| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942 |
- //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass implements a simple loop unroller. It works best when loops have
- // been canonicalized by the -indvars pass, allowing it to determine the trip
- // counts of loops easily.
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CodeMetrics.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/InstVisitor.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/UnrollLoop.h"
- #include <climits>
- using namespace llvm;
- #define DEBUG_TYPE "loop-unroll"
- #if 0 // HLSL Change Starts - option pending
- static cl::opt<unsigned>
- UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden,
- cl::desc("The baseline cost threshold for loop unrolling"));
- static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold(
- "unroll-percent-dynamic-cost-saved-threshold", cl::init(20), cl::Hidden,
- cl::desc("The percentage of estimated dynamic cost which must be saved by "
- "unrolling to allow unrolling up to the max threshold."));
- static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount(
- "unroll-dynamic-cost-savings-discount", cl::init(2000), cl::Hidden,
- cl::desc("This is the amount discounted from the total unroll cost when "
- "the unrolled form has a high dynamic cost savings (triggered by "
- "the '-unroll-perecent-dynamic-cost-saved-threshold' flag)."));
- static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
- "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden,
- cl::desc("Don't allow loop unrolling to simulate more than this number of"
- "iterations when checking full unroll profitability"));
- static cl::opt<unsigned>
- UnrollCount("unroll-count", cl::init(0), cl::Hidden,
- cl::desc("Use this unroll count for all loops including those with "
- "unroll_count pragma values, for testing purposes"));
- static cl::opt<bool>
- UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden,
- cl::desc("Allows loops to be partially unrolled until "
- "-unroll-threshold loop size is reached."));
- static cl::opt<bool>
- UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden,
- cl::desc("Unroll loops with run-time trip counts"));
- static cl::opt<unsigned>
- PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
- cl::desc("Unrolled size limit for loops with an unroll(full) or "
- "unroll_count pragma."));
- #else
- template <typename T>
- struct NullOpt {
- NullOpt(T val) : _val(val) {}
- T _val;
- unsigned getNumOccurrences() const { return 0; }
- operator T() const {
- return _val;
- }
- };
- static const NullOpt<unsigned> UnrollThreshold = 150;
- static const NullOpt<unsigned> UnrollPercentDynamicCostSavedThreshold = 20;
- static const NullOpt<unsigned> UnrollDynamicCostSavingsDiscount = 2000;
- static const NullOpt<unsigned> UnrollMaxIterationsCountToAnalyze = 0;
- static const NullOpt<unsigned> UnrollCount = 0;
- static const NullOpt<bool> UnrollAllowPartial = false;
- static const NullOpt<bool> UnrollRuntime = false;
- static const NullOpt<unsigned> PragmaUnrollThreshold = 16 * 1024;
- #endif // HLSL Change Ends
- namespace {
- class LoopUnroll : public LoopPass {
- public:
- static char ID; // Pass ID, replacement for typeid
- LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) {
- CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T);
- CurrentPercentDynamicCostSavedThreshold =
- UnrollPercentDynamicCostSavedThreshold;
- CurrentDynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount;
- CurrentCount = (C == -1) ? UnrollCount : unsigned(C);
- CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P;
- CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R;
- UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0);
- UserPercentDynamicCostSavedThreshold =
- (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0);
- UserDynamicCostSavingsDiscount =
- (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0);
- UserAllowPartial = (P != -1) ||
- (UnrollAllowPartial.getNumOccurrences() > 0);
- UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0);
- UserCount = (C != -1) || (UnrollCount.getNumOccurrences() > 0);
- initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
- }
- /// A magic value for use with the Threshold parameter to indicate
- /// that the loop unroll should be performed regardless of how much
- /// code expansion would result.
- static const unsigned NoThreshold = UINT_MAX;
- // Threshold to use when optsize is specified (and there is no
- // explicit -unroll-threshold).
- static const unsigned OptSizeUnrollThreshold = 50;
- // Default unroll count for loops with run-time trip count if
- // -unroll-count is not set
- static const unsigned UnrollRuntimeCount = 8;
- unsigned CurrentCount;
- unsigned CurrentThreshold;
- unsigned CurrentPercentDynamicCostSavedThreshold;
- unsigned CurrentDynamicCostSavingsDiscount;
- bool CurrentAllowPartial;
- bool CurrentRuntime;
- // Flags for whether the 'current' settings are user-specified.
- bool UserCount;
- bool UserThreshold;
- bool UserPercentDynamicCostSavedThreshold;
- bool UserDynamicCostSavingsDiscount;
- bool UserAllowPartial;
- bool UserRuntime;
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
- /// This transformation requires natural loop information & requires that
- /// loop preheaders be inserted into the CFG...
- ///
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addRequiredID(LoopSimplifyID);
- AU.addPreservedID(LoopSimplifyID);
- AU.addRequiredID(LCSSAID);
- AU.addPreservedID(LCSSAID);
- AU.addRequired<ScalarEvolution>();
- AU.addPreserved<ScalarEvolution>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
- // If loop unroll does not preserve dom info then LCSSA pass on next
- // loop will receive invalid dom info.
- // For now, recreate dom info, if loop is unrolled.
- AU.addPreserved<DominatorTreeWrapperPass>();
- }
- // Fill in the UnrollingPreferences parameter with values from the
- // TargetTransformationInfo.
- void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI,
- TargetTransformInfo::UnrollingPreferences &UP) {
- UP.Threshold = CurrentThreshold;
- UP.PercentDynamicCostSavedThreshold =
- CurrentPercentDynamicCostSavedThreshold;
- UP.DynamicCostSavingsDiscount = CurrentDynamicCostSavingsDiscount;
- UP.OptSizeThreshold = OptSizeUnrollThreshold;
- UP.PartialThreshold = CurrentThreshold;
- UP.PartialOptSizeThreshold = OptSizeUnrollThreshold;
- UP.Count = CurrentCount;
- UP.MaxCount = UINT_MAX;
- UP.Partial = CurrentAllowPartial;
- UP.Runtime = CurrentRuntime;
- UP.AllowExpensiveTripCount = false;
- TTI.getUnrollingPreferences(L, UP);
- }
- // Select and return an unroll count based on parameters from
- // user, unroll preferences, unroll pragmas, or a heuristic.
- // SetExplicitly is set to true if the unroll count is is set by
- // the user or a pragma rather than selected heuristically.
- unsigned
- selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
- unsigned PragmaCount,
- const TargetTransformInfo::UnrollingPreferences &UP,
- bool &SetExplicitly);
- // Select threshold values used to limit unrolling based on a
- // total unrolled size. Parameters Threshold and PartialThreshold
- // are set to the maximum unrolled size for fully and partially
- // unrolled loops respectively.
- void selectThresholds(const Loop *L, bool HasPragma,
- const TargetTransformInfo::UnrollingPreferences &UP,
- unsigned &Threshold, unsigned &PartialThreshold,
- unsigned &PercentDynamicCostSavedThreshold,
- unsigned &DynamicCostSavingsDiscount) {
- // Determine the current unrolling threshold. While this is
- // normally set from UnrollThreshold, it is overridden to a
- // smaller value if the current function is marked as
- // optimize-for-size, and the unroll threshold was not user
- // specified.
- Threshold = UserThreshold ? CurrentThreshold : UP.Threshold;
- PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold;
- PercentDynamicCostSavedThreshold =
- UserPercentDynamicCostSavedThreshold
- ? CurrentPercentDynamicCostSavedThreshold
- : UP.PercentDynamicCostSavedThreshold;
- DynamicCostSavingsDiscount = UserDynamicCostSavingsDiscount
- ? CurrentDynamicCostSavingsDiscount
- : UP.DynamicCostSavingsDiscount;
- if (!UserThreshold &&
- L->getHeader()->getParent()->hasFnAttribute(
- Attribute::OptimizeForSize)) {
- Threshold = UP.OptSizeThreshold;
- PartialThreshold = UP.PartialOptSizeThreshold;
- }
- if (HasPragma) {
- // If the loop has an unrolling pragma, we want to be more
- // aggressive with unrolling limits. Set thresholds to at
- // least the PragmaTheshold value which is larger than the
- // default limits.
- if (Threshold != NoThreshold)
- Threshold = std::max<unsigned>(Threshold, PragmaUnrollThreshold);
- if (PartialThreshold != NoThreshold)
- PartialThreshold =
- std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold);
- }
- }
- bool canUnrollCompletely(Loop *L, unsigned Threshold,
- unsigned PercentDynamicCostSavedThreshold,
- unsigned DynamicCostSavingsDiscount,
- uint64_t UnrolledCost, uint64_t RolledDynamicCost);
- };
- }
- char LoopUnroll::ID = 0;
- INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
- INITIALIZE_PASS_DEPENDENCY(LCSSA)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
- INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
- Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
- int Runtime) {
- return new LoopUnroll(Threshold, Count, AllowPartial, Runtime);
- }
- Pass *llvm::createSimpleLoopUnrollPass() {
- return llvm::createLoopUnrollPass(-1, -1, 0, 0);
- }
- namespace {
- // This class is used to get an estimate of the optimization effects that we
- // could get from complete loop unrolling. It comes from the fact that some
- // loads might be replaced with concrete constant values and that could trigger
- // a chain of instruction simplifications.
- //
- // E.g. we might have:
- // int a[] = {0, 1, 0};
- // v = 0;
- // for (i = 0; i < 3; i ++)
- // v += b[i]*a[i];
- // If we completely unroll the loop, we would get:
- // v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]
- // Which then will be simplified to:
- // v = b[0]* 0 + b[1]* 1 + b[2]* 0
- // And finally:
- // v = b[1]
- class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> {
- typedef InstVisitor<UnrolledInstAnalyzer, bool> Base;
- friend class InstVisitor<UnrolledInstAnalyzer, bool>;
- struct SimplifiedAddress {
- Value *Base = nullptr;
- ConstantInt *Offset = nullptr;
- };
- public:
- UnrolledInstAnalyzer(unsigned Iteration,
- DenseMap<Value *, Constant *> &SimplifiedValues,
- const Loop *L, ScalarEvolution &SE)
- : Iteration(Iteration), SimplifiedValues(SimplifiedValues), L(L), SE(SE) {
- IterationNumber = SE.getConstant(APInt(64, Iteration));
- }
- // Allow access to the initial visit method.
- using Base::visit;
- private:
- /// \brief A cache of pointer bases and constant-folded offsets corresponding
- /// to GEP (or derived from GEP) instructions.
- ///
- /// In order to find the base pointer one needs to perform non-trivial
- /// traversal of the corresponding SCEV expression, so it's good to have the
- /// results saved.
- DenseMap<Value *, SimplifiedAddress> SimplifiedAddresses;
- /// \brief Number of currently simulated iteration.
- ///
- /// If an expression is ConstAddress+Constant, then the Constant is
- /// Start + Iteration*Step, where Start and Step could be obtained from
- /// SCEVGEPCache.
- unsigned Iteration;
- /// \brief SCEV expression corresponding to number of currently simulated
- /// iteration.
- const SCEV *IterationNumber;
- /// \brief A Value->Constant map for keeping values that we managed to
- /// constant-fold on the given iteration.
- ///
- /// While we walk the loop instructions, we build up and maintain a mapping
- /// of simplified values specific to this iteration. The idea is to propagate
- /// any special information we have about loads that can be replaced with
- /// constants after complete unrolling, and account for likely simplifications
- /// post-unrolling.
- DenseMap<Value *, Constant *> &SimplifiedValues;
- const Loop *L;
- ScalarEvolution &SE;
- /// \brief Try to simplify instruction \param I using its SCEV expression.
- ///
- /// The idea is that some AddRec expressions become constants, which then
- /// could trigger folding of other instructions. However, that only happens
- /// for expressions whose start value is also constant, which isn't always the
- /// case. In another common and important case the start value is just some
- /// address (i.e. SCEVUnknown) - in this case we compute the offset and save
- /// it along with the base address instead.
- bool simplifyInstWithSCEV(Instruction *I) {
- if (!SE.isSCEVable(I->getType()))
- return false;
- const SCEV *S = SE.getSCEV(I);
- if (auto *SC = dyn_cast<SCEVConstant>(S)) {
- SimplifiedValues[I] = SC->getValue();
- return true;
- }
- auto *AR = dyn_cast<SCEVAddRecExpr>(S);
- if (!AR)
- return false;
- const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
- // Check if the AddRec expression becomes a constant.
- if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
- SimplifiedValues[I] = SC->getValue();
- return true;
- }
- // Check if the offset from the base address becomes a constant.
- auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
- if (!Base)
- return false;
- auto *Offset =
- dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
- if (!Offset)
- return false;
- SimplifiedAddress Address;
- Address.Base = Base->getValue();
- Address.Offset = Offset->getValue();
- SimplifiedAddresses[I] = Address;
- return true;
- }
- /// Base case for the instruction visitor.
- bool visitInstruction(Instruction &I) {
- return simplifyInstWithSCEV(&I);
- }
- /// TODO: Add visitors for other instruction types, e.g. ZExt, SExt.
- /// Try to simplify binary operator I.
- ///
- /// TODO: Probaly it's worth to hoist the code for estimating the
- /// simplifications effects to a separate class, since we have a very similar
- /// code in InlineCost already.
- bool visitBinaryOperator(BinaryOperator &I) {
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- if (!isa<Constant>(LHS))
- if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
- LHS = SimpleLHS;
- if (!isa<Constant>(RHS))
- if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
- RHS = SimpleRHS;
- Value *SimpleV = nullptr;
- const DataLayout &DL = I.getModule()->getDataLayout();
- if (auto FI = dyn_cast<FPMathOperator>(&I))
- SimpleV =
- SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
- else
- SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
- if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
- SimplifiedValues[&I] = C;
- if (SimpleV)
- return true;
- return Base::visitBinaryOperator(I);
- }
- /// Try to fold load I.
- bool visitLoad(LoadInst &I) {
- Value *AddrOp = I.getPointerOperand();
- auto AddressIt = SimplifiedAddresses.find(AddrOp);
- if (AddressIt == SimplifiedAddresses.end())
- return false;
- ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;
- auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
- // We're only interested in loads that can be completely folded to a
- // constant.
- if (!GV || !GV->hasInitializer())
- return false;
- ConstantDataSequential *CDS =
- dyn_cast<ConstantDataSequential>(GV->getInitializer());
- if (!CDS)
- return false;
- int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
- assert(SimplifiedAddrOp->getValue().getActiveBits() < 64 &&
- "Unexpectedly large index value.");
- int64_t Index = SimplifiedAddrOp->getSExtValue() / ElemSize;
- if (Index >= CDS->getNumElements()) {
- // FIXME: For now we conservatively ignore out of bound accesses, but
- // we're allowed to perform the optimization in this case.
- return false;
- }
- Constant *CV = CDS->getElementAsConstant(Index);
- assert(CV && "Constant expected.");
- SimplifiedValues[&I] = CV;
- return true;
- }
- };
- } // namespace
- namespace {
- struct EstimatedUnrollCost {
- /// \brief The estimated cost after unrolling.
- unsigned UnrolledCost;
- /// \brief The estimated dynamic cost of executing the instructions in the
- /// rolled form.
- unsigned RolledDynamicCost;
- };
- }
- /// \brief Figure out if the loop is worth full unrolling.
- ///
- /// Complete loop unrolling can make some loads constant, and we need to know
- /// if that would expose any further optimization opportunities. This routine
- /// estimates this optimization. It computes cost of unrolled loop
- /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
- /// dynamic cost we mean that we won't count costs of blocks that are known not
- /// to be executed (i.e. if we have a branch in the loop and we know that at the
- /// given iteration its condition would be resolved to true, we won't add up the
- /// cost of the 'false'-block).
- /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
- /// the analysis failed (no benefits expected from the unrolling, or the loop is
- /// too big to analyze), the returned value is None.
- Optional<EstimatedUnrollCost>
- analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, ScalarEvolution &SE,
- const TargetTransformInfo &TTI,
- unsigned MaxUnrolledLoopSize) {
- // We want to be able to scale offsets by the trip count and add more offsets
- // to them without checking for overflows, and we already don't want to
- // analyze *massive* trip counts, so we force the max to be reasonably small.
- assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
- "The unroll iterations max is too large!");
- // Don't simulate loops with a big or unknown tripcount
- if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
- TripCount > UnrollMaxIterationsCountToAnalyze)
- return None;
- SmallSetVector<BasicBlock *, 16> BBWorklist;
- DenseMap<Value *, Constant *> SimplifiedValues;
- // The estimated cost of the unrolled form of the loop. We try to estimate
- // this by simplifying as much as we can while computing the estimate.
- unsigned UnrolledCost = 0;
- // We also track the estimated dynamic (that is, actually executed) cost in
- // the rolled form. This helps identify cases when the savings from unrolling
- // aren't just exposing dead control flows, but actual reduced dynamic
- // instructions due to the simplifications which we expect to occur after
- // unrolling.
- unsigned RolledDynamicCost = 0;
- // Simulate execution of each iteration of the loop counting instructions,
- // which would be simplified.
- // Since the same load will take different values on different iterations,
- // we literally have to go through all loop's iterations.
- for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
- SimplifiedValues.clear();
- UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, L, SE);
- BBWorklist.clear();
- BBWorklist.insert(L->getHeader());
- // Note that we *must not* cache the size, this loop grows the worklist.
- for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
- BasicBlock *BB = BBWorklist[Idx];
- // Visit all instructions in the given basic block and try to simplify
- // it. We don't change the actual IR, just count optimization
- // opportunities.
- for (Instruction &I : *BB) {
- unsigned InstCost = TTI.getUserCost(&I);
- // Visit the instruction to analyze its loop cost after unrolling,
- // and if the visitor returns false, include this instruction in the
- // unrolled cost.
- if (!Analyzer.visit(I))
- UnrolledCost += InstCost;
- // Also track this instructions expected cost when executing the rolled
- // loop form.
- RolledDynamicCost += InstCost;
- // If unrolled body turns out to be too big, bail out.
- if (UnrolledCost > MaxUnrolledLoopSize)
- return None;
- }
- // Add BB's successors to the worklist.
- for (BasicBlock *Succ : successors(BB))
- if (L->contains(Succ))
- BBWorklist.insert(Succ);
- }
- // If we found no optimization opportunities on the first iteration, we
- // won't find them on later ones too.
- if (UnrolledCost == RolledDynamicCost)
- return None;
- }
- return {{UnrolledCost, RolledDynamicCost}};
- }
- /// ApproximateLoopSize - Approximate the size of the loop.
- static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
- bool &NotDuplicatable,
- const TargetTransformInfo &TTI,
- AssumptionCache *AC) {
- SmallPtrSet<const Value *, 32> EphValues;
- CodeMetrics::collectEphemeralValues(L, AC, EphValues);
- CodeMetrics Metrics;
- for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
- I != E; ++I)
- Metrics.analyzeBasicBlock(*I, TTI, EphValues);
- NumCalls = Metrics.NumInlineCandidates;
- NotDuplicatable = Metrics.notDuplicatable;
- unsigned LoopSize = Metrics.NumInsts;
- // Don't allow an estimate of size zero. This would allows unrolling of loops
- // with huge iteration counts, which is a compile time problem even if it's
- // not a problem for code quality. Also, the code using this size may assume
- // that each loop has at least three instructions (likely a conditional
- // branch, a comparison feeding that branch, and some kind of loop increment
- // feeding that comparison instruction).
- LoopSize = std::max(LoopSize, 3u);
- return LoopSize;
- }
- // Returns the loop hint metadata node with the given name (for example,
- // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
- // returned.
- static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
- if (MDNode *LoopID = L->getLoopID())
- return GetUnrollMetadata(LoopID, Name);
- return nullptr;
- }
- // Returns true if the loop has an unroll(full) pragma.
- static bool HasUnrollFullPragma(const Loop *L) {
- return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
- }
- // Returns true if the loop has an unroll(disable) pragma.
- static bool HasUnrollDisablePragma(const Loop *L) {
- return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
- }
- // Returns true if the loop has an runtime unroll(disable) pragma.
- static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
- return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
- }
- // If loop has an unroll_count pragma return the (necessarily
- // positive) value from the pragma. Otherwise return 0.
- static unsigned UnrollCountPragmaValue(const Loop *L) {
- MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
- if (MD) {
- assert(MD->getNumOperands() == 2 &&
- "Unroll count hint metadata should have two operands.");
- unsigned Count =
- mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
- assert(Count >= 1 && "Unroll count must be positive.");
- return Count;
- }
- return 0;
- }
- // Remove existing unroll metadata and add unroll disable metadata to
- // indicate the loop has already been unrolled. This prevents a loop
- // from being unrolled more than is directed by a pragma if the loop
- // unrolling pass is run more than once (which it generally is).
- static void SetLoopAlreadyUnrolled(Loop *L) {
- MDNode *LoopID = L->getLoopID();
- if (!LoopID) return;
- // First remove any existing loop unrolling metadata.
- SmallVector<Metadata *, 4> MDs;
- // Reserve first location for self reference to the LoopID metadata node.
- MDs.push_back(nullptr);
- for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
- bool IsUnrollMetadata = false;
- MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
- if (MD) {
- const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
- IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
- }
- if (!IsUnrollMetadata)
- MDs.push_back(LoopID->getOperand(i));
- }
- // Add unroll(disable) metadata to disable future unrolling.
- LLVMContext &Context = L->getHeader()->getContext();
- SmallVector<Metadata *, 1> DisableOperands;
- DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
- MDNode *DisableNode = MDNode::get(Context, DisableOperands);
- MDs.push_back(DisableNode);
- MDNode *NewLoopID = MDNode::get(Context, MDs);
- // Set operand 0 to refer to the loop id itself.
- NewLoopID->replaceOperandWith(0, NewLoopID);
- L->setLoopID(NewLoopID);
- }
- bool LoopUnroll::canUnrollCompletely(Loop *L, unsigned Threshold,
- unsigned PercentDynamicCostSavedThreshold,
- unsigned DynamicCostSavingsDiscount,
- uint64_t UnrolledCost,
- uint64_t RolledDynamicCost) {
- if (Threshold == NoThreshold) {
- DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n");
- return true;
- }
- if (UnrolledCost <= Threshold) {
- DEBUG(dbgs() << " Can fully unroll, because unrolled cost: "
- << UnrolledCost << "<" << Threshold << "\n");
- return true;
- }
- assert(UnrolledCost && "UnrolledCost can't be 0 at this point.");
- assert(RolledDynamicCost >= UnrolledCost &&
- "Cannot have a higher unrolled cost than a rolled cost!");
- // Compute the percentage of the dynamic cost in the rolled form that is
- // saved when unrolled. If unrolling dramatically reduces the estimated
- // dynamic cost of the loop, we use a higher threshold to allow more
- // unrolling.
- unsigned PercentDynamicCostSaved =
- (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost;
- if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold &&
- (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <=
- (int64_t)Threshold) {
- DEBUG(dbgs() << " Can fully unroll, because unrolling will reduce the "
- "expected dynamic cost by " << PercentDynamicCostSaved
- << "% (threshold: " << PercentDynamicCostSavedThreshold
- << "%)\n"
- << " and the unrolled cost (" << UnrolledCost
- << ") is less than the max threshold ("
- << DynamicCostSavingsDiscount << ").\n");
- return true;
- }
- DEBUG(dbgs() << " Too large to fully unroll:\n");
- DEBUG(dbgs() << " Threshold: " << Threshold << "\n");
- DEBUG(dbgs() << " Max threshold: " << DynamicCostSavingsDiscount << "\n");
- DEBUG(dbgs() << " Percent cost saved threshold: "
- << PercentDynamicCostSavedThreshold << "%\n");
- DEBUG(dbgs() << " Unrolled cost: " << UnrolledCost << "\n");
- DEBUG(dbgs() << " Rolled dynamic cost: " << RolledDynamicCost << "\n");
- DEBUG(dbgs() << " Percent cost saved: " << PercentDynamicCostSaved
- << "\n");
- return false;
- }
- unsigned LoopUnroll::selectUnrollCount(
- const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
- unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP,
- bool &SetExplicitly) {
- SetExplicitly = true;
- // User-specified count (either as a command-line option or
- // constructor parameter) has highest precedence.
- unsigned Count = UserCount ? CurrentCount : 0;
- // If there is no user-specified count, unroll pragmas have the next
- // highest precendence.
- if (Count == 0) {
- if (PragmaCount) {
- Count = PragmaCount;
- } else if (PragmaFullUnroll) {
- Count = TripCount;
- }
- }
- if (Count == 0)
- Count = UP.Count;
- if (Count == 0) {
- SetExplicitly = false;
- if (TripCount == 0)
- // Runtime trip count.
- Count = UnrollRuntimeCount;
- else
- // Conservative heuristic: if we know the trip count, see if we can
- // completely unroll (subject to the threshold, checked below); otherwise
- // try to find greatest modulo of the trip count which is still under
- // threshold value.
- Count = TripCount;
- }
- if (TripCount && Count > TripCount)
- return TripCount;
- return Count;
- }
- bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
- if (skipOptnoneFunction(L))
- return false;
- Function &F = *L->getHeader()->getParent();
- LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
- const TargetTransformInfo &TTI =
- getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- BasicBlock *Header = L->getHeader();
- DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
- << "] Loop %" << Header->getName() << "\n");
- if (HasUnrollDisablePragma(L)) {
- return false;
- }
- bool PragmaFullUnroll = HasUnrollFullPragma(L);
- unsigned PragmaCount = UnrollCountPragmaValue(L);
- bool HasPragma = PragmaFullUnroll || PragmaCount > 0;
- TargetTransformInfo::UnrollingPreferences UP;
- getUnrollingPreferences(L, TTI, UP);
- // Find trip count and trip multiple if count is not available
- unsigned TripCount = 0;
- unsigned TripMultiple = 1;
- // If there are multiple exiting blocks but one of them is the latch, use the
- // latch for the trip count estimation. Otherwise insist on a single exiting
- // block for the trip count estimation.
- BasicBlock *ExitingBlock = L->getLoopLatch();
- if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
- ExitingBlock = L->getExitingBlock();
- if (ExitingBlock) {
- TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
- TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
- }
- // Select an initial unroll count. This may be reduced later based
- // on size thresholds.
- bool CountSetExplicitly;
- unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll,
- PragmaCount, UP, CountSetExplicitly);
- unsigned NumInlineCandidates;
- bool notDuplicatable;
- unsigned LoopSize =
- ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC);
- DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
- // When computing the unrolled size, note that the conditional branch on the
- // backedge and the comparison feeding it are not replicated like the rest of
- // the loop body (which is why 2 is subtracted).
- uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2;
- if (notDuplicatable) {
- DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
- << " instructions.\n");
- return false;
- }
- if (NumInlineCandidates != 0) {
- DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
- return false;
- }
- unsigned Threshold, PartialThreshold;
- unsigned PercentDynamicCostSavedThreshold;
- unsigned DynamicCostSavingsDiscount;
- selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold,
- PercentDynamicCostSavedThreshold,
- DynamicCostSavingsDiscount);
- // Given Count, TripCount and thresholds determine the type of
- // unrolling which is to be performed.
- enum { Full = 0, Partial = 1, Runtime = 2 };
- int Unrolling;
- if (TripCount && Count == TripCount) {
- Unrolling = Partial;
- // If the loop is really small, we don't need to run an expensive analysis.
- if (canUnrollCompletely(L, Threshold, 100, DynamicCostSavingsDiscount,
- UnrolledSize, UnrolledSize)) {
- Unrolling = Full;
- } else {
- // The loop isn't that small, but we still can fully unroll it if that
- // helps to remove a significant number of instructions.
- // To check that, run additional analysis on the loop.
- if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
- L, TripCount, *SE, TTI, Threshold + DynamicCostSavingsDiscount))
- if (canUnrollCompletely(L, Threshold, PercentDynamicCostSavedThreshold,
- DynamicCostSavingsDiscount, Cost->UnrolledCost,
- Cost->RolledDynamicCost)) {
- Unrolling = Full;
- }
- }
- } else if (TripCount && Count < TripCount) {
- Unrolling = Partial;
- } else {
- Unrolling = Runtime;
- }
- // Reduce count based on the type of unrolling and the threshold values.
- unsigned OriginalCount = Count;
- bool AllowRuntime =
- (PragmaCount > 0) || (UserRuntime ? CurrentRuntime : UP.Runtime);
- // Don't unroll a runtime trip count loop with unroll full pragma.
- if (HasRuntimeUnrollDisablePragma(L) || PragmaFullUnroll) {
- AllowRuntime = false;
- }
- if (Unrolling == Partial) {
- bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial;
- if (!AllowPartial && !CountSetExplicitly) {
- DEBUG(dbgs() << " will not try to unroll partially because "
- << "-unroll-allow-partial not given\n");
- return false;
- }
- if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) {
- // Reduce unroll count to be modulo of TripCount for partial unrolling.
- Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2);
- while (Count != 0 && TripCount % Count != 0)
- Count--;
- }
- } else if (Unrolling == Runtime) {
- if (!AllowRuntime && !CountSetExplicitly) {
- DEBUG(dbgs() << " will not try to unroll loop with runtime trip count "
- << "-unroll-runtime not given\n");
- return false;
- }
- // Reduce unroll count to be the largest power-of-two factor of
- // the original count which satisfies the threshold limit.
- while (Count != 0 && UnrolledSize > PartialThreshold) {
- Count >>= 1;
- UnrolledSize = (LoopSize-2) * Count + 2;
- }
- if (Count > UP.MaxCount)
- Count = UP.MaxCount;
- DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n");
- }
- if (HasPragma) {
- if (PragmaCount != 0)
- // If loop has an unroll count pragma mark loop as unrolled to prevent
- // unrolling beyond that requested by the pragma.
- SetLoopAlreadyUnrolled(L);
- // Emit optimization remarks if we are unable to unroll the loop
- // as directed by a pragma.
- DebugLoc LoopLoc = L->getStartLoc();
- Function *F = Header->getParent();
- LLVMContext &Ctx = F->getContext();
- if (PragmaFullUnroll && PragmaCount == 0) {
- if (TripCount && Count != TripCount) {
- emitOptimizationRemarkMissed(
- Ctx, DEBUG_TYPE, *F, LoopLoc,
- "Unable to fully unroll loop as directed by unroll(full) pragma "
- "because unrolled size is too large.");
- } else if (!TripCount) {
- emitOptimizationRemarkMissed(
- Ctx, DEBUG_TYPE, *F, LoopLoc,
- "Unable to fully unroll loop as directed by unroll(full) pragma "
- "because loop has a runtime trip count.");
- }
- } else if (PragmaCount > 0 && Count != OriginalCount) {
- emitOptimizationRemarkMissed(
- Ctx, DEBUG_TYPE, *F, LoopLoc,
- "Unable to unroll loop the number of times directed by "
- "unroll_count pragma because unrolled size is too large.");
- }
- }
- if (Unrolling != Full && Count < 2) {
- // Partial unrolling by 1 is a nop. For full unrolling, a factor
- // of 1 makes sense because loop control can be eliminated.
- return false;
- }
- // Unroll the loop.
- if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount,
- TripMultiple, LI, this, &LPM, &AC))
- return false;
- return true;
- }
|