| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036 |
- //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This transformation analyzes and transforms the induction variables (and
- // computations derived from them) into forms suitable for efficient execution
- // on the target.
- //
- // This pass performs a strength reduction on array references inside loops that
- // have as one or more of their components the loop induction variable, it
- // rewrites expressions to take advantage of scaled-index addressing modes
- // available on the target, and it performs a variety of other optimizations
- // related to loop induction variables.
- //
- // Terminology note: this code has a lot of handling for "post-increment" or
- // "post-inc" users. This is not talking about post-increment addressing modes;
- // it is instead talking about code like this:
- //
- // %i = phi [ 0, %entry ], [ %i.next, %latch ]
- // ...
- // %i.next = add %i, 1
- // %c = icmp eq %i.next, %n
- //
- // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
- // it's useful to think about these as the same register, with some uses using
- // the value of the register before the add and some using it after. In this
- // example, the icmp is a post-increment user, since it uses %i.next, which is
- // the value of the induction variable after the increment. The other common
- // case of post-increment users is users outside the loop.
- //
- // TODO: More sophistication in the way Formulae are generated and filtered.
- //
- // TODO: Handle multiple loops at a time.
- //
- // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
- // of a GlobalValue?
- //
- // TODO: When truncation is free, truncate ICmp users' operands to make it a
- // smaller encoding (on x86 at least).
- //
- // TODO: When a negated register is used by an add (such as in a list of
- // multiple base registers, or as the increment expression in an addrec),
- // we may not actually need both reg and (-1 * reg) in registers; the
- // negation can be implemented by using a sub instead of an add. The
- // lack of support for taking this into consideration when making
- // register pressure decisions is partly worked around by the "Special"
- // use kind.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallBitVector.h"
- #include "llvm/Analysis/IVUsers.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/ScalarEvolutionExpander.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <algorithm>
- #include <memory> // HLSL Change
- using namespace llvm;
- #define DEBUG_TYPE "loop-reduce"
- /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
- /// bail out. This threshold is far beyond the number of users that LSR can
- /// conceivably solve, so it should not affect generated code, but catches the
- /// worst cases before LSR burns too much compile time and stack space.
- static const unsigned MaxIVUsers = 200;
- // Temporary flag to cleanup congruent phis after LSR phi expansion.
- // It's currently disabled until we can determine whether it's truly useful or
- // not. The flag should be removed after the v3.0 release.
- // This is now needed for ivchains.
- static cl::opt<bool> EnablePhiElim(
- "enable-lsr-phielim", cl::Hidden, cl::init(true),
- cl::desc("Enable LSR phi elimination"));
- #ifndef NDEBUG
- // Stress test IV chain generation.
- static cl::opt<bool> StressIVChain(
- "stress-ivchain", cl::Hidden, cl::init(false),
- cl::desc("Stress test LSR IV chains"));
- #else
- static bool StressIVChain = false;
- #endif
- namespace {
- /// RegSortData - This class holds data which is used to order reuse candidates.
- class RegSortData {
- public:
- /// UsedByIndices - This represents the set of LSRUse indices which reference
- /// a particular register.
- SmallBitVector UsedByIndices;
- void print(raw_ostream &OS) const;
- void dump() const;
- };
- }
- void RegSortData::print(raw_ostream &OS) const {
- OS << "[NumUses=" << UsedByIndices.count() << ']';
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void RegSortData::dump() const {
- print(errs()); errs() << '\n';
- }
- #endif
- namespace {
- /// RegUseTracker - Map register candidates to information about how they are
- /// used.
- class RegUseTracker {
- typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
- RegUsesTy RegUsesMap;
- SmallVector<const SCEV *, 16> RegSequence;
- public:
- void CountRegister(const SCEV *Reg, size_t LUIdx);
- void DropRegister(const SCEV *Reg, size_t LUIdx);
- void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
- bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
- const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
- void clear();
- typedef SmallVectorImpl<const SCEV *>::iterator iterator;
- typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
- iterator begin() { return RegSequence.begin(); }
- iterator end() { return RegSequence.end(); }
- const_iterator begin() const { return RegSequence.begin(); }
- const_iterator end() const { return RegSequence.end(); }
- };
- }
- void
- RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
- std::pair<RegUsesTy::iterator, bool> Pair =
- RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
- RegSortData &RSD = Pair.first->second;
- if (Pair.second)
- RegSequence.push_back(Reg);
- RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
- RSD.UsedByIndices.set(LUIdx);
- }
- void
- RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
- RegUsesTy::iterator It = RegUsesMap.find(Reg);
- assert(It != RegUsesMap.end());
- RegSortData &RSD = It->second;
- assert(RSD.UsedByIndices.size() > LUIdx);
- RSD.UsedByIndices.reset(LUIdx);
- }
- void
- RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
- assert(LUIdx <= LastLUIdx);
- // Update RegUses. The data structure is not optimized for this purpose;
- // we must iterate through it and update each of the bit vectors.
- for (auto &Pair : RegUsesMap) {
- SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
- if (LUIdx < UsedByIndices.size())
- UsedByIndices[LUIdx] =
- LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
- UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
- }
- }
- bool
- RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
- RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
- if (I == RegUsesMap.end())
- return false;
- const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
- int i = UsedByIndices.find_first();
- if (i == -1) return false;
- if ((size_t)i != LUIdx) return true;
- return UsedByIndices.find_next(i) != -1;
- }
- const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
- RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
- assert(I != RegUsesMap.end() && "Unknown register!");
- return I->second.UsedByIndices;
- }
- void RegUseTracker::clear() {
- RegUsesMap.clear();
- RegSequence.clear();
- }
- namespace {
- /// Formula - This class holds information that describes a formula for
- /// computing satisfying a use. It may include broken-out immediates and scaled
- /// registers.
- struct Formula {
- /// Global base address used for complex addressing.
- GlobalValue *BaseGV;
- /// Base offset for complex addressing.
- int64_t BaseOffset;
- /// Whether any complex addressing has a base register.
- bool HasBaseReg;
- /// The scale of any complex addressing.
- int64_t Scale;
- /// BaseRegs - The list of "base" registers for this use. When this is
- /// non-empty. The canonical representation of a formula is
- /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
- /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
- /// #1 enforces that the scaled register is always used when at least two
- /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
- /// #2 enforces that 1 * reg is reg.
- /// This invariant can be temporarly broken while building a formula.
- /// However, every formula inserted into the LSRInstance must be in canonical
- /// form.
- SmallVector<const SCEV *, 4> BaseRegs;
- /// ScaledReg - The 'scaled' register for this use. This should be non-null
- /// when Scale is not zero.
- const SCEV *ScaledReg;
- /// UnfoldedOffset - An additional constant offset which added near the
- /// use. This requires a temporary register, but the offset itself can
- /// live in an add immediate field rather than a register.
- int64_t UnfoldedOffset;
- Formula()
- : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
- ScaledReg(nullptr), UnfoldedOffset(0) {}
- void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
- bool isCanonical() const;
- void Canonicalize();
- bool Unscale();
- size_t getNumRegs() const;
- Type *getType() const;
- void DeleteBaseReg(const SCEV *&S);
- bool referencesReg(const SCEV *S) const;
- bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
- const RegUseTracker &RegUses) const;
- void print(raw_ostream &OS) const;
- void dump() const;
- };
- }
- /// DoInitialMatch - Recursion helper for InitialMatch.
- static void DoInitialMatch(const SCEV *S, Loop *L,
- SmallVectorImpl<const SCEV *> &Good,
- SmallVectorImpl<const SCEV *> &Bad,
- ScalarEvolution &SE) {
- // Collect expressions which properly dominate the loop header.
- if (SE.properlyDominates(S, L->getHeader())) {
- Good.push_back(S);
- return;
- }
- // Look at add operands.
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
- for (const SCEV *S : Add->operands())
- DoInitialMatch(S, L, Good, Bad, SE);
- return;
- }
- // Look at addrec operands.
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
- if (!AR->getStart()->isZero()) {
- DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
- DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
- AR->getStepRecurrence(SE),
- // FIXME: AR->getNoWrapFlags()
- AR->getLoop(), SCEV::FlagAnyWrap),
- L, Good, Bad, SE);
- return;
- }
- // Handle a multiplication by -1 (negation) if it didn't fold.
- if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
- if (Mul->getOperand(0)->isAllOnesValue()) {
- SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
- const SCEV *NewMul = SE.getMulExpr(Ops);
- SmallVector<const SCEV *, 4> MyGood;
- SmallVector<const SCEV *, 4> MyBad;
- DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
- const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
- SE.getEffectiveSCEVType(NewMul->getType())));
- for (const SCEV *S : MyGood)
- Good.push_back(SE.getMulExpr(NegOne, S));
- for (const SCEV *S : MyBad)
- Bad.push_back(SE.getMulExpr(NegOne, S));
- return;
- }
- // Ok, we can't do anything interesting. Just stuff the whole thing into a
- // register and hope for the best.
- Bad.push_back(S);
- }
- /// InitialMatch - Incorporate loop-variant parts of S into this Formula,
- /// attempting to keep all loop-invariant and loop-computable values in a
- /// single base register.
- void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
- SmallVector<const SCEV *, 4> Good;
- SmallVector<const SCEV *, 4> Bad;
- DoInitialMatch(S, L, Good, Bad, SE);
- if (!Good.empty()) {
- const SCEV *Sum = SE.getAddExpr(Good);
- if (!Sum->isZero())
- BaseRegs.push_back(Sum);
- HasBaseReg = true;
- }
- if (!Bad.empty()) {
- const SCEV *Sum = SE.getAddExpr(Bad);
- if (!Sum->isZero())
- BaseRegs.push_back(Sum);
- HasBaseReg = true;
- }
- Canonicalize();
- }
- /// \brief Check whether or not this formula statisfies the canonical
- /// representation.
- /// \see Formula::BaseRegs.
- bool Formula::isCanonical() const {
- if (ScaledReg)
- return Scale != 1 || !BaseRegs.empty();
- return BaseRegs.size() <= 1;
- }
- /// \brief Helper method to morph a formula into its canonical representation.
- /// \see Formula::BaseRegs.
- /// Every formula having more than one base register, must use the ScaledReg
- /// field. Otherwise, we would have to do special cases everywhere in LSR
- /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
- /// On the other hand, 1*reg should be canonicalized into reg.
- void Formula::Canonicalize() {
- if (isCanonical())
- return;
- // So far we did not need this case. This is easy to implement but it is
- // useless to maintain dead code. Beside it could hurt compile time.
- assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
- // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
- ScaledReg = BaseRegs.back();
- BaseRegs.pop_back();
- Scale = 1;
- size_t BaseRegsSize = BaseRegs.size();
- size_t Try = 0;
- // If ScaledReg is an invariant, try to find a variant expression.
- while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
- std::swap(ScaledReg, BaseRegs[Try++]);
- }
- /// \brief Get rid of the scale in the formula.
- /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
- /// \return true if it was possible to get rid of the scale, false otherwise.
- /// \note After this operation the formula may not be in the canonical form.
- bool Formula::Unscale() {
- if (Scale != 1)
- return false;
- Scale = 0;
- BaseRegs.push_back(ScaledReg);
- ScaledReg = nullptr;
- return true;
- }
- /// getNumRegs - Return the total number of register operands used by this
- /// formula. This does not include register uses implied by non-constant
- /// addrec strides.
- size_t Formula::getNumRegs() const {
- return !!ScaledReg + BaseRegs.size();
- }
- /// getType - Return the type of this formula, if it has one, or null
- /// otherwise. This type is meaningless except for the bit size.
- Type *Formula::getType() const {
- return !BaseRegs.empty() ? BaseRegs.front()->getType() :
- ScaledReg ? ScaledReg->getType() :
- BaseGV ? BaseGV->getType() :
- nullptr;
- }
- /// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
- void Formula::DeleteBaseReg(const SCEV *&S) {
- if (&S != &BaseRegs.back())
- std::swap(S, BaseRegs.back());
- BaseRegs.pop_back();
- }
- /// referencesReg - Test if this formula references the given register.
- bool Formula::referencesReg(const SCEV *S) const {
- return S == ScaledReg ||
- std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
- }
- /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
- /// which are used by uses other than the use with the given index.
- bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
- const RegUseTracker &RegUses) const {
- if (ScaledReg)
- if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
- return true;
- for (const SCEV *BaseReg : BaseRegs)
- if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
- return true;
- return false;
- }
- void Formula::print(raw_ostream &OS) const {
- bool First = true;
- if (BaseGV) {
- if (!First) OS << " + "; else First = false;
- BaseGV->printAsOperand(OS, /*PrintType=*/false);
- }
- if (BaseOffset != 0) {
- if (!First) OS << " + "; else First = false;
- OS << BaseOffset;
- }
- for (const SCEV *BaseReg : BaseRegs) {
- if (!First) OS << " + "; else First = false;
- OS << "reg(" << *BaseReg << ')';
- }
- if (HasBaseReg && BaseRegs.empty()) {
- if (!First) OS << " + "; else First = false;
- OS << "**error: HasBaseReg**";
- } else if (!HasBaseReg && !BaseRegs.empty()) {
- if (!First) OS << " + "; else First = false;
- OS << "**error: !HasBaseReg**";
- }
- if (Scale != 0) {
- if (!First) OS << " + "; else First = false;
- OS << Scale << "*reg(";
- if (ScaledReg)
- OS << *ScaledReg;
- else
- OS << "<unknown>";
- OS << ')';
- }
- if (UnfoldedOffset != 0) {
- if (!First) OS << " + ";
- OS << "imm(" << UnfoldedOffset << ')';
- }
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void Formula::dump() const {
- print(errs()); errs() << '\n';
- }
- #endif
- /// isAddRecSExtable - Return true if the given addrec can be sign-extended
- /// without changing its value.
- static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
- Type *WideTy =
- IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
- return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
- }
- /// isAddSExtable - Return true if the given add can be sign-extended
- /// without changing its value.
- static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
- Type *WideTy =
- IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
- return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
- }
- /// isMulSExtable - Return true if the given mul can be sign-extended
- /// without changing its value.
- static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
- Type *WideTy =
- IntegerType::get(SE.getContext(),
- SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
- return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
- }
- /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
- /// and if the remainder is known to be zero, or null otherwise. If
- /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
- /// to Y, ignoring that the multiplication may overflow, which is useful when
- /// the result will be used in a context where the most significant bits are
- /// ignored.
- static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
- ScalarEvolution &SE,
- bool IgnoreSignificantBits = false) {
- // Handle the trivial case, which works for any SCEV type.
- if (LHS == RHS)
- return SE.getConstant(LHS->getType(), 1);
- // Handle a few RHS special cases.
- const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
- if (RC) {
- const APInt &RA = RC->getValue()->getValue();
- // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
- // some folding.
- if (RA.isAllOnesValue())
- return SE.getMulExpr(LHS, RC);
- // Handle x /s 1 as x.
- if (RA == 1)
- return LHS;
- }
- // Check for a division of a constant by a constant.
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
- if (!RC)
- return nullptr;
- const APInt &LA = C->getValue()->getValue();
- const APInt &RA = RC->getValue()->getValue();
- if (LA.srem(RA) != 0)
- return nullptr;
- return SE.getConstant(LA.sdiv(RA));
- }
- // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
- if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
- const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
- IgnoreSignificantBits);
- if (!Step) return nullptr;
- const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
- IgnoreSignificantBits);
- if (!Start) return nullptr;
- // FlagNW is independent of the start value, step direction, and is
- // preserved with smaller magnitude steps.
- // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
- return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
- }
- return nullptr;
- }
- // Distribute the sdiv over add operands, if the add doesn't overflow.
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
- if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
- SmallVector<const SCEV *, 8> Ops;
- for (const SCEV *S : Add->operands()) {
- const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
- if (!Op) return nullptr;
- Ops.push_back(Op);
- }
- return SE.getAddExpr(Ops);
- }
- return nullptr;
- }
- // Check for a multiply operand that we can pull RHS out of.
- if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
- if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
- SmallVector<const SCEV *, 4> Ops;
- bool Found = false;
- for (const SCEV *S : Mul->operands()) {
- if (!Found)
- if (const SCEV *Q = getExactSDiv(S, RHS, SE,
- IgnoreSignificantBits)) {
- S = Q;
- Found = true;
- }
- Ops.push_back(S);
- }
- return Found ? SE.getMulExpr(Ops) : nullptr;
- }
- return nullptr;
- }
- // Otherwise we don't know.
- return nullptr;
- }
- /// ExtractImmediate - If S involves the addition of a constant integer value,
- /// return that integer value, and mutate S to point to a new SCEV with that
- /// value excluded.
- static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
- if (C->getValue()->getValue().getMinSignedBits() <= 64) {
- S = SE.getConstant(C->getType(), 0);
- return C->getValue()->getSExtValue();
- }
- } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
- SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
- int64_t Result = ExtractImmediate(NewOps.front(), SE);
- if (Result != 0)
- S = SE.getAddExpr(NewOps);
- return Result;
- } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
- SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
- int64_t Result = ExtractImmediate(NewOps.front(), SE);
- if (Result != 0)
- S = SE.getAddRecExpr(NewOps, AR->getLoop(),
- // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
- SCEV::FlagAnyWrap);
- return Result;
- }
- return 0;
- }
- /// ExtractSymbol - If S involves the addition of a GlobalValue address,
- /// return that symbol, and mutate S to point to a new SCEV with that
- /// value excluded.
- static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
- if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
- S = SE.getConstant(GV->getType(), 0);
- return GV;
- }
- } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
- SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
- GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
- if (Result)
- S = SE.getAddExpr(NewOps);
- return Result;
- } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
- SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
- GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
- if (Result)
- S = SE.getAddRecExpr(NewOps, AR->getLoop(),
- // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
- SCEV::FlagAnyWrap);
- return Result;
- }
- return nullptr;
- }
- /// isAddressUse - Returns true if the specified instruction is using the
- /// specified value as an address.
- static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
- bool isAddress = isa<LoadInst>(Inst);
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- if (SI->getOperand(1) == OperandVal)
- isAddress = true;
- } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- // Addressing modes can also be folded into prefetches and a variety
- // of intrinsics.
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::prefetch:
- #if 0 // HLSL Change - remove platform intrinsics
- case Intrinsic::x86_sse_storeu_ps:
- case Intrinsic::x86_sse2_storeu_pd:
- case Intrinsic::x86_sse2_storeu_dq:
- case Intrinsic::x86_sse2_storel_dq:
- #endif // HLSL Change - remove platform intrinsics
- if (II->getArgOperand(0) == OperandVal)
- isAddress = true;
- break;
- }
- }
- return isAddress;
- }
- /// getAccessType - Return the type of the memory being accessed.
- static Type *getAccessType(const Instruction *Inst) {
- Type *AccessTy = Inst->getType();
- if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
- AccessTy = SI->getOperand(0)->getType();
- else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- // Addressing modes can also be folded into prefetches and a variety
- // of intrinsics.
- #if 0 // HLSL Change - remove platform intrinsics
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::x86_sse_storeu_ps:
- case Intrinsic::x86_sse2_storeu_pd:
- case Intrinsic::x86_sse2_storeu_dq:
- case Intrinsic::x86_sse2_storel_dq:
- AccessTy = II->getArgOperand(0)->getType();
- break;
- }
- #endif // HLSL Change - remove platform intrinsics
- }
- // All pointers have the same requirements, so canonicalize them to an
- // arbitrary pointer type to minimize variation.
- if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
- AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
- PTy->getAddressSpace());
- return AccessTy;
- }
- /// isExistingPhi - Return true if this AddRec is already a phi in its loop.
- static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
- for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
- PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- if (SE.isSCEVable(PN->getType()) &&
- (SE.getEffectiveSCEVType(PN->getType()) ==
- SE.getEffectiveSCEVType(AR->getType())) &&
- SE.getSCEV(PN) == AR)
- return true;
- }
- return false;
- }
- /// Check if expanding this expression is likely to incur significant cost. This
- /// is tricky because SCEV doesn't track which expressions are actually computed
- /// by the current IR.
- ///
- /// We currently allow expansion of IV increments that involve adds,
- /// multiplication by constants, and AddRecs from existing phis.
- ///
- /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
- /// obvious multiple of the UDivExpr.
- static bool isHighCostExpansion(const SCEV *S,
- SmallPtrSetImpl<const SCEV*> &Processed,
- ScalarEvolution &SE) {
- // Zero/One operand expressions
- switch (S->getSCEVType()) {
- case scUnknown:
- case scConstant:
- return false;
- case scTruncate:
- return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
- Processed, SE);
- case scZeroExtend:
- return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
- Processed, SE);
- case scSignExtend:
- return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
- Processed, SE);
- }
- if (!Processed.insert(S).second)
- return false;
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
- for (const SCEV *S : Add->operands()) {
- if (isHighCostExpansion(S, Processed, SE))
- return true;
- }
- return false;
- }
- if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
- if (Mul->getNumOperands() == 2) {
- // Multiplication by a constant is ok
- if (isa<SCEVConstant>(Mul->getOperand(0)))
- return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
- // If we have the value of one operand, check if an existing
- // multiplication already generates this expression.
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
- Value *UVal = U->getValue();
- for (User *UR : UVal->users()) {
- // If U is a constant, it may be used by a ConstantExpr.
- Instruction *UI = dyn_cast<Instruction>(UR);
- if (UI && UI->getOpcode() == Instruction::Mul &&
- SE.isSCEVable(UI->getType())) {
- return SE.getSCEV(UI) == Mul;
- }
- }
- }
- }
- }
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
- if (isExistingPhi(AR, SE))
- return false;
- }
- // Fow now, consider any other type of expression (div/mul/min/max) high cost.
- return true;
- }
- /// DeleteTriviallyDeadInstructions - If any of the instructions is the
- /// specified set are trivially dead, delete them and see if this makes any of
- /// their operands subsequently dead.
- static bool
- DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
- bool Changed = false;
- while (!DeadInsts.empty()) {
- Value *V = DeadInsts.pop_back_val();
- Instruction *I = dyn_cast_or_null<Instruction>(V);
- if (!I || !isInstructionTriviallyDead(I))
- continue;
- for (Use &O : I->operands())
- if (Instruction *U = dyn_cast<Instruction>(O)) {
- O = nullptr;
- if (U->use_empty())
- DeadInsts.emplace_back(U);
- }
- I->eraseFromParent();
- Changed = true;
- }
- return Changed;
- }
- namespace {
- class LSRUse;
- }
- /// \brief Check if the addressing mode defined by \p F is completely
- /// folded in \p LU at isel time.
- /// This includes address-mode folding and special icmp tricks.
- /// This function returns true if \p LU can accommodate what \p F
- /// defines and up to 1 base + 1 scaled + offset.
- /// In other words, if \p F has several base registers, this function may
- /// still return true. Therefore, users still need to account for
- /// additional base registers and/or unfolded offsets to derive an
- /// accurate cost model.
- static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
- const LSRUse &LU, const Formula &F);
- // Get the cost of the scaling factor used in F for LU.
- static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
- const LSRUse &LU, const Formula &F);
- namespace {
- /// Cost - This class is used to measure and compare candidate formulae.
- class Cost {
- /// TODO: Some of these could be merged. Also, a lexical ordering
- /// isn't always optimal.
- unsigned NumRegs;
- unsigned AddRecCost;
- unsigned NumIVMuls;
- unsigned NumBaseAdds;
- unsigned ImmCost;
- unsigned SetupCost;
- unsigned ScaleCost;
- public:
- Cost()
- : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
- SetupCost(0), ScaleCost(0) {}
- bool operator<(const Cost &Other) const;
- void Lose();
- #ifndef NDEBUG
- // Once any of the metrics loses, they must all remain losers.
- bool isValid() {
- return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
- | ImmCost | SetupCost | ScaleCost) != ~0u)
- || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
- & ImmCost & SetupCost & ScaleCost) == ~0u);
- }
- #endif
- bool isLoser() {
- assert(isValid() && "invalid cost");
- return NumRegs == ~0u;
- }
- void RateFormula(const TargetTransformInfo &TTI,
- const Formula &F,
- SmallPtrSetImpl<const SCEV *> &Regs,
- const DenseSet<const SCEV *> &VisitedRegs,
- const Loop *L,
- const SmallVectorImpl<int64_t> &Offsets,
- ScalarEvolution &SE, DominatorTree &DT,
- const LSRUse &LU,
- SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
- void print(raw_ostream &OS) const;
- void dump() const;
- private:
- void RateRegister(const SCEV *Reg,
- SmallPtrSetImpl<const SCEV *> &Regs,
- const Loop *L,
- ScalarEvolution &SE, DominatorTree &DT);
- void RatePrimaryRegister(const SCEV *Reg,
- SmallPtrSetImpl<const SCEV *> &Regs,
- const Loop *L,
- ScalarEvolution &SE, DominatorTree &DT,
- SmallPtrSetImpl<const SCEV *> *LoserRegs);
- };
- }
- /// RateRegister - Tally up interesting quantities from the given register.
- void Cost::RateRegister(const SCEV *Reg,
- SmallPtrSetImpl<const SCEV *> &Regs,
- const Loop *L,
- ScalarEvolution &SE, DominatorTree &DT) {
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
- // If this is an addrec for another loop, don't second-guess its addrec phi
- // nodes. LSR isn't currently smart enough to reason about more than one
- // loop at a time. LSR has already run on inner loops, will not run on outer
- // loops, and cannot be expected to change sibling loops.
- if (AR->getLoop() != L) {
- // If the AddRec exists, consider it's register free and leave it alone.
- if (isExistingPhi(AR, SE))
- return;
- // Otherwise, do not consider this formula at all.
- Lose();
- return;
- }
- AddRecCost += 1; /// TODO: This should be a function of the stride.
- // Add the step value register, if it needs one.
- // TODO: The non-affine case isn't precisely modeled here.
- if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
- if (!Regs.count(AR->getOperand(1))) {
- RateRegister(AR->getOperand(1), Regs, L, SE, DT);
- if (isLoser())
- return;
- }
- }
- }
- ++NumRegs;
- // Rough heuristic; favor registers which don't require extra setup
- // instructions in the preheader.
- if (!isa<SCEVUnknown>(Reg) &&
- !isa<SCEVConstant>(Reg) &&
- !(isa<SCEVAddRecExpr>(Reg) &&
- (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
- isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
- ++SetupCost;
- NumIVMuls += isa<SCEVMulExpr>(Reg) &&
- SE.hasComputableLoopEvolution(Reg, L);
- }
- /// RatePrimaryRegister - Record this register in the set. If we haven't seen it
- /// before, rate it. Optional LoserRegs provides a way to declare any formula
- /// that refers to one of those regs an instant loser.
- void Cost::RatePrimaryRegister(const SCEV *Reg,
- SmallPtrSetImpl<const SCEV *> &Regs,
- const Loop *L,
- ScalarEvolution &SE, DominatorTree &DT,
- SmallPtrSetImpl<const SCEV *> *LoserRegs) {
- if (LoserRegs && LoserRegs->count(Reg)) {
- Lose();
- return;
- }
- if (Regs.insert(Reg).second) {
- RateRegister(Reg, Regs, L, SE, DT);
- if (LoserRegs && isLoser())
- LoserRegs->insert(Reg);
- }
- }
- void Cost::RateFormula(const TargetTransformInfo &TTI,
- const Formula &F,
- SmallPtrSetImpl<const SCEV *> &Regs,
- const DenseSet<const SCEV *> &VisitedRegs,
- const Loop *L,
- const SmallVectorImpl<int64_t> &Offsets,
- ScalarEvolution &SE, DominatorTree &DT,
- const LSRUse &LU,
- SmallPtrSetImpl<const SCEV *> *LoserRegs) {
- assert(F.isCanonical() && "Cost is accurate only for canonical formula");
- // Tally up the registers.
- if (const SCEV *ScaledReg = F.ScaledReg) {
- if (VisitedRegs.count(ScaledReg)) {
- Lose();
- return;
- }
- RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
- if (isLoser())
- return;
- }
- for (const SCEV *BaseReg : F.BaseRegs) {
- if (VisitedRegs.count(BaseReg)) {
- Lose();
- return;
- }
- RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
- if (isLoser())
- return;
- }
- // Determine how many (unfolded) adds we'll need inside the loop.
- size_t NumBaseParts = F.getNumRegs();
- if (NumBaseParts > 1)
- // Do not count the base and a possible second register if the target
- // allows to fold 2 registers.
- NumBaseAdds +=
- NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
- NumBaseAdds += (F.UnfoldedOffset != 0);
- // Accumulate non-free scaling amounts.
- ScaleCost += getScalingFactorCost(TTI, LU, F);
- // Tally up the non-zero immediates.
- for (int64_t O : Offsets) {
- int64_t Offset = (uint64_t)O + F.BaseOffset;
- if (F.BaseGV)
- ImmCost += 64; // Handle symbolic values conservatively.
- // TODO: This should probably be the pointer size.
- else if (Offset != 0)
- ImmCost += APInt(64, Offset, true).getMinSignedBits();
- }
- assert(isValid() && "invalid cost");
- }
- /// Lose - Set this cost to a losing value.
- void Cost::Lose() {
- NumRegs = ~0u;
- AddRecCost = ~0u;
- NumIVMuls = ~0u;
- NumBaseAdds = ~0u;
- ImmCost = ~0u;
- SetupCost = ~0u;
- ScaleCost = ~0u;
- }
- /// operator< - Choose the lower cost.
- bool Cost::operator<(const Cost &Other) const {
- return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
- ImmCost, SetupCost) <
- std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
- Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
- Other.SetupCost);
- }
- void Cost::print(raw_ostream &OS) const {
- OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
- if (AddRecCost != 0)
- OS << ", with addrec cost " << AddRecCost;
- if (NumIVMuls != 0)
- OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
- if (NumBaseAdds != 0)
- OS << ", plus " << NumBaseAdds << " base add"
- << (NumBaseAdds == 1 ? "" : "s");
- if (ScaleCost != 0)
- OS << ", plus " << ScaleCost << " scale cost";
- if (ImmCost != 0)
- OS << ", plus " << ImmCost << " imm cost";
- if (SetupCost != 0)
- OS << ", plus " << SetupCost << " setup cost";
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void Cost::dump() const {
- print(errs()); errs() << '\n';
- }
- #endif
- namespace {
- /// LSRFixup - An operand value in an instruction which is to be replaced
- /// with some equivalent, possibly strength-reduced, replacement.
- struct LSRFixup {
- /// UserInst - The instruction which will be updated.
- Instruction *UserInst;
- /// OperandValToReplace - The operand of the instruction which will
- /// be replaced. The operand may be used more than once; every instance
- /// will be replaced.
- Value *OperandValToReplace;
- /// PostIncLoops - If this user is to use the post-incremented value of an
- /// induction variable, this variable is non-null and holds the loop
- /// associated with the induction variable.
- PostIncLoopSet PostIncLoops;
- /// LUIdx - The index of the LSRUse describing the expression which
- /// this fixup needs, minus an offset (below).
- size_t LUIdx;
- /// Offset - A constant offset to be added to the LSRUse expression.
- /// This allows multiple fixups to share the same LSRUse with different
- /// offsets, for example in an unrolled loop.
- int64_t Offset;
- bool isUseFullyOutsideLoop(const Loop *L) const;
- LSRFixup();
- void print(raw_ostream &OS) const;
- void dump() const;
- };
- }
- LSRFixup::LSRFixup()
- : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)),
- Offset(0) {}
- /// isUseFullyOutsideLoop - Test whether this fixup always uses its
- /// value outside of the given loop.
- bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
- // PHI nodes use their value in their incoming blocks.
- if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingValue(i) == OperandValToReplace &&
- L->contains(PN->getIncomingBlock(i)))
- return false;
- return true;
- }
- return !L->contains(UserInst);
- }
- void LSRFixup::print(raw_ostream &OS) const {
- OS << "UserInst=";
- // Store is common and interesting enough to be worth special-casing.
- if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
- OS << "store ";
- Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
- } else if (UserInst->getType()->isVoidTy())
- OS << UserInst->getOpcodeName();
- else
- UserInst->printAsOperand(OS, /*PrintType=*/false);
- OS << ", OperandValToReplace=";
- OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
- for (const Loop *PIL : PostIncLoops) {
- OS << ", PostIncLoop=";
- PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
- }
- if (LUIdx != ~size_t(0))
- OS << ", LUIdx=" << LUIdx;
- if (Offset != 0)
- OS << ", Offset=" << Offset;
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void LSRFixup::dump() const {
- print(errs()); errs() << '\n';
- }
- #endif
- namespace {
- /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
- /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
- struct UniquifierDenseMapInfo {
- static SmallVector<const SCEV *, 4> getEmptyKey() {
- SmallVector<const SCEV *, 4> V;
- V.push_back(reinterpret_cast<const SCEV *>(-1));
- return V;
- }
- static SmallVector<const SCEV *, 4> getTombstoneKey() {
- SmallVector<const SCEV *, 4> V;
- V.push_back(reinterpret_cast<const SCEV *>(-2));
- return V;
- }
- static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
- return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
- }
- static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
- const SmallVector<const SCEV *, 4> &RHS) {
- return LHS == RHS;
- }
- };
- /// LSRUse - This class holds the state that LSR keeps for each use in
- /// IVUsers, as well as uses invented by LSR itself. It includes information
- /// about what kinds of things can be folded into the user, information about
- /// the user itself, and information about how the use may be satisfied.
- /// TODO: Represent multiple users of the same expression in common?
- class LSRUse {
- DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
- public:
- /// KindType - An enum for a kind of use, indicating what types of
- /// scaled and immediate operands it might support.
- enum KindType {
- Basic, ///< A normal use, with no folding.
- Special, ///< A special case of basic, allowing -1 scales.
- Address, ///< An address use; folding according to TargetLowering
- ICmpZero ///< An equality icmp with both operands folded into one.
- // TODO: Add a generic icmp too?
- };
- typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
- KindType Kind;
- Type *AccessTy;
- SmallVector<int64_t, 8> Offsets;
- int64_t MinOffset;
- int64_t MaxOffset;
- /// AllFixupsOutsideLoop - This records whether all of the fixups using this
- /// LSRUse are outside of the loop, in which case some special-case heuristics
- /// may be used.
- bool AllFixupsOutsideLoop;
- /// RigidFormula is set to true to guarantee that this use will be associated
- /// with a single formula--the one that initially matched. Some SCEV
- /// expressions cannot be expanded. This allows LSR to consider the registers
- /// used by those expressions without the need to expand them later after
- /// changing the formula.
- bool RigidFormula;
- /// WidestFixupType - This records the widest use type for any fixup using
- /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
- /// max fixup widths to be equivalent, because the narrower one may be relying
- /// on the implicit truncation to truncate away bogus bits.
- Type *WidestFixupType;
- /// Formulae - A list of ways to build a value that can satisfy this user.
- /// After the list is populated, one of these is selected heuristically and
- /// used to formulate a replacement for OperandValToReplace in UserInst.
- SmallVector<Formula, 12> Formulae;
- /// Regs - The set of register candidates used by all formulae in this LSRUse.
- SmallPtrSet<const SCEV *, 4> Regs;
- LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
- MinOffset(INT64_MAX),
- MaxOffset(INT64_MIN),
- AllFixupsOutsideLoop(true),
- RigidFormula(false),
- WidestFixupType(nullptr) {}
- bool HasFormulaWithSameRegs(const Formula &F) const;
- bool InsertFormula(const Formula &F);
- void DeleteFormula(Formula &F);
- void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
- void print(raw_ostream &OS) const;
- void dump() const;
- };
- }
- /// HasFormula - Test whether this use as a formula which has the same
- /// registers as the given formula.
- bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
- SmallVector<const SCEV *, 4> Key = F.BaseRegs;
- if (F.ScaledReg) Key.push_back(F.ScaledReg);
- // Unstable sort by host order ok, because this is only used for uniquifying.
- std::sort(Key.begin(), Key.end());
- return Uniquifier.count(Key);
- }
- /// InsertFormula - If the given formula has not yet been inserted, add it to
- /// the list, and return true. Return false otherwise.
- /// The formula must be in canonical form.
- bool LSRUse::InsertFormula(const Formula &F) {
- assert(F.isCanonical() && "Invalid canonical representation");
- if (!Formulae.empty() && RigidFormula)
- return false;
- SmallVector<const SCEV *, 4> Key = F.BaseRegs;
- if (F.ScaledReg) Key.push_back(F.ScaledReg);
- // Unstable sort by host order ok, because this is only used for uniquifying.
- std::sort(Key.begin(), Key.end());
- if (!Uniquifier.insert(Key).second)
- return false;
- // Using a register to hold the value of 0 is not profitable.
- assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
- "Zero allocated in a scaled register!");
- #ifndef NDEBUG
- for (const SCEV *BaseReg : F.BaseRegs)
- assert(!BaseReg->isZero() && "Zero allocated in a base register!");
- #endif
- // Add the formula to the list.
- Formulae.push_back(F);
- // Record registers now being used by this use.
- Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
- if (F.ScaledReg)
- Regs.insert(F.ScaledReg);
- return true;
- }
- /// DeleteFormula - Remove the given formula from this use's list.
- void LSRUse::DeleteFormula(Formula &F) {
- if (&F != &Formulae.back())
- std::swap(F, Formulae.back());
- Formulae.pop_back();
- }
- /// RecomputeRegs - Recompute the Regs field, and update RegUses.
- void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
- // Now that we've filtered out some formulae, recompute the Regs set.
- SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
- Regs.clear();
- for (const Formula &F : Formulae) {
- if (F.ScaledReg) Regs.insert(F.ScaledReg);
- Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
- }
- // Update the RegTracker.
- for (const SCEV *S : OldRegs)
- if (!Regs.count(S))
- RegUses.DropRegister(S, LUIdx);
- }
- void LSRUse::print(raw_ostream &OS) const {
- OS << "LSR Use: Kind=";
- switch (Kind) {
- case Basic: OS << "Basic"; break;
- case Special: OS << "Special"; break;
- case ICmpZero: OS << "ICmpZero"; break;
- case Address:
- OS << "Address of ";
- if (AccessTy->isPointerTy())
- OS << "pointer"; // the full pointer type could be really verbose
- else
- OS << *AccessTy;
- }
- OS << ", Offsets={";
- bool NeedComma = false;
- for (int64_t O : Offsets) {
- if (NeedComma) OS << ',';
- OS << O;
- NeedComma = true;
- }
- OS << '}';
- if (AllFixupsOutsideLoop)
- OS << ", all-fixups-outside-loop";
- if (WidestFixupType)
- OS << ", widest fixup type: " << *WidestFixupType;
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void LSRUse::dump() const {
- print(errs()); errs() << '\n';
- }
- #endif
- static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
- LSRUse::KindType Kind, Type *AccessTy,
- GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale) {
- switch (Kind) {
- case LSRUse::Address:
- return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
- case LSRUse::ICmpZero:
- // There's not even a target hook for querying whether it would be legal to
- // fold a GV into an ICmp.
- if (BaseGV)
- return false;
- // ICmp only has two operands; don't allow more than two non-trivial parts.
- if (Scale != 0 && HasBaseReg && BaseOffset != 0)
- return false;
- // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
- // putting the scaled register in the other operand of the icmp.
- if (Scale != 0 && Scale != -1)
- return false;
- // If we have low-level target information, ask the target if it can fold an
- // integer immediate on an icmp.
- if (BaseOffset != 0) {
- // We have one of:
- // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
- // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
- // Offs is the ICmp immediate.
- if (Scale == 0)
- // The cast does the right thing with INT64_MIN.
- BaseOffset = -(uint64_t)BaseOffset;
- return TTI.isLegalICmpImmediate(BaseOffset);
- }
- // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
- return true;
- case LSRUse::Basic:
- // Only handle single-register values.
- return !BaseGV && Scale == 0 && BaseOffset == 0;
- case LSRUse::Special:
- // Special case Basic to handle -1 scales.
- return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
- }
- llvm_unreachable("Invalid LSRUse Kind!");
- }
- static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
- int64_t MinOffset, int64_t MaxOffset,
- LSRUse::KindType Kind, Type *AccessTy,
- GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale) {
- // Check for overflow.
- if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
- (MinOffset > 0))
- return false;
- MinOffset = (uint64_t)BaseOffset + MinOffset;
- if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
- (MaxOffset > 0))
- return false;
- MaxOffset = (uint64_t)BaseOffset + MaxOffset;
- return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
- HasBaseReg, Scale) &&
- isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
- HasBaseReg, Scale);
- }
- static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
- int64_t MinOffset, int64_t MaxOffset,
- LSRUse::KindType Kind, Type *AccessTy,
- const Formula &F) {
- // For the purpose of isAMCompletelyFolded either having a canonical formula
- // or a scale not equal to zero is correct.
- // Problems may arise from non canonical formulae having a scale == 0.
- // Strictly speaking it would best to just rely on canonical formulae.
- // However, when we generate the scaled formulae, we first check that the
- // scaling factor is profitable before computing the actual ScaledReg for
- // compile time sake.
- assert((F.isCanonical() || F.Scale != 0));
- return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
- F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
- }
- /// isLegalUse - Test whether we know how to expand the current formula.
- static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
- int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
- GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale) {
- // We know how to expand completely foldable formulae.
- return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
- BaseOffset, HasBaseReg, Scale) ||
- // Or formulae that use a base register produced by a sum of base
- // registers.
- (Scale == 1 &&
- isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
- BaseGV, BaseOffset, true, 0));
- }
- static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
- int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
- const Formula &F) {
- return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
- F.BaseOffset, F.HasBaseReg, F.Scale);
- }
- static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
- const LSRUse &LU, const Formula &F) {
- return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
- LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
- F.Scale);
- }
- static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
- const LSRUse &LU, const Formula &F) {
- if (!F.Scale)
- return 0;
- // If the use is not completely folded in that instruction, we will have to
- // pay an extra cost only for scale != 1.
- if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
- LU.AccessTy, F))
- return F.Scale != 1;
- switch (LU.Kind) {
- case LSRUse::Address: {
- // Check the scaling factor cost with both the min and max offsets.
- int ScaleCostMinOffset =
- TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
- F.BaseOffset + LU.MinOffset,
- F.HasBaseReg, F.Scale);
- int ScaleCostMaxOffset =
- TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
- F.BaseOffset + LU.MaxOffset,
- F.HasBaseReg, F.Scale);
- assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
- "Legal addressing mode has an illegal cost!");
- return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
- }
- case LSRUse::ICmpZero:
- case LSRUse::Basic:
- case LSRUse::Special:
- // The use is completely folded, i.e., everything is folded into the
- // instruction.
- return 0;
- }
- llvm_unreachable("Invalid LSRUse Kind!");
- }
- static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
- LSRUse::KindType Kind, Type *AccessTy,
- GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg) {
- // Fast-path: zero is always foldable.
- if (BaseOffset == 0 && !BaseGV) return true;
- // Conservatively, create an address with an immediate and a
- // base and a scale.
- int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
- // Canonicalize a scale of 1 to a base register if the formula doesn't
- // already have a base register.
- if (!HasBaseReg && Scale == 1) {
- Scale = 0;
- HasBaseReg = true;
- }
- return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
- HasBaseReg, Scale);
- }
- static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
- ScalarEvolution &SE, int64_t MinOffset,
- int64_t MaxOffset, LSRUse::KindType Kind,
- Type *AccessTy, const SCEV *S, bool HasBaseReg) {
- // Fast-path: zero is always foldable.
- if (S->isZero()) return true;
- // Conservatively, create an address with an immediate and a
- // base and a scale.
- int64_t BaseOffset = ExtractImmediate(S, SE);
- GlobalValue *BaseGV = ExtractSymbol(S, SE);
- // If there's anything else involved, it's not foldable.
- if (!S->isZero()) return false;
- // Fast-path: zero is always foldable.
- if (BaseOffset == 0 && !BaseGV) return true;
- // Conservatively, create an address with an immediate and a
- // base and a scale.
- int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
- return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
- BaseOffset, HasBaseReg, Scale);
- }
- namespace {
- /// IVInc - An individual increment in a Chain of IV increments.
- /// Relate an IV user to an expression that computes the IV it uses from the IV
- /// used by the previous link in the Chain.
- ///
- /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
- /// original IVOperand. The head of the chain's IVOperand is only valid during
- /// chain collection, before LSR replaces IV users. During chain generation,
- /// IncExpr can be used to find the new IVOperand that computes the same
- /// expression.
- struct IVInc {
- Instruction *UserInst;
- Value* IVOperand;
- const SCEV *IncExpr;
- IVInc(Instruction *U, Value *O, const SCEV *E):
- UserInst(U), IVOperand(O), IncExpr(E) {}
- };
- // IVChain - The list of IV increments in program order.
- // We typically add the head of a chain without finding subsequent links.
- struct IVChain {
- SmallVector<IVInc,1> Incs;
- const SCEV *ExprBase;
- IVChain() : ExprBase(nullptr) {}
- IVChain(const IVInc &Head, const SCEV *Base)
- : Incs(1, Head), ExprBase(Base) {}
- typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
- // begin - return the first increment in the chain.
- const_iterator begin() const {
- assert(!Incs.empty());
- return std::next(Incs.begin());
- }
- const_iterator end() const {
- return Incs.end();
- }
- // hasIncs - Returns true if this chain contains any increments.
- bool hasIncs() const { return Incs.size() >= 2; }
- // add - Add an IVInc to the end of this chain.
- void add(const IVInc &X) { Incs.push_back(X); }
- // tailUserInst - Returns the last UserInst in the chain.
- Instruction *tailUserInst() const { return Incs.back().UserInst; }
- // isProfitableIncrement - Returns true if IncExpr can be profitably added to
- // this chain.
- bool isProfitableIncrement(const SCEV *OperExpr,
- const SCEV *IncExpr,
- ScalarEvolution&);
- };
- /// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
- /// Distinguish between FarUsers that definitely cross IV increments and
- /// NearUsers that may be used between IV increments.
- struct ChainUsers {
- SmallPtrSet<Instruction*, 4> FarUsers;
- SmallPtrSet<Instruction*, 4> NearUsers;
- };
- /// LSRInstance - This class holds state for the main loop strength reduction
- /// logic.
- class LSRInstance {
- IVUsers &IU;
- ScalarEvolution &SE;
- DominatorTree &DT;
- LoopInfo &LI;
- const TargetTransformInfo &TTI;
- Loop *const L;
- bool Changed;
- /// IVIncInsertPos - This is the insert position that the current loop's
- /// induction variable increment should be placed. In simple loops, this is
- /// the latch block's terminator. But in more complicated cases, this is a
- /// position which will dominate all the in-loop post-increment users.
- Instruction *IVIncInsertPos;
- /// Factors - Interesting factors between use strides.
- SmallSetVector<int64_t, 8> Factors;
- /// Types - Interesting use types, to facilitate truncation reuse.
- SmallSetVector<Type *, 4> Types;
- /// Fixups - The list of operands which are to be replaced.
- SmallVector<LSRFixup, 16> Fixups;
- /// Uses - The list of interesting uses.
- SmallVector<LSRUse, 16> Uses;
- /// RegUses - Track which uses use which register candidates.
- RegUseTracker RegUses;
- // Limit the number of chains to avoid quadratic behavior. We don't expect to
- // have more than a few IV increment chains in a loop. Missing a Chain falls
- // back to normal LSR behavior for those uses.
- static const unsigned MaxChains = 8;
- /// IVChainVec - IV users can form a chain of IV increments.
- SmallVector<IVChain, MaxChains> IVChainVec;
- /// IVIncSet - IV users that belong to profitable IVChains.
- SmallPtrSet<Use*, MaxChains> IVIncSet;
- void OptimizeShadowIV();
- bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
- ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
- void OptimizeLoopTermCond();
- void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
- SmallVectorImpl<ChainUsers> &ChainUsersVec);
- void FinalizeChain(IVChain &Chain);
- void CollectChains();
- void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
- SmallVectorImpl<WeakVH> &DeadInsts);
- void CollectInterestingTypesAndFactors();
- void CollectFixupsAndInitialFormulae();
- LSRFixup &getNewFixup() {
- Fixups.push_back(LSRFixup());
- return Fixups.back();
- }
- // Support for sharing of LSRUses between LSRFixups.
- typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
- UseMapTy UseMap;
- bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
- LSRUse::KindType Kind, Type *AccessTy);
- std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
- LSRUse::KindType Kind,
- Type *AccessTy);
- void DeleteUse(LSRUse &LU, size_t LUIdx);
- LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
- void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
- void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
- void CountRegisters(const Formula &F, size_t LUIdx);
- bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
- void CollectLoopInvariantFixupsAndFormulae();
- void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
- unsigned Depth = 0);
- void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
- const Formula &Base, unsigned Depth,
- size_t Idx, bool IsScaledReg = false);
- void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
- void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
- const Formula &Base, size_t Idx,
- bool IsScaledReg = false);
- void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
- void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
- const Formula &Base,
- const SmallVectorImpl<int64_t> &Worklist,
- size_t Idx, bool IsScaledReg = false);
- void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
- void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
- void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
- void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
- void GenerateCrossUseConstantOffsets();
- void GenerateAllReuseFormulae();
- void FilterOutUndesirableDedicatedRegisters();
- size_t EstimateSearchSpaceComplexity() const;
- void NarrowSearchSpaceByDetectingSupersets();
- void NarrowSearchSpaceByCollapsingUnrolledCode();
- void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
- void NarrowSearchSpaceByPickingWinnerRegs();
- void NarrowSearchSpaceUsingHeuristics();
- void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
- Cost &SolutionCost,
- SmallVectorImpl<const Formula *> &Workspace,
- const Cost &CurCost,
- const SmallPtrSet<const SCEV *, 16> &CurRegs,
- DenseSet<const SCEV *> &VisitedRegs) const;
- void Solve(SmallVectorImpl<const Formula *> &Solution) const;
- BasicBlock::iterator
- HoistInsertPosition(BasicBlock::iterator IP,
- const SmallVectorImpl<Instruction *> &Inputs) const;
- BasicBlock::iterator
- AdjustInsertPositionForExpand(BasicBlock::iterator IP,
- const LSRFixup &LF,
- const LSRUse &LU,
- SCEVExpander &Rewriter) const;
- Value *Expand(const LSRFixup &LF,
- const Formula &F,
- BasicBlock::iterator IP,
- SCEVExpander &Rewriter,
- SmallVectorImpl<WeakVH> &DeadInsts) const;
- void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
- const Formula &F,
- SCEVExpander &Rewriter,
- SmallVectorImpl<WeakVH> &DeadInsts,
- Pass *P) const;
- void Rewrite(const LSRFixup &LF,
- const Formula &F,
- SCEVExpander &Rewriter,
- SmallVectorImpl<WeakVH> &DeadInsts,
- Pass *P) const;
- void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
- Pass *P);
- public:
- LSRInstance(Loop *L, Pass *P);
- bool getChanged() const { return Changed; }
- void print_factors_and_types(raw_ostream &OS) const;
- void print_fixups(raw_ostream &OS) const;
- void print_uses(raw_ostream &OS) const;
- void print(raw_ostream &OS) const;
- void dump() const;
- };
- }
- /// OptimizeShadowIV - If IV is used in a int-to-float cast
- /// inside the loop then try to eliminate the cast operation.
- void LSRInstance::OptimizeShadowIV() {
- const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
- if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
- return;
- for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
- UI != E; /* empty */) {
- IVUsers::const_iterator CandidateUI = UI;
- ++UI;
- Instruction *ShadowUse = CandidateUI->getUser();
- Type *DestTy = nullptr;
- bool IsSigned = false;
- /* If shadow use is a int->float cast then insert a second IV
- to eliminate this cast.
- for (unsigned i = 0; i < n; ++i)
- foo((double)i);
- is transformed into
- double d = 0.0;
- for (unsigned i = 0; i < n; ++i, ++d)
- foo(d);
- */
- if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
- IsSigned = false;
- DestTy = UCast->getDestTy();
- }
- else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
- IsSigned = true;
- DestTy = SCast->getDestTy();
- }
- if (!DestTy) continue;
- // If target does not support DestTy natively then do not apply
- // this transformation.
- if (!TTI.isTypeLegal(DestTy)) continue;
- PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
- if (!PH) continue;
- if (PH->getNumIncomingValues() != 2) continue;
- Type *SrcTy = PH->getType();
- int Mantissa = DestTy->getFPMantissaWidth();
- if (Mantissa == -1) continue;
- if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
- continue;
- unsigned Entry, Latch;
- if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
- Entry = 0;
- Latch = 1;
- } else {
- Entry = 1;
- Latch = 0;
- }
- ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
- if (!Init) continue;
- Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
- (double)Init->getSExtValue() :
- (double)Init->getZExtValue());
- BinaryOperator *Incr =
- dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
- if (!Incr) continue;
- if (Incr->getOpcode() != Instruction::Add
- && Incr->getOpcode() != Instruction::Sub)
- continue;
- /* Initialize new IV, double d = 0.0 in above example. */
- ConstantInt *C = nullptr;
- if (Incr->getOperand(0) == PH)
- C = dyn_cast<ConstantInt>(Incr->getOperand(1));
- else if (Incr->getOperand(1) == PH)
- C = dyn_cast<ConstantInt>(Incr->getOperand(0));
- else
- continue;
- if (!C) continue;
- // Ignore negative constants, as the code below doesn't handle them
- // correctly. TODO: Remove this restriction.
- if (!C->getValue().isStrictlyPositive()) continue;
- /* Add new PHINode. */
- PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
- /* create new increment. '++d' in above example. */
- Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
- BinaryOperator *NewIncr =
- BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
- Instruction::FAdd : Instruction::FSub,
- NewPH, CFP, "IV.S.next.", Incr);
- NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
- NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
- /* Remove cast operation */
- ShadowUse->replaceAllUsesWith(NewPH);
- ShadowUse->eraseFromParent();
- Changed = true;
- break;
- }
- }
- /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
- /// set the IV user and stride information and return true, otherwise return
- /// false.
- bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
- for (IVStrideUse &U : IU)
- if (U.getUser() == Cond) {
- // NOTE: we could handle setcc instructions with multiple uses here, but
- // InstCombine does it as well for simple uses, it's not clear that it
- // occurs enough in real life to handle.
- CondUse = &U;
- return true;
- }
- return false;
- }
- /// OptimizeMax - Rewrite the loop's terminating condition if it uses
- /// a max computation.
- ///
- /// This is a narrow solution to a specific, but acute, problem. For loops
- /// like this:
- ///
- /// i = 0;
- /// do {
- /// p[i] = 0.0;
- /// } while (++i < n);
- ///
- /// the trip count isn't just 'n', because 'n' might not be positive. And
- /// unfortunately this can come up even for loops where the user didn't use
- /// a C do-while loop. For example, seemingly well-behaved top-test loops
- /// will commonly be lowered like this:
- //
- /// if (n > 0) {
- /// i = 0;
- /// do {
- /// p[i] = 0.0;
- /// } while (++i < n);
- /// }
- ///
- /// and then it's possible for subsequent optimization to obscure the if
- /// test in such a way that indvars can't find it.
- ///
- /// When indvars can't find the if test in loops like this, it creates a
- /// max expression, which allows it to give the loop a canonical
- /// induction variable:
- ///
- /// i = 0;
- /// max = n < 1 ? 1 : n;
- /// do {
- /// p[i] = 0.0;
- /// } while (++i != max);
- ///
- /// Canonical induction variables are necessary because the loop passes
- /// are designed around them. The most obvious example of this is the
- /// LoopInfo analysis, which doesn't remember trip count values. It
- /// expects to be able to rediscover the trip count each time it is
- /// needed, and it does this using a simple analysis that only succeeds if
- /// the loop has a canonical induction variable.
- ///
- /// However, when it comes time to generate code, the maximum operation
- /// can be quite costly, especially if it's inside of an outer loop.
- ///
- /// This function solves this problem by detecting this type of loop and
- /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
- /// the instructions for the maximum computation.
- ///
- ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
- // Check that the loop matches the pattern we're looking for.
- if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
- Cond->getPredicate() != CmpInst::ICMP_NE)
- return Cond;
- SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
- if (!Sel || !Sel->hasOneUse()) return Cond;
- const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
- if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
- return Cond;
- const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
- // Add one to the backedge-taken count to get the trip count.
- const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
- if (IterationCount != SE.getSCEV(Sel)) return Cond;
- // Check for a max calculation that matches the pattern. There's no check
- // for ICMP_ULE here because the comparison would be with zero, which
- // isn't interesting.
- CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
- const SCEVNAryExpr *Max = nullptr;
- if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
- Pred = ICmpInst::ICMP_SLE;
- Max = S;
- } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
- Pred = ICmpInst::ICMP_SLT;
- Max = S;
- } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
- Pred = ICmpInst::ICMP_ULT;
- Max = U;
- } else {
- // No match; bail.
- return Cond;
- }
- // To handle a max with more than two operands, this optimization would
- // require additional checking and setup.
- if (Max->getNumOperands() != 2)
- return Cond;
- const SCEV *MaxLHS = Max->getOperand(0);
- const SCEV *MaxRHS = Max->getOperand(1);
- // ScalarEvolution canonicalizes constants to the left. For < and >, look
- // for a comparison with 1. For <= and >=, a comparison with zero.
- if (!MaxLHS ||
- (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
- return Cond;
- // Check the relevant induction variable for conformance to
- // the pattern.
- const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
- if (!AR || !AR->isAffine() ||
- AR->getStart() != One ||
- AR->getStepRecurrence(SE) != One)
- return Cond;
- assert(AR->getLoop() == L &&
- "Loop condition operand is an addrec in a different loop!");
- // Check the right operand of the select, and remember it, as it will
- // be used in the new comparison instruction.
- Value *NewRHS = nullptr;
- if (ICmpInst::isTrueWhenEqual(Pred)) {
- // Look for n+1, and grab n.
- if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
- if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
- if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
- NewRHS = BO->getOperand(0);
- if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
- if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
- if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
- NewRHS = BO->getOperand(0);
- if (!NewRHS)
- return Cond;
- } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
- NewRHS = Sel->getOperand(1);
- else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
- NewRHS = Sel->getOperand(2);
- else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
- NewRHS = SU->getValue();
- else
- // Max doesn't match expected pattern.
- return Cond;
- // Determine the new comparison opcode. It may be signed or unsigned,
- // and the original comparison may be either equality or inequality.
- if (Cond->getPredicate() == CmpInst::ICMP_EQ)
- Pred = CmpInst::getInversePredicate(Pred);
- // Ok, everything looks ok to change the condition into an SLT or SGE and
- // delete the max calculation.
- ICmpInst *NewCond =
- new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
- // Delete the max calculation instructions.
- Cond->replaceAllUsesWith(NewCond);
- CondUse->setUser(NewCond);
- Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
- Cond->eraseFromParent();
- Sel->eraseFromParent();
- if (Cmp->use_empty())
- Cmp->eraseFromParent();
- return NewCond;
- }
- /// OptimizeLoopTermCond - Change loop terminating condition to use the
- /// postinc iv when possible.
- void
- LSRInstance::OptimizeLoopTermCond() {
- SmallPtrSet<Instruction *, 4> PostIncs;
- BasicBlock *LatchBlock = L->getLoopLatch();
- SmallVector<BasicBlock*, 8> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
- for (BasicBlock *ExitingBlock : ExitingBlocks) {
- // Get the terminating condition for the loop if possible. If we
- // can, we want to change it to use a post-incremented version of its
- // induction variable, to allow coalescing the live ranges for the IV into
- // one register value.
- BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
- if (!TermBr)
- continue;
- // FIXME: Overly conservative, termination condition could be an 'or' etc..
- if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
- continue;
- // Search IVUsesByStride to find Cond's IVUse if there is one.
- IVStrideUse *CondUse = nullptr;
- ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
- if (!FindIVUserForCond(Cond, CondUse))
- continue;
- // If the trip count is computed in terms of a max (due to ScalarEvolution
- // being unable to find a sufficient guard, for example), change the loop
- // comparison to use SLT or ULT instead of NE.
- // One consequence of doing this now is that it disrupts the count-down
- // optimization. That's not always a bad thing though, because in such
- // cases it may still be worthwhile to avoid a max.
- Cond = OptimizeMax(Cond, CondUse);
- // If this exiting block dominates the latch block, it may also use
- // the post-inc value if it won't be shared with other uses.
- // Check for dominance.
- if (!DT.dominates(ExitingBlock, LatchBlock))
- continue;
- // Conservatively avoid trying to use the post-inc value in non-latch
- // exits if there may be pre-inc users in intervening blocks.
- if (LatchBlock != ExitingBlock)
- for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
- // Test if the use is reachable from the exiting block. This dominator
- // query is a conservative approximation of reachability.
- if (&*UI != CondUse &&
- !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
- // Conservatively assume there may be reuse if the quotient of their
- // strides could be a legal scale.
- const SCEV *A = IU.getStride(*CondUse, L);
- const SCEV *B = IU.getStride(*UI, L);
- if (!A || !B) continue;
- if (SE.getTypeSizeInBits(A->getType()) !=
- SE.getTypeSizeInBits(B->getType())) {
- if (SE.getTypeSizeInBits(A->getType()) >
- SE.getTypeSizeInBits(B->getType()))
- B = SE.getSignExtendExpr(B, A->getType());
- else
- A = SE.getSignExtendExpr(A, B->getType());
- }
- if (const SCEVConstant *D =
- dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
- const ConstantInt *C = D->getValue();
- // Stride of one or negative one can have reuse with non-addresses.
- if (C->isOne() || C->isAllOnesValue())
- goto decline_post_inc;
- // Avoid weird situations.
- if (C->getValue().getMinSignedBits() >= 64 ||
- C->getValue().isMinSignedValue())
- goto decline_post_inc;
- // Check for possible scaled-address reuse.
- Type *AccessTy = getAccessType(UI->getUser());
- int64_t Scale = C->getSExtValue();
- if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr,
- /*BaseOffset=*/ 0,
- /*HasBaseReg=*/ false, Scale))
- goto decline_post_inc;
- Scale = -Scale;
- if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr,
- /*BaseOffset=*/ 0,
- /*HasBaseReg=*/ false, Scale))
- goto decline_post_inc;
- }
- }
- DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
- << *Cond << '\n');
- // It's possible for the setcc instruction to be anywhere in the loop, and
- // possible for it to have multiple users. If it is not immediately before
- // the exiting block branch, move it.
- if (&*++BasicBlock::iterator(Cond) != TermBr) {
- if (Cond->hasOneUse()) {
- Cond->moveBefore(TermBr);
- } else {
- // Clone the terminating condition and insert into the loopend.
- ICmpInst *OldCond = Cond;
- Cond = cast<ICmpInst>(Cond->clone());
- Cond->setName(L->getHeader()->getName() + ".termcond");
- ExitingBlock->getInstList().insert(TermBr, Cond);
- // Clone the IVUse, as the old use still exists!
- CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
- TermBr->replaceUsesOfWith(OldCond, Cond);
- }
- }
- // If we get to here, we know that we can transform the setcc instruction to
- // use the post-incremented version of the IV, allowing us to coalesce the
- // live ranges for the IV correctly.
- CondUse->transformToPostInc(L);
- Changed = true;
- PostIncs.insert(Cond);
- decline_post_inc:;
- }
- // Determine an insertion point for the loop induction variable increment. It
- // must dominate all the post-inc comparisons we just set up, and it must
- // dominate the loop latch edge.
- IVIncInsertPos = L->getLoopLatch()->getTerminator();
- for (Instruction *Inst : PostIncs) {
- BasicBlock *BB =
- DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
- Inst->getParent());
- if (BB == Inst->getParent())
- IVIncInsertPos = Inst;
- else if (BB != IVIncInsertPos->getParent())
- IVIncInsertPos = BB->getTerminator();
- }
- }
- /// reconcileNewOffset - Determine if the given use can accommodate a fixup
- /// at the given offset and other details. If so, update the use and
- /// return true.
- bool
- LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
- LSRUse::KindType Kind, Type *AccessTy) {
- int64_t NewMinOffset = LU.MinOffset;
- int64_t NewMaxOffset = LU.MaxOffset;
- Type *NewAccessTy = AccessTy;
- // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
- // something conservative, however this can pessimize in the case that one of
- // the uses will have all its uses outside the loop, for example.
- if (LU.Kind != Kind)
- return false;
- // Check for a mismatched access type, and fall back conservatively as needed.
- // TODO: Be less conservative when the type is similar and can use the same
- // addressing modes.
- if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
- NewAccessTy = Type::getVoidTy(AccessTy->getContext());
- // Conservatively assume HasBaseReg is true for now.
- if (NewOffset < LU.MinOffset) {
- if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
- LU.MaxOffset - NewOffset, HasBaseReg))
- return false;
- NewMinOffset = NewOffset;
- } else if (NewOffset > LU.MaxOffset) {
- if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
- NewOffset - LU.MinOffset, HasBaseReg))
- return false;
- NewMaxOffset = NewOffset;
- }
- // Update the use.
- LU.MinOffset = NewMinOffset;
- LU.MaxOffset = NewMaxOffset;
- LU.AccessTy = NewAccessTy;
- if (NewOffset != LU.Offsets.back())
- LU.Offsets.push_back(NewOffset);
- return true;
- }
- /// getUse - Return an LSRUse index and an offset value for a fixup which
- /// needs the given expression, with the given kind and optional access type.
- /// Either reuse an existing use or create a new one, as needed.
- std::pair<size_t, int64_t>
- LSRInstance::getUse(const SCEV *&Expr,
- LSRUse::KindType Kind, Type *AccessTy) {
- const SCEV *Copy = Expr;
- int64_t Offset = ExtractImmediate(Expr, SE);
- // Basic uses can't accept any offset, for example.
- if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
- Offset, /*HasBaseReg=*/ true)) {
- Expr = Copy;
- Offset = 0;
- }
- std::pair<UseMapTy::iterator, bool> P =
- UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
- if (!P.second) {
- // A use already existed with this base.
- size_t LUIdx = P.first->second;
- LSRUse &LU = Uses[LUIdx];
- if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
- // Reuse this use.
- return std::make_pair(LUIdx, Offset);
- }
- // Create a new use.
- size_t LUIdx = Uses.size();
- P.first->second = LUIdx;
- Uses.push_back(LSRUse(Kind, AccessTy));
- LSRUse &LU = Uses[LUIdx];
- // We don't need to track redundant offsets, but we don't need to go out
- // of our way here to avoid them.
- if (LU.Offsets.empty() || Offset != LU.Offsets.back())
- LU.Offsets.push_back(Offset);
- LU.MinOffset = Offset;
- LU.MaxOffset = Offset;
- return std::make_pair(LUIdx, Offset);
- }
- /// DeleteUse - Delete the given use from the Uses list.
- void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
- if (&LU != &Uses.back())
- std::swap(LU, Uses.back());
- Uses.pop_back();
- // Update RegUses.
- RegUses.SwapAndDropUse(LUIdx, Uses.size());
- }
- /// FindUseWithFormula - Look for a use distinct from OrigLU which is has
- /// a formula that has the same registers as the given formula.
- LSRUse *
- LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
- const LSRUse &OrigLU) {
- // Search all uses for the formula. This could be more clever.
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- // Check whether this use is close enough to OrigLU, to see whether it's
- // worthwhile looking through its formulae.
- // Ignore ICmpZero uses because they may contain formulae generated by
- // GenerateICmpZeroScales, in which case adding fixup offsets may
- // be invalid.
- if (&LU != &OrigLU &&
- LU.Kind != LSRUse::ICmpZero &&
- LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
- LU.WidestFixupType == OrigLU.WidestFixupType &&
- LU.HasFormulaWithSameRegs(OrigF)) {
- // Scan through this use's formulae.
- for (const Formula &F : LU.Formulae) {
- // Check to see if this formula has the same registers and symbols
- // as OrigF.
- if (F.BaseRegs == OrigF.BaseRegs &&
- F.ScaledReg == OrigF.ScaledReg &&
- F.BaseGV == OrigF.BaseGV &&
- F.Scale == OrigF.Scale &&
- F.UnfoldedOffset == OrigF.UnfoldedOffset) {
- if (F.BaseOffset == 0)
- return &LU;
- // This is the formula where all the registers and symbols matched;
- // there aren't going to be any others. Since we declined it, we
- // can skip the rest of the formulae and proceed to the next LSRUse.
- break;
- }
- }
- }
- }
- // Nothing looked good.
- return nullptr;
- }
- void LSRInstance::CollectInterestingTypesAndFactors() {
- SmallSetVector<const SCEV *, 4> Strides;
- // Collect interesting types and strides.
- SmallVector<const SCEV *, 4> Worklist;
- for (const IVStrideUse &U : IU) {
- const SCEV *Expr = IU.getExpr(U);
- // Collect interesting types.
- Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
- // Add strides for mentioned loops.
- Worklist.push_back(Expr);
- do {
- const SCEV *S = Worklist.pop_back_val();
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
- if (AR->getLoop() == L)
- Strides.insert(AR->getStepRecurrence(SE));
- Worklist.push_back(AR->getStart());
- } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
- Worklist.append(Add->op_begin(), Add->op_end());
- }
- } while (!Worklist.empty());
- }
- // Compute interesting factors from the set of interesting strides.
- for (SmallSetVector<const SCEV *, 4>::const_iterator
- I = Strides.begin(), E = Strides.end(); I != E; ++I)
- for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
- std::next(I); NewStrideIter != E; ++NewStrideIter) {
- const SCEV *OldStride = *I;
- const SCEV *NewStride = *NewStrideIter;
- if (SE.getTypeSizeInBits(OldStride->getType()) !=
- SE.getTypeSizeInBits(NewStride->getType())) {
- if (SE.getTypeSizeInBits(OldStride->getType()) >
- SE.getTypeSizeInBits(NewStride->getType()))
- NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
- else
- OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
- }
- if (const SCEVConstant *Factor =
- dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
- SE, true))) {
- if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
- Factors.insert(Factor->getValue()->getValue().getSExtValue());
- } else if (const SCEVConstant *Factor =
- dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
- NewStride,
- SE, true))) {
- if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
- Factors.insert(Factor->getValue()->getValue().getSExtValue());
- }
- }
- // If all uses use the same type, don't bother looking for truncation-based
- // reuse.
- if (Types.size() == 1)
- Types.clear();
- DEBUG(print_factors_and_types(dbgs()));
- }
- /// findIVOperand - Helper for CollectChains that finds an IV operand (computed
- /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
- /// Instructions to IVStrideUses, we could partially skip this.
- static User::op_iterator
- findIVOperand(User::op_iterator OI, User::op_iterator OE,
- Loop *L, ScalarEvolution &SE) {
- for(; OI != OE; ++OI) {
- if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
- if (!SE.isSCEVable(Oper->getType()))
- continue;
- if (const SCEVAddRecExpr *AR =
- dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
- if (AR->getLoop() == L)
- break;
- }
- }
- }
- return OI;
- }
- /// getWideOperand - IVChain logic must consistenctly peek base TruncInst
- /// operands, so wrap it in a convenient helper.
- static Value *getWideOperand(Value *Oper) {
- if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
- return Trunc->getOperand(0);
- return Oper;
- }
- /// isCompatibleIVType - Return true if we allow an IV chain to include both
- /// types.
- static bool isCompatibleIVType(Value *LVal, Value *RVal) {
- Type *LType = LVal->getType();
- Type *RType = RVal->getType();
- return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
- }
- /// getExprBase - Return an approximation of this SCEV expression's "base", or
- /// NULL for any constant. Returning the expression itself is
- /// conservative. Returning a deeper subexpression is more precise and valid as
- /// long as it isn't less complex than another subexpression. For expressions
- /// involving multiple unscaled values, we need to return the pointer-type
- /// SCEVUnknown. This avoids forming chains across objects, such as:
- /// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
- ///
- /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
- /// SCEVUnknown, we simply return the rightmost SCEV operand.
- static const SCEV *getExprBase(const SCEV *S) {
- switch (S->getSCEVType()) {
- default: // uncluding scUnknown.
- return S;
- case scConstant:
- return nullptr;
- case scTruncate:
- return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
- case scZeroExtend:
- return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
- case scSignExtend:
- return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
- case scAddExpr: {
- // Skip over scaled operands (scMulExpr) to follow add operands as long as
- // there's nothing more complex.
- // FIXME: not sure if we want to recognize negation.
- const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
- for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
- E(Add->op_begin()); I != E; ++I) {
- const SCEV *SubExpr = *I;
- if (SubExpr->getSCEVType() == scAddExpr)
- return getExprBase(SubExpr);
- if (SubExpr->getSCEVType() != scMulExpr)
- return SubExpr;
- }
- return S; // all operands are scaled, be conservative.
- }
- case scAddRecExpr:
- return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
- }
- }
- /// Return true if the chain increment is profitable to expand into a loop
- /// invariant value, which may require its own register. A profitable chain
- /// increment will be an offset relative to the same base. We allow such offsets
- /// to potentially be used as chain increment as long as it's not obviously
- /// expensive to expand using real instructions.
- bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
- const SCEV *IncExpr,
- ScalarEvolution &SE) {
- // Aggressively form chains when -stress-ivchain.
- if (StressIVChain)
- return true;
- // Do not replace a constant offset from IV head with a nonconstant IV
- // increment.
- if (!isa<SCEVConstant>(IncExpr)) {
- const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
- if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
- return 0;
- }
- SmallPtrSet<const SCEV*, 8> Processed;
- return !isHighCostExpansion(IncExpr, Processed, SE);
- }
- /// Return true if the number of registers needed for the chain is estimated to
- /// be less than the number required for the individual IV users. First prohibit
- /// any IV users that keep the IV live across increments (the Users set should
- /// be empty). Next count the number and type of increments in the chain.
- ///
- /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
- /// effectively use postinc addressing modes. Only consider it profitable it the
- /// increments can be computed in fewer registers when chained.
- ///
- /// TODO: Consider IVInc free if it's already used in another chains.
- static bool
- isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
- ScalarEvolution &SE, const TargetTransformInfo &TTI) {
- if (StressIVChain)
- return true;
- if (!Chain.hasIncs())
- return false;
- if (!Users.empty()) {
- DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
- for (Instruction *Inst : Users) {
- dbgs() << " " << *Inst << "\n";
- });
- return false;
- }
- assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
- // The chain itself may require a register, so intialize cost to 1.
- int cost = 1;
- // A complete chain likely eliminates the need for keeping the original IV in
- // a register. LSR does not currently know how to form a complete chain unless
- // the header phi already exists.
- if (isa<PHINode>(Chain.tailUserInst())
- && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
- --cost;
- }
- const SCEV *LastIncExpr = nullptr;
- unsigned NumConstIncrements = 0;
- unsigned NumVarIncrements = 0;
- unsigned NumReusedIncrements = 0;
- for (const IVInc &Inc : Chain) {
- if (Inc.IncExpr->isZero())
- continue;
- // Incrementing by zero or some constant is neutral. We assume constants can
- // be folded into an addressing mode or an add's immediate operand.
- if (isa<SCEVConstant>(Inc.IncExpr)) {
- ++NumConstIncrements;
- continue;
- }
- if (Inc.IncExpr == LastIncExpr)
- ++NumReusedIncrements;
- else
- ++NumVarIncrements;
- LastIncExpr = Inc.IncExpr;
- }
- // An IV chain with a single increment is handled by LSR's postinc
- // uses. However, a chain with multiple increments requires keeping the IV's
- // value live longer than it needs to be if chained.
- if (NumConstIncrements > 1)
- --cost;
- // Materializing increment expressions in the preheader that didn't exist in
- // the original code may cost a register. For example, sign-extended array
- // indices can produce ridiculous increments like this:
- // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
- cost += NumVarIncrements;
- // Reusing variable increments likely saves a register to hold the multiple of
- // the stride.
- cost -= NumReusedIncrements;
- DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
- << "\n");
- return cost < 0;
- }
- /// ChainInstruction - Add this IV user to an existing chain or make it the head
- /// of a new chain.
- void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
- SmallVectorImpl<ChainUsers> &ChainUsersVec) {
- // When IVs are used as types of varying widths, they are generally converted
- // to a wider type with some uses remaining narrow under a (free) trunc.
- Value *const NextIV = getWideOperand(IVOper);
- const SCEV *const OperExpr = SE.getSCEV(NextIV);
- const SCEV *const OperExprBase = getExprBase(OperExpr);
- // Visit all existing chains. Check if its IVOper can be computed as a
- // profitable loop invariant increment from the last link in the Chain.
- unsigned ChainIdx = 0, NChains = IVChainVec.size();
- const SCEV *LastIncExpr = nullptr;
- for (; ChainIdx < NChains; ++ChainIdx) {
- IVChain &Chain = IVChainVec[ChainIdx];
- // Prune the solution space aggressively by checking that both IV operands
- // are expressions that operate on the same unscaled SCEVUnknown. This
- // "base" will be canceled by the subsequent getMinusSCEV call. Checking
- // first avoids creating extra SCEV expressions.
- if (!StressIVChain && Chain.ExprBase != OperExprBase)
- continue;
- Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
- if (!isCompatibleIVType(PrevIV, NextIV))
- continue;
- // A phi node terminates a chain.
- if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
- continue;
- // The increment must be loop-invariant so it can be kept in a register.
- const SCEV *PrevExpr = SE.getSCEV(PrevIV);
- const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
- if (!SE.isLoopInvariant(IncExpr, L))
- continue;
- if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
- LastIncExpr = IncExpr;
- break;
- }
- }
- // If we haven't found a chain, create a new one, unless we hit the max. Don't
- // bother for phi nodes, because they must be last in the chain.
- if (ChainIdx == NChains) {
- if (isa<PHINode>(UserInst))
- return;
- if (NChains >= MaxChains && !StressIVChain) {
- DEBUG(dbgs() << "IV Chain Limit\n");
- return;
- }
- LastIncExpr = OperExpr;
- // IVUsers may have skipped over sign/zero extensions. We don't currently
- // attempt to form chains involving extensions unless they can be hoisted
- // into this loop's AddRec.
- if (!isa<SCEVAddRecExpr>(LastIncExpr))
- return;
- ++NChains;
- IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
- OperExprBase));
- ChainUsersVec.resize(NChains);
- DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
- << ") IV=" << *LastIncExpr << "\n");
- } else {
- DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst
- << ") IV+" << *LastIncExpr << "\n");
- // Add this IV user to the end of the chain.
- IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
- }
- IVChain &Chain = IVChainVec[ChainIdx];
- SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
- // This chain's NearUsers become FarUsers.
- if (!LastIncExpr->isZero()) {
- ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
- NearUsers.end());
- NearUsers.clear();
- }
- // All other uses of IVOperand become near uses of the chain.
- // We currently ignore intermediate values within SCEV expressions, assuming
- // they will eventually be used be the current chain, or can be computed
- // from one of the chain increments. To be more precise we could
- // transitively follow its user and only add leaf IV users to the set.
- for (User *U : IVOper->users()) {
- Instruction *OtherUse = dyn_cast<Instruction>(U);
- if (!OtherUse)
- continue;
- // Uses in the chain will no longer be uses if the chain is formed.
- // Include the head of the chain in this iteration (not Chain.begin()).
- IVChain::const_iterator IncIter = Chain.Incs.begin();
- IVChain::const_iterator IncEnd = Chain.Incs.end();
- for( ; IncIter != IncEnd; ++IncIter) {
- if (IncIter->UserInst == OtherUse)
- break;
- }
- if (IncIter != IncEnd)
- continue;
- if (SE.isSCEVable(OtherUse->getType())
- && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
- && IU.isIVUserOrOperand(OtherUse)) {
- continue;
- }
- NearUsers.insert(OtherUse);
- }
- // Since this user is part of the chain, it's no longer considered a use
- // of the chain.
- ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
- }
- /// CollectChains - Populate the vector of Chains.
- ///
- /// This decreases ILP at the architecture level. Targets with ample registers,
- /// multiple memory ports, and no register renaming probably don't want
- /// this. However, such targets should probably disable LSR altogether.
- ///
- /// The job of LSR is to make a reasonable choice of induction variables across
- /// the loop. Subsequent passes can easily "unchain" computation exposing more
- /// ILP *within the loop* if the target wants it.
- ///
- /// Finding the best IV chain is potentially a scheduling problem. Since LSR
- /// will not reorder memory operations, it will recognize this as a chain, but
- /// will generate redundant IV increments. Ideally this would be corrected later
- /// by a smart scheduler:
- /// = A[i]
- /// = A[i+x]
- /// A[i] =
- /// A[i+x] =
- ///
- /// TODO: Walk the entire domtree within this loop, not just the path to the
- /// loop latch. This will discover chains on side paths, but requires
- /// maintaining multiple copies of the Chains state.
- void LSRInstance::CollectChains() {
- DEBUG(dbgs() << "Collecting IV Chains.\n");
- SmallVector<ChainUsers, 8> ChainUsersVec;
- SmallVector<BasicBlock *,8> LatchPath;
- BasicBlock *LoopHeader = L->getHeader();
- for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
- Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
- LatchPath.push_back(Rung->getBlock());
- }
- LatchPath.push_back(LoopHeader);
- // Walk the instruction stream from the loop header to the loop latch.
- for (SmallVectorImpl<BasicBlock *>::reverse_iterator
- BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
- BBIter != BBEnd; ++BBIter) {
- for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
- I != E; ++I) {
- // Skip instructions that weren't seen by IVUsers analysis.
- if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
- continue;
- // Ignore users that are part of a SCEV expression. This way we only
- // consider leaf IV Users. This effectively rediscovers a portion of
- // IVUsers analysis but in program order this time.
- if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
- continue;
- // Remove this instruction from any NearUsers set it may be in.
- for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
- ChainIdx < NChains; ++ChainIdx) {
- ChainUsersVec[ChainIdx].NearUsers.erase(I);
- }
- // Search for operands that can be chained.
- SmallPtrSet<Instruction*, 4> UniqueOperands;
- User::op_iterator IVOpEnd = I->op_end();
- User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
- while (IVOpIter != IVOpEnd) {
- Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
- if (UniqueOperands.insert(IVOpInst).second)
- ChainInstruction(I, IVOpInst, ChainUsersVec);
- IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
- }
- } // Continue walking down the instructions.
- } // Continue walking down the domtree.
- // Visit phi backedges to determine if the chain can generate the IV postinc.
- for (BasicBlock::iterator I = L->getHeader()->begin();
- PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- if (!SE.isSCEVable(PN->getType()))
- continue;
- Instruction *IncV =
- dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
- if (IncV)
- ChainInstruction(PN, IncV, ChainUsersVec);
- }
- // Remove any unprofitable chains.
- unsigned ChainIdx = 0;
- for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
- UsersIdx < NChains; ++UsersIdx) {
- if (!isProfitableChain(IVChainVec[UsersIdx],
- ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
- continue;
- // Preserve the chain at UsesIdx.
- if (ChainIdx != UsersIdx)
- IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
- FinalizeChain(IVChainVec[ChainIdx]);
- ++ChainIdx;
- }
- IVChainVec.resize(ChainIdx);
- }
- void LSRInstance::FinalizeChain(IVChain &Chain) {
- assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
- DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
- for (const IVInc &Inc : Chain) {
- DEBUG(dbgs() << " Inc: " << Inc.UserInst << "\n");
- auto UseI = std::find(Inc.UserInst->op_begin(), Inc.UserInst->op_end(),
- Inc.IVOperand);
- assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
- IVIncSet.insert(UseI);
- }
- }
- /// Return true if the IVInc can be folded into an addressing mode.
- static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
- Value *Operand, const TargetTransformInfo &TTI) {
- const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
- if (!IncConst || !isAddressUse(UserInst, Operand))
- return false;
- if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
- return false;
- int64_t IncOffset = IncConst->getValue()->getSExtValue();
- if (!isAlwaysFoldable(TTI, LSRUse::Address,
- getAccessType(UserInst), /*BaseGV=*/ nullptr,
- IncOffset, /*HaseBaseReg=*/ false))
- return false;
- return true;
- }
- /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
- /// materialize the IV user's operand from the previous IV user's operand.
- void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
- SmallVectorImpl<WeakVH> &DeadInsts) {
- // Find the new IVOperand for the head of the chain. It may have been replaced
- // by LSR.
- const IVInc &Head = Chain.Incs[0];
- User::op_iterator IVOpEnd = Head.UserInst->op_end();
- // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
- User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
- IVOpEnd, L, SE);
- Value *IVSrc = nullptr;
- while (IVOpIter != IVOpEnd) {
- IVSrc = getWideOperand(*IVOpIter);
- // If this operand computes the expression that the chain needs, we may use
- // it. (Check this after setting IVSrc which is used below.)
- //
- // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
- // narrow for the chain, so we can no longer use it. We do allow using a
- // wider phi, assuming the LSR checked for free truncation. In that case we
- // should already have a truncate on this operand such that
- // getSCEV(IVSrc) == IncExpr.
- if (SE.getSCEV(*IVOpIter) == Head.IncExpr
- || SE.getSCEV(IVSrc) == Head.IncExpr) {
- break;
- }
- IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
- }
- if (IVOpIter == IVOpEnd) {
- // Gracefully give up on this chain.
- DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
- return;
- }
- DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
- Type *IVTy = IVSrc->getType();
- Type *IntTy = SE.getEffectiveSCEVType(IVTy);
- const SCEV *LeftOverExpr = nullptr;
- for (const IVInc &Inc : Chain) {
- Instruction *InsertPt = Inc.UserInst;
- if (isa<PHINode>(InsertPt))
- InsertPt = L->getLoopLatch()->getTerminator();
- // IVOper will replace the current IV User's operand. IVSrc is the IV
- // value currently held in a register.
- Value *IVOper = IVSrc;
- if (!Inc.IncExpr->isZero()) {
- // IncExpr was the result of subtraction of two narrow values, so must
- // be signed.
- const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
- LeftOverExpr = LeftOverExpr ?
- SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
- }
- if (LeftOverExpr && !LeftOverExpr->isZero()) {
- // Expand the IV increment.
- Rewriter.clearPostInc();
- Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
- const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
- SE.getUnknown(IncV));
- IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
- // If an IV increment can't be folded, use it as the next IV value.
- if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
- assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
- IVSrc = IVOper;
- LeftOverExpr = nullptr;
- }
- }
- Type *OperTy = Inc.IVOperand->getType();
- if (IVTy != OperTy) {
- assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
- "cannot extend a chained IV");
- IRBuilder<> Builder(InsertPt);
- IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
- }
- Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
- DeadInsts.emplace_back(Inc.IVOperand);
- }
- // If LSR created a new, wider phi, we may also replace its postinc. We only
- // do this if we also found a wide value for the head of the chain.
- if (isa<PHINode>(Chain.tailUserInst())) {
- for (BasicBlock::iterator I = L->getHeader()->begin();
- PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
- if (!isCompatibleIVType(Phi, IVSrc))
- continue;
- Instruction *PostIncV = dyn_cast<Instruction>(
- Phi->getIncomingValueForBlock(L->getLoopLatch()));
- if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
- continue;
- Value *IVOper = IVSrc;
- Type *PostIncTy = PostIncV->getType();
- if (IVTy != PostIncTy) {
- assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
- IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
- Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
- IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
- }
- Phi->replaceUsesOfWith(PostIncV, IVOper);
- DeadInsts.emplace_back(PostIncV);
- }
- }
- }
- void LSRInstance::CollectFixupsAndInitialFormulae() {
- for (const IVStrideUse &U : IU) {
- Instruction *UserInst = U.getUser();
- // Skip IV users that are part of profitable IV Chains.
- User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
- U.getOperandValToReplace());
- assert(UseI != UserInst->op_end() && "cannot find IV operand");
- if (IVIncSet.count(UseI))
- continue;
- // Record the uses.
- LSRFixup &LF = getNewFixup();
- LF.UserInst = UserInst;
- LF.OperandValToReplace = U.getOperandValToReplace();
- LF.PostIncLoops = U.getPostIncLoops();
- LSRUse::KindType Kind = LSRUse::Basic;
- Type *AccessTy = nullptr;
- if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
- Kind = LSRUse::Address;
- AccessTy = getAccessType(LF.UserInst);
- }
- const SCEV *S = IU.getExpr(U);
- // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
- // (N - i == 0), and this allows (N - i) to be the expression that we work
- // with rather than just N or i, so we can consider the register
- // requirements for both N and i at the same time. Limiting this code to
- // equality icmps is not a problem because all interesting loops use
- // equality icmps, thanks to IndVarSimplify.
- if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
- if (CI->isEquality()) {
- // Swap the operands if needed to put the OperandValToReplace on the
- // left, for consistency.
- Value *NV = CI->getOperand(1);
- if (NV == LF.OperandValToReplace) {
- CI->setOperand(1, CI->getOperand(0));
- CI->setOperand(0, NV);
- NV = CI->getOperand(1);
- Changed = true;
- }
- // x == y --> x - y == 0
- const SCEV *N = SE.getSCEV(NV);
- if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
- // S is normalized, so normalize N before folding it into S
- // to keep the result normalized.
- N = TransformForPostIncUse(Normalize, N, CI, nullptr,
- LF.PostIncLoops, SE, DT);
- Kind = LSRUse::ICmpZero;
- S = SE.getMinusSCEV(N, S);
- }
- // -1 and the negations of all interesting strides (except the negation
- // of -1) are now also interesting.
- for (size_t i = 0, e = Factors.size(); i != e; ++i)
- if (Factors[i] != -1)
- Factors.insert(-(uint64_t)Factors[i]);
- Factors.insert(-1);
- }
- // Set up the initial formula for this use.
- std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
- LF.LUIdx = P.first;
- LF.Offset = P.second;
- LSRUse &LU = Uses[LF.LUIdx];
- LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
- if (!LU.WidestFixupType ||
- SE.getTypeSizeInBits(LU.WidestFixupType) <
- SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
- LU.WidestFixupType = LF.OperandValToReplace->getType();
- // If this is the first use of this LSRUse, give it a formula.
- if (LU.Formulae.empty()) {
- InsertInitialFormula(S, LU, LF.LUIdx);
- CountRegisters(LU.Formulae.back(), LF.LUIdx);
- }
- }
- DEBUG(print_fixups(dbgs()));
- }
- /// InsertInitialFormula - Insert a formula for the given expression into
- /// the given use, separating out loop-variant portions from loop-invariant
- /// and loop-computable portions.
- void
- LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
- // Mark uses whose expressions cannot be expanded.
- if (!isSafeToExpand(S, SE))
- LU.RigidFormula = true;
- Formula F;
- F.InitialMatch(S, L, SE);
- bool Inserted = InsertFormula(LU, LUIdx, F);
- assert(Inserted && "Initial formula already exists!"); (void)Inserted;
- }
- /// InsertSupplementalFormula - Insert a simple single-register formula for
- /// the given expression into the given use.
- void
- LSRInstance::InsertSupplementalFormula(const SCEV *S,
- LSRUse &LU, size_t LUIdx) {
- Formula F;
- F.BaseRegs.push_back(S);
- F.HasBaseReg = true;
- bool Inserted = InsertFormula(LU, LUIdx, F);
- assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
- }
- /// CountRegisters - Note which registers are used by the given formula,
- /// updating RegUses.
- void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
- if (F.ScaledReg)
- RegUses.CountRegister(F.ScaledReg, LUIdx);
- for (const SCEV *BaseReg : F.BaseRegs)
- RegUses.CountRegister(BaseReg, LUIdx);
- }
- /// InsertFormula - If the given formula has not yet been inserted, add it to
- /// the list, and return true. Return false otherwise.
- bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
- // Do not insert formula that we will not be able to expand.
- assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
- "Formula is illegal");
- if (!LU.InsertFormula(F))
- return false;
- CountRegisters(F, LUIdx);
- return true;
- }
- /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
- /// loop-invariant values which we're tracking. These other uses will pin these
- /// values in registers, making them less profitable for elimination.
- /// TODO: This currently misses non-constant addrec step registers.
- /// TODO: Should this give more weight to users inside the loop?
- void
- LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
- SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
- SmallPtrSet<const SCEV *, 32> Visited;
- while (!Worklist.empty()) {
- const SCEV *S = Worklist.pop_back_val();
- // Don't process the same SCEV twice
- if (!Visited.insert(S).second)
- continue;
- if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
- Worklist.append(N->op_begin(), N->op_end());
- else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
- Worklist.push_back(C->getOperand());
- else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
- Worklist.push_back(D->getLHS());
- Worklist.push_back(D->getRHS());
- } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
- const Value *V = US->getValue();
- if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
- // Look for instructions defined outside the loop.
- if (L->contains(Inst)) continue;
- } else if (isa<UndefValue>(V))
- // Undef doesn't have a live range, so it doesn't matter.
- continue;
- for (const Use &U : V->uses()) {
- const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
- // Ignore non-instructions.
- if (!UserInst)
- continue;
- // Ignore instructions in other functions (as can happen with
- // Constants).
- if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
- continue;
- // Ignore instructions not dominated by the loop.
- const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
- UserInst->getParent() :
- cast<PHINode>(UserInst)->getIncomingBlock(
- PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
- if (!DT.dominates(L->getHeader(), UseBB))
- continue;
- // Ignore uses which are part of other SCEV expressions, to avoid
- // analyzing them multiple times.
- if (SE.isSCEVable(UserInst->getType())) {
- const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
- // If the user is a no-op, look through to its uses.
- if (!isa<SCEVUnknown>(UserS))
- continue;
- if (UserS == US) {
- Worklist.push_back(
- SE.getUnknown(const_cast<Instruction *>(UserInst)));
- continue;
- }
- }
- // Ignore icmp instructions which are already being analyzed.
- if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
- unsigned OtherIdx = !U.getOperandNo();
- Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
- if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
- continue;
- }
- LSRFixup &LF = getNewFixup();
- LF.UserInst = const_cast<Instruction *>(UserInst);
- LF.OperandValToReplace = U;
- std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, nullptr);
- LF.LUIdx = P.first;
- LF.Offset = P.second;
- LSRUse &LU = Uses[LF.LUIdx];
- LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
- if (!LU.WidestFixupType ||
- SE.getTypeSizeInBits(LU.WidestFixupType) <
- SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
- LU.WidestFixupType = LF.OperandValToReplace->getType();
- InsertSupplementalFormula(US, LU, LF.LUIdx);
- CountRegisters(LU.Formulae.back(), Uses.size() - 1);
- break;
- }
- }
- }
- }
- /// CollectSubexprs - Split S into subexpressions which can be pulled out into
- /// separate registers. If C is non-null, multiply each subexpression by C.
- ///
- /// Return remainder expression after factoring the subexpressions captured by
- /// Ops. If Ops is complete, return NULL.
- static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
- SmallVectorImpl<const SCEV *> &Ops,
- const Loop *L,
- ScalarEvolution &SE,
- unsigned Depth = 0) {
- // Arbitrarily cap recursion to protect compile time.
- if (Depth >= 3)
- return S;
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
- // Break out add operands.
- for (const SCEV *S : Add->operands()) {
- const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
- if (Remainder)
- Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
- }
- return nullptr;
- } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
- // Split a non-zero base out of an addrec.
- if (AR->getStart()->isZero())
- return S;
- const SCEV *Remainder = CollectSubexprs(AR->getStart(),
- C, Ops, L, SE, Depth+1);
- // Split the non-zero AddRec unless it is part of a nested recurrence that
- // does not pertain to this loop.
- if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
- Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
- Remainder = nullptr;
- }
- if (Remainder != AR->getStart()) {
- if (!Remainder)
- Remainder = SE.getConstant(AR->getType(), 0);
- return SE.getAddRecExpr(Remainder,
- AR->getStepRecurrence(SE),
- AR->getLoop(),
- //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
- SCEV::FlagAnyWrap);
- }
- } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
- // Break (C * (a + b + c)) into C*a + C*b + C*c.
- if (Mul->getNumOperands() != 2)
- return S;
- if (const SCEVConstant *Op0 =
- dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
- C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
- const SCEV *Remainder =
- CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
- if (Remainder)
- Ops.push_back(SE.getMulExpr(C, Remainder));
- return nullptr;
- }
- }
- return S;
- }
- /// \brief Helper function for LSRInstance::GenerateReassociations.
- void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
- const Formula &Base,
- unsigned Depth, size_t Idx,
- bool IsScaledReg) {
- const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
- SmallVector<const SCEV *, 8> AddOps;
- const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
- if (Remainder)
- AddOps.push_back(Remainder);
- if (AddOps.size() == 1)
- return;
- for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
- JE = AddOps.end();
- J != JE; ++J) {
- // Loop-variant "unknown" values are uninteresting; we won't be able to
- // do anything meaningful with them.
- if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
- continue;
- // Don't pull a constant into a register if the constant could be folded
- // into an immediate field.
- if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
- LU.AccessTy, *J, Base.getNumRegs() > 1))
- continue;
- // Collect all operands except *J.
- SmallVector<const SCEV *, 8> InnerAddOps(
- ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
- InnerAddOps.append(std::next(J),
- ((const SmallVector<const SCEV *, 8> &)AddOps).end());
- // Don't leave just a constant behind in a register if the constant could
- // be folded into an immediate field.
- if (InnerAddOps.size() == 1 &&
- isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
- LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
- continue;
- const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
- if (InnerSum->isZero())
- continue;
- Formula F = Base;
- // Add the remaining pieces of the add back into the new formula.
- const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
- if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
- TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
- InnerSumSC->getValue()->getZExtValue())) {
- F.UnfoldedOffset =
- (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
- if (IsScaledReg)
- F.ScaledReg = nullptr;
- else
- F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
- } else if (IsScaledReg)
- F.ScaledReg = InnerSum;
- else
- F.BaseRegs[Idx] = InnerSum;
- // Add J as its own register, or an unfolded immediate.
- const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
- if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
- TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
- SC->getValue()->getZExtValue()))
- F.UnfoldedOffset =
- (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
- else
- F.BaseRegs.push_back(*J);
- // We may have changed the number of register in base regs, adjust the
- // formula accordingly.
- F.Canonicalize();
- if (InsertFormula(LU, LUIdx, F))
- // If that formula hadn't been seen before, recurse to find more like
- // it.
- GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
- }
- }
- /// GenerateReassociations - Split out subexpressions from adds and the bases of
- /// addrecs.
- void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
- Formula Base, unsigned Depth) {
- assert(Base.isCanonical() && "Input must be in the canonical form");
- // Arbitrarily cap recursion to protect compile time.
- if (Depth >= 3)
- return;
- for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
- GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
- if (Base.Scale == 1)
- GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
- /* Idx */ -1, /* IsScaledReg */ true);
- }
- /// GenerateCombinations - Generate a formula consisting of all of the
- /// loop-dominating registers added into a single register.
- void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
- Formula Base) {
- // This method is only interesting on a plurality of registers.
- if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
- return;
- // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
- // processing the formula.
- Base.Unscale();
- Formula F = Base;
- F.BaseRegs.clear();
- SmallVector<const SCEV *, 4> Ops;
- for (const SCEV *BaseReg : Base.BaseRegs) {
- if (SE.properlyDominates(BaseReg, L->getHeader()) &&
- !SE.hasComputableLoopEvolution(BaseReg, L))
- Ops.push_back(BaseReg);
- else
- F.BaseRegs.push_back(BaseReg);
- }
- if (Ops.size() > 1) {
- const SCEV *Sum = SE.getAddExpr(Ops);
- // TODO: If Sum is zero, it probably means ScalarEvolution missed an
- // opportunity to fold something. For now, just ignore such cases
- // rather than proceed with zero in a register.
- if (!Sum->isZero()) {
- F.BaseRegs.push_back(Sum);
- F.Canonicalize();
- (void)InsertFormula(LU, LUIdx, F);
- }
- }
- }
- /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
- void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
- const Formula &Base, size_t Idx,
- bool IsScaledReg) {
- const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
- GlobalValue *GV = ExtractSymbol(G, SE);
- if (G->isZero() || !GV)
- return;
- Formula F = Base;
- F.BaseGV = GV;
- if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
- return;
- if (IsScaledReg)
- F.ScaledReg = G;
- else
- F.BaseRegs[Idx] = G;
- (void)InsertFormula(LU, LUIdx, F);
- }
- /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
- void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
- Formula Base) {
- // We can't add a symbolic offset if the address already contains one.
- if (Base.BaseGV) return;
- for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
- GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
- if (Base.Scale == 1)
- GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
- /* IsScaledReg */ true);
- }
- /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
- void LSRInstance::GenerateConstantOffsetsImpl(
- LSRUse &LU, unsigned LUIdx, const Formula &Base,
- const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
- const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
- for (int64_t Offset : Worklist) {
- Formula F = Base;
- F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
- if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
- LU.AccessTy, F)) {
- // Add the offset to the base register.
- const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
- // If it cancelled out, drop the base register, otherwise update it.
- if (NewG->isZero()) {
- if (IsScaledReg) {
- F.Scale = 0;
- F.ScaledReg = nullptr;
- } else
- F.DeleteBaseReg(F.BaseRegs[Idx]);
- F.Canonicalize();
- } else if (IsScaledReg)
- F.ScaledReg = NewG;
- else
- F.BaseRegs[Idx] = NewG;
- (void)InsertFormula(LU, LUIdx, F);
- }
- }
- int64_t Imm = ExtractImmediate(G, SE);
- if (G->isZero() || Imm == 0)
- return;
- Formula F = Base;
- F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
- if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
- return;
- if (IsScaledReg)
- F.ScaledReg = G;
- else
- F.BaseRegs[Idx] = G;
- (void)InsertFormula(LU, LUIdx, F);
- }
- /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
- void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
- Formula Base) {
- // TODO: For now, just add the min and max offset, because it usually isn't
- // worthwhile looking at everything inbetween.
- SmallVector<int64_t, 2> Worklist;
- Worklist.push_back(LU.MinOffset);
- if (LU.MaxOffset != LU.MinOffset)
- Worklist.push_back(LU.MaxOffset);
- for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
- GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
- if (Base.Scale == 1)
- GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
- /* IsScaledReg */ true);
- }
- /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
- /// the comparison. For example, x == y -> x*c == y*c.
- void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
- Formula Base) {
- if (LU.Kind != LSRUse::ICmpZero) return;
- // Determine the integer type for the base formula.
- Type *IntTy = Base.getType();
- if (!IntTy) return;
- if (SE.getTypeSizeInBits(IntTy) > 64) return;
- // Don't do this if there is more than one offset.
- if (LU.MinOffset != LU.MaxOffset) return;
- assert(!Base.BaseGV && "ICmpZero use is not legal!");
- // Check each interesting stride.
- for (int64_t Factor : Factors) {
- // Check that the multiplication doesn't overflow.
- if (Base.BaseOffset == INT64_MIN && Factor == -1)
- continue;
- int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
- if (NewBaseOffset / Factor != Base.BaseOffset)
- continue;
- // If the offset will be truncated at this use, check that it is in bounds.
- if (!IntTy->isPointerTy() &&
- !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
- continue;
- // Check that multiplying with the use offset doesn't overflow.
- int64_t Offset = LU.MinOffset;
- if (Offset == INT64_MIN && Factor == -1)
- continue;
- Offset = (uint64_t)Offset * Factor;
- if (Offset / Factor != LU.MinOffset)
- continue;
- // If the offset will be truncated at this use, check that it is in bounds.
- if (!IntTy->isPointerTy() &&
- !ConstantInt::isValueValidForType(IntTy, Offset))
- continue;
- Formula F = Base;
- F.BaseOffset = NewBaseOffset;
- // Check that this scale is legal.
- if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
- continue;
- // Compensate for the use having MinOffset built into it.
- F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
- const SCEV *FactorS = SE.getConstant(IntTy, Factor);
- // Check that multiplying with each base register doesn't overflow.
- for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
- F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
- if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
- goto next;
- }
- // Check that multiplying with the scaled register doesn't overflow.
- if (F.ScaledReg) {
- F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
- if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
- continue;
- }
- // Check that multiplying with the unfolded offset doesn't overflow.
- if (F.UnfoldedOffset != 0) {
- if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
- continue;
- F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
- if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
- continue;
- // If the offset will be truncated, check that it is in bounds.
- if (!IntTy->isPointerTy() &&
- !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
- continue;
- }
- // If we make it here and it's legal, add it.
- (void)InsertFormula(LU, LUIdx, F);
- next:;
- }
- }
- /// GenerateScales - Generate stride factor reuse formulae by making use of
- /// scaled-offset address modes, for example.
- void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
- // Determine the integer type for the base formula.
- Type *IntTy = Base.getType();
- if (!IntTy) return;
- // If this Formula already has a scaled register, we can't add another one.
- // Try to unscale the formula to generate a better scale.
- if (Base.Scale != 0 && !Base.Unscale())
- return;
- assert(Base.Scale == 0 && "Unscale did not did its job!");
- // Check each interesting stride.
- for (int64_t Factor : Factors) {
- Base.Scale = Factor;
- Base.HasBaseReg = Base.BaseRegs.size() > 1;
- // Check whether this scale is going to be legal.
- if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
- Base)) {
- // As a special-case, handle special out-of-loop Basic users specially.
- // TODO: Reconsider this special case.
- if (LU.Kind == LSRUse::Basic &&
- isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
- LU.AccessTy, Base) &&
- LU.AllFixupsOutsideLoop)
- LU.Kind = LSRUse::Special;
- else
- continue;
- }
- // For an ICmpZero, negating a solitary base register won't lead to
- // new solutions.
- if (LU.Kind == LSRUse::ICmpZero &&
- !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
- continue;
- // For each addrec base reg, apply the scale, if possible.
- for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
- if (const SCEVAddRecExpr *AR =
- dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
- const SCEV *FactorS = SE.getConstant(IntTy, Factor);
- if (FactorS->isZero())
- continue;
- // Divide out the factor, ignoring high bits, since we'll be
- // scaling the value back up in the end.
- if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
- // TODO: This could be optimized to avoid all the copying.
- Formula F = Base;
- F.ScaledReg = Quotient;
- F.DeleteBaseReg(F.BaseRegs[i]);
- // The canonical representation of 1*reg is reg, which is already in
- // Base. In that case, do not try to insert the formula, it will be
- // rejected anyway.
- if (F.Scale == 1 && F.BaseRegs.empty())
- continue;
- (void)InsertFormula(LU, LUIdx, F);
- }
- }
- }
- }
- /// GenerateTruncates - Generate reuse formulae from different IV types.
- void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
- // Don't bother truncating symbolic values.
- if (Base.BaseGV) return;
- // Determine the integer type for the base formula.
- Type *DstTy = Base.getType();
- if (!DstTy) return;
- DstTy = SE.getEffectiveSCEVType(DstTy);
- for (Type *SrcTy : Types) {
- if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
- Formula F = Base;
- if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
- for (const SCEV *&BaseReg : F.BaseRegs)
- BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
- // TODO: This assumes we've done basic processing on all uses and
- // have an idea what the register usage is.
- if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
- continue;
- (void)InsertFormula(LU, LUIdx, F);
- }
- }
- }
- namespace {
- /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
- /// defer modifications so that the search phase doesn't have to worry about
- /// the data structures moving underneath it.
- struct WorkItem {
- size_t LUIdx;
- int64_t Imm;
- const SCEV *OrigReg;
- WorkItem(size_t LI, int64_t I, const SCEV *R)
- : LUIdx(LI), Imm(I), OrigReg(R) {}
- void print(raw_ostream &OS) const;
- void dump() const;
- };
- }
- void WorkItem::print(raw_ostream &OS) const {
- OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
- << " , add offset " << Imm;
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void WorkItem::dump() const {
- print(errs()); errs() << '\n';
- }
- #endif
- /// GenerateCrossUseConstantOffsets - Look for registers which are a constant
- /// distance apart and try to form reuse opportunities between them.
- void LSRInstance::GenerateCrossUseConstantOffsets() {
- // Group the registers by their value without any added constant offset.
- typedef std::map<int64_t, const SCEV *> ImmMapTy;
- DenseMap<const SCEV *, ImmMapTy> Map;
- DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
- SmallVector<const SCEV *, 8> Sequence;
- for (const SCEV *Use : RegUses) {
- const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
- int64_t Imm = ExtractImmediate(Reg, SE);
- auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
- if (Pair.second)
- Sequence.push_back(Reg);
- Pair.first->second.insert(std::make_pair(Imm, Use));
- UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
- }
- // Now examine each set of registers with the same base value. Build up
- // a list of work to do and do the work in a separate step so that we're
- // not adding formulae and register counts while we're searching.
- SmallVector<WorkItem, 32> WorkItems;
- SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
- for (const SCEV *Reg : Sequence) {
- const ImmMapTy &Imms = Map.find(Reg)->second;
- // It's not worthwhile looking for reuse if there's only one offset.
- if (Imms.size() == 1)
- continue;
- DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
- for (const auto &Entry : Imms)
- dbgs() << ' ' << Entry.first;
- dbgs() << '\n');
- // Examine each offset.
- for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
- J != JE; ++J) {
- const SCEV *OrigReg = J->second;
- int64_t JImm = J->first;
- const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
- if (!isa<SCEVConstant>(OrigReg) &&
- UsedByIndicesMap[Reg].count() == 1) {
- DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
- continue;
- }
- // Conservatively examine offsets between this orig reg a few selected
- // other orig regs.
- ImmMapTy::const_iterator OtherImms[] = {
- Imms.begin(), std::prev(Imms.end()),
- Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
- 2)
- };
- for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
- ImmMapTy::const_iterator M = OtherImms[i];
- if (M == J || M == JE) continue;
- // Compute the difference between the two.
- int64_t Imm = (uint64_t)JImm - M->first;
- for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
- LUIdx = UsedByIndices.find_next(LUIdx))
- // Make a memo of this use, offset, and register tuple.
- if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
- WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
- }
- }
- }
- Map.clear();
- Sequence.clear();
- UsedByIndicesMap.clear();
- UniqueItems.clear();
- // Now iterate through the worklist and add new formulae.
- for (const WorkItem &WI : WorkItems) {
- size_t LUIdx = WI.LUIdx;
- LSRUse &LU = Uses[LUIdx];
- int64_t Imm = WI.Imm;
- const SCEV *OrigReg = WI.OrigReg;
- Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
- const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
- unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
- // TODO: Use a more targeted data structure.
- for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
- Formula F = LU.Formulae[L];
- // FIXME: The code for the scaled and unscaled registers looks
- // very similar but slightly different. Investigate if they
- // could be merged. That way, we would not have to unscale the
- // Formula.
- F.Unscale();
- // Use the immediate in the scaled register.
- if (F.ScaledReg == OrigReg) {
- int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
- // Don't create 50 + reg(-50).
- if (F.referencesReg(SE.getSCEV(
- ConstantInt::get(IntTy, -(uint64_t)Offset))))
- continue;
- Formula NewF = F;
- NewF.BaseOffset = Offset;
- if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
- NewF))
- continue;
- NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
- // If the new scale is a constant in a register, and adding the constant
- // value to the immediate would produce a value closer to zero than the
- // immediate itself, then the formula isn't worthwhile.
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
- if (C->getValue()->isNegative() !=
- (NewF.BaseOffset < 0) &&
- (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale))
- .ule(std::abs(NewF.BaseOffset)))
- continue;
- // OK, looks good.
- NewF.Canonicalize();
- (void)InsertFormula(LU, LUIdx, NewF);
- } else {
- // Use the immediate in a base register.
- for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
- const SCEV *BaseReg = F.BaseRegs[N];
- if (BaseReg != OrigReg)
- continue;
- Formula NewF = F;
- NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
- if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, NewF)) {
- if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
- continue;
- NewF = F;
- NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
- }
- NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
- // If the new formula has a constant in a register, and adding the
- // constant value to the immediate would produce a value closer to
- // zero than the immediate itself, then the formula isn't worthwhile.
- for (const SCEV *NewReg : NewF.BaseRegs)
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
- if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt(
- std::abs(NewF.BaseOffset)) &&
- (C->getValue()->getValue() +
- NewF.BaseOffset).countTrailingZeros() >=
- countTrailingZeros<uint64_t>(NewF.BaseOffset))
- goto skip_formula;
- // Ok, looks good.
- NewF.Canonicalize();
- (void)InsertFormula(LU, LUIdx, NewF);
- break;
- skip_formula:;
- }
- }
- }
- }
- }
- /// GenerateAllReuseFormulae - Generate formulae for each use.
- void
- LSRInstance::GenerateAllReuseFormulae() {
- // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
- // queries are more precise.
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
- GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
- for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
- GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
- }
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
- GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
- for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
- GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
- for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
- GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
- for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
- GenerateScales(LU, LUIdx, LU.Formulae[i]);
- }
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
- GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
- }
- GenerateCrossUseConstantOffsets();
- DEBUG(dbgs() << "\n"
- "After generating reuse formulae:\n";
- print_uses(dbgs()));
- }
- /// If there are multiple formulae with the same set of registers used
- /// by other uses, pick the best one and delete the others.
- void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
- DenseSet<const SCEV *> VisitedRegs;
- SmallPtrSet<const SCEV *, 16> Regs;
- SmallPtrSet<const SCEV *, 16> LoserRegs;
- #ifndef NDEBUG
- bool ChangedFormulae = false;
- #endif
- // Collect the best formula for each unique set of shared registers. This
- // is reset for each use.
- typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
- BestFormulaeTy;
- BestFormulaeTy BestFormulae;
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
- bool Any = false;
- for (size_t FIdx = 0, NumForms = LU.Formulae.size();
- FIdx != NumForms; ++FIdx) {
- Formula &F = LU.Formulae[FIdx];
- // Some formulas are instant losers. For example, they may depend on
- // nonexistent AddRecs from other loops. These need to be filtered
- // immediately, otherwise heuristics could choose them over others leading
- // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
- // avoids the need to recompute this information across formulae using the
- // same bad AddRec. Passing LoserRegs is also essential unless we remove
- // the corresponding bad register from the Regs set.
- Cost CostF;
- Regs.clear();
- CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU,
- &LoserRegs);
- if (CostF.isLoser()) {
- // During initial formula generation, undesirable formulae are generated
- // by uses within other loops that have some non-trivial address mode or
- // use the postinc form of the IV. LSR needs to provide these formulae
- // as the basis of rediscovering the desired formula that uses an AddRec
- // corresponding to the existing phi. Once all formulae have been
- // generated, these initial losers may be pruned.
- DEBUG(dbgs() << " Filtering loser "; F.print(dbgs());
- dbgs() << "\n");
- }
- else {
- SmallVector<const SCEV *, 4> Key;
- for (const SCEV *Reg : F.BaseRegs) {
- if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
- Key.push_back(Reg);
- }
- if (F.ScaledReg &&
- RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
- Key.push_back(F.ScaledReg);
- // Unstable sort by host order ok, because this is only used for
- // uniquifying.
- std::sort(Key.begin(), Key.end());
- std::pair<BestFormulaeTy::const_iterator, bool> P =
- BestFormulae.insert(std::make_pair(Key, FIdx));
- if (P.second)
- continue;
- Formula &Best = LU.Formulae[P.first->second];
- Cost CostBest;
- Regs.clear();
- CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE,
- DT, LU);
- if (CostF < CostBest)
- std::swap(F, Best);
- DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
- dbgs() << "\n"
- " in favor of formula "; Best.print(dbgs());
- dbgs() << '\n');
- }
- #ifndef NDEBUG
- ChangedFormulae = true;
- #endif
- LU.DeleteFormula(F);
- --FIdx;
- --NumForms;
- Any = true;
- }
- // Now that we've filtered out some formulae, recompute the Regs set.
- if (Any)
- LU.RecomputeRegs(LUIdx, RegUses);
- // Reset this to prepare for the next use.
- BestFormulae.clear();
- }
- DEBUG(if (ChangedFormulae) {
- dbgs() << "\n"
- "After filtering out undesirable candidates:\n";
- print_uses(dbgs());
- });
- }
- // This is a rough guess that seems to work fairly well.
- static const size_t ComplexityLimit = UINT16_MAX;
- /// EstimateSearchSpaceComplexity - Estimate the worst-case number of
- /// solutions the solver might have to consider. It almost never considers
- /// this many solutions because it prune the search space, but the pruning
- /// isn't always sufficient.
- size_t LSRInstance::EstimateSearchSpaceComplexity() const {
- size_t Power = 1;
- for (const LSRUse &LU : Uses) {
- size_t FSize = LU.Formulae.size();
- if (FSize >= ComplexityLimit) {
- Power = ComplexityLimit;
- break;
- }
- Power *= FSize;
- if (Power >= ComplexityLimit)
- break;
- }
- return Power;
- }
- /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
- /// of the registers of another formula, it won't help reduce register
- /// pressure (though it may not necessarily hurt register pressure); remove
- /// it to simplify the system.
- void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
- if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
- DEBUG(dbgs() << "The search space is too complex.\n");
- DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
- "which use a superset of registers used by other "
- "formulae.\n");
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- bool Any = false;
- for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
- Formula &F = LU.Formulae[i];
- // Look for a formula with a constant or GV in a register. If the use
- // also has a formula with that same value in an immediate field,
- // delete the one that uses a register.
- for (SmallVectorImpl<const SCEV *>::const_iterator
- I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
- Formula NewF = F;
- NewF.BaseOffset += C->getValue()->getSExtValue();
- NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
- (I - F.BaseRegs.begin()));
- if (LU.HasFormulaWithSameRegs(NewF)) {
- DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
- LU.DeleteFormula(F);
- --i;
- --e;
- Any = true;
- break;
- }
- } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
- if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
- if (!F.BaseGV) {
- Formula NewF = F;
- NewF.BaseGV = GV;
- NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
- (I - F.BaseRegs.begin()));
- if (LU.HasFormulaWithSameRegs(NewF)) {
- DEBUG(dbgs() << " Deleting "; F.print(dbgs());
- dbgs() << '\n');
- LU.DeleteFormula(F);
- --i;
- --e;
- Any = true;
- break;
- }
- }
- }
- }
- }
- if (Any)
- LU.RecomputeRegs(LUIdx, RegUses);
- }
- DEBUG(dbgs() << "After pre-selection:\n";
- print_uses(dbgs()));
- }
- }
- /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
- /// for expressions like A, A+1, A+2, etc., allocate a single register for
- /// them.
- void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
- if (EstimateSearchSpaceComplexity() < ComplexityLimit)
- return;
- DEBUG(dbgs() << "The search space is too complex.\n"
- "Narrowing the search space by assuming that uses separated "
- "by a constant offset will use the same registers.\n");
- // This is especially useful for unrolled loops.
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- for (const Formula &F : LU.Formulae) {
- if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
- continue;
- LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
- if (!LUThatHas)
- continue;
- if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
- LU.Kind, LU.AccessTy))
- continue;
- DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n');
- LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
- // Update the relocs to reference the new use.
- for (LSRFixup &Fixup : Fixups) {
- if (Fixup.LUIdx == LUIdx) {
- Fixup.LUIdx = LUThatHas - &Uses.front();
- Fixup.Offset += F.BaseOffset;
- // Add the new offset to LUThatHas' offset list.
- if (LUThatHas->Offsets.back() != Fixup.Offset) {
- LUThatHas->Offsets.push_back(Fixup.Offset);
- if (Fixup.Offset > LUThatHas->MaxOffset)
- LUThatHas->MaxOffset = Fixup.Offset;
- if (Fixup.Offset < LUThatHas->MinOffset)
- LUThatHas->MinOffset = Fixup.Offset;
- }
- DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
- }
- if (Fixup.LUIdx == NumUses-1)
- Fixup.LUIdx = LUIdx;
- }
- // Delete formulae from the new use which are no longer legal.
- bool Any = false;
- for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
- Formula &F = LUThatHas->Formulae[i];
- if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
- LUThatHas->Kind, LUThatHas->AccessTy, F)) {
- DEBUG(dbgs() << " Deleting "; F.print(dbgs());
- dbgs() << '\n');
- LUThatHas->DeleteFormula(F);
- --i;
- --e;
- Any = true;
- }
- }
- if (Any)
- LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
- // Delete the old use.
- DeleteUse(LU, LUIdx);
- --LUIdx;
- --NumUses;
- break;
- }
- }
- DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
- }
- /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
- /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
- /// we've done more filtering, as it may be able to find more formulae to
- /// eliminate.
- void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
- if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
- DEBUG(dbgs() << "The search space is too complex.\n");
- DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
- "undesirable dedicated registers.\n");
- FilterOutUndesirableDedicatedRegisters();
- DEBUG(dbgs() << "After pre-selection:\n";
- print_uses(dbgs()));
- }
- }
- /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
- /// to be profitable, and then in any use which has any reference to that
- /// register, delete all formulae which do not reference that register.
- void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
- // With all other options exhausted, loop until the system is simple
- // enough to handle.
- SmallPtrSet<const SCEV *, 4> Taken;
- while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
- // Ok, we have too many of formulae on our hands to conveniently handle.
- // Use a rough heuristic to thin out the list.
- DEBUG(dbgs() << "The search space is too complex.\n");
- // Pick the register which is used by the most LSRUses, which is likely
- // to be a good reuse register candidate.
- const SCEV *Best = nullptr;
- unsigned BestNum = 0;
- for (const SCEV *Reg : RegUses) {
- if (Taken.count(Reg))
- continue;
- if (!Best)
- Best = Reg;
- else {
- unsigned Count = RegUses.getUsedByIndices(Reg).count();
- if (Count > BestNum) {
- Best = Reg;
- BestNum = Count;
- }
- }
- }
- DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
- << " will yield profitable reuse.\n");
- Taken.insert(Best);
- // In any use with formulae which references this register, delete formulae
- // which don't reference it.
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- if (!LU.Regs.count(Best)) continue;
- bool Any = false;
- for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
- Formula &F = LU.Formulae[i];
- if (!F.referencesReg(Best)) {
- DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
- LU.DeleteFormula(F);
- --e;
- --i;
- Any = true;
- assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
- continue;
- }
- }
- if (Any)
- LU.RecomputeRegs(LUIdx, RegUses);
- }
- DEBUG(dbgs() << "After pre-selection:\n";
- print_uses(dbgs()));
- }
- }
- /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
- /// formulae to choose from, use some rough heuristics to prune down the number
- /// of formulae. This keeps the main solver from taking an extraordinary amount
- /// of time in some worst-case scenarios.
- void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
- NarrowSearchSpaceByDetectingSupersets();
- NarrowSearchSpaceByCollapsingUnrolledCode();
- NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
- NarrowSearchSpaceByPickingWinnerRegs();
- }
- /// SolveRecurse - This is the recursive solver.
- void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
- Cost &SolutionCost,
- SmallVectorImpl<const Formula *> &Workspace,
- const Cost &CurCost,
- const SmallPtrSet<const SCEV *, 16> &CurRegs,
- DenseSet<const SCEV *> &VisitedRegs) const {
- // Some ideas:
- // - prune more:
- // - use more aggressive filtering
- // - sort the formula so that the most profitable solutions are found first
- // - sort the uses too
- // - search faster:
- // - don't compute a cost, and then compare. compare while computing a cost
- // and bail early.
- // - track register sets with SmallBitVector
- const LSRUse &LU = Uses[Workspace.size()];
- // If this use references any register that's already a part of the
- // in-progress solution, consider it a requirement that a formula must
- // reference that register in order to be considered. This prunes out
- // unprofitable searching.
- SmallSetVector<const SCEV *, 4> ReqRegs;
- for (const SCEV *S : CurRegs)
- if (LU.Regs.count(S))
- ReqRegs.insert(S);
- SmallPtrSet<const SCEV *, 16> NewRegs;
- Cost NewCost;
- for (const Formula &F : LU.Formulae) {
- // Ignore formulae which may not be ideal in terms of register reuse of
- // ReqRegs. The formula should use all required registers before
- // introducing new ones.
- int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
- for (const SCEV *Reg : ReqRegs) {
- if ((F.ScaledReg && F.ScaledReg == Reg) ||
- std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) !=
- F.BaseRegs.end()) {
- --NumReqRegsToFind;
- if (NumReqRegsToFind == 0)
- break;
- }
- }
- if (NumReqRegsToFind != 0) {
- // If none of the formulae satisfied the required registers, then we could
- // clear ReqRegs and try again. Currently, we simply give up in this case.
- continue;
- }
- // Evaluate the cost of the current formula. If it's already worse than
- // the current best, prune the search at that point.
- NewCost = CurCost;
- NewRegs = CurRegs;
- NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT,
- LU);
- if (NewCost < SolutionCost) {
- Workspace.push_back(&F);
- if (Workspace.size() != Uses.size()) {
- SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
- NewRegs, VisitedRegs);
- if (F.getNumRegs() == 1 && Workspace.size() == 1)
- VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
- } else {
- DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
- dbgs() << ".\n Regs:";
- for (const SCEV *S : NewRegs)
- dbgs() << ' ' << *S;
- dbgs() << '\n');
- SolutionCost = NewCost;
- Solution = Workspace;
- }
- Workspace.pop_back();
- }
- }
- }
- /// Solve - Choose one formula from each use. Return the results in the given
- /// Solution vector.
- void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
- SmallVector<const Formula *, 8> Workspace;
- Cost SolutionCost;
- SolutionCost.Lose();
- Cost CurCost;
- SmallPtrSet<const SCEV *, 16> CurRegs;
- DenseSet<const SCEV *> VisitedRegs;
- Workspace.reserve(Uses.size());
- // SolveRecurse does all the work.
- SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
- CurRegs, VisitedRegs);
- if (Solution.empty()) {
- DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
- return;
- }
- // Ok, we've now made all our decisions.
- DEBUG(dbgs() << "\n"
- "The chosen solution requires "; SolutionCost.print(dbgs());
- dbgs() << ":\n";
- for (size_t i = 0, e = Uses.size(); i != e; ++i) {
- dbgs() << " ";
- Uses[i].print(dbgs());
- dbgs() << "\n"
- " ";
- Solution[i]->print(dbgs());
- dbgs() << '\n';
- });
- assert(Solution.size() == Uses.size() && "Malformed solution!");
- }
- /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
- /// the dominator tree far as we can go while still being dominated by the
- /// input positions. This helps canonicalize the insert position, which
- /// encourages sharing.
- BasicBlock::iterator
- LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
- const SmallVectorImpl<Instruction *> &Inputs)
- const {
- for (;;) {
- const Loop *IPLoop = LI.getLoopFor(IP->getParent());
- unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
- BasicBlock *IDom;
- for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
- if (!Rung) return IP;
- Rung = Rung->getIDom();
- if (!Rung) return IP;
- IDom = Rung->getBlock();
- // Don't climb into a loop though.
- const Loop *IDomLoop = LI.getLoopFor(IDom);
- unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
- if (IDomDepth <= IPLoopDepth &&
- (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
- break;
- }
- bool AllDominate = true;
- Instruction *BetterPos = nullptr;
- Instruction *Tentative = IDom->getTerminator();
- for (Instruction *Inst : Inputs) {
- if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
- AllDominate = false;
- break;
- }
- // Attempt to find an insert position in the middle of the block,
- // instead of at the end, so that it can be used for other expansions.
- if (IDom == Inst->getParent() &&
- (!BetterPos || !DT.dominates(Inst, BetterPos)))
- BetterPos = std::next(BasicBlock::iterator(Inst));
- }
- if (!AllDominate)
- break;
- if (BetterPos)
- IP = BetterPos;
- else
- IP = Tentative;
- }
- return IP;
- }
- /// AdjustInsertPositionForExpand - Determine an input position which will be
- /// dominated by the operands and which will dominate the result.
- BasicBlock::iterator
- LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
- const LSRFixup &LF,
- const LSRUse &LU,
- SCEVExpander &Rewriter) const {
- // Collect some instructions which must be dominated by the
- // expanding replacement. These must be dominated by any operands that
- // will be required in the expansion.
- SmallVector<Instruction *, 4> Inputs;
- if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
- Inputs.push_back(I);
- if (LU.Kind == LSRUse::ICmpZero)
- if (Instruction *I =
- dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
- Inputs.push_back(I);
- if (LF.PostIncLoops.count(L)) {
- if (LF.isUseFullyOutsideLoop(L))
- Inputs.push_back(L->getLoopLatch()->getTerminator());
- else
- Inputs.push_back(IVIncInsertPos);
- }
- // The expansion must also be dominated by the increment positions of any
- // loops it for which it is using post-inc mode.
- for (const Loop *PIL : LF.PostIncLoops) {
- if (PIL == L) continue;
- // Be dominated by the loop exit.
- SmallVector<BasicBlock *, 4> ExitingBlocks;
- PIL->getExitingBlocks(ExitingBlocks);
- if (!ExitingBlocks.empty()) {
- BasicBlock *BB = ExitingBlocks[0];
- for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
- BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
- Inputs.push_back(BB->getTerminator());
- }
- }
- assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
- && !isa<DbgInfoIntrinsic>(LowestIP) &&
- "Insertion point must be a normal instruction");
- // Then, climb up the immediate dominator tree as far as we can go while
- // still being dominated by the input positions.
- BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
- // Don't insert instructions before PHI nodes.
- while (isa<PHINode>(IP)) ++IP;
- // Ignore landingpad instructions.
- while (isa<LandingPadInst>(IP)) ++IP;
- // Ignore debug intrinsics.
- while (isa<DbgInfoIntrinsic>(IP)) ++IP;
- // Set IP below instructions recently inserted by SCEVExpander. This keeps the
- // IP consistent across expansions and allows the previously inserted
- // instructions to be reused by subsequent expansion.
- while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
- return IP;
- }
- /// Expand - Emit instructions for the leading candidate expression for this
- /// LSRUse (this is called "expanding").
- Value *LSRInstance::Expand(const LSRFixup &LF,
- const Formula &F,
- BasicBlock::iterator IP,
- SCEVExpander &Rewriter,
- SmallVectorImpl<WeakVH> &DeadInsts) const {
- const LSRUse &LU = Uses[LF.LUIdx];
- if (LU.RigidFormula)
- return LF.OperandValToReplace;
- // Determine an input position which will be dominated by the operands and
- // which will dominate the result.
- IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
- // Inform the Rewriter if we have a post-increment use, so that it can
- // perform an advantageous expansion.
- Rewriter.setPostInc(LF.PostIncLoops);
- // This is the type that the user actually needs.
- Type *OpTy = LF.OperandValToReplace->getType();
- // This will be the type that we'll initially expand to.
- Type *Ty = F.getType();
- if (!Ty)
- // No type known; just expand directly to the ultimate type.
- Ty = OpTy;
- else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
- // Expand directly to the ultimate type if it's the right size.
- Ty = OpTy;
- // This is the type to do integer arithmetic in.
- Type *IntTy = SE.getEffectiveSCEVType(Ty);
- // Build up a list of operands to add together to form the full base.
- SmallVector<const SCEV *, 8> Ops;
- // Expand the BaseRegs portion.
- for (const SCEV *Reg : F.BaseRegs) {
- assert(!Reg->isZero() && "Zero allocated in a base register!");
- // If we're expanding for a post-inc user, make the post-inc adjustment.
- PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
- Reg = TransformForPostIncUse(Denormalize, Reg,
- LF.UserInst, LF.OperandValToReplace,
- Loops, SE, DT);
- Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, IP)));
- }
- // Expand the ScaledReg portion.
- Value *ICmpScaledV = nullptr;
- if (F.Scale != 0) {
- const SCEV *ScaledS = F.ScaledReg;
- // If we're expanding for a post-inc user, make the post-inc adjustment.
- PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
- ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
- LF.UserInst, LF.OperandValToReplace,
- Loops, SE, DT);
- if (LU.Kind == LSRUse::ICmpZero) {
- // Expand ScaleReg as if it was part of the base regs.
- if (F.Scale == 1)
- Ops.push_back(
- SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP)));
- else {
- // An interesting way of "folding" with an icmp is to use a negated
- // scale, which we'll implement by inserting it into the other operand
- // of the icmp.
- assert(F.Scale == -1 &&
- "The only scale supported by ICmpZero uses is -1!");
- ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, IP);
- }
- } else {
- // Otherwise just expand the scaled register and an explicit scale,
- // which is expected to be matched as part of the address.
- // Flush the operand list to suppress SCEVExpander hoisting address modes.
- // Unless the addressing mode will not be folded.
- if (!Ops.empty() && LU.Kind == LSRUse::Address &&
- isAMCompletelyFolded(TTI, LU, F)) {
- Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
- Ops.clear();
- Ops.push_back(SE.getUnknown(FullV));
- }
- ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP));
- if (F.Scale != 1)
- ScaledS =
- SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
- Ops.push_back(ScaledS);
- }
- }
- // Expand the GV portion.
- if (F.BaseGV) {
- // Flush the operand list to suppress SCEVExpander hoisting.
- if (!Ops.empty()) {
- Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
- Ops.clear();
- Ops.push_back(SE.getUnknown(FullV));
- }
- Ops.push_back(SE.getUnknown(F.BaseGV));
- }
- // Flush the operand list to suppress SCEVExpander hoisting of both folded and
- // unfolded offsets. LSR assumes they both live next to their uses.
- if (!Ops.empty()) {
- Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
- Ops.clear();
- Ops.push_back(SE.getUnknown(FullV));
- }
- // Expand the immediate portion.
- int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
- if (Offset != 0) {
- if (LU.Kind == LSRUse::ICmpZero) {
- // The other interesting way of "folding" with an ICmpZero is to use a
- // negated immediate.
- if (!ICmpScaledV)
- ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
- else {
- Ops.push_back(SE.getUnknown(ICmpScaledV));
- ICmpScaledV = ConstantInt::get(IntTy, Offset);
- }
- } else {
- // Just add the immediate values. These again are expected to be matched
- // as part of the address.
- Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
- }
- }
- // Expand the unfolded offset portion.
- int64_t UnfoldedOffset = F.UnfoldedOffset;
- if (UnfoldedOffset != 0) {
- // Just add the immediate values.
- Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
- UnfoldedOffset)));
- }
- // Emit instructions summing all the operands.
- const SCEV *FullS = Ops.empty() ?
- SE.getConstant(IntTy, 0) :
- SE.getAddExpr(Ops);
- Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
- // We're done expanding now, so reset the rewriter.
- Rewriter.clearPostInc();
- // An ICmpZero Formula represents an ICmp which we're handling as a
- // comparison against zero. Now that we've expanded an expression for that
- // form, update the ICmp's other operand.
- if (LU.Kind == LSRUse::ICmpZero) {
- ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
- DeadInsts.emplace_back(CI->getOperand(1));
- assert(!F.BaseGV && "ICmp does not support folding a global value and "
- "a scale at the same time!");
- if (F.Scale == -1) {
- if (ICmpScaledV->getType() != OpTy) {
- Instruction *Cast =
- CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
- OpTy, false),
- ICmpScaledV, OpTy, "tmp", CI);
- ICmpScaledV = Cast;
- }
- CI->setOperand(1, ICmpScaledV);
- } else {
- // A scale of 1 means that the scale has been expanded as part of the
- // base regs.
- assert((F.Scale == 0 || F.Scale == 1) &&
- "ICmp does not support folding a global value and "
- "a scale at the same time!");
- Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
- -(uint64_t)Offset);
- if (C->getType() != OpTy)
- C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
- OpTy, false),
- C, OpTy);
- CI->setOperand(1, C);
- }
- }
- return FullV;
- }
- /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
- /// of their operands effectively happens in their predecessor blocks, so the
- /// expression may need to be expanded in multiple places.
- void LSRInstance::RewriteForPHI(PHINode *PN,
- const LSRFixup &LF,
- const Formula &F,
- SCEVExpander &Rewriter,
- SmallVectorImpl<WeakVH> &DeadInsts,
- Pass *P) const {
- DenseMap<BasicBlock *, Value *> Inserted;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
- BasicBlock *BB = PN->getIncomingBlock(i);
- // If this is a critical edge, split the edge so that we do not insert
- // the code on all predecessor/successor paths. We do this unless this
- // is the canonical backedge for this loop, which complicates post-inc
- // users.
- if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
- !isa<IndirectBrInst>(BB->getTerminator())) {
- BasicBlock *Parent = PN->getParent();
- Loop *PNLoop = LI.getLoopFor(Parent);
- if (!PNLoop || Parent != PNLoop->getHeader()) {
- // Split the critical edge.
- BasicBlock *NewBB = nullptr;
- if (!Parent->isLandingPad()) {
- NewBB = SplitCriticalEdge(BB, Parent,
- CriticalEdgeSplittingOptions(&DT, &LI)
- .setMergeIdenticalEdges()
- .setDontDeleteUselessPHIs());
- } else {
- SmallVector<BasicBlock*, 2> NewBBs;
- SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs,
- /*AliasAnalysis*/ nullptr, &DT, &LI);
- NewBB = NewBBs[0];
- }
- // If NewBB==NULL, then SplitCriticalEdge refused to split because all
- // phi predecessors are identical. The simple thing to do is skip
- // splitting in this case rather than complicate the API.
- if (NewBB) {
- // If PN is outside of the loop and BB is in the loop, we want to
- // move the block to be immediately before the PHI block, not
- // immediately after BB.
- if (L->contains(BB) && !L->contains(PN))
- NewBB->moveBefore(PN->getParent());
- // Splitting the edge can reduce the number of PHI entries we have.
- e = PN->getNumIncomingValues();
- BB = NewBB;
- i = PN->getBasicBlockIndex(BB);
- }
- }
- }
- std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
- Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
- if (!Pair.second)
- PN->setIncomingValue(i, Pair.first->second);
- else {
- Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
- // If this is reuse-by-noop-cast, insert the noop cast.
- Type *OpTy = LF.OperandValToReplace->getType();
- if (FullV->getType() != OpTy)
- FullV =
- CastInst::Create(CastInst::getCastOpcode(FullV, false,
- OpTy, false),
- FullV, LF.OperandValToReplace->getType(),
- "tmp", BB->getTerminator());
- PN->setIncomingValue(i, FullV);
- Pair.first->second = FullV;
- }
- }
- }
- /// Rewrite - Emit instructions for the leading candidate expression for this
- /// LSRUse (this is called "expanding"), and update the UserInst to reference
- /// the newly expanded value.
- void LSRInstance::Rewrite(const LSRFixup &LF,
- const Formula &F,
- SCEVExpander &Rewriter,
- SmallVectorImpl<WeakVH> &DeadInsts,
- Pass *P) const {
- // First, find an insertion point that dominates UserInst. For PHI nodes,
- // find the nearest block which dominates all the relevant uses.
- if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
- RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
- } else {
- Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
- // If this is reuse-by-noop-cast, insert the noop cast.
- Type *OpTy = LF.OperandValToReplace->getType();
- if (FullV->getType() != OpTy) {
- Instruction *Cast =
- CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
- FullV, OpTy, "tmp", LF.UserInst);
- FullV = Cast;
- }
- // Update the user. ICmpZero is handled specially here (for now) because
- // Expand may have updated one of the operands of the icmp already, and
- // its new value may happen to be equal to LF.OperandValToReplace, in
- // which case doing replaceUsesOfWith leads to replacing both operands
- // with the same value. TODO: Reorganize this.
- if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
- LF.UserInst->setOperand(0, FullV);
- else
- LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
- }
- DeadInsts.emplace_back(LF.OperandValToReplace);
- }
- /// ImplementSolution - Rewrite all the fixup locations with new values,
- /// following the chosen solution.
- void
- LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
- Pass *P) {
- // Keep track of instructions we may have made dead, so that
- // we can remove them after we are done working.
- SmallVector<WeakVH, 16> DeadInsts;
- SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
- "lsr");
- #ifndef NDEBUG
- Rewriter.setDebugType(DEBUG_TYPE);
- #endif
- Rewriter.disableCanonicalMode();
- Rewriter.enableLSRMode();
- Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
- // Mark phi nodes that terminate chains so the expander tries to reuse them.
- for (const IVChain &Chain : IVChainVec) {
- if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
- Rewriter.setChainedPhi(PN);
- }
- // Expand the new value definitions and update the users.
- for (const LSRFixup &Fixup : Fixups) {
- Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
- Changed = true;
- }
- for (const IVChain &Chain : IVChainVec) {
- GenerateIVChain(Chain, Rewriter, DeadInsts);
- Changed = true;
- }
- // Clean up after ourselves. This must be done before deleting any
- // instructions.
- Rewriter.clear();
- Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
- }
- LSRInstance::LSRInstance(Loop *L, Pass *P)
- : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()),
- DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()),
- LI(P->getAnalysis<LoopInfoWrapperPass>().getLoopInfo()),
- TTI(P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
- *L->getHeader()->getParent())),
- L(L), Changed(false), IVIncInsertPos(nullptr) {
- // If LoopSimplify form is not available, stay out of trouble.
- if (!L->isLoopSimplifyForm())
- return;
- // If there's no interesting work to be done, bail early.
- if (IU.empty()) return;
- // If there's too much analysis to be done, bail early. We won't be able to
- // model the problem anyway.
- unsigned NumUsers = 0;
- for (const IVStrideUse &U : IU) {
- if (++NumUsers > MaxIVUsers) {
- (void)U;
- DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
- return;
- }
- }
- #ifndef NDEBUG
- // All dominating loops must have preheaders, or SCEVExpander may not be able
- // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
- //
- // IVUsers analysis should only create users that are dominated by simple loop
- // headers. Since this loop should dominate all of its users, its user list
- // should be empty if this loop itself is not within a simple loop nest.
- for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
- Rung; Rung = Rung->getIDom()) {
- BasicBlock *BB = Rung->getBlock();
- const Loop *DomLoop = LI.getLoopFor(BB);
- if (DomLoop && DomLoop->getHeader() == BB) {
- assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
- }
- }
- #endif // DEBUG
- DEBUG(dbgs() << "\nLSR on loop ";
- L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
- dbgs() << ":\n");
- // First, perform some low-level loop optimizations.
- OptimizeShadowIV();
- OptimizeLoopTermCond();
- // If loop preparation eliminates all interesting IV users, bail.
- if (IU.empty()) return;
- // Skip nested loops until we can model them better with formulae.
- if (!L->empty()) {
- DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
- return;
- }
- // Start collecting data and preparing for the solver.
- CollectChains();
- CollectInterestingTypesAndFactors();
- CollectFixupsAndInitialFormulae();
- CollectLoopInvariantFixupsAndFormulae();
- assert(!Uses.empty() && "IVUsers reported at least one use");
- DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
- print_uses(dbgs()));
- // Now use the reuse data to generate a bunch of interesting ways
- // to formulate the values needed for the uses.
- GenerateAllReuseFormulae();
- FilterOutUndesirableDedicatedRegisters();
- NarrowSearchSpaceUsingHeuristics();
- SmallVector<const Formula *, 8> Solution;
- Solve(Solution);
- // Release memory that is no longer needed.
- Factors.clear();
- Types.clear();
- RegUses.clear();
- if (Solution.empty())
- return;
- #ifndef NDEBUG
- // Formulae should be legal.
- for (const LSRUse &LU : Uses) {
- for (const Formula &F : LU.Formulae)
- assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
- F) && "Illegal formula generated!");
- };
- #endif
- // Now that we've decided what we want, make it so.
- ImplementSolution(Solution, P);
- }
- void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
- if (Factors.empty() && Types.empty()) return;
- OS << "LSR has identified the following interesting factors and types: ";
- bool First = true;
- for (int64_t Factor : Factors) {
- if (!First) OS << ", ";
- First = false;
- OS << '*' << Factor;
- }
- for (Type *Ty : Types) {
- if (!First) OS << ", ";
- First = false;
- OS << '(' << *Ty << ')';
- }
- OS << '\n';
- }
- void LSRInstance::print_fixups(raw_ostream &OS) const {
- OS << "LSR is examining the following fixup sites:\n";
- for (const LSRFixup &LF : Fixups) {
- dbgs() << " ";
- LF.print(OS);
- OS << '\n';
- }
- }
- void LSRInstance::print_uses(raw_ostream &OS) const {
- OS << "LSR is examining the following uses:\n";
- for (const LSRUse &LU : Uses) {
- dbgs() << " ";
- LU.print(OS);
- OS << '\n';
- for (const Formula &F : LU.Formulae) {
- OS << " ";
- F.print(OS);
- OS << '\n';
- }
- }
- }
- void LSRInstance::print(raw_ostream &OS) const {
- print_factors_and_types(OS);
- print_fixups(OS);
- print_uses(OS);
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void LSRInstance::dump() const {
- print(errs()); errs() << '\n';
- }
- #endif
- namespace {
- class LoopStrengthReduce : public LoopPass {
- public:
- static char ID; // Pass ID, replacement for typeid
- LoopStrengthReduce();
- private:
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override;
- };
- }
- char LoopStrengthReduce::ID = 0;
- INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
- "Loop Strength Reduction", false, false)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
- INITIALIZE_PASS_DEPENDENCY(IVUsers)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
- INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
- "Loop Strength Reduction", false, false)
- Pass *llvm::createLoopStrengthReducePass() {
- return new LoopStrengthReduce();
- }
- LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
- initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
- }
- void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
- // We split critical edges, so we change the CFG. However, we do update
- // many analyses if they are around.
- AU.addPreservedID(LoopSimplifyID);
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addRequired<ScalarEvolution>();
- AU.addPreserved<ScalarEvolution>();
- // Requiring LoopSimplify a second time here prevents IVUsers from running
- // twice, since LoopSimplify was invalidated by running ScalarEvolution.
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequired<IVUsers>();
- AU.addPreserved<IVUsers>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- }
- bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
- if (skipOptnoneFunction(L))
- return false;
- bool Changed = false;
- // Run the main LSR transformation.
- #if 0 // HLSL Change - move LSRInstance to the heap to avoid >16K stack allocation here.
- Changed |= LSRInstance(L, this).getChanged();
- #else
- {
- std::unique_ptr<LSRInstance> instance(new LSRInstance(L, this));
- Changed |= instance->getChanged();
- }
- #endif
- // Remove any extra phis created by processing inner loops.
- Changed |= DeleteDeadPHIs(L->getHeader());
- if (EnablePhiElim && L->isLoopSimplifyForm()) {
- SmallVector<WeakVH, 16> DeadInsts;
- const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
- SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), DL, "lsr");
- #ifndef NDEBUG
- Rewriter.setDebugType(DEBUG_TYPE);
- #endif
- unsigned numFolded = Rewriter.replaceCongruentIVs(
- L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts,
- &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
- *L->getHeader()->getParent()));
- if (numFolded) {
- Changed = true;
- DeleteTriviallyDeadInstructions(DeadInsts);
- DeleteDeadPHIs(L->getHeader());
- }
- }
- return Changed;
- }
|