that feeds them.
- ///
- static void deleteDeadInstruction(Instruction *I,
- const TargetLibraryInfo *TLI) {
- SmallVector<Value *, 16> Operands(I->value_op_begin(), I->value_op_end());
- I->replaceAllUsesWith(UndefValue::get(I->getType()));
- I->eraseFromParent();
- for (Value *Op : Operands)
- RecursivelyDeleteTriviallyDeadInstructions(Op, TLI);
- }
- //===----------------------------------------------------------------------===//
- //
- // Implementation of LIRUtil
- //
- //===----------------------------------------------------------------------===//
- // This function will return true iff the given block contains nothing but goto.
- // A typical usage of this function is to check if the preheader function is
- // "almost" empty such that generated intrinsic functions can be moved across
- // the preheader and be placed at the end of the precondition block without
- // the concern of breaking data dependence.
- bool LIRUtil::isAlmostEmpty(BasicBlock *BB) {
- if (BranchInst *Br = getBranch(BB)) {
- return Br->isUnconditional() && Br == BB->begin();
- }
- return false;
- }
- BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) {
- if (BasicBlock *BB = PreHead->getSinglePredecessor()) {
- BranchInst *Br = getBranch(BB);
- return Br && Br->isConditional() ? BB : nullptr;
- }
- return nullptr;
- }
- //===----------------------------------------------------------------------===//
- //
- // Implementation of NclPopcountRecognize
- //
- //===----------------------------------------------------------------------===//
- NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
- LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(nullptr) {
- }
- bool NclPopcountRecognize::preliminaryScreen() {
- const TargetTransformInfo *TTI = LIR.getTargetTransformInfo();
- if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
- return false;
- // Counting population are usually conducted by few arithmetic instructions.
- // Such instructions can be easilly "absorbed" by vacant slots in a
- // non-compact loop. Therefore, recognizing popcount idiom only makes sense
- // in a compact loop.
- // Give up if the loop has multiple blocks or multiple backedges.
- if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
- return false;
- BasicBlock *LoopBody = *(CurLoop->block_begin());
- if (LoopBody->size() >= 20) {
- // The loop is too big, bail out.
- return false;
- }
- // It should have a preheader containing nothing but a goto instruction.
- BasicBlock *PreHead = CurLoop->getLoopPreheader();
- if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead))
- return false;
- // It should have a precondition block where the generated popcount instrinsic
- // function will be inserted.
- PreCondBB = LIRUtil::getPrecondBb(PreHead);
- if (!PreCondBB)
- return false;
- return true;
- }
- Value *NclPopcountRecognize::matchCondition(BranchInst *Br,
- BasicBlock *LoopEntry) const {
- if (!Br || !Br->isConditional())
- return nullptr;
- ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition());
- if (!Cond)
- return nullptr;
- ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
- if (!CmpZero || !CmpZero->isZero())
- return nullptr;
- ICmpInst::Predicate Pred = Cond->getPredicate();
- if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) ||
- (Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry))
- return Cond->getOperand(0);
- return nullptr;
- }
- bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
- PHINode *&CntPhi,
- Value *&Var) const {
- // Following code tries to detect this idiom:
- //
- // if (x0 != 0)
- // goto loop-exit // the precondition of the loop
- // cnt0 = init-val;
- // do {
- // x1 = phi (x0, x2);
- // cnt1 = phi(cnt0, cnt2);
- //
- // cnt2 = cnt1 + 1;
- // ...
- // x2 = x1 & (x1 - 1);
- // ...
- // } while(x != 0);
- //
- // loop-exit:
- //
- // step 1: Check to see if the look-back branch match this pattern:
- // "if (a!=0) goto loop-entry".
- BasicBlock *LoopEntry;
- Instruction *DefX2, *CountInst;
- Value *VarX1, *VarX0;
- PHINode *PhiX, *CountPhi;
- DefX2 = CountInst = nullptr;
- VarX1 = VarX0 = nullptr;
- PhiX = CountPhi = nullptr;
- LoopEntry = *(CurLoop->block_begin());
- // step 1: Check if the loop-back branch is in desirable form.
- {
- if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry))
- DefX2 = dyn_cast<Instruction>(T);
- else
- return false;
- }
- // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
- {
- if (!DefX2 || DefX2->getOpcode() != Instruction::And)
- return false;
- BinaryOperator *SubOneOp;
- if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
- VarX1 = DefX2->getOperand(1);
- else {
- VarX1 = DefX2->getOperand(0);
- SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
- }
- if (!SubOneOp)
- return false;
- Instruction *SubInst = cast<Instruction>(SubOneOp);
- ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
- if (!Dec ||
- !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
- (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) {
- return false;
- }
- }
- // step 3: Check the recurrence of variable X
- {
- PhiX = dyn_cast<PHINode>(VarX1);
- if (!PhiX ||
- (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
- return false;
- }
- }
- // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
- {
- CountInst = nullptr;
- for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(),
- IterE = LoopEntry->end(); Iter != IterE; Iter++) {
- Instruction *Inst = Iter;
- if (Inst->getOpcode() != Instruction::Add)
- continue;
- ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
- if (!Inc || !Inc->isOne())
- continue;
- PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
- if (!Phi || Phi->getParent() != LoopEntry)
- continue;
- // Check if the result of the instruction is live of the loop.
- bool LiveOutLoop = false;
- for (User *U : Inst->users()) {
- if ((cast<Instruction>(U))->getParent() != LoopEntry) {
- LiveOutLoop = true; break;
- }
- }
- if (LiveOutLoop) {
- CountInst = Inst;
- CountPhi = Phi;
- break;
- }
- }
- if (!CountInst)
- return false;
- }
- // step 5: check if the precondition is in this form:
- // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
- {
- BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
- Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader());
- if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
- return false;
- CntInst = CountInst;
- CntPhi = CountPhi;
- Var = T;
- }
- return true;
- }
- void NclPopcountRecognize::transform(Instruction *CntInst,
- PHINode *CntPhi, Value *Var) {
- ScalarEvolution *SE = LIR.getScalarEvolution();
- TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo();
- BasicBlock *PreHead = CurLoop->getLoopPreheader();
- BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
- const DebugLoc DL = CntInst->getDebugLoc();
- // Assuming before transformation, the loop is following:
- // if (x) // the precondition
- // do { cnt++; x &= x - 1; } while(x);
- // Step 1: Insert the ctpop instruction at the end of the precondition block
- IRBuilderTy Builder(PreCondBr);
- Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
- {
- PopCnt = createPopcntIntrinsic(Builder, Var, DL);
- NewCount = PopCntZext =
- Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
- if (NewCount != PopCnt)
- (cast<Instruction>(NewCount))->setDebugLoc(DL);
- // TripCnt is exactly the number of iterations the loop has
- TripCnt = NewCount;
- // If the population counter's initial value is not zero, insert Add Inst.
- Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
- ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
- if (!InitConst || !InitConst->isZero()) {
- NewCount = Builder.CreateAdd(NewCount, CntInitVal);
- (cast<Instruction>(NewCount))->setDebugLoc(DL);
- }
- }
- // Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to
- // "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic
- // function would be partial dead code, and downstream passes will drag
- // it back from the precondition block to the preheader.
- {
- ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
- Value *Opnd0 = PopCntZext;
- Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
- if (PreCond->getOperand(0) != Var)
- std::swap(Opnd0, Opnd1);
- ICmpInst *NewPreCond =
- cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
- PreCondBr->setCondition(NewPreCond);
- RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
- }
- // Step 3: Note that the population count is exactly the trip count of the
- // loop in question, which enble us to to convert the loop from noncountable
- // loop into a countable one. The benefit is twofold:
- //
- // - If the loop only counts population, the entire loop become dead after
- // the transformation. It is lots easier to prove a countable loop dead
- // than to prove a noncountable one. (In some C dialects, a infite loop
- // isn't dead even if it computes nothing useful. In general, DCE needs
- // to prove a noncountable loop finite before safely delete it.)
- //
- // - If the loop also performs something else, it remains alive.
- // Since it is transformed to countable form, it can be aggressively
- // optimized by some optimizations which are in general not applicable
- // to a noncountable loop.
- //
- // After this step, this loop (conceptually) would look like following:
- // newcnt = __builtin_ctpop(x);
- // t = newcnt;
- // if (x)
- // do { cnt++; x &= x-1; t--) } while (t > 0);
- BasicBlock *Body = *(CurLoop->block_begin());
- {
- BranchInst *LbBr = LIRUtil::getBranch(Body);
- ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
- Type *Ty = TripCnt->getType();
- PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin());
- Builder.SetInsertPoint(LbCond);
- Value *Opnd1 = cast<Value>(TcPhi);
- Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1));
- Instruction *TcDec =
- cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true));
- TcPhi->addIncoming(TripCnt, PreHead);
- TcPhi->addIncoming(TcDec, Body);
- CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ?
- CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
- LbCond->setPredicate(Pred);
- LbCond->setOperand(0, TcDec);
- LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0)));
- }
- // Step 4: All the references to the original population counter outside
- // the loop are replaced with the NewCount -- the value returned from
- // __builtin_ctpop().
- CntInst->replaceUsesOutsideBlock(NewCount, Body);
- // step 5: Forget the "non-computable" trip-count SCEV associated with the
- // loop. The loop would otherwise not be deleted even if it becomes empty.
- SE->forgetLoop(CurLoop);
- }
- CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
- Value *Val, DebugLoc DL) {
- Value *Ops[] = { Val };
- Type *Tys[] = { Val->getType() };
- Module *M = (*(CurLoop->block_begin()))->getParent()->getParent();
- Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
- CallInst *CI = IRBuilder.CreateCall(Func, Ops);
- CI->setDebugLoc(DL);
- return CI;
- }
- /// recognize - detect population count idiom in a non-countable loop. If
- /// detected, transform the relevant code to popcount intrinsic function
- /// call, and return true; otherwise, return false.
- bool NclPopcountRecognize::recognize() {
- if (!LIR.getTargetTransformInfo())
- return false;
- LIR.getScalarEvolution();
- if (!preliminaryScreen())
- return false;
- Instruction *CntInst;
- PHINode *CntPhi;
- Value *Val;
- if (!detectIdiom(CntInst, CntPhi, Val))
- return false;
- transform(CntInst, CntPhi, Val);
- return true;
- }
- //===----------------------------------------------------------------------===//
- //
- // Implementation of LoopIdiomRecognize
- //
- //===----------------------------------------------------------------------===//
- bool LoopIdiomRecognize::runOnCountableLoop() {
- const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
- assert(!isa<SCEVCouldNotCompute>(BECount) &&
- "runOnCountableLoop() called on a loop without a predictable"
- "backedge-taken count");
- // If this loop executes exactly one time, then it should be peeled, not
- // optimized by this pass.
- if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
- if (BECst->getValue()->getValue() == 0)
- return false;
- // set DT
- (void)getDominatorTree();
- LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- // set TLI
- (void)getTargetLibraryInfo();
- SmallVector<BasicBlock*, 8> ExitBlocks;
- CurLoop->getUniqueExitBlocks(ExitBlocks);
- DEBUG(dbgs() << "loop-idiom Scanning: F["
- << CurLoop->getHeader()->getParent()->getName()
- << "] Loop %" << CurLoop->getHeader()->getName() << "\n");
- bool MadeChange = false;
- // Scan all the blocks in the loop that are not in subloops.
- for (auto *BB : CurLoop->getBlocks()) {
- // Ignore blocks in subloops.
- if (LI.getLoopFor(BB) != CurLoop)
- continue;
- MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
- }
- return MadeChange;
- }
- bool LoopIdiomRecognize::runOnNoncountableLoop() {
- NclPopcountRecognize Popcount(*this);
- if (Popcount.recognize())
- return true;
- return false;
- }
- bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
- if (skipOptnoneFunction(L))
- return false;
- CurLoop = L;
- // If the loop could not be converted to canonical form, it must have an
- // indirectbr in it, just give up.
- if (!L->getLoopPreheader())
- return false;
- // Disable loop idiom recognition if the function's name is a common idiom.
- StringRef Name = L->getHeader()->getParent()->getName();
- if (Name == "memset" || Name == "memcpy")
- return false;
- SE = &getAnalysis<ScalarEvolution>();
- if (SE->hasLoopInvariantBackedgeTakenCount(L))
- return runOnCountableLoop();
- return runOnNoncountableLoop();
- }
- /// runOnLoopBlock - Process the specified block, which lives in a counted loop
- /// with the specified backedge count. This block is known to be in the current
- /// loop and not in any subloops.
- bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
- SmallVectorImpl<BasicBlock*> &ExitBlocks) {
- // We can only promote stores in this block if they are unconditionally
- // executed in the loop. For a block to be unconditionally executed, it has
- // to dominate all the exit blocks of the loop. Verify this now.
- for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
- if (!DT->dominates(BB, ExitBlocks[i]))
- return false;
- bool MadeChange = false;
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
- Instruction *Inst = I++;
- // Look for store instructions, which may be optimized to memset/memcpy.
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- WeakVH InstPtr(I);
- if (!processLoopStore(SI, BECount)) continue;
- MadeChange = true;
- // If processing the store invalidated our iterator, start over from the
- // top of the block.
- if (!InstPtr)
- I = BB->begin();
- continue;
- }
- // Look for memset instructions, which may be optimized to a larger memset.
- if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
- WeakVH InstPtr(I);
- if (!processLoopMemSet(MSI, BECount)) continue;
- MadeChange = true;
- // If processing the memset invalidated our iterator, start over from the
- // top of the block.
- if (!InstPtr)
- I = BB->begin();
- continue;
- }
- }
- return MadeChange;
- }
- /// processLoopStore - See if this store can be promoted to a memset or memcpy.
- bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
- if (!SI->isSimple()) return false;
- Value *StoredVal = SI->getValueOperand();
- Value *StorePtr = SI->getPointerOperand();
- // Reject stores that are so large that they overflow an unsigned.
- auto &DL = CurLoop->getHeader()->getModule()->getDataLayout();
- uint64_t SizeInBits = DL.getTypeSizeInBits(StoredVal->getType());
- if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
- return false;
- // See if the pointer expression is an AddRec like {base,+,1} on the current
- // loop, which indicates a strided store. If we have something else, it's a
- // random store we can't handle.
- const SCEVAddRecExpr *StoreEv =
- dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
- if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
- return false;
- // Check to see if the stride matches the size of the store. If so, then we
- // know that every byte is touched in the loop.
- unsigned StoreSize = (unsigned)SizeInBits >> 3;
- const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
- if (!Stride || StoreSize != Stride->getValue()->getValue()) {
- // TODO: Could also handle negative stride here someday, that will require
- // the validity check in mayLoopAccessLocation to be updated though.
- // Enable this to print exact negative strides.
- #if 0 // HLSL Change - suppress '0 &&' warning
- if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) {
- dbgs() << "NEGATIVE STRIDE: " << *SI << "\n";
- dbgs() << "BB: " << *SI->getParent();
- }
- #endif // HLSL Change - suppress '0 &&' warning
- return false;
- }
- // See if we can optimize just this store in isolation.
- if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
- StoredVal, SI, StoreEv, BECount))
- return true;
- // If the stored value is a strided load in the same loop with the same stride
- // this this may be transformable into a memcpy. This kicks in for stuff like
- // for (i) A[i] = B[i];
- if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
- const SCEVAddRecExpr *LoadEv =
- dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0)));
- if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() &&
- StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple())
- if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount))
- return true;
- }
- //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n";
- return false;
- }
- /// processLoopMemSet - See if this memset can be promoted to a large memset.
- bool LoopIdiomRecognize::
- processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
- // We can only handle non-volatile memsets with a constant size.
- if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false;
- // If we're not allowed to hack on memset, we fail.
- if (!TLI->has(LibFunc::memset))
- return false;
- Value *Pointer = MSI->getDest();
- // See if the pointer expression is an AddRec like {base,+,1} on the current
- // loop, which indicates a strided store. If we have something else, it's a
- // random store we can't handle.
- const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
- if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
- return false;
- // Reject memsets that are so large that they overflow an unsigned.
- uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
- if ((SizeInBytes >> 32) != 0)
- return false;
- // Check to see if the stride matches the size of the memset. If so, then we
- // know that every byte is touched in the loop.
- const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
- // TODO: Could also handle negative stride here someday, that will require the
- // validity check in mayLoopAccessLocation to be updated though.
- if (!Stride || MSI->getLength() != Stride->getValue())
- return false;
- return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
- MSI->getAlignment(), MSI->getValue(),
- MSI, Ev, BECount);
- }
- /// mayLoopAccessLocation - Return true if the specified loop might access the
- /// specified pointer location, which is a loop-strided access. The 'Access'
- /// argument specifies what the verboten forms of access are (read or write).
- static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
- Loop *L, const SCEV *BECount,
- unsigned StoreSize, AliasAnalysis &AA,
- Instruction *IgnoredStore) {
- // Get the location that may be stored across the loop. Since the access is
- // strided positively through memory, we say that the modified location starts
- // at the pointer and has infinite size.
- uint64_t AccessSize = MemoryLocation::UnknownSize;
- // If the loop iterates a fixed number of times, we can refine the access size
- // to be exactly the size of the memset, which is (BECount+1)*StoreSize
- if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
- AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
- // TODO: For this to be really effective, we have to dive into the pointer
- // operand in the store. Store to &A[i] of 100 will always return may alias
- // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
- // which will then no-alias a store to &A[100].
- MemoryLocation StoreLoc(Ptr, AccessSize);
- for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
- ++BI)
- for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
- if (&*I != IgnoredStore &&
- (AA.getModRefInfo(I, StoreLoc) & Access))
- return true;
- return false;
- }
- /// getMemSetPatternValue - If a strided store of the specified value is safe to
- /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
- /// be passed in. Otherwise, return null.
- ///
- /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
- /// just replicate their input array and then pass on to memset_pattern16.
- static Constant *getMemSetPatternValue(Value *V, const DataLayout &DL) {
- // If the value isn't a constant, we can't promote it to being in a constant
- // array. We could theoretically do a store to an alloca or something, but
- // that doesn't seem worthwhile.
- Constant *C = dyn_cast<Constant>(V);
- if (!C) return nullptr;
- // Only handle simple values that are a power of two bytes in size.
- uint64_t Size = DL.getTypeSizeInBits(V->getType());
- if (Size == 0 || (Size & 7) || (Size & (Size-1)))
- return nullptr;
- // Don't care enough about darwin/ppc to implement this.
- if (DL.isBigEndian())
- return nullptr;
- // Convert to size in bytes.
- Size /= 8;
- // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
- // if the top and bottom are the same (e.g. for vectors and large integers).
- if (Size > 16) return nullptr;
- // If the constant is exactly 16 bytes, just use it.
- if (Size == 16) return C;
- // Otherwise, we'll use an array of the constants.
- unsigned ArraySize = 16/Size;
- ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
- return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C));
- }
- /// processLoopStridedStore - We see a strided store of some value. If we can
- /// transform this into a memset or memset_pattern in the loop preheader, do so.
- bool LoopIdiomRecognize::
- processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
- unsigned StoreAlignment, Value *StoredVal,
- Instruction *TheStore, const SCEVAddRecExpr *Ev,
- const SCEV *BECount) {
- // If the stored value is a byte-wise value (like i32 -1), then it may be
- // turned into a memset of i8 -1, assuming that all the consecutive bytes
- // are stored. A store of i32 0x01020304 can never be turned into a memset,
- // but it can be turned into memset_pattern if the target supports it.
- Value *SplatValue = isBytewiseValue(StoredVal);
- Constant *PatternValue = nullptr;
- auto &DL = CurLoop->getHeader()->getModule()->getDataLayout();
- unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
- // If we're allowed to form a memset, and the stored value would be acceptable
- // for memset, use it.
- if (SplatValue && TLI->has(LibFunc::memset) &&
- // Verify that the stored value is loop invariant. If not, we can't
- // promote the memset.
- CurLoop->isLoopInvariant(SplatValue)) {
- // Keep and use SplatValue.
- PatternValue = nullptr;
- } else if (DestAS == 0 && TLI->has(LibFunc::memset_pattern16) &&
- (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
- // Don't create memset_pattern16s with address spaces.
- // It looks like we can use PatternValue!
- SplatValue = nullptr;
- } else {
- // Otherwise, this isn't an idiom we can transform. For example, we can't
- // do anything with a 3-byte store.
- return false;
- }
- // The trip count of the loop and the base pointer of the addrec SCEV is
- // guaranteed to be loop invariant, which means that it should dominate the
- // header. This allows us to insert code for it in the preheader.
- BasicBlock *Preheader = CurLoop->getLoopPreheader();
- IRBuilder<> Builder(Preheader->getTerminator());
- SCEVExpander Expander(*SE, DL, "loop-idiom");
- Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
- // Okay, we have a strided store "p[i]" of a splattable value. We can turn
- // this into a memset in the loop preheader now if we want. However, this
- // would be unsafe to do if there is anything else in the loop that may read
- // or write to the aliased location. Check for any overlap by generating the
- // base pointer and checking the region.
- Value *BasePtr =
- Expander.expandCodeFor(Ev->getStart(), DestInt8PtrTy,
- Preheader->getTerminator());
- if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
- CurLoop, BECount,
- StoreSize, getAnalysis<AliasAnalysis>(), TheStore)) {
- Expander.clear();
- // If we generated new code for the base pointer, clean up.
- RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
- return false;
- }
- // Okay, everything looks good, insert the memset.
- // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
- // pointer size if it isn't already.
- Type *IntPtr = Builder.getIntPtrTy(DL, DestAS);
- BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
- const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
- SCEV::FlagNUW);
- if (StoreSize != 1) {
- NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
- SCEV::FlagNUW);
- }
- Value *NumBytes =
- Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
- CallInst *NewCall;
- if (SplatValue) {
- NewCall = Builder.CreateMemSet(BasePtr,
- SplatValue,
- NumBytes,
- StoreAlignment);
- } else {
- // Everything is emitted in default address space
- Type *Int8PtrTy = DestInt8PtrTy;
- Module *M = TheStore->getParent()->getParent()->getParent();
- Value *MSP = M->getOrInsertFunction("memset_pattern16",
- Builder.getVoidTy(),
- Int8PtrTy,
- Int8PtrTy,
- IntPtr,
- (void*)nullptr);
- // Otherwise we should form a memset_pattern16. PatternValue is known to be
- // an constant array of 16-bytes. Plop the value into a mergable global.
- GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
- GlobalValue::PrivateLinkage,
- PatternValue, ".memset_pattern");
- GV->setUnnamedAddr(true); // Ok to merge these.
- GV->setAlignment(16);
- Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
- NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
- }
- DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"
- << " from store to: " << *Ev << " at: " << *TheStore << "\n");
- NewCall->setDebugLoc(TheStore->getDebugLoc());
- // Okay, the memset has been formed. Zap the original store and anything that
- // feeds into it.
- deleteDeadInstruction(TheStore, TLI);
- ++NumMemSet;
- return true;
- }
- /// processLoopStoreOfLoopLoad - We see a strided store whose value is a
- /// same-strided load.
- bool LoopIdiomRecognize::
- processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
- const SCEVAddRecExpr *StoreEv,
- const SCEVAddRecExpr *LoadEv,
- const SCEV *BECount) {
- // If we're not allowed to form memcpy, we fail.
- if (!TLI->has(LibFunc::memcpy))
- return false;
- LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
- // The trip count of the loop and the base pointer of the addrec SCEV is
- // guaranteed to be loop invariant, which means that it should dominate the
- // header. This allows us to insert code for it in the preheader.
- BasicBlock *Preheader = CurLoop->getLoopPreheader();
- IRBuilder<> Builder(Preheader->getTerminator());
- const DataLayout &DL = Preheader->getModule()->getDataLayout();
- SCEVExpander Expander(*SE, DL, "loop-idiom");
- // Okay, we have a strided store "p[i]" of a loaded value. We can turn
- // this into a memcpy in the loop preheader now if we want. However, this
- // would be unsafe to do if there is anything else in the loop that may read
- // or write the memory region we're storing to. This includes the load that
- // feeds the stores. Check for an alias by generating the base address and
- // checking everything.
- Value *StoreBasePtr =
- Expander.expandCodeFor(StoreEv->getStart(),
- Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
- Preheader->getTerminator());
- if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
- CurLoop, BECount, StoreSize,
- getAnalysis<AliasAnalysis>(), SI)) {
- Expander.clear();
- // If we generated new code for the base pointer, clean up.
- RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
- return false;
- }
- // For a memcpy, we have to make sure that the input array is not being
- // mutated by the loop.
- Value *LoadBasePtr =
- Expander.expandCodeFor(LoadEv->getStart(),
- Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
- Preheader->getTerminator());
- if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
- StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
- Expander.clear();
- // If we generated new code for the base pointer, clean up.
- RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
- RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
- return false;
- }
- // Okay, everything is safe, we can transform this!
- // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
- // pointer size if it isn't already.
- Type *IntPtrTy = Builder.getIntPtrTy(DL, SI->getPointerAddressSpace());
- BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
- const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtrTy, 1),
- SCEV::FlagNUW);
- if (StoreSize != 1)
- NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
- SCEV::FlagNUW);
- Value *NumBytes =
- Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
- CallInst *NewCall =
- Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
- std::min(SI->getAlignment(), LI->getAlignment()));
- NewCall->setDebugLoc(SI->getDebugLoc());
- DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n"
- << " from load ptr=" << *LoadEv << " at: " << *LI << "\n"
- << " from store ptr=" << *StoreEv << " at: " << *SI << "\n");
- // Okay, the memset has been formed. Zap the original store and anything that
- // feeds into it.
- deleteDeadInstruction(SI, TLI);
- ++NumMemCpy;
- return true;
- }
|