| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276 |
- //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass reassociates commutative expressions in an order that is designed
- // to promote better constant propagation, GCSE, LICM, PRE, etc.
- //
- // For example: 4 + (x + 5) -> x + (4 + 5)
- //
- // In the implementation of this algorithm, constants are assigned rank = 0,
- // function arguments are rank = 1, and other values are assigned ranks
- // corresponding to the reverse post order traversal of current function
- // (starting at 2), which effectively gives values in deep loops higher rank
- // than values not in loops.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <algorithm>
- using namespace llvm;
- #define DEBUG_TYPE "reassociate"
- STATISTIC(NumChanged, "Number of insts reassociated");
- STATISTIC(NumAnnihil, "Number of expr tree annihilated");
- STATISTIC(NumFactor , "Number of multiplies factored");
- namespace {
- struct ValueEntry {
- unsigned Rank;
- Value *Op;
- ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
- };
- inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
- return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
- }
- }
- #ifndef NDEBUG
- /// Print out the expression identified in the Ops list.
- ///
- static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
- Module *M = I->getParent()->getParent()->getParent();
- dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
- << *Ops[0].Op->getType() << '\t';
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- dbgs() << "[ ";
- Ops[i].Op->printAsOperand(dbgs(), false, M);
- dbgs() << ", #" << Ops[i].Rank << "] ";
- }
- }
- #endif
- namespace {
- /// \brief Utility class representing a base and exponent pair which form one
- /// factor of some product.
- struct Factor {
- Value *Base;
- unsigned Power;
- Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
- /// \brief Sort factors by their Base.
- struct BaseSorter {
- bool operator()(const Factor &LHS, const Factor &RHS) {
- return LHS.Base < RHS.Base;
- }
- };
- /// \brief Compare factors for equal bases.
- struct BaseEqual {
- bool operator()(const Factor &LHS, const Factor &RHS) {
- return LHS.Base == RHS.Base;
- }
- };
- /// \brief Sort factors in descending order by their power.
- struct PowerDescendingSorter {
- bool operator()(const Factor &LHS, const Factor &RHS) {
- return LHS.Power > RHS.Power;
- }
- };
- /// \brief Compare factors for equal powers.
- struct PowerEqual {
- bool operator()(const Factor &LHS, const Factor &RHS) {
- return LHS.Power == RHS.Power;
- }
- };
- };
-
- /// Utility class representing a non-constant Xor-operand. We classify
- /// non-constant Xor-Operands into two categories:
- /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
- /// C2)
- /// C2.1) The operand is in the form of "X | C", where C is a non-zero
- /// constant.
- /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
- /// operand as "E | 0"
- class XorOpnd {
- public:
- XorOpnd(Value *V);
- bool isInvalid() const { return SymbolicPart == nullptr; }
- bool isOrExpr() const { return isOr; }
- Value *getValue() const { return OrigVal; }
- Value *getSymbolicPart() const { return SymbolicPart; }
- unsigned getSymbolicRank() const { return SymbolicRank; }
- const APInt &getConstPart() const { return ConstPart; }
- void Invalidate() { SymbolicPart = OrigVal = nullptr; }
- void setSymbolicRank(unsigned R) { SymbolicRank = R; }
- // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
- // The purpose is twofold:
- // 1) Cluster together the operands sharing the same symbolic-value.
- // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
- // could potentially shorten crital path, and expose more loop-invariants.
- // Note that values' rank are basically defined in RPO order (FIXME).
- // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
- // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
- // "z" in the order of X-Y-Z is better than any other orders.
- struct PtrSortFunctor {
- bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
- return LHS->getSymbolicRank() < RHS->getSymbolicRank();
- }
- };
- private:
- Value *OrigVal;
- Value *SymbolicPart;
- APInt ConstPart;
- unsigned SymbolicRank;
- bool isOr;
- };
- }
- namespace {
- class Reassociate : public FunctionPass {
- DenseMap<BasicBlock*, unsigned> RankMap;
- DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
- SetVector<AssertingVH<Instruction> > RedoInsts;
- bool MadeChange;
- public:
- static char ID; // Pass identification, replacement for typeid
- Reassociate() : FunctionPass(ID) {
- initializeReassociatePass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- }
- private:
- void BuildRankMap(Function &F);
- unsigned getRank(Value *V);
- void canonicalizeOperands(Instruction *I);
- void ReassociateExpression(BinaryOperator *I);
- void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
- Value *OptimizeExpression(BinaryOperator *I,
- SmallVectorImpl<ValueEntry> &Ops);
- Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
- Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
- bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
- Value *&Res);
- bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
- APInt &ConstOpnd, Value *&Res);
- bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
- SmallVectorImpl<Factor> &Factors);
- Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
- SmallVectorImpl<Factor> &Factors);
- Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
- Value *RemoveFactorFromExpression(Value *V, Value *Factor);
- void EraseInst(Instruction *I);
- void OptimizeInst(Instruction *I);
- Instruction *canonicalizeNegConstExpr(Instruction *I);
- };
- }
- XorOpnd::XorOpnd(Value *V) {
- assert(!isa<ConstantInt>(V) && "No ConstantInt");
- OrigVal = V;
- Instruction *I = dyn_cast<Instruction>(V);
- SymbolicRank = 0;
- if (I && (I->getOpcode() == Instruction::Or ||
- I->getOpcode() == Instruction::And)) {
- Value *V0 = I->getOperand(0);
- Value *V1 = I->getOperand(1);
- if (isa<ConstantInt>(V0))
- std::swap(V0, V1);
- if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
- ConstPart = C->getValue();
- SymbolicPart = V0;
- isOr = (I->getOpcode() == Instruction::Or);
- return;
- }
- }
- // view the operand as "V | 0"
- SymbolicPart = V;
- ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
- isOr = true;
- }
- char Reassociate::ID = 0;
- INITIALIZE_PASS(Reassociate, "reassociate",
- "Reassociate expressions", false, false)
- // Public interface to the Reassociate pass
- FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
- /// Return true if V is an instruction of the specified opcode and if it
- /// only has one use.
- static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
- if (V->hasOneUse() && isa<Instruction>(V) &&
- cast<Instruction>(V)->getOpcode() == Opcode &&
- (!isa<FPMathOperator>(V) ||
- cast<Instruction>(V)->hasUnsafeAlgebra()))
- return cast<BinaryOperator>(V);
- return nullptr;
- }
- static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
- unsigned Opcode2) {
- if (V->hasOneUse() && isa<Instruction>(V) &&
- (cast<Instruction>(V)->getOpcode() == Opcode1 ||
- cast<Instruction>(V)->getOpcode() == Opcode2) &&
- (!isa<FPMathOperator>(V) ||
- cast<Instruction>(V)->hasUnsafeAlgebra()))
- return cast<BinaryOperator>(V);
- return nullptr;
- }
- static bool isUnmovableInstruction(Instruction *I) {
- switch (I->getOpcode()) {
- case Instruction::PHI:
- case Instruction::LandingPad:
- case Instruction::Alloca:
- case Instruction::Load:
- case Instruction::Invoke:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- return true;
- case Instruction::Call:
- return !isa<DbgInfoIntrinsic>(I);
- default:
- return false;
- }
- }
- void Reassociate::BuildRankMap(Function &F) {
- unsigned i = 2;
- // Assign distinct ranks to function arguments.
- for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
- ValueRankMap[&*I] = ++i;
- DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
- }
- ReversePostOrderTraversal<Function*> RPOT(&F);
- for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
- E = RPOT.end(); I != E; ++I) {
- BasicBlock *BB = *I;
- unsigned BBRank = RankMap[BB] = ++i << 16;
- // Walk the basic block, adding precomputed ranks for any instructions that
- // we cannot move. This ensures that the ranks for these instructions are
- // all different in the block.
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (isUnmovableInstruction(I))
- ValueRankMap[&*I] = ++BBRank;
- }
- }
- unsigned Reassociate::getRank(Value *V) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) {
- if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
- return 0; // Otherwise it's a global or constant, rank 0.
- }
- if (unsigned Rank = ValueRankMap[I])
- return Rank; // Rank already known?
- // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
- // we can reassociate expressions for code motion! Since we do not recurse
- // for PHI nodes, we cannot have infinite recursion here, because there
- // cannot be loops in the value graph that do not go through PHI nodes.
- unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
- for (unsigned i = 0, e = I->getNumOperands();
- i != e && Rank != MaxRank; ++i)
- Rank = std::max(Rank, getRank(I->getOperand(i)));
- // If this is a not or neg instruction, do not count it for rank. This
- // assures us that X and ~X will have the same rank.
- if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
- !BinaryOperator::isFNeg(I))
- ++Rank;
- DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
- return ValueRankMap[I] = Rank;
- }
- // Canonicalize constants to RHS. Otherwise, sort the operands by rank.
- void Reassociate::canonicalizeOperands(Instruction *I) {
- assert(isa<BinaryOperator>(I) && "Expected binary operator.");
- assert(I->isCommutative() && "Expected commutative operator.");
- Value *LHS = I->getOperand(0);
- Value *RHS = I->getOperand(1);
- unsigned LHSRank = getRank(LHS);
- unsigned RHSRank = getRank(RHS);
- if (isa<Constant>(RHS))
- return;
- if (isa<Constant>(LHS) || RHSRank < LHSRank)
- cast<BinaryOperator>(I)->swapOperands();
- }
- static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
- Instruction *InsertBefore, Value *FlagsOp) {
- if (S1->getType()->isIntOrIntVectorTy())
- return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
- else {
- BinaryOperator *Res =
- BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
- Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
- return Res;
- }
- }
- static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
- Instruction *InsertBefore, Value *FlagsOp) {
- if (S1->getType()->isIntOrIntVectorTy())
- return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
- else {
- BinaryOperator *Res =
- BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
- Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
- return Res;
- }
- }
- static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
- Instruction *InsertBefore, Value *FlagsOp) {
- if (S1->getType()->isIntOrIntVectorTy())
- return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
- else {
- BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
- Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
- return Res;
- }
- }
- /// Replace 0-X with X*-1.
- static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
- Type *Ty = Neg->getType();
- Constant *NegOne = Ty->isIntOrIntVectorTy() ?
- ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
- BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
- Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
- Res->takeName(Neg);
- Neg->replaceAllUsesWith(Res);
- Res->setDebugLoc(Neg->getDebugLoc());
- return Res;
- }
- /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
- /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
- /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
- /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
- /// even x in Bitwidth-bit arithmetic.
- static unsigned CarmichaelShift(unsigned Bitwidth) {
- if (Bitwidth < 3)
- return Bitwidth - 1;
- return Bitwidth - 2;
- }
- /// Add the extra weight 'RHS' to the existing weight 'LHS',
- /// reducing the combined weight using any special properties of the operation.
- /// The existing weight LHS represents the computation X op X op ... op X where
- /// X occurs LHS times. The combined weight represents X op X op ... op X with
- /// X occurring LHS + RHS times. If op is "Xor" for example then the combined
- /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
- /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
- static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
- // If we were working with infinite precision arithmetic then the combined
- // weight would be LHS + RHS. But we are using finite precision arithmetic,
- // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
- // for nilpotent operations and addition, but not for idempotent operations
- // and multiplication), so it is important to correctly reduce the combined
- // weight back into range if wrapping would be wrong.
- // If RHS is zero then the weight didn't change.
- if (RHS.isMinValue())
- return;
- // If LHS is zero then the combined weight is RHS.
- if (LHS.isMinValue()) {
- LHS = RHS;
- return;
- }
- // From this point on we know that neither LHS nor RHS is zero.
- if (Instruction::isIdempotent(Opcode)) {
- // Idempotent means X op X === X, so any non-zero weight is equivalent to a
- // weight of 1. Keeping weights at zero or one also means that wrapping is
- // not a problem.
- assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
- return; // Return a weight of 1.
- }
- if (Instruction::isNilpotent(Opcode)) {
- // Nilpotent means X op X === 0, so reduce weights modulo 2.
- assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
- LHS = 0; // 1 + 1 === 0 modulo 2.
- return;
- }
- if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
- // TODO: Reduce the weight by exploiting nsw/nuw?
- LHS += RHS;
- return;
- }
- assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
- "Unknown associative operation!");
- unsigned Bitwidth = LHS.getBitWidth();
- // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
- // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
- // bit number x, since either x is odd in which case x^CM = 1, or x is even in
- // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
- // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
- // which by a happy accident means that they can always be represented using
- // Bitwidth bits.
- // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
- // the Carmichael number).
- if (Bitwidth > 3) {
- /// CM - The value of Carmichael's lambda function.
- APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
- // Any weight W >= Threshold can be replaced with W - CM.
- APInt Threshold = CM + Bitwidth;
- assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
- // For Bitwidth 4 or more the following sum does not overflow.
- LHS += RHS;
- while (LHS.uge(Threshold))
- LHS -= CM;
- } else {
- // To avoid problems with overflow do everything the same as above but using
- // a larger type.
- unsigned CM = 1U << CarmichaelShift(Bitwidth);
- unsigned Threshold = CM + Bitwidth;
- assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
- "Weights not reduced!");
- unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
- while (Total >= Threshold)
- Total -= CM;
- LHS = Total;
- }
- }
- typedef std::pair<Value*, APInt> RepeatedValue;
- /// Given an associative binary expression, return the leaf
- /// nodes in Ops along with their weights (how many times the leaf occurs). The
- /// original expression is the same as
- /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
- /// op
- /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
- /// op
- /// ...
- /// op
- /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
- ///
- /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
- ///
- /// This routine may modify the function, in which case it returns 'true'. The
- /// changes it makes may well be destructive, changing the value computed by 'I'
- /// to something completely different. Thus if the routine returns 'true' then
- /// you MUST either replace I with a new expression computed from the Ops array,
- /// or use RewriteExprTree to put the values back in.
- ///
- /// A leaf node is either not a binary operation of the same kind as the root
- /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
- /// opcode), or is the same kind of binary operator but has a use which either
- /// does not belong to the expression, or does belong to the expression but is
- /// a leaf node. Every leaf node has at least one use that is a non-leaf node
- /// of the expression, while for non-leaf nodes (except for the root 'I') every
- /// use is a non-leaf node of the expression.
- ///
- /// For example:
- /// expression graph node names
- ///
- /// + | I
- /// / \ |
- /// + + | A, B
- /// / \ / \ |
- /// * + * | C, D, E
- /// / \ / \ / \ |
- /// + * | F, G
- ///
- /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
- /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
- ///
- /// The expression is maximal: if some instruction is a binary operator of the
- /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
- /// then the instruction also belongs to the expression, is not a leaf node of
- /// it, and its operands also belong to the expression (but may be leaf nodes).
- ///
- /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
- /// order to ensure that every non-root node in the expression has *exactly one*
- /// use by a non-leaf node of the expression. This destruction means that the
- /// caller MUST either replace 'I' with a new expression or use something like
- /// RewriteExprTree to put the values back in if the routine indicates that it
- /// made a change by returning 'true'.
- ///
- /// In the above example either the right operand of A or the left operand of B
- /// will be replaced by undef. If it is B's operand then this gives:
- ///
- /// + | I
- /// / \ |
- /// + + | A, B - operand of B replaced with undef
- /// / \ \ |
- /// * + * | C, D, E
- /// / \ / \ / \ |
- /// + * | F, G
- ///
- /// Note that such undef operands can only be reached by passing through 'I'.
- /// For example, if you visit operands recursively starting from a leaf node
- /// then you will never see such an undef operand unless you get back to 'I',
- /// which requires passing through a phi node.
- ///
- /// Note that this routine may also mutate binary operators of the wrong type
- /// that have all uses inside the expression (i.e. only used by non-leaf nodes
- /// of the expression) if it can turn them into binary operators of the right
- /// type and thus make the expression bigger.
- static bool LinearizeExprTree(BinaryOperator *I,
- SmallVectorImpl<RepeatedValue> &Ops) {
- DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
- unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
- unsigned Opcode = I->getOpcode();
- assert(I->isAssociative() && I->isCommutative() &&
- "Expected an associative and commutative operation!");
- // Visit all operands of the expression, keeping track of their weight (the
- // number of paths from the expression root to the operand, or if you like
- // the number of times that operand occurs in the linearized expression).
- // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
- // while A has weight two.
- // Worklist of non-leaf nodes (their operands are in the expression too) along
- // with their weights, representing a certain number of paths to the operator.
- // If an operator occurs in the worklist multiple times then we found multiple
- // ways to get to it.
- SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
- Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
- bool Changed = false;
- // Leaves of the expression are values that either aren't the right kind of
- // operation (eg: a constant, or a multiply in an add tree), or are, but have
- // some uses that are not inside the expression. For example, in I = X + X,
- // X = A + B, the value X has two uses (by I) that are in the expression. If
- // X has any other uses, for example in a return instruction, then we consider
- // X to be a leaf, and won't analyze it further. When we first visit a value,
- // if it has more than one use then at first we conservatively consider it to
- // be a leaf. Later, as the expression is explored, we may discover some more
- // uses of the value from inside the expression. If all uses turn out to be
- // from within the expression (and the value is a binary operator of the right
- // kind) then the value is no longer considered to be a leaf, and its operands
- // are explored.
- // Leaves - Keeps track of the set of putative leaves as well as the number of
- // paths to each leaf seen so far.
- typedef DenseMap<Value*, APInt> LeafMap;
- LeafMap Leaves; // Leaf -> Total weight so far.
- SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
- #ifndef NDEBUG
- SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
- #endif
- while (!Worklist.empty()) {
- std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
- I = P.first; // We examine the operands of this binary operator.
- for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
- Value *Op = I->getOperand(OpIdx);
- APInt Weight = P.second; // Number of paths to this operand.
- DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
- assert(!Op->use_empty() && "No uses, so how did we get to it?!");
- // If this is a binary operation of the right kind with only one use then
- // add its operands to the expression.
- if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
- assert(Visited.insert(Op).second && "Not first visit!");
- DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
- Worklist.push_back(std::make_pair(BO, Weight));
- continue;
- }
- // Appears to be a leaf. Is the operand already in the set of leaves?
- LeafMap::iterator It = Leaves.find(Op);
- if (It == Leaves.end()) {
- // Not in the leaf map. Must be the first time we saw this operand.
- assert(Visited.insert(Op).second && "Not first visit!");
- if (!Op->hasOneUse()) {
- // This value has uses not accounted for by the expression, so it is
- // not safe to modify. Mark it as being a leaf.
- DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
- LeafOrder.push_back(Op);
- Leaves[Op] = Weight;
- continue;
- }
- // No uses outside the expression, try morphing it.
- } else if (It != Leaves.end()) {
- // Already in the leaf map.
- assert(Visited.count(Op) && "In leaf map but not visited!");
- // Update the number of paths to the leaf.
- IncorporateWeight(It->second, Weight, Opcode);
- #if 0 // TODO: Re-enable once PR13021 is fixed.
- // The leaf already has one use from inside the expression. As we want
- // exactly one such use, drop this new use of the leaf.
- assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
- I->setOperand(OpIdx, UndefValue::get(I->getType()));
- Changed = true;
- // If the leaf is a binary operation of the right kind and we now see
- // that its multiple original uses were in fact all by nodes belonging
- // to the expression, then no longer consider it to be a leaf and add
- // its operands to the expression.
- if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
- DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
- Worklist.push_back(std::make_pair(BO, It->second));
- Leaves.erase(It);
- continue;
- }
- #endif
- // If we still have uses that are not accounted for by the expression
- // then it is not safe to modify the value.
- if (!Op->hasOneUse())
- continue;
- // No uses outside the expression, try morphing it.
- Weight = It->second;
- Leaves.erase(It); // Since the value may be morphed below.
- }
- // At this point we have a value which, first of all, is not a binary
- // expression of the right kind, and secondly, is only used inside the
- // expression. This means that it can safely be modified. See if we
- // can usefully morph it into an expression of the right kind.
- assert((!isa<Instruction>(Op) ||
- cast<Instruction>(Op)->getOpcode() != Opcode
- || (isa<FPMathOperator>(Op) &&
- !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
- "Should have been handled above!");
- assert(Op->hasOneUse() && "Has uses outside the expression tree!");
- // If this is a multiply expression, turn any internal negations into
- // multiplies by -1 so they can be reassociated.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
- if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
- (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
- DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
- BO = LowerNegateToMultiply(BO);
- DEBUG(dbgs() << *BO << '\n');
- Worklist.push_back(std::make_pair(BO, Weight));
- Changed = true;
- continue;
- }
- // Failed to morph into an expression of the right type. This really is
- // a leaf.
- DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
- assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
- LeafOrder.push_back(Op);
- Leaves[Op] = Weight;
- }
- }
- // The leaves, repeated according to their weights, represent the linearized
- // form of the expression.
- for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
- Value *V = LeafOrder[i];
- LeafMap::iterator It = Leaves.find(V);
- if (It == Leaves.end())
- // Node initially thought to be a leaf wasn't.
- continue;
- assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
- APInt Weight = It->second;
- if (Weight.isMinValue())
- // Leaf already output or weight reduction eliminated it.
- continue;
- // Ensure the leaf is only output once.
- It->second = 0;
- Ops.push_back(std::make_pair(V, Weight));
- }
- // For nilpotent operations or addition there may be no operands, for example
- // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
- // in both cases the weight reduces to 0 causing the value to be skipped.
- if (Ops.empty()) {
- Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
- assert(Identity && "Associative operation without identity!");
- Ops.emplace_back(Identity, APInt(Bitwidth, 1));
- }
- return Changed;
- }
- /// Now that the operands for this expression tree are
- /// linearized and optimized, emit them in-order.
- void Reassociate::RewriteExprTree(BinaryOperator *I,
- SmallVectorImpl<ValueEntry> &Ops) {
- assert(Ops.size() > 1 && "Single values should be used directly!");
- // Since our optimizations should never increase the number of operations, the
- // new expression can usually be written reusing the existing binary operators
- // from the original expression tree, without creating any new instructions,
- // though the rewritten expression may have a completely different topology.
- // We take care to not change anything if the new expression will be the same
- // as the original. If more than trivial changes (like commuting operands)
- // were made then we are obliged to clear out any optional subclass data like
- // nsw flags.
- /// NodesToRewrite - Nodes from the original expression available for writing
- /// the new expression into.
- SmallVector<BinaryOperator*, 8> NodesToRewrite;
- unsigned Opcode = I->getOpcode();
- BinaryOperator *Op = I;
- /// NotRewritable - The operands being written will be the leaves of the new
- /// expression and must not be used as inner nodes (via NodesToRewrite) by
- /// mistake. Inner nodes are always reassociable, and usually leaves are not
- /// (if they were they would have been incorporated into the expression and so
- /// would not be leaves), so most of the time there is no danger of this. But
- /// in rare cases a leaf may become reassociable if an optimization kills uses
- /// of it, or it may momentarily become reassociable during rewriting (below)
- /// due it being removed as an operand of one of its uses. Ensure that misuse
- /// of leaf nodes as inner nodes cannot occur by remembering all of the future
- /// leaves and refusing to reuse any of them as inner nodes.
- SmallPtrSet<Value*, 8> NotRewritable;
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- NotRewritable.insert(Ops[i].Op);
- // ExpressionChanged - Non-null if the rewritten expression differs from the
- // original in some non-trivial way, requiring the clearing of optional flags.
- // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
- BinaryOperator *ExpressionChanged = nullptr;
- for (unsigned i = 0; ; ++i) {
- // The last operation (which comes earliest in the IR) is special as both
- // operands will come from Ops, rather than just one with the other being
- // a subexpression.
- if (i+2 == Ops.size()) {
- Value *NewLHS = Ops[i].Op;
- Value *NewRHS = Ops[i+1].Op;
- Value *OldLHS = Op->getOperand(0);
- Value *OldRHS = Op->getOperand(1);
- if (NewLHS == OldLHS && NewRHS == OldRHS)
- // Nothing changed, leave it alone.
- break;
- if (NewLHS == OldRHS && NewRHS == OldLHS) {
- // The order of the operands was reversed. Swap them.
- DEBUG(dbgs() << "RA: " << *Op << '\n');
- Op->swapOperands();
- DEBUG(dbgs() << "TO: " << *Op << '\n');
- MadeChange = true;
- ++NumChanged;
- break;
- }
- // The new operation differs non-trivially from the original. Overwrite
- // the old operands with the new ones.
- DEBUG(dbgs() << "RA: " << *Op << '\n');
- if (NewLHS != OldLHS) {
- BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
- if (BO && !NotRewritable.count(BO))
- NodesToRewrite.push_back(BO);
- Op->setOperand(0, NewLHS);
- }
- if (NewRHS != OldRHS) {
- BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
- if (BO && !NotRewritable.count(BO))
- NodesToRewrite.push_back(BO);
- Op->setOperand(1, NewRHS);
- }
- DEBUG(dbgs() << "TO: " << *Op << '\n');
- ExpressionChanged = Op;
- MadeChange = true;
- ++NumChanged;
- break;
- }
- // Not the last operation. The left-hand side will be a sub-expression
- // while the right-hand side will be the current element of Ops.
- Value *NewRHS = Ops[i].Op;
- if (NewRHS != Op->getOperand(1)) {
- DEBUG(dbgs() << "RA: " << *Op << '\n');
- if (NewRHS == Op->getOperand(0)) {
- // The new right-hand side was already present as the left operand. If
- // we are lucky then swapping the operands will sort out both of them.
- Op->swapOperands();
- } else {
- // Overwrite with the new right-hand side.
- BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
- if (BO && !NotRewritable.count(BO))
- NodesToRewrite.push_back(BO);
- Op->setOperand(1, NewRHS);
- ExpressionChanged = Op;
- }
- DEBUG(dbgs() << "TO: " << *Op << '\n');
- MadeChange = true;
- ++NumChanged;
- }
- // Now deal with the left-hand side. If this is already an operation node
- // from the original expression then just rewrite the rest of the expression
- // into it.
- BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
- if (BO && !NotRewritable.count(BO)) {
- Op = BO;
- continue;
- }
- // Otherwise, grab a spare node from the original expression and use that as
- // the left-hand side. If there are no nodes left then the optimizers made
- // an expression with more nodes than the original! This usually means that
- // they did something stupid but it might mean that the problem was just too
- // hard (finding the mimimal number of multiplications needed to realize a
- // multiplication expression is NP-complete). Whatever the reason, smart or
- // stupid, create a new node if there are none left.
- BinaryOperator *NewOp;
- if (NodesToRewrite.empty()) {
- Constant *Undef = UndefValue::get(I->getType());
- NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
- Undef, Undef, "", I);
- if (NewOp->getType()->isFPOrFPVectorTy())
- NewOp->setFastMathFlags(I->getFastMathFlags());
- } else {
- NewOp = NodesToRewrite.pop_back_val();
- }
- DEBUG(dbgs() << "RA: " << *Op << '\n');
- Op->setOperand(0, NewOp);
- DEBUG(dbgs() << "TO: " << *Op << '\n');
- ExpressionChanged = Op;
- MadeChange = true;
- ++NumChanged;
- Op = NewOp;
- }
- // If the expression changed non-trivially then clear out all subclass data
- // starting from the operator specified in ExpressionChanged, and compactify
- // the operators to just before the expression root to guarantee that the
- // expression tree is dominated by all of Ops.
- if (ExpressionChanged)
- do {
- // Preserve FastMathFlags.
- if (isa<FPMathOperator>(I)) {
- FastMathFlags Flags = I->getFastMathFlags();
- ExpressionChanged->clearSubclassOptionalData();
- ExpressionChanged->setFastMathFlags(Flags);
- } else
- ExpressionChanged->clearSubclassOptionalData();
- if (ExpressionChanged == I)
- break;
- ExpressionChanged->moveBefore(I);
- ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
- } while (1);
- // Throw away any left over nodes from the original expression.
- for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
- RedoInsts.insert(NodesToRewrite[i]);
- }
- /// Insert instructions before the instruction pointed to by BI,
- /// that computes the negative version of the value specified. The negative
- /// version of the value is returned, and BI is left pointing at the instruction
- /// that should be processed next by the reassociation pass.
- static Value *NegateValue(Value *V, Instruction *BI) {
- if (Constant *C = dyn_cast<Constant>(V)) {
- if (C->getType()->isFPOrFPVectorTy()) {
- return ConstantExpr::getFNeg(C);
- }
- return ConstantExpr::getNeg(C);
- }
- // We are trying to expose opportunity for reassociation. One of the things
- // that we want to do to achieve this is to push a negation as deep into an
- // expression chain as possible, to expose the add instructions. In practice,
- // this means that we turn this:
- // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
- // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
- // the constants. We assume that instcombine will clean up the mess later if
- // we introduce tons of unnecessary negation instructions.
- //
- if (BinaryOperator *I =
- isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
- // Push the negates through the add.
- I->setOperand(0, NegateValue(I->getOperand(0), BI));
- I->setOperand(1, NegateValue(I->getOperand(1), BI));
- if (I->getOpcode() == Instruction::Add) {
- I->setHasNoUnsignedWrap(false);
- I->setHasNoSignedWrap(false);
- }
- // We must move the add instruction here, because the neg instructions do
- // not dominate the old add instruction in general. By moving it, we are
- // assured that the neg instructions we just inserted dominate the
- // instruction we are about to insert after them.
- //
- I->moveBefore(BI);
- I->setName(I->getName()+".neg");
- return I;
- }
- // Okay, we need to materialize a negated version of V with an instruction.
- // Scan the use lists of V to see if we have one already.
- for (User *U : V->users()) {
- if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
- continue;
- // We found one! Now we have to make sure that the definition dominates
- // this use. We do this by moving it to the entry block (if it is a
- // non-instruction value) or right after the definition. These negates will
- // be zapped by reassociate later, so we don't need much finesse here.
- BinaryOperator *TheNeg = cast<BinaryOperator>(U);
- // Verify that the negate is in this function, V might be a constant expr.
- if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
- continue;
- BasicBlock::iterator InsertPt;
- if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
- if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
- InsertPt = II->getNormalDest()->begin();
- } else {
- InsertPt = InstInput;
- ++InsertPt;
- }
- while (isa<PHINode>(InsertPt)) ++InsertPt;
- } else {
- InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
- }
- TheNeg->moveBefore(InsertPt);
- if (TheNeg->getOpcode() == Instruction::Sub) {
- TheNeg->setHasNoUnsignedWrap(false);
- TheNeg->setHasNoSignedWrap(false);
- } else {
- TheNeg->andIRFlags(BI);
- }
- return TheNeg;
- }
- // Insert a 'neg' instruction that subtracts the value from zero to get the
- // negation.
- return CreateNeg(V, V->getName() + ".neg", BI, BI);
- }
- /// Return true if we should break up this subtract of X-Y into (X + -Y).
- static bool ShouldBreakUpSubtract(Instruction *Sub) {
- // If this is a negation, we can't split it up!
- if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
- return false;
- // Don't breakup X - undef.
- if (isa<UndefValue>(Sub->getOperand(1)))
- return false;
- // Don't bother to break this up unless either the LHS is an associable add or
- // subtract or if this is only used by one.
- Value *V0 = Sub->getOperand(0);
- if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
- isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
- return true;
- Value *V1 = Sub->getOperand(1);
- if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
- isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
- return true;
- Value *VB = Sub->user_back();
- if (Sub->hasOneUse() &&
- (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
- isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
- return true;
- return false;
- }
- /// If we have (X-Y), and if either X is an add, or if this is only used by an
- /// add, transform this into (X+(0-Y)) to promote better reassociation.
- static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
- // Convert a subtract into an add and a neg instruction. This allows sub
- // instructions to be commuted with other add instructions.
- //
- // Calculate the negative value of Operand 1 of the sub instruction,
- // and set it as the RHS of the add instruction we just made.
- //
- Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
- BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
- Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
- Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
- New->takeName(Sub);
- // Everyone now refers to the add instruction.
- Sub->replaceAllUsesWith(New);
- New->setDebugLoc(Sub->getDebugLoc());
- DEBUG(dbgs() << "Negated: " << *New << '\n');
- return New;
- }
- /// If this is a shift of a reassociable multiply or is used by one, change
- /// this into a multiply by a constant to assist with further reassociation.
- static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
- Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
- MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
- BinaryOperator *Mul =
- BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
- Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
- Mul->takeName(Shl);
- // Everyone now refers to the mul instruction.
- Shl->replaceAllUsesWith(Mul);
- Mul->setDebugLoc(Shl->getDebugLoc());
- // We can safely preserve the nuw flag in all cases. It's also safe to turn a
- // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
- // handling.
- bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
- bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
- if (NSW && NUW)
- Mul->setHasNoSignedWrap(true);
- Mul->setHasNoUnsignedWrap(NUW);
- return Mul;
- }
- /// Scan backwards and forwards among values with the same rank as element i
- /// to see if X exists. If X does not exist, return i. This is useful when
- /// scanning for 'x' when we see '-x' because they both get the same rank.
- static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
- Value *X) {
- unsigned XRank = Ops[i].Rank;
- unsigned e = Ops.size();
- for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
- if (Ops[j].Op == X)
- return j;
- if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
- if (Instruction *I2 = dyn_cast<Instruction>(X))
- if (I1->isIdenticalTo(I2))
- return j;
- }
- // Scan backwards.
- for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
- if (Ops[j].Op == X)
- return j;
- if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
- if (Instruction *I2 = dyn_cast<Instruction>(X))
- if (I1->isIdenticalTo(I2))
- return j;
- }
- return i;
- }
- /// Emit a tree of add instructions, summing Ops together
- /// and returning the result. Insert the tree before I.
- static Value *EmitAddTreeOfValues(Instruction *I,
- SmallVectorImpl<WeakVH> &Ops){
- if (Ops.size() == 1) return Ops.back();
- Value *V1 = Ops.back();
- Ops.pop_back();
- Value *V2 = EmitAddTreeOfValues(I, Ops);
- return CreateAdd(V2, V1, "tmp", I, I);
- }
- /// If V is an expression tree that is a multiplication sequence,
- /// and if this sequence contains a multiply by Factor,
- /// remove Factor from the tree and return the new tree.
- Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
- BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
- if (!BO)
- return nullptr;
- SmallVector<RepeatedValue, 8> Tree;
- MadeChange |= LinearizeExprTree(BO, Tree);
- SmallVector<ValueEntry, 8> Factors;
- Factors.reserve(Tree.size());
- for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
- RepeatedValue E = Tree[i];
- Factors.append(E.second.getZExtValue(),
- ValueEntry(getRank(E.first), E.first));
- }
- bool FoundFactor = false;
- bool NeedsNegate = false;
- for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
- if (Factors[i].Op == Factor) {
- FoundFactor = true;
- Factors.erase(Factors.begin()+i);
- break;
- }
- // If this is a negative version of this factor, remove it.
- if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
- if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
- if (FC1->getValue() == -FC2->getValue()) {
- FoundFactor = NeedsNegate = true;
- Factors.erase(Factors.begin()+i);
- break;
- }
- } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
- if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
- APFloat F1(FC1->getValueAPF());
- APFloat F2(FC2->getValueAPF());
- F2.changeSign();
- if (F1.compare(F2) == APFloat::cmpEqual) {
- FoundFactor = NeedsNegate = true;
- Factors.erase(Factors.begin() + i);
- break;
- }
- }
- }
- }
- if (!FoundFactor) {
- // Make sure to restore the operands to the expression tree.
- RewriteExprTree(BO, Factors);
- return nullptr;
- }
- BasicBlock::iterator InsertPt = BO; ++InsertPt;
- // If this was just a single multiply, remove the multiply and return the only
- // remaining operand.
- if (Factors.size() == 1) {
- RedoInsts.insert(BO);
- V = Factors[0].Op;
- } else {
- RewriteExprTree(BO, Factors);
- V = BO;
- }
- if (NeedsNegate)
- V = CreateNeg(V, "neg", InsertPt, BO);
- return V;
- }
- /// If V is a single-use multiply, recursively add its operands as factors,
- /// otherwise add V to the list of factors.
- ///
- /// Ops is the top-level list of add operands we're trying to factor.
- static void FindSingleUseMultiplyFactors(Value *V,
- SmallVectorImpl<Value*> &Factors,
- const SmallVectorImpl<ValueEntry> &Ops) {
- BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
- if (!BO) {
- Factors.push_back(V);
- return;
- }
- // Otherwise, add the LHS and RHS to the list of factors.
- FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
- FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
- }
- /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
- /// This optimizes based on identities. If it can be reduced to a single Value,
- /// it is returned, otherwise the Ops list is mutated as necessary.
- static Value *OptimizeAndOrXor(unsigned Opcode,
- SmallVectorImpl<ValueEntry> &Ops) {
- // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
- // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- // First, check for X and ~X in the operand list.
- assert(i < Ops.size());
- if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
- Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
- unsigned FoundX = FindInOperandList(Ops, i, X);
- if (FoundX != i) {
- if (Opcode == Instruction::And) // ...&X&~X = 0
- return Constant::getNullValue(X->getType());
- if (Opcode == Instruction::Or) // ...|X|~X = -1
- return Constant::getAllOnesValue(X->getType());
- }
- }
- // Next, check for duplicate pairs of values, which we assume are next to
- // each other, due to our sorting criteria.
- assert(i < Ops.size());
- if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
- if (Opcode == Instruction::And || Opcode == Instruction::Or) {
- // Drop duplicate values for And and Or.
- Ops.erase(Ops.begin()+i);
- --i; --e;
- ++NumAnnihil;
- continue;
- }
- // Drop pairs of values for Xor.
- assert(Opcode == Instruction::Xor);
- if (e == 2)
- return Constant::getNullValue(Ops[0].Op->getType());
- // Y ^ X^X -> Y
- Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
- i -= 1; e -= 2;
- ++NumAnnihil;
- }
- }
- return nullptr;
- }
- /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
- /// instruction with the given two operands, and return the resulting
- /// instruction. There are two special cases: 1) if the constant operand is 0,
- /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
- /// be returned.
- static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
- const APInt &ConstOpnd) {
- if (ConstOpnd != 0) {
- if (!ConstOpnd.isAllOnesValue()) {
- LLVMContext &Ctx = Opnd->getType()->getContext();
- Instruction *I;
- I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
- "and.ra", InsertBefore);
- I->setDebugLoc(InsertBefore->getDebugLoc());
- return I;
- }
- return Opnd;
- }
- return nullptr;
- }
- // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
- // into "R ^ C", where C would be 0, and R is a symbolic value.
- //
- // If it was successful, true is returned, and the "R" and "C" is returned
- // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
- // and both "Res" and "ConstOpnd" remain unchanged.
- //
- bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
- APInt &ConstOpnd, Value *&Res) {
- // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
- // = ((x | c1) ^ c1) ^ (c1 ^ c2)
- // = (x & ~c1) ^ (c1 ^ c2)
- // It is useful only when c1 == c2.
- if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
- if (!Opnd1->getValue()->hasOneUse())
- return false;
- const APInt &C1 = Opnd1->getConstPart();
- if (C1 != ConstOpnd)
- return false;
- Value *X = Opnd1->getSymbolicPart();
- Res = createAndInstr(I, X, ~C1);
- // ConstOpnd was C2, now C1 ^ C2.
- ConstOpnd ^= C1;
- if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
- RedoInsts.insert(T);
- return true;
- }
- return false;
- }
-
- // Helper function of OptimizeXor(). It tries to simplify
- // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
- // symbolic value.
- //
- // If it was successful, true is returned, and the "R" and "C" is returned
- // via "Res" and "ConstOpnd", respectively (If the entire expression is
- // evaluated to a constant, the Res is set to NULL); otherwise, false is
- // returned, and both "Res" and "ConstOpnd" remain unchanged.
- bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
- APInt &ConstOpnd, Value *&Res) {
- Value *X = Opnd1->getSymbolicPart();
- if (X != Opnd2->getSymbolicPart())
- return false;
- // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
- int DeadInstNum = 1;
- if (Opnd1->getValue()->hasOneUse())
- DeadInstNum++;
- if (Opnd2->getValue()->hasOneUse())
- DeadInstNum++;
- // Xor-Rule 2:
- // (x | c1) ^ (x & c2)
- // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
- // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
- // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
- //
- if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
- if (Opnd2->isOrExpr())
- std::swap(Opnd1, Opnd2);
- const APInt &C1 = Opnd1->getConstPart();
- const APInt &C2 = Opnd2->getConstPart();
- APInt C3((~C1) ^ C2);
- // Do not increase code size!
- if (C3 != 0 && !C3.isAllOnesValue()) {
- int NewInstNum = ConstOpnd != 0 ? 1 : 2;
- if (NewInstNum > DeadInstNum)
- return false;
- }
- Res = createAndInstr(I, X, C3);
- ConstOpnd ^= C1;
- } else if (Opnd1->isOrExpr()) {
- // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
- //
- const APInt &C1 = Opnd1->getConstPart();
- const APInt &C2 = Opnd2->getConstPart();
- APInt C3 = C1 ^ C2;
-
- // Do not increase code size
- if (C3 != 0 && !C3.isAllOnesValue()) {
- int NewInstNum = ConstOpnd != 0 ? 1 : 2;
- if (NewInstNum > DeadInstNum)
- return false;
- }
- Res = createAndInstr(I, X, C3);
- ConstOpnd ^= C3;
- } else {
- // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
- //
- const APInt &C1 = Opnd1->getConstPart();
- const APInt &C2 = Opnd2->getConstPart();
- APInt C3 = C1 ^ C2;
- Res = createAndInstr(I, X, C3);
- }
- // Put the original operands in the Redo list; hope they will be deleted
- // as dead code.
- if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
- RedoInsts.insert(T);
- if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
- RedoInsts.insert(T);
- return true;
- }
- /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
- /// to a single Value, it is returned, otherwise the Ops list is mutated as
- /// necessary.
- Value *Reassociate::OptimizeXor(Instruction *I,
- SmallVectorImpl<ValueEntry> &Ops) {
- if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
- return V;
-
- if (Ops.size() == 1)
- return nullptr;
- SmallVector<XorOpnd, 8> Opnds;
- SmallVector<XorOpnd*, 8> OpndPtrs;
- Type *Ty = Ops[0].Op->getType();
- APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
- // Step 1: Convert ValueEntry to XorOpnd
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- Value *V = Ops[i].Op;
- if (!isa<ConstantInt>(V)) {
- XorOpnd O(V);
- O.setSymbolicRank(getRank(O.getSymbolicPart()));
- Opnds.push_back(O);
- } else
- ConstOpnd ^= cast<ConstantInt>(V)->getValue();
- }
- // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
- // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
- // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
- // with the previous loop --- the iterator of the "Opnds" may be invalidated
- // when new elements are added to the vector.
- for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
- OpndPtrs.push_back(&Opnds[i]);
- // Step 2: Sort the Xor-Operands in a way such that the operands containing
- // the same symbolic value cluster together. For instance, the input operand
- // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
- // ("x | 123", "x & 789", "y & 456").
- std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
- // Step 3: Combine adjacent operands
- XorOpnd *PrevOpnd = nullptr;
- bool Changed = false;
- for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
- XorOpnd *CurrOpnd = OpndPtrs[i];
- // The combined value
- Value *CV;
- // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
- if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
- Changed = true;
- if (CV)
- *CurrOpnd = XorOpnd(CV);
- else {
- CurrOpnd->Invalidate();
- continue;
- }
- }
- if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
- PrevOpnd = CurrOpnd;
- continue;
- }
- // step 3.2: When previous and current operands share the same symbolic
- // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
- //
- if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
- // Remove previous operand
- PrevOpnd->Invalidate();
- if (CV) {
- *CurrOpnd = XorOpnd(CV);
- PrevOpnd = CurrOpnd;
- } else {
- CurrOpnd->Invalidate();
- PrevOpnd = nullptr;
- }
- Changed = true;
- }
- }
- // Step 4: Reassemble the Ops
- if (Changed) {
- Ops.clear();
- for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
- XorOpnd &O = Opnds[i];
- if (O.isInvalid())
- continue;
- ValueEntry VE(getRank(O.getValue()), O.getValue());
- Ops.push_back(VE);
- }
- if (ConstOpnd != 0) {
- Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
- ValueEntry VE(getRank(C), C);
- Ops.push_back(VE);
- }
- int Sz = Ops.size();
- if (Sz == 1)
- return Ops.back().Op;
- else if (Sz == 0) {
- assert(ConstOpnd == 0);
- return ConstantInt::get(Ty->getContext(), ConstOpnd);
- }
- }
- return nullptr;
- }
- /// Optimize a series of operands to an 'add' instruction. This
- /// optimizes based on identities. If it can be reduced to a single Value, it
- /// is returned, otherwise the Ops list is mutated as necessary.
- Value *Reassociate::OptimizeAdd(Instruction *I,
- SmallVectorImpl<ValueEntry> &Ops) {
- // Scan the operand lists looking for X and -X pairs. If we find any, we
- // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
- // scan for any
- // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- Value *TheOp = Ops[i].Op;
- // Check to see if we've seen this operand before. If so, we factor all
- // instances of the operand together. Due to our sorting criteria, we know
- // that these need to be next to each other in the vector.
- if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
- // Rescan the list, remove all instances of this operand from the expr.
- unsigned NumFound = 0;
- do {
- Ops.erase(Ops.begin()+i);
- ++NumFound;
- } while (i != Ops.size() && Ops[i].Op == TheOp);
- DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
- ++NumFactor;
- // Insert a new multiply.
- Type *Ty = TheOp->getType();
- Constant *C = Ty->isIntOrIntVectorTy() ?
- ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
- Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
- // Now that we have inserted a multiply, optimize it. This allows us to
- // handle cases that require multiple factoring steps, such as this:
- // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
- RedoInsts.insert(Mul);
- // If every add operand was a duplicate, return the multiply.
- if (Ops.empty())
- return Mul;
- // Otherwise, we had some input that didn't have the dupe, such as
- // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
- // things being added by this operation.
- Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
- --i;
- e = Ops.size();
- continue;
- }
- // Check for X and -X or X and ~X in the operand list.
- if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
- !BinaryOperator::isNot(TheOp))
- continue;
- Value *X = nullptr;
- if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
- X = BinaryOperator::getNegArgument(TheOp);
- else if (BinaryOperator::isNot(TheOp))
- X = BinaryOperator::getNotArgument(TheOp);
- unsigned FoundX = FindInOperandList(Ops, i, X);
- if (FoundX == i)
- continue;
- // Remove X and -X from the operand list.
- if (Ops.size() == 2 &&
- (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
- return Constant::getNullValue(X->getType());
- // Remove X and ~X from the operand list.
- if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
- return Constant::getAllOnesValue(X->getType());
- Ops.erase(Ops.begin()+i);
- if (i < FoundX)
- --FoundX;
- else
- --i; // Need to back up an extra one.
- Ops.erase(Ops.begin()+FoundX);
- ++NumAnnihil;
- --i; // Revisit element.
- e -= 2; // Removed two elements.
- // if X and ~X we append -1 to the operand list.
- if (BinaryOperator::isNot(TheOp)) {
- Value *V = Constant::getAllOnesValue(X->getType());
- Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
- e += 1;
- }
- }
- // Scan the operand list, checking to see if there are any common factors
- // between operands. Consider something like A*A+A*B*C+D. We would like to
- // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
- // To efficiently find this, we count the number of times a factor occurs
- // for any ADD operands that are MULs.
- DenseMap<Value*, unsigned> FactorOccurrences;
- // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
- // where they are actually the same multiply.
- unsigned MaxOcc = 0;
- Value *MaxOccVal = nullptr;
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- BinaryOperator *BOp =
- isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
- if (!BOp)
- continue;
- // Compute all of the factors of this added value.
- SmallVector<Value*, 8> Factors;
- FindSingleUseMultiplyFactors(BOp, Factors, Ops);
- assert(Factors.size() > 1 && "Bad linearize!");
- // Add one to FactorOccurrences for each unique factor in this op.
- SmallPtrSet<Value*, 8> Duplicates;
- for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
- Value *Factor = Factors[i];
- if (!Duplicates.insert(Factor).second)
- continue;
- unsigned Occ = ++FactorOccurrences[Factor];
- if (Occ > MaxOcc) {
- MaxOcc = Occ;
- MaxOccVal = Factor;
- }
- // If Factor is a negative constant, add the negated value as a factor
- // because we can percolate the negate out. Watch for minint, which
- // cannot be positivified.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
- if (CI->isNegative() && !CI->isMinValue(true)) {
- Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
- assert(!Duplicates.count(Factor) &&
- "Shouldn't have two constant factors, missed a canonicalize");
- unsigned Occ = ++FactorOccurrences[Factor];
- if (Occ > MaxOcc) {
- MaxOcc = Occ;
- MaxOccVal = Factor;
- }
- }
- } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
- if (CF->isNegative()) {
- APFloat F(CF->getValueAPF());
- F.changeSign();
- Factor = ConstantFP::get(CF->getContext(), F);
- assert(!Duplicates.count(Factor) &&
- "Shouldn't have two constant factors, missed a canonicalize");
- unsigned Occ = ++FactorOccurrences[Factor];
- if (Occ > MaxOcc) {
- MaxOcc = Occ;
- MaxOccVal = Factor;
- }
- }
- }
- }
- }
- // If any factor occurred more than one time, we can pull it out.
- if (MaxOcc > 1) {
- DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
- ++NumFactor;
- // Create a new instruction that uses the MaxOccVal twice. If we don't do
- // this, we could otherwise run into situations where removing a factor
- // from an expression will drop a use of maxocc, and this can cause
- // RemoveFactorFromExpression on successive values to behave differently.
- Instruction *DummyInst =
- I->getType()->isIntOrIntVectorTy()
- ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
- : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
- SmallVector<WeakVH, 4> NewMulOps;
- for (unsigned i = 0; i != Ops.size(); ++i) {
- // Only try to remove factors from expressions we're allowed to.
- BinaryOperator *BOp =
- isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
- if (!BOp)
- continue;
- if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
- // The factorized operand may occur several times. Convert them all in
- // one fell swoop.
- for (unsigned j = Ops.size(); j != i;) {
- --j;
- if (Ops[j].Op == Ops[i].Op) {
- NewMulOps.push_back(V);
- Ops.erase(Ops.begin()+j);
- }
- }
- --i;
- }
- }
- // No need for extra uses anymore.
- delete DummyInst;
- unsigned NumAddedValues = NewMulOps.size();
- Value *V = EmitAddTreeOfValues(I, NewMulOps);
- // Now that we have inserted the add tree, optimize it. This allows us to
- // handle cases that require multiple factoring steps, such as this:
- // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
- assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
- (void)NumAddedValues;
- if (Instruction *VI = dyn_cast<Instruction>(V))
- RedoInsts.insert(VI);
- // Create the multiply.
- Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
- // Rerun associate on the multiply in case the inner expression turned into
- // a multiply. We want to make sure that we keep things in canonical form.
- RedoInsts.insert(V2);
- // If every add operand included the factor (e.g. "A*B + A*C"), then the
- // entire result expression is just the multiply "A*(B+C)".
- if (Ops.empty())
- return V2;
- // Otherwise, we had some input that didn't have the factor, such as
- // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
- // things being added by this operation.
- Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
- }
- return nullptr;
- }
- /// \brief Build up a vector of value/power pairs factoring a product.
- ///
- /// Given a series of multiplication operands, build a vector of factors and
- /// the powers each is raised to when forming the final product. Sort them in
- /// the order of descending power.
- ///
- /// (x*x) -> [(x, 2)]
- /// ((x*x)*x) -> [(x, 3)]
- /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
- ///
- /// \returns Whether any factors have a power greater than one.
- bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
- SmallVectorImpl<Factor> &Factors) {
- // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
- // Compute the sum of powers of simplifiable factors.
- unsigned FactorPowerSum = 0;
- for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
- Value *Op = Ops[Idx-1].Op;
- // Count the number of occurrences of this value.
- unsigned Count = 1;
- for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
- ++Count;
- // Track for simplification all factors which occur 2 or more times.
- if (Count > 1)
- FactorPowerSum += Count;
- }
- // We can only simplify factors if the sum of the powers of our simplifiable
- // factors is 4 or higher. When that is the case, we will *always* have
- // a simplification. This is an important invariant to prevent cyclicly
- // trying to simplify already minimal formations.
- if (FactorPowerSum < 4)
- return false;
- // Now gather the simplifiable factors, removing them from Ops.
- FactorPowerSum = 0;
- for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
- Value *Op = Ops[Idx-1].Op;
- // Count the number of occurrences of this value.
- unsigned Count = 1;
- for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
- ++Count;
- if (Count == 1)
- continue;
- // Move an even number of occurrences to Factors.
- Count &= ~1U;
- Idx -= Count;
- FactorPowerSum += Count;
- Factors.push_back(Factor(Op, Count));
- Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
- }
- // None of the adjustments above should have reduced the sum of factor powers
- // below our mininum of '4'.
- assert(FactorPowerSum >= 4);
- std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
- return true;
- }
- /// \brief Build a tree of multiplies, computing the product of Ops.
- static Value *buildMultiplyTree(IRBuilder<> &Builder,
- SmallVectorImpl<Value*> &Ops) {
- if (Ops.size() == 1)
- return Ops.back();
- Value *LHS = Ops.pop_back_val();
- do {
- if (LHS->getType()->isIntOrIntVectorTy())
- LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
- else
- LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
- } while (!Ops.empty());
- return LHS;
- }
- /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
- ///
- /// Given a vector of values raised to various powers, where no two values are
- /// equal and the powers are sorted in decreasing order, compute the minimal
- /// DAG of multiplies to compute the final product, and return that product
- /// value.
- Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
- SmallVectorImpl<Factor> &Factors) {
- assert(Factors[0].Power);
- SmallVector<Value *, 4> OuterProduct;
- for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
- Idx < Size && Factors[Idx].Power > 0; ++Idx) {
- if (Factors[Idx].Power != Factors[LastIdx].Power) {
- LastIdx = Idx;
- continue;
- }
- // We want to multiply across all the factors with the same power so that
- // we can raise them to that power as a single entity. Build a mini tree
- // for that.
- SmallVector<Value *, 4> InnerProduct;
- InnerProduct.push_back(Factors[LastIdx].Base);
- do {
- InnerProduct.push_back(Factors[Idx].Base);
- ++Idx;
- } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
- // Reset the base value of the first factor to the new expression tree.
- // We'll remove all the factors with the same power in a second pass.
- Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
- if (Instruction *MI = dyn_cast<Instruction>(M))
- RedoInsts.insert(MI);
- LastIdx = Idx;
- }
- // Unique factors with equal powers -- we've folded them into the first one's
- // base.
- Factors.erase(std::unique(Factors.begin(), Factors.end(),
- Factor::PowerEqual()),
- Factors.end());
- // Iteratively collect the base of each factor with an add power into the
- // outer product, and halve each power in preparation for squaring the
- // expression.
- for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
- if (Factors[Idx].Power & 1)
- OuterProduct.push_back(Factors[Idx].Base);
- Factors[Idx].Power >>= 1;
- }
- if (Factors[0].Power) {
- Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
- OuterProduct.push_back(SquareRoot);
- OuterProduct.push_back(SquareRoot);
- }
- if (OuterProduct.size() == 1)
- return OuterProduct.front();
- Value *V = buildMultiplyTree(Builder, OuterProduct);
- return V;
- }
- Value *Reassociate::OptimizeMul(BinaryOperator *I,
- SmallVectorImpl<ValueEntry> &Ops) {
- // We can only optimize the multiplies when there is a chain of more than
- // three, such that a balanced tree might require fewer total multiplies.
- if (Ops.size() < 4)
- return nullptr;
- // Try to turn linear trees of multiplies without other uses of the
- // intermediate stages into minimal multiply DAGs with perfect sub-expression
- // re-use.
- SmallVector<Factor, 4> Factors;
- if (!collectMultiplyFactors(Ops, Factors))
- return nullptr; // All distinct factors, so nothing left for us to do.
- IRBuilder<> Builder(I);
- Value *V = buildMinimalMultiplyDAG(Builder, Factors);
- if (Ops.empty())
- return V;
- ValueEntry NewEntry = ValueEntry(getRank(V), V);
- Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
- return nullptr;
- }
- Value *Reassociate::OptimizeExpression(BinaryOperator *I,
- SmallVectorImpl<ValueEntry> &Ops) {
- // Now that we have the linearized expression tree, try to optimize it.
- // Start by folding any constants that we found.
- Constant *Cst = nullptr;
- unsigned Opcode = I->getOpcode();
- while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
- Constant *C = cast<Constant>(Ops.pop_back_val().Op);
- Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
- }
- // If there was nothing but constants then we are done.
- if (Ops.empty())
- return Cst;
- // Put the combined constant back at the end of the operand list, except if
- // there is no point. For example, an add of 0 gets dropped here, while a
- // multiplication by zero turns the whole expression into zero.
- if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
- if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
- return Cst;
- Ops.push_back(ValueEntry(0, Cst));
- }
- if (Ops.size() == 1) return Ops[0].Op;
- // Handle destructive annihilation due to identities between elements in the
- // argument list here.
- unsigned NumOps = Ops.size();
- switch (Opcode) {
- default: break;
- case Instruction::And:
- case Instruction::Or:
- if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
- return Result;
- break;
- case Instruction::Xor:
- if (Value *Result = OptimizeXor(I, Ops))
- return Result;
- break;
- case Instruction::Add:
- case Instruction::FAdd:
- if (Value *Result = OptimizeAdd(I, Ops))
- return Result;
- break;
- case Instruction::Mul:
- case Instruction::FMul:
- if (Value *Result = OptimizeMul(I, Ops))
- return Result;
- break;
- }
- if (Ops.size() != NumOps)
- return OptimizeExpression(I, Ops);
- return nullptr;
- }
- /// Zap the given instruction, adding interesting operands to the work list.
- void Reassociate::EraseInst(Instruction *I) {
- assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
- SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
- // Erase the dead instruction.
- ValueRankMap.erase(I);
- RedoInsts.remove(I);
- I->eraseFromParent();
- // Optimize its operands.
- SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
- // If this is a node in an expression tree, climb to the expression root
- // and add that since that's where optimization actually happens.
- unsigned Opcode = Op->getOpcode();
- while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
- Visited.insert(Op).second)
- Op = Op->user_back();
- RedoInsts.insert(Op);
- }
- }
- // Canonicalize expressions of the following form:
- // x + (-Constant * y) -> x - (Constant * y)
- // x - (-Constant * y) -> x + (Constant * y)
- Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
- if (!I->hasOneUse() || I->getType()->isVectorTy())
- return nullptr;
- // Must be a fmul or fdiv instruction.
- unsigned Opcode = I->getOpcode();
- if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
- return nullptr;
- auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
- auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
- // Both operands are constant, let it get constant folded away.
- if (C0 && C1)
- return nullptr;
- ConstantFP *CF = C0 ? C0 : C1;
- // Must have one constant operand.
- if (!CF)
- return nullptr;
- // Must be a negative ConstantFP.
- if (!CF->isNegative())
- return nullptr;
- // User must be a binary operator with one or more uses.
- Instruction *User = I->user_back();
- if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1))
- return nullptr;
- unsigned UserOpcode = User->getOpcode();
- if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
- return nullptr;
- // Subtraction is not commutative. Explicitly, the following transform is
- // not valid: (-Constant * y) - x -> x + (Constant * y)
- if (!User->isCommutative() && User->getOperand(1) != I)
- return nullptr;
- // Change the sign of the constant.
- APFloat Val = CF->getValueAPF();
- Val.changeSign();
- I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
- // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
- // ((-Const*y) + x) -> (x + (-Const*y)).
- if (User->getOperand(0) == I && User->isCommutative())
- cast<BinaryOperator>(User)->swapOperands();
- Value *Op0 = User->getOperand(0);
- Value *Op1 = User->getOperand(1);
- BinaryOperator *NI;
- switch (UserOpcode) {
- default:
- llvm_unreachable("Unexpected Opcode!");
- case Instruction::FAdd:
- NI = BinaryOperator::CreateFSub(Op0, Op1);
- NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
- break;
- case Instruction::FSub:
- NI = BinaryOperator::CreateFAdd(Op0, Op1);
- NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
- break;
- }
- NI->insertBefore(User);
- NI->setName(User->getName());
- User->replaceAllUsesWith(NI);
- NI->setDebugLoc(I->getDebugLoc());
- RedoInsts.insert(I);
- MadeChange = true;
- return NI;
- }
- /// Inspect and optimize the given instruction. Note that erasing
- /// instructions is not allowed.
- void Reassociate::OptimizeInst(Instruction *I) {
- // Only consider operations that we understand.
- if (!isa<BinaryOperator>(I))
- return;
- if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
- // If an operand of this shift is a reassociable multiply, or if the shift
- // is used by a reassociable multiply or add, turn into a multiply.
- if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
- (I->hasOneUse() &&
- (isReassociableOp(I->user_back(), Instruction::Mul) ||
- isReassociableOp(I->user_back(), Instruction::Add)))) {
- Instruction *NI = ConvertShiftToMul(I);
- RedoInsts.insert(I);
- MadeChange = true;
- I = NI;
- }
- // Canonicalize negative constants out of expressions.
- if (Instruction *Res = canonicalizeNegConstExpr(I))
- I = Res;
- // Commute binary operators, to canonicalize the order of their operands.
- // This can potentially expose more CSE opportunities, and makes writing other
- // transformations simpler.
- if (I->isCommutative())
- canonicalizeOperands(I);
- // TODO: We should optimize vector Xor instructions, but they are
- // currently unsupported.
- if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
- return;
- // Don't optimize floating point instructions that don't have unsafe algebra.
- if (I->getType()->isFloatingPointTy() && !I->hasUnsafeAlgebra())
- return;
- // Do not reassociate boolean (i1) expressions. We want to preserve the
- // original order of evaluation for short-circuited comparisons that
- // SimplifyCFG has folded to AND/OR expressions. If the expression
- // is not further optimized, it is likely to be transformed back to a
- // short-circuited form for code gen, and the source order may have been
- // optimized for the most likely conditions.
- if (I->getType()->isIntegerTy(1))
- return;
- // If this is a subtract instruction which is not already in negate form,
- // see if we can convert it to X+-Y.
- if (I->getOpcode() == Instruction::Sub) {
- if (ShouldBreakUpSubtract(I)) {
- Instruction *NI = BreakUpSubtract(I);
- RedoInsts.insert(I);
- MadeChange = true;
- I = NI;
- } else if (BinaryOperator::isNeg(I)) {
- // Otherwise, this is a negation. See if the operand is a multiply tree
- // and if this is not an inner node of a multiply tree.
- if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
- (!I->hasOneUse() ||
- !isReassociableOp(I->user_back(), Instruction::Mul))) {
- Instruction *NI = LowerNegateToMultiply(I);
- RedoInsts.insert(I);
- MadeChange = true;
- I = NI;
- }
- }
- } else if (I->getOpcode() == Instruction::FSub) {
- if (ShouldBreakUpSubtract(I)) {
- Instruction *NI = BreakUpSubtract(I);
- RedoInsts.insert(I);
- MadeChange = true;
- I = NI;
- } else if (BinaryOperator::isFNeg(I)) {
- // Otherwise, this is a negation. See if the operand is a multiply tree
- // and if this is not an inner node of a multiply tree.
- if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
- (!I->hasOneUse() ||
- !isReassociableOp(I->user_back(), Instruction::FMul))) {
- Instruction *NI = LowerNegateToMultiply(I);
- RedoInsts.insert(I);
- MadeChange = true;
- I = NI;
- }
- }
- }
- // If this instruction is an associative binary operator, process it.
- if (!I->isAssociative()) return;
- BinaryOperator *BO = cast<BinaryOperator>(I);
- // If this is an interior node of a reassociable tree, ignore it until we
- // get to the root of the tree, to avoid N^2 analysis.
- unsigned Opcode = BO->getOpcode();
- if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
- return;
- // If this is an add tree that is used by a sub instruction, ignore it
- // until we process the subtract.
- if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
- cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
- return;
- if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
- cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
- return;
- ReassociateExpression(BO);
- }
- void Reassociate::ReassociateExpression(BinaryOperator *I) {
- // First, walk the expression tree, linearizing the tree, collecting the
- // operand information.
- SmallVector<RepeatedValue, 8> Tree;
- MadeChange |= LinearizeExprTree(I, Tree);
- SmallVector<ValueEntry, 8> Ops;
- Ops.reserve(Tree.size());
- for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
- RepeatedValue E = Tree[i];
- Ops.append(E.second.getZExtValue(),
- ValueEntry(getRank(E.first), E.first));
- }
- DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
- // Now that we have linearized the tree to a list and have gathered all of
- // the operands and their ranks, sort the operands by their rank. Use a
- // stable_sort so that values with equal ranks will have their relative
- // positions maintained (and so the compiler is deterministic). Note that
- // this sorts so that the highest ranking values end up at the beginning of
- // the vector.
- std::stable_sort(Ops.begin(), Ops.end());
- // Now that we have the expression tree in a convenient
- // sorted form, optimize it globally if possible.
- if (Value *V = OptimizeExpression(I, Ops)) {
- if (V == I)
- // Self-referential expression in unreachable code.
- return;
- // This expression tree simplified to something that isn't a tree,
- // eliminate it.
- DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
- I->replaceAllUsesWith(V);
- if (Instruction *VI = dyn_cast<Instruction>(V))
- VI->setDebugLoc(I->getDebugLoc());
- RedoInsts.insert(I);
- ++NumAnnihil;
- return;
- }
- // We want to sink immediates as deeply as possible except in the case where
- // this is a multiply tree used only by an add, and the immediate is a -1.
- // In this case we reassociate to put the negation on the outside so that we
- // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
- if (I->hasOneUse()) {
- if (I->getOpcode() == Instruction::Mul &&
- cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
- isa<ConstantInt>(Ops.back().Op) &&
- cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
- ValueEntry Tmp = Ops.pop_back_val();
- Ops.insert(Ops.begin(), Tmp);
- } else if (I->getOpcode() == Instruction::FMul &&
- cast<Instruction>(I->user_back())->getOpcode() ==
- Instruction::FAdd &&
- isa<ConstantFP>(Ops.back().Op) &&
- cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
- ValueEntry Tmp = Ops.pop_back_val();
- Ops.insert(Ops.begin(), Tmp);
- }
- }
- DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
- if (Ops.size() == 1) {
- if (Ops[0].Op == I)
- // Self-referential expression in unreachable code.
- return;
- // This expression tree simplified to something that isn't a tree,
- // eliminate it.
- I->replaceAllUsesWith(Ops[0].Op);
- if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
- OI->setDebugLoc(I->getDebugLoc());
- RedoInsts.insert(I);
- return;
- }
- // Now that we ordered and optimized the expressions, splat them back into
- // the expression tree, removing any unneeded nodes.
- RewriteExprTree(I, Ops);
- }
- bool Reassociate::runOnFunction(Function &F) {
- if (skipOptnoneFunction(F))
- return false;
- // Calculate the rank map for F
- BuildRankMap(F);
- MadeChange = false;
- for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
- // Optimize every instruction in the basic block.
- for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
- if (isInstructionTriviallyDead(II)) {
- EraseInst(II++);
- } else {
- OptimizeInst(II);
- assert(II->getParent() == BI && "Moved to a different block!");
- ++II;
- }
- // If this produced extra instructions to optimize, handle them now.
- while (!RedoInsts.empty()) {
- Instruction *I = RedoInsts.pop_back_val();
- if (isInstructionTriviallyDead(I))
- EraseInst(I);
- else
- OptimizeInst(I);
- }
- }
- // We are done with the rank map.
- RankMap.clear();
- ValueRankMap.clear();
- return MadeChange;
- }
|