| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205 |
- //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass performs various transformations related to eliminating memcpy
- // calls, or transforming sets of stores into memset's.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/MemoryDependenceAnalysis.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <list>
- using namespace llvm;
- #define DEBUG_TYPE "memcpyopt"
- STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
- STATISTIC(NumMemSetInfer, "Number of memsets inferred");
- STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
- STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
- static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
- bool &VariableIdxFound,
- const DataLayout &DL) {
- // Skip over the first indices.
- gep_type_iterator GTI = gep_type_begin(GEP);
- for (unsigned i = 1; i != Idx; ++i, ++GTI)
- /*skip along*/;
- // Compute the offset implied by the rest of the indices.
- int64_t Offset = 0;
- for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
- ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
- if (!OpC)
- return VariableIdxFound = true;
- if (OpC->isZero()) continue; // No offset.
- // Handle struct indices, which add their field offset to the pointer.
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
- continue;
- }
- // Otherwise, we have a sequential type like an array or vector. Multiply
- // the index by the ElementSize.
- uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
- Offset += Size*OpC->getSExtValue();
- }
- return Offset;
- }
- /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
- /// constant offset, and return that constant offset. For example, Ptr1 might
- /// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
- static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
- const DataLayout &DL) {
- Ptr1 = Ptr1->stripPointerCasts();
- Ptr2 = Ptr2->stripPointerCasts();
- // Handle the trivial case first.
- if (Ptr1 == Ptr2) {
- Offset = 0;
- return true;
- }
- GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
- GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
- bool VariableIdxFound = false;
- // If one pointer is a GEP and the other isn't, then see if the GEP is a
- // constant offset from the base, as in "P" and "gep P, 1".
- if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
- Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
- return !VariableIdxFound;
- }
- if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
- Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
- return !VariableIdxFound;
- }
- // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
- // base. After that base, they may have some number of common (and
- // potentially variable) indices. After that they handle some constant
- // offset, which determines their offset from each other. At this point, we
- // handle no other case.
- if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
- return false;
- // Skip any common indices and track the GEP types.
- unsigned Idx = 1;
- for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
- if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
- break;
- int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
- int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
- if (VariableIdxFound) return false;
- Offset = Offset2-Offset1;
- return true;
- }
- /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
- /// This allows us to analyze stores like:
- /// store 0 -> P+1
- /// store 0 -> P+0
- /// store 0 -> P+3
- /// store 0 -> P+2
- /// which sometimes happens with stores to arrays of structs etc. When we see
- /// the first store, we make a range [1, 2). The second store extends the range
- /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
- /// two ranges into [0, 3) which is memset'able.
- namespace {
- struct MemsetRange {
- // Start/End - A semi range that describes the span that this range covers.
- // The range is closed at the start and open at the end: [Start, End).
- int64_t Start, End;
- /// StartPtr - The getelementptr instruction that points to the start of the
- /// range.
- Value *StartPtr;
- /// Alignment - The known alignment of the first store.
- unsigned Alignment;
- /// TheStores - The actual stores that make up this range.
- SmallVector<Instruction*, 16> TheStores;
- bool isProfitableToUseMemset(const DataLayout &DL) const;
- };
- } // end anon namespace
- bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
- // If we found more than 4 stores to merge or 16 bytes, use memset.
- if (TheStores.size() >= 4 || End-Start >= 16) return true;
- // If there is nothing to merge, don't do anything.
- if (TheStores.size() < 2) return false;
- // If any of the stores are a memset, then it is always good to extend the
- // memset.
- for (unsigned i = 0, e = TheStores.size(); i != e; ++i)
- if (!isa<StoreInst>(TheStores[i]))
- return true;
- // Assume that the code generator is capable of merging pairs of stores
- // together if it wants to.
- if (TheStores.size() == 2) return false;
- // If we have fewer than 8 stores, it can still be worthwhile to do this.
- // For example, merging 4 i8 stores into an i32 store is useful almost always.
- // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
- // memset will be split into 2 32-bit stores anyway) and doing so can
- // pessimize the llvm optimizer.
- //
- // Since we don't have perfect knowledge here, make some assumptions: assume
- // the maximum GPR width is the same size as the largest legal integer
- // size. If so, check to see whether we will end up actually reducing the
- // number of stores used.
- unsigned Bytes = unsigned(End-Start);
- unsigned MaxIntSize = DL.getLargestLegalIntTypeSize();
- if (MaxIntSize == 0)
- MaxIntSize = 1;
- unsigned NumPointerStores = Bytes / MaxIntSize;
- // Assume the remaining bytes if any are done a byte at a time.
- unsigned NumByteStores = Bytes - NumPointerStores * MaxIntSize;
- // If we will reduce the # stores (according to this heuristic), do the
- // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
- // etc.
- return TheStores.size() > NumPointerStores+NumByteStores;
- }
- namespace {
- class MemsetRanges {
- /// Ranges - A sorted list of the memset ranges. We use std::list here
- /// because each element is relatively large and expensive to copy.
- std::list<MemsetRange> Ranges;
- typedef std::list<MemsetRange>::iterator range_iterator;
- const DataLayout &DL;
- public:
- MemsetRanges(const DataLayout &DL) : DL(DL) {}
- typedef std::list<MemsetRange>::const_iterator const_iterator;
- const_iterator begin() const { return Ranges.begin(); }
- const_iterator end() const { return Ranges.end(); }
- bool empty() const { return Ranges.empty(); }
- void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
- addStore(OffsetFromFirst, SI);
- else
- addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
- }
- void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
- int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
- addRange(OffsetFromFirst, StoreSize,
- SI->getPointerOperand(), SI->getAlignment(), SI);
- }
- void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
- int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
- addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
- }
- void addRange(int64_t Start, int64_t Size, Value *Ptr,
- unsigned Alignment, Instruction *Inst);
- };
- } // end anon namespace
- /// addRange - Add a new store to the MemsetRanges data structure. This adds a
- /// new range for the specified store at the specified offset, merging into
- /// existing ranges as appropriate.
- ///
- /// Do a linear search of the ranges to see if this can be joined and/or to
- /// find the insertion point in the list. We keep the ranges sorted for
- /// simplicity here. This is a linear search of a linked list, which is ugly,
- /// however the number of ranges is limited, so this won't get crazy slow.
- void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
- unsigned Alignment, Instruction *Inst) {
- int64_t End = Start+Size;
- range_iterator I = Ranges.begin(), E = Ranges.end();
- while (I != E && Start > I->End)
- ++I;
- // We now know that I == E, in which case we didn't find anything to merge
- // with, or that Start <= I->End. If End < I->Start or I == E, then we need
- // to insert a new range. Handle this now.
- if (I == E || End < I->Start) {
- MemsetRange &R = *Ranges.insert(I, MemsetRange());
- R.Start = Start;
- R.End = End;
- R.StartPtr = Ptr;
- R.Alignment = Alignment;
- R.TheStores.push_back(Inst);
- return;
- }
- // This store overlaps with I, add it.
- I->TheStores.push_back(Inst);
- // At this point, we may have an interval that completely contains our store.
- // If so, just add it to the interval and return.
- if (I->Start <= Start && I->End >= End)
- return;
- // Now we know that Start <= I->End and End >= I->Start so the range overlaps
- // but is not entirely contained within the range.
- // See if the range extends the start of the range. In this case, it couldn't
- // possibly cause it to join the prior range, because otherwise we would have
- // stopped on *it*.
- if (Start < I->Start) {
- I->Start = Start;
- I->StartPtr = Ptr;
- I->Alignment = Alignment;
- }
- // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
- // is in or right at the end of I), and that End >= I->Start. Extend I out to
- // End.
- if (End > I->End) {
- I->End = End;
- range_iterator NextI = I;
- while (++NextI != E && End >= NextI->Start) {
- // Merge the range in.
- I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
- if (NextI->End > I->End)
- I->End = NextI->End;
- Ranges.erase(NextI);
- NextI = I;
- }
- }
- }
- //===----------------------------------------------------------------------===//
- // MemCpyOpt Pass
- //===----------------------------------------------------------------------===//
- namespace {
- class MemCpyOpt : public FunctionPass {
- MemoryDependenceAnalysis *MD;
- TargetLibraryInfo *TLI;
- public:
- static char ID; // Pass identification, replacement for typeid
- MemCpyOpt() : FunctionPass(ID) {
- initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
- MD = nullptr;
- TLI = nullptr;
- }
- bool runOnFunction(Function &F) override;
- private:
- // This transformation requires dominator postdominator info
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<MemoryDependenceAnalysis>();
- AU.addRequired<AliasAnalysis>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addPreserved<AliasAnalysis>();
- AU.addPreserved<MemoryDependenceAnalysis>();
- }
- // Helper functions
- bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
- bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
- bool processMemCpy(MemCpyInst *M);
- bool processMemMove(MemMoveInst *M);
- bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
- uint64_t cpyLen, unsigned cpyAlign, CallInst *C);
- bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep);
- bool processMemSetMemCpyDependence(MemCpyInst *M, MemSetInst *MDep);
- bool performMemCpyToMemSetOptzn(MemCpyInst *M, MemSetInst *MDep);
- bool processByValArgument(CallSite CS, unsigned ArgNo);
- Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
- Value *ByteVal);
- bool iterateOnFunction(Function &F);
- };
- char MemCpyOpt::ID = 0;
- }
- // createMemCpyOptPass - The public interface to this file...
- FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
- INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
- INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
- false, false)
- /// tryMergingIntoMemset - When scanning forward over instructions, we look for
- /// some other patterns to fold away. In particular, this looks for stores to
- /// neighboring locations of memory. If it sees enough consecutive ones, it
- /// attempts to merge them together into a memcpy/memset.
- Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
- Value *StartPtr, Value *ByteVal) {
- const DataLayout &DL = StartInst->getModule()->getDataLayout();
- // Okay, so we now have a single store that can be splatable. Scan to find
- // all subsequent stores of the same value to offset from the same pointer.
- // Join these together into ranges, so we can decide whether contiguous blocks
- // are stored.
- MemsetRanges Ranges(DL);
- BasicBlock::iterator BI = StartInst;
- for (++BI; !isa<TerminatorInst>(BI); ++BI) {
- if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
- // If the instruction is readnone, ignore it, otherwise bail out. We
- // don't even allow readonly here because we don't want something like:
- // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
- if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
- break;
- continue;
- }
- if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
- // If this is a store, see if we can merge it in.
- if (!NextStore->isSimple()) break;
- // Check to see if this stored value is of the same byte-splattable value.
- if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
- break;
- // Check to see if this store is to a constant offset from the start ptr.
- int64_t Offset;
- if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
- DL))
- break;
- Ranges.addStore(Offset, NextStore);
- } else {
- MemSetInst *MSI = cast<MemSetInst>(BI);
- if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
- !isa<ConstantInt>(MSI->getLength()))
- break;
- // Check to see if this store is to a constant offset from the start ptr.
- int64_t Offset;
- if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
- break;
- Ranges.addMemSet(Offset, MSI);
- }
- }
- // If we have no ranges, then we just had a single store with nothing that
- // could be merged in. This is a very common case of course.
- if (Ranges.empty())
- return nullptr;
- // If we had at least one store that could be merged in, add the starting
- // store as well. We try to avoid this unless there is at least something
- // interesting as a small compile-time optimization.
- Ranges.addInst(0, StartInst);
- // If we create any memsets, we put it right before the first instruction that
- // isn't part of the memset block. This ensure that the memset is dominated
- // by any addressing instruction needed by the start of the block.
- IRBuilder<> Builder(BI);
- // Now that we have full information about ranges, loop over the ranges and
- // emit memset's for anything big enough to be worthwhile.
- Instruction *AMemSet = nullptr;
- for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
- I != E; ++I) {
- const MemsetRange &Range = *I;
- if (Range.TheStores.size() == 1) continue;
- // If it is profitable to lower this range to memset, do so now.
- if (!Range.isProfitableToUseMemset(DL))
- continue;
- // Otherwise, we do want to transform this! Create a new memset.
- // Get the starting pointer of the block.
- StartPtr = Range.StartPtr;
- // Determine alignment
- unsigned Alignment = Range.Alignment;
- if (Alignment == 0) {
- Type *EltType =
- cast<PointerType>(StartPtr->getType())->getElementType();
- Alignment = DL.getABITypeAlignment(EltType);
- }
- AMemSet =
- Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
- DEBUG(dbgs() << "Replace stores:\n";
- for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
- dbgs() << *Range.TheStores[i] << '\n';
- dbgs() << "With: " << *AMemSet << '\n');
- if (!Range.TheStores.empty())
- AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
- // Zap all the stores.
- for (SmallVectorImpl<Instruction *>::const_iterator
- SI = Range.TheStores.begin(),
- SE = Range.TheStores.end(); SI != SE; ++SI) {
- MD->removeInstruction(*SI);
- (*SI)->eraseFromParent();
- }
- ++NumMemSetInfer;
- }
- return AMemSet;
- }
- bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
- if (!SI->isSimple()) return false;
- const DataLayout &DL = SI->getModule()->getDataLayout();
- // Detect cases where we're performing call slot forwarding, but
- // happen to be using a load-store pair to implement it, rather than
- // a memcpy.
- if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
- if (LI->isSimple() && LI->hasOneUse() &&
- LI->getParent() == SI->getParent()) {
- MemDepResult ldep = MD->getDependency(LI);
- CallInst *C = nullptr;
- if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
- C = dyn_cast<CallInst>(ldep.getInst());
- if (C) {
- // Check that nothing touches the dest of the "copy" between
- // the call and the store.
- AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
- MemoryLocation StoreLoc = MemoryLocation::get(SI);
- for (BasicBlock::iterator I = --BasicBlock::iterator(SI),
- E = C; I != E; --I) {
- if (AA.getModRefInfo(&*I, StoreLoc) != AliasAnalysis::NoModRef) {
- C = nullptr;
- break;
- }
- }
- }
- if (C) {
- unsigned storeAlign = SI->getAlignment();
- if (!storeAlign)
- storeAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
- unsigned loadAlign = LI->getAlignment();
- if (!loadAlign)
- loadAlign = DL.getABITypeAlignment(LI->getType());
- bool changed = performCallSlotOptzn(
- LI, SI->getPointerOperand()->stripPointerCasts(),
- LI->getPointerOperand()->stripPointerCasts(),
- DL.getTypeStoreSize(SI->getOperand(0)->getType()),
- std::min(storeAlign, loadAlign), C);
- if (changed) {
- MD->removeInstruction(SI);
- SI->eraseFromParent();
- MD->removeInstruction(LI);
- LI->eraseFromParent();
- ++NumMemCpyInstr;
- return true;
- }
- }
- }
- }
- // There are two cases that are interesting for this code to handle: memcpy
- // and memset. Right now we only handle memset.
- // Ensure that the value being stored is something that can be memset'able a
- // byte at a time like "0" or "-1" or any width, as well as things like
- // 0xA0A0A0A0 and 0.0.
- if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
- if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
- ByteVal)) {
- BBI = I; // Don't invalidate iterator.
- return true;
- }
- return false;
- }
- bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
- // See if there is another memset or store neighboring this memset which
- // allows us to widen out the memset to do a single larger store.
- if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
- if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
- MSI->getValue())) {
- BBI = I; // Don't invalidate iterator.
- return true;
- }
- return false;
- }
- /// performCallSlotOptzn - takes a memcpy and a call that it depends on,
- /// and checks for the possibility of a call slot optimization by having
- /// the call write its result directly into the destination of the memcpy.
- bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
- Value *cpyDest, Value *cpySrc,
- uint64_t cpyLen, unsigned cpyAlign,
- CallInst *C) {
- // The general transformation to keep in mind is
- //
- // call @func(..., src, ...)
- // memcpy(dest, src, ...)
- //
- // ->
- //
- // memcpy(dest, src, ...)
- // call @func(..., dest, ...)
- //
- // Since moving the memcpy is technically awkward, we additionally check that
- // src only holds uninitialized values at the moment of the call, meaning that
- // the memcpy can be discarded rather than moved.
- // Deliberately get the source and destination with bitcasts stripped away,
- // because we'll need to do type comparisons based on the underlying type.
- CallSite CS(C);
- // Require that src be an alloca. This simplifies the reasoning considerably.
- AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
- if (!srcAlloca)
- return false;
- ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
- if (!srcArraySize)
- return false;
- const DataLayout &DL = cpy->getModule()->getDataLayout();
- uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
- srcArraySize->getZExtValue();
- if (cpyLen < srcSize)
- return false;
- // Check that accessing the first srcSize bytes of dest will not cause a
- // trap. Otherwise the transform is invalid since it might cause a trap
- // to occur earlier than it otherwise would.
- if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
- // The destination is an alloca. Check it is larger than srcSize.
- ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
- if (!destArraySize)
- return false;
- uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
- destArraySize->getZExtValue();
- if (destSize < srcSize)
- return false;
- } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
- if (A->getDereferenceableBytes() < srcSize) {
- // If the destination is an sret parameter then only accesses that are
- // outside of the returned struct type can trap.
- if (!A->hasStructRetAttr())
- return false;
- Type *StructTy = cast<PointerType>(A->getType())->getElementType();
- if (!StructTy->isSized()) {
- // The call may never return and hence the copy-instruction may never
- // be executed, and therefore it's not safe to say "the destination
- // has at least <cpyLen> bytes, as implied by the copy-instruction",
- return false;
- }
- uint64_t destSize = DL.getTypeAllocSize(StructTy);
- if (destSize < srcSize)
- return false;
- }
- } else {
- return false;
- }
- // Check that dest points to memory that is at least as aligned as src.
- unsigned srcAlign = srcAlloca->getAlignment();
- if (!srcAlign)
- srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
- bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
- // If dest is not aligned enough and we can't increase its alignment then
- // bail out.
- if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
- return false;
- // Check that src is not accessed except via the call and the memcpy. This
- // guarantees that it holds only undefined values when passed in (so the final
- // memcpy can be dropped), that it is not read or written between the call and
- // the memcpy, and that writing beyond the end of it is undefined.
- SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
- srcAlloca->user_end());
- while (!srcUseList.empty()) {
- User *U = srcUseList.pop_back_val();
- if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
- for (User *UU : U->users())
- srcUseList.push_back(UU);
- continue;
- }
- if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
- if (!G->hasAllZeroIndices())
- return false;
- for (User *UU : U->users())
- srcUseList.push_back(UU);
- continue;
- }
- if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
- if (IT->getIntrinsicID() == Intrinsic::lifetime_start ||
- IT->getIntrinsicID() == Intrinsic::lifetime_end)
- continue;
- if (U != C && U != cpy)
- return false;
- }
- // Check that src isn't captured by the called function since the
- // transformation can cause aliasing issues in that case.
- for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
- if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
- return false;
- // Since we're changing the parameter to the callsite, we need to make sure
- // that what would be the new parameter dominates the callsite.
- DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
- if (!DT.dominates(cpyDestInst, C))
- return false;
- // In addition to knowing that the call does not access src in some
- // unexpected manner, for example via a global, which we deduce from
- // the use analysis, we also need to know that it does not sneakily
- // access dest. We rely on AA to figure this out for us.
- AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
- AliasAnalysis::ModRefResult MR = AA.getModRefInfo(C, cpyDest, srcSize);
- // If necessary, perform additional analysis.
- if (MR != AliasAnalysis::NoModRef)
- MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
- if (MR != AliasAnalysis::NoModRef)
- return false;
- // All the checks have passed, so do the transformation.
- bool changedArgument = false;
- for (unsigned i = 0; i < CS.arg_size(); ++i)
- if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
- Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest
- : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
- cpyDest->getName(), C);
- changedArgument = true;
- if (CS.getArgument(i)->getType() == Dest->getType())
- CS.setArgument(i, Dest);
- else
- CS.setArgument(i, CastInst::CreatePointerCast(Dest,
- CS.getArgument(i)->getType(), Dest->getName(), C));
- }
- if (!changedArgument)
- return false;
- // If the destination wasn't sufficiently aligned then increase its alignment.
- if (!isDestSufficientlyAligned) {
- assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
- cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
- }
- // Drop any cached information about the call, because we may have changed
- // its dependence information by changing its parameter.
- MD->removeInstruction(C);
- // Update AA metadata
- // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
- // handled here, but combineMetadata doesn't support them yet
- unsigned KnownIDs[] = {
- LLVMContext::MD_tbaa,
- LLVMContext::MD_alias_scope,
- LLVMContext::MD_noalias,
- };
- combineMetadata(C, cpy, KnownIDs);
- // Remove the memcpy.
- MD->removeInstruction(cpy);
- ++NumMemCpyInstr;
- return true;
- }
- /// processMemCpyMemCpyDependence - We've found that the (upward scanning)
- /// memory dependence of memcpy 'M' is the memcpy 'MDep'. Try to simplify M to
- /// copy from MDep's input if we can.
- ///
- bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep) {
- // We can only transforms memcpy's where the dest of one is the source of the
- // other.
- if (M->getSource() != MDep->getDest() || MDep->isVolatile())
- return false;
- // If dep instruction is reading from our current input, then it is a noop
- // transfer and substituting the input won't change this instruction. Just
- // ignore the input and let someone else zap MDep. This handles cases like:
- // memcpy(a <- a)
- // memcpy(b <- a)
- if (M->getSource() == MDep->getSource())
- return false;
- // Second, the length of the memcpy's must be the same, or the preceding one
- // must be larger than the following one.
- ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
- ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
- if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
- return false;
- AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
- // Verify that the copied-from memory doesn't change in between the two
- // transfers. For example, in:
- // memcpy(a <- b)
- // *b = 42;
- // memcpy(c <- a)
- // It would be invalid to transform the second memcpy into memcpy(c <- b).
- //
- // TODO: If the code between M and MDep is transparent to the destination "c",
- // then we could still perform the xform by moving M up to the first memcpy.
- //
- // NOTE: This is conservative, it will stop on any read from the source loc,
- // not just the defining memcpy.
- MemDepResult SourceDep = MD->getPointerDependencyFrom(
- MemoryLocation::getForSource(MDep), false, M, M->getParent());
- if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
- return false;
- // If the dest of the second might alias the source of the first, then the
- // source and dest might overlap. We still want to eliminate the intermediate
- // value, but we have to generate a memmove instead of memcpy.
- bool UseMemMove = false;
- if (!AA.isNoAlias(MemoryLocation::getForDest(M),
- MemoryLocation::getForSource(MDep)))
- UseMemMove = true;
- // If all checks passed, then we can transform M.
- // Make sure to use the lesser of the alignment of the source and the dest
- // since we're changing where we're reading from, but don't want to increase
- // the alignment past what can be read from or written to.
- // TODO: Is this worth it if we're creating a less aligned memcpy? For
- // example we could be moving from movaps -> movq on x86.
- unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
- IRBuilder<> Builder(M);
- if (UseMemMove)
- Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
- Align, M->isVolatile());
- else
- Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
- Align, M->isVolatile());
- // Remove the instruction we're replacing.
- MD->removeInstruction(M);
- M->eraseFromParent();
- ++NumMemCpyInstr;
- return true;
- }
- /// We've found that the (upward scanning) memory dependence of \p MemCpy is
- /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that
- /// weren't copied over by \p MemCpy.
- ///
- /// In other words, transform:
- /// \code
- /// memset(dst, c, dst_size);
- /// memcpy(dst, src, src_size);
- /// \endcode
- /// into:
- /// \code
- /// memcpy(dst, src, src_size);
- /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
- /// \endcode
- bool MemCpyOpt::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
- MemSetInst *MemSet) {
- // We can only transform memset/memcpy with the same destination.
- if (MemSet->getDest() != MemCpy->getDest())
- return false;
- // Check that there are no other dependencies on the memset destination.
- MemDepResult DstDepInfo = MD->getPointerDependencyFrom(
- MemoryLocation::getForDest(MemSet), false, MemCpy, MemCpy->getParent());
- if (DstDepInfo.getInst() != MemSet)
- return false;
- // Use the same i8* dest as the memcpy, killing the memset dest if different.
- Value *Dest = MemCpy->getRawDest();
- Value *DestSize = MemSet->getLength();
- Value *SrcSize = MemCpy->getLength();
- // By default, create an unaligned memset.
- unsigned Align = 1;
- // If Dest is aligned, and SrcSize is constant, use the minimum alignment
- // of the sum.
- const unsigned DestAlign =
- std::max(MemSet->getAlignment(), MemCpy->getAlignment());
- if (DestAlign > 1)
- if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
- Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
- IRBuilder<> Builder(MemCpy);
- // If the sizes have different types, zext the smaller one.
- if (DestSize->getType() != SrcSize->getType()) {
- if (DestSize->getType()->getIntegerBitWidth() >
- SrcSize->getType()->getIntegerBitWidth())
- SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
- else
- DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
- }
- Value *MemsetLen =
- Builder.CreateSelect(Builder.CreateICmpULE(DestSize, SrcSize),
- ConstantInt::getNullValue(DestSize->getType()),
- Builder.CreateSub(DestSize, SrcSize));
- Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1),
- MemsetLen, Align);
- MD->removeInstruction(MemSet);
- MemSet->eraseFromParent();
- return true;
- }
- /// Transform memcpy to memset when its source was just memset.
- /// In other words, turn:
- /// \code
- /// memset(dst1, c, dst1_size);
- /// memcpy(dst2, dst1, dst2_size);
- /// \endcode
- /// into:
- /// \code
- /// memset(dst1, c, dst1_size);
- /// memset(dst2, c, dst2_size);
- /// \endcode
- /// When dst2_size <= dst1_size.
- ///
- /// The \p MemCpy must have a Constant length.
- bool MemCpyOpt::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
- MemSetInst *MemSet) {
- // This only makes sense on memcpy(..., memset(...), ...).
- if (MemSet->getRawDest() != MemCpy->getRawSource())
- return false;
- ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
- ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
- // Make sure the memcpy doesn't read any more than what the memset wrote.
- // Don't worry about sizes larger than i64.
- if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue())
- return false;
- IRBuilder<> Builder(MemCpy);
- Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
- CopySize, MemCpy->getAlignment());
- return true;
- }
- /// processMemCpy - perform simplification of memcpy's. If we have memcpy A
- /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
- /// B to be a memcpy from X to Z (or potentially a memmove, depending on
- /// circumstances). This allows later passes to remove the first memcpy
- /// altogether.
- bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
- // We can only optimize non-volatile memcpy's.
- if (M->isVolatile()) return false;
- // If the source and destination of the memcpy are the same, then zap it.
- if (M->getSource() == M->getDest()) {
- MD->removeInstruction(M);
- M->eraseFromParent();
- return false;
- }
- // If copying from a constant, try to turn the memcpy into a memset.
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
- if (GV->isConstant() && GV->hasDefinitiveInitializer())
- if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
- IRBuilder<> Builder(M);
- Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
- M->getAlignment(), false);
- MD->removeInstruction(M);
- M->eraseFromParent();
- ++NumCpyToSet;
- return true;
- }
- MemDepResult DepInfo = MD->getDependency(M);
- // Try to turn a partially redundant memset + memcpy into
- // memcpy + smaller memset. We don't need the memcpy size for this.
- if (DepInfo.isClobber())
- if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
- if (processMemSetMemCpyDependence(M, MDep))
- return true;
- // The optimizations after this point require the memcpy size.
- ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
- if (!CopySize) return false;
- // There are four possible optimizations we can do for memcpy:
- // a) memcpy-memcpy xform which exposes redundance for DSE.
- // b) call-memcpy xform for return slot optimization.
- // c) memcpy from freshly alloca'd space or space that has just started its
- // lifetime copies undefined data, and we can therefore eliminate the
- // memcpy in favor of the data that was already at the destination.
- // d) memcpy from a just-memset'd source can be turned into memset.
- if (DepInfo.isClobber()) {
- if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
- if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
- CopySize->getZExtValue(), M->getAlignment(),
- C)) {
- MD->removeInstruction(M);
- M->eraseFromParent();
- return true;
- }
- }
- }
- MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
- MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(SrcLoc, true,
- M, M->getParent());
- if (SrcDepInfo.isClobber()) {
- if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
- return processMemCpyMemCpyDependence(M, MDep);
- } else if (SrcDepInfo.isDef()) {
- Instruction *I = SrcDepInfo.getInst();
- bool hasUndefContents = false;
- if (isa<AllocaInst>(I)) {
- hasUndefContents = true;
- } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- if (II->getIntrinsicID() == Intrinsic::lifetime_start)
- if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
- if (LTSize->getZExtValue() >= CopySize->getZExtValue())
- hasUndefContents = true;
- }
- if (hasUndefContents) {
- MD->removeInstruction(M);
- M->eraseFromParent();
- ++NumMemCpyInstr;
- return true;
- }
- }
- if (SrcDepInfo.isClobber())
- if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
- if (performMemCpyToMemSetOptzn(M, MDep)) {
- MD->removeInstruction(M);
- M->eraseFromParent();
- ++NumCpyToSet;
- return true;
- }
- return false;
- }
- /// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
- /// are guaranteed not to alias.
- bool MemCpyOpt::processMemMove(MemMoveInst *M) {
- AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
- if (!TLI->has(LibFunc::memmove))
- return false;
- // See if the pointers alias.
- if (!AA.isNoAlias(MemoryLocation::getForDest(M),
- MemoryLocation::getForSource(M)))
- return false;
- DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
- // If not, then we know we can transform this.
- Module *Mod = M->getParent()->getParent()->getParent();
- Type *ArgTys[3] = { M->getRawDest()->getType(),
- M->getRawSource()->getType(),
- M->getLength()->getType() };
- M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
- ArgTys));
- // MemDep may have over conservative information about this instruction, just
- // conservatively flush it from the cache.
- MD->removeInstruction(M);
- ++NumMoveToCpy;
- return true;
- }
- /// processByValArgument - This is called on every byval argument in call sites.
- bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
- const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
- // Find out what feeds this byval argument.
- Value *ByValArg = CS.getArgument(ArgNo);
- Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
- uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
- MemDepResult DepInfo = MD->getPointerDependencyFrom(
- MemoryLocation(ByValArg, ByValSize), true, CS.getInstruction(),
- CS.getInstruction()->getParent());
- if (!DepInfo.isClobber())
- return false;
- // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
- // a memcpy, see if we can byval from the source of the memcpy instead of the
- // result.
- MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
- if (!MDep || MDep->isVolatile() ||
- ByValArg->stripPointerCasts() != MDep->getDest())
- return false;
- // The length of the memcpy must be larger or equal to the size of the byval.
- ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
- if (!C1 || C1->getValue().getZExtValue() < ByValSize)
- return false;
- // Get the alignment of the byval. If the call doesn't specify the alignment,
- // then it is some target specific value that we can't know.
- unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
- if (ByValAlign == 0) return false;
- // If it is greater than the memcpy, then we check to see if we can force the
- // source of the memcpy to the alignment we need. If we fail, we bail out.
- AssumptionCache &AC =
- getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
- *CS->getParent()->getParent());
- DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- if (MDep->getAlignment() < ByValAlign &&
- getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
- CS.getInstruction(), &AC, &DT) < ByValAlign)
- return false;
- // Verify that the copied-from memory doesn't change in between the memcpy and
- // the byval call.
- // memcpy(a <- b)
- // *b = 42;
- // foo(*a)
- // It would be invalid to transform the second memcpy into foo(*b).
- //
- // NOTE: This is conservative, it will stop on any read from the source loc,
- // not just the defining memcpy.
- MemDepResult SourceDep =
- MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
- CS.getInstruction(), MDep->getParent());
- if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
- return false;
- Value *TmpCast = MDep->getSource();
- if (MDep->getSource()->getType() != ByValArg->getType())
- TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
- "tmpcast", CS.getInstruction());
- DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
- << " " << *MDep << "\n"
- << " " << *CS.getInstruction() << "\n");
- // Otherwise we're good! Update the byval argument.
- CS.setArgument(ArgNo, TmpCast);
- ++NumMemCpyInstr;
- return true;
- }
- /// iterateOnFunction - Executes one iteration of MemCpyOpt.
- bool MemCpyOpt::iterateOnFunction(Function &F) {
- bool MadeChange = false;
- // Walk all instruction in the function.
- for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
- for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
- // Avoid invalidating the iterator.
- Instruction *I = BI++;
- bool RepeatInstruction = false;
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- MadeChange |= processStore(SI, BI);
- else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
- RepeatInstruction = processMemSet(M, BI);
- else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
- RepeatInstruction = processMemCpy(M);
- else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
- RepeatInstruction = processMemMove(M);
- else if (auto CS = CallSite(I)) {
- for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
- if (CS.isByValArgument(i))
- MadeChange |= processByValArgument(CS, i);
- }
- // Reprocess the instruction if desired.
- if (RepeatInstruction) {
- if (BI != BB->begin()) --BI;
- MadeChange = true;
- }
- }
- }
- return MadeChange;
- }
- // MemCpyOpt::runOnFunction - This is the main transformation entry point for a
- // function.
- //
- bool MemCpyOpt::runOnFunction(Function &F) {
- if (skipOptnoneFunction(F))
- return false;
- bool MadeChange = false;
- MD = &getAnalysis<MemoryDependenceAnalysis>();
- TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- // If we don't have at least memset and memcpy, there is little point of doing
- // anything here. These are required by a freestanding implementation, so if
- // even they are disabled, there is no point in trying hard.
- if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
- return false;
- while (1) {
- if (!iterateOnFunction(F))
- break;
- MadeChange = true;
- }
- MD = nullptr;
- return MadeChange;
- }
|