| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673 |
- //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // Rewrite an existing set of gc.statepoints such that they make potential
- // relocations performed by the garbage collector explicit in the IR.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Pass.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/ADT/SetOperations.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstIterator.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/Statepoint.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/Verifier.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/PromoteMemToReg.h"
- #define DEBUG_TYPE "rewrite-statepoints-for-gc"
- using namespace llvm;
- // Print tracing output
- static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden,
- cl::init(false));
- // Print the liveset found at the insert location
- static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
- cl::init(false));
- static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
- cl::init(false));
- // Print out the base pointers for debugging
- static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
- cl::init(false));
- // Cost threshold measuring when it is profitable to rematerialize value instead
- // of relocating it
- static cl::opt<unsigned>
- RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
- cl::init(6));
- #ifdef XDEBUG
- static bool ClobberNonLive = true;
- #else
- static bool ClobberNonLive = false;
- #endif
- static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
- cl::location(ClobberNonLive),
- cl::Hidden);
- namespace {
- struct RewriteStatepointsForGC : public ModulePass {
- static char ID; // Pass identification, replacement for typeid
- RewriteStatepointsForGC() : ModulePass(ID) {
- initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F);
- bool runOnModule(Module &M) override {
- bool Changed = false;
- for (Function &F : M)
- Changed |= runOnFunction(F);
- if (Changed) {
- // stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn
- // returns true for at least one function in the module. Since at least
- // one function changed, we know that the precondition is satisfied.
- stripDereferenceabilityInfo(M);
- }
- return Changed;
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- // We add and rewrite a bunch of instructions, but don't really do much
- // else. We could in theory preserve a lot more analyses here.
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- }
- /// The IR fed into RewriteStatepointsForGC may have had attributes implying
- /// dereferenceability that are no longer valid/correct after
- /// RewriteStatepointsForGC has run. This is because semantically, after
- /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
- /// heap. stripDereferenceabilityInfo (conservatively) restores correctness
- /// by erasing all attributes in the module that externally imply
- /// dereferenceability.
- ///
- void stripDereferenceabilityInfo(Module &M);
- // Helpers for stripDereferenceabilityInfo
- void stripDereferenceabilityInfoFromBody(Function &F);
- void stripDereferenceabilityInfoFromPrototype(Function &F);
- };
- } // namespace
- char RewriteStatepointsForGC::ID = 0;
- ModulePass *llvm::createRewriteStatepointsForGCPass() {
- return new RewriteStatepointsForGC();
- }
- INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
- "Make relocations explicit at statepoints", false, false)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
- "Make relocations explicit at statepoints", false, false)
- namespace {
- struct GCPtrLivenessData {
- /// Values defined in this block.
- DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
- /// Values used in this block (and thus live); does not included values
- /// killed within this block.
- DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
- /// Values live into this basic block (i.e. used by any
- /// instruction in this basic block or ones reachable from here)
- DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
- /// Values live out of this basic block (i.e. live into
- /// any successor block)
- DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
- };
- // The type of the internal cache used inside the findBasePointers family
- // of functions. From the callers perspective, this is an opaque type and
- // should not be inspected.
- //
- // In the actual implementation this caches two relations:
- // - The base relation itself (i.e. this pointer is based on that one)
- // - The base defining value relation (i.e. before base_phi insertion)
- // Generally, after the execution of a full findBasePointer call, only the
- // base relation will remain. Internally, we add a mixture of the two
- // types, then update all the second type to the first type
- typedef DenseMap<Value *, Value *> DefiningValueMapTy;
- typedef DenseSet<llvm::Value *> StatepointLiveSetTy;
- typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy;
- struct PartiallyConstructedSafepointRecord {
- /// The set of values known to be live accross this safepoint
- StatepointLiveSetTy liveset;
- /// Mapping from live pointers to a base-defining-value
- DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
- /// The *new* gc.statepoint instruction itself. This produces the token
- /// that normal path gc.relocates and the gc.result are tied to.
- Instruction *StatepointToken;
- /// Instruction to which exceptional gc relocates are attached
- /// Makes it easier to iterate through them during relocationViaAlloca.
- Instruction *UnwindToken;
- /// Record live values we are rematerialized instead of relocating.
- /// They are not included into 'liveset' field.
- /// Maps rematerialized copy to it's original value.
- RematerializedValueMapTy RematerializedValues;
- };
- }
- /// Compute the live-in set for every basic block in the function
- static void computeLiveInValues(DominatorTree &DT, Function &F,
- GCPtrLivenessData &Data);
- /// Given results from the dataflow liveness computation, find the set of live
- /// Values at a particular instruction.
- static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
- StatepointLiveSetTy &out);
- // TODO: Once we can get to the GCStrategy, this becomes
- // Optional<bool> isGCManagedPointer(const Value *V) const override {
- static bool isGCPointerType(const Type *T) {
- if (const PointerType *PT = dyn_cast<PointerType>(T))
- // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
- // GC managed heap. We know that a pointer into this heap needs to be
- // updated and that no other pointer does.
- return (1 == PT->getAddressSpace());
- return false;
- }
- // Return true if this type is one which a) is a gc pointer or contains a GC
- // pointer and b) is of a type this code expects to encounter as a live value.
- // (The insertion code will assert that a type which matches (a) and not (b)
- // is not encountered.)
- static bool isHandledGCPointerType(Type *T) {
- // We fully support gc pointers
- if (isGCPointerType(T))
- return true;
- // We partially support vectors of gc pointers. The code will assert if it
- // can't handle something.
- if (auto VT = dyn_cast<VectorType>(T))
- if (isGCPointerType(VT->getElementType()))
- return true;
- return false;
- }
- #ifndef NDEBUG
- /// Returns true if this type contains a gc pointer whether we know how to
- /// handle that type or not.
- static bool containsGCPtrType(Type *Ty) {
- if (isGCPointerType(Ty))
- return true;
- if (VectorType *VT = dyn_cast<VectorType>(Ty))
- return isGCPointerType(VT->getScalarType());
- if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
- return containsGCPtrType(AT->getElementType());
- if (StructType *ST = dyn_cast<StructType>(Ty))
- return std::any_of(
- ST->subtypes().begin(), ST->subtypes().end(),
- [](Type *SubType) { return containsGCPtrType(SubType); });
- return false;
- }
- // Returns true if this is a type which a) is a gc pointer or contains a GC
- // pointer and b) is of a type which the code doesn't expect (i.e. first class
- // aggregates). Used to trip assertions.
- static bool isUnhandledGCPointerType(Type *Ty) {
- return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
- }
- #endif
- static bool order_by_name(llvm::Value *a, llvm::Value *b) {
- if (a->hasName() && b->hasName()) {
- return -1 == a->getName().compare(b->getName());
- } else if (a->hasName() && !b->hasName()) {
- return true;
- } else if (!a->hasName() && b->hasName()) {
- return false;
- } else {
- // Better than nothing, but not stable
- return a < b;
- }
- }
- // Conservatively identifies any definitions which might be live at the
- // given instruction. The analysis is performed immediately before the
- // given instruction. Values defined by that instruction are not considered
- // live. Values used by that instruction are considered live.
- static void analyzeParsePointLiveness(
- DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
- const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
- Instruction *inst = CS.getInstruction();
- StatepointLiveSetTy liveset;
- findLiveSetAtInst(inst, OriginalLivenessData, liveset);
- if (PrintLiveSet) {
- // Note: This output is used by several of the test cases
- // The order of elemtns in a set is not stable, put them in a vec and sort
- // by name
- SmallVector<Value *, 64> temp;
- temp.insert(temp.end(), liveset.begin(), liveset.end());
- std::sort(temp.begin(), temp.end(), order_by_name);
- errs() << "Live Variables:\n";
- for (Value *V : temp) {
- errs() << " " << V->getName(); // no newline
- V->dump();
- }
- }
- if (PrintLiveSetSize) {
- errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
- errs() << "Number live values: " << liveset.size() << "\n";
- }
- result.liveset = liveset;
- }
- static Value *findBaseDefiningValue(Value *I);
- /// Return a base defining value for the 'Index' element of the given vector
- /// instruction 'I'. If Index is null, returns a BDV for the entire vector
- /// 'I'. As an optimization, this method will try to determine when the
- /// element is known to already be a base pointer. If this can be established,
- /// the second value in the returned pair will be true. Note that either a
- /// vector or a pointer typed value can be returned. For the former, the
- /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
- /// If the later, the return pointer is a BDV (or possibly a base) for the
- /// particular element in 'I'.
- static std::pair<Value *, bool>
- findBaseDefiningValueOfVector(Value *I, Value *Index = nullptr) {
- assert(I->getType()->isVectorTy() &&
- cast<VectorType>(I->getType())->getElementType()->isPointerTy() &&
- "Illegal to ask for the base pointer of a non-pointer type");
- // Each case parallels findBaseDefiningValue below, see that code for
- // detailed motivation.
- if (isa<Argument>(I))
- // An incoming argument to the function is a base pointer
- return std::make_pair(I, true);
- // We shouldn't see the address of a global as a vector value?
- assert(!isa<GlobalVariable>(I) &&
- "unexpected global variable found in base of vector");
- // inlining could possibly introduce phi node that contains
- // undef if callee has multiple returns
- if (isa<UndefValue>(I))
- // utterly meaningless, but useful for dealing with partially optimized
- // code.
- return std::make_pair(I, true);
- // Due to inheritance, this must be _after_ the global variable and undef
- // checks
- if (Constant *Con = dyn_cast<Constant>(I)) {
- assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
- "order of checks wrong!");
- assert(Con->isNullValue() && "null is the only case which makes sense");
- return std::make_pair(Con, true);
- }
-
- if (isa<LoadInst>(I))
- return std::make_pair(I, true);
-
- // For an insert element, we might be able to look through it if we know
- // something about the indexes.
- if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(I)) {
- if (Index) {
- Value *InsertIndex = IEI->getOperand(2);
- // This index is inserting the value, look for its BDV
- if (InsertIndex == Index)
- return std::make_pair(findBaseDefiningValue(IEI->getOperand(1)), false);
- // Both constant, and can't be equal per above. This insert is definitely
- // not relevant, look back at the rest of the vector and keep trying.
- if (isa<ConstantInt>(Index) && isa<ConstantInt>(InsertIndex))
- return findBaseDefiningValueOfVector(IEI->getOperand(0), Index);
- }
-
- // We don't know whether this vector contains entirely base pointers or
- // not. To be conservatively correct, we treat it as a BDV and will
- // duplicate code as needed to construct a parallel vector of bases.
- return std::make_pair(IEI, false);
- }
- if (isa<ShuffleVectorInst>(I))
- // We don't know whether this vector contains entirely base pointers or
- // not. To be conservatively correct, we treat it as a BDV and will
- // duplicate code as needed to construct a parallel vector of bases.
- // TODO: There a number of local optimizations which could be applied here
- // for particular sufflevector patterns.
- return std::make_pair(I, false);
- // A PHI or Select is a base defining value. The outer findBasePointer
- // algorithm is responsible for constructing a base value for this BDV.
- assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
- "unknown vector instruction - no base found for vector element");
- return std::make_pair(I, false);
- }
- static bool isKnownBaseResult(Value *V);
- /// Helper function for findBasePointer - Will return a value which either a)
- /// defines the base pointer for the input or b) blocks the simple search
- /// (i.e. a PHI or Select of two derived pointers)
- static Value *findBaseDefiningValue(Value *I) {
- if (I->getType()->isVectorTy())
- return findBaseDefiningValueOfVector(I).first;
-
- assert(I->getType()->isPointerTy() &&
- "Illegal to ask for the base pointer of a non-pointer type");
- // This case is a bit of a hack - it only handles extracts from vectors which
- // trivially contain only base pointers or cases where we can directly match
- // the index of the original extract element to an insertion into the vector.
- // See note inside the function for how to improve this.
- if (auto *EEI = dyn_cast<ExtractElementInst>(I)) {
- Value *VectorOperand = EEI->getVectorOperand();
- Value *Index = EEI->getIndexOperand();
- std::pair<Value *, bool> pair =
- findBaseDefiningValueOfVector(VectorOperand, Index);
- Value *VectorBase = pair.first;
- if (VectorBase->getType()->isPointerTy())
- // We found a BDV for this specific element with the vector. This is an
- // optimization, but in practice it covers most of the useful cases
- // created via scalarization.
- return VectorBase;
- else {
- assert(VectorBase->getType()->isVectorTy());
- if (pair.second)
- // If the entire vector returned is known to be entirely base pointers,
- // then the extractelement is valid base for this value.
- return EEI;
- else {
- // Otherwise, we have an instruction which potentially produces a
- // derived pointer and we need findBasePointers to clone code for us
- // such that we can create an instruction which produces the
- // accompanying base pointer.
- // Note: This code is currently rather incomplete. We don't currently
- // support the general form of shufflevector of insertelement.
- // Conceptually, these are just 'base defining values' of the same
- // variety as phi or select instructions. We need to update the
- // findBasePointers algorithm to insert new 'base-only' versions of the
- // original instructions. This is relative straight forward to do, but
- // the case which would motivate the work hasn't shown up in real
- // workloads yet.
- assert((isa<PHINode>(VectorBase) || isa<SelectInst>(VectorBase)) &&
- "need to extend findBasePointers for generic vector"
- "instruction cases");
- return VectorBase;
- }
- }
- }
- if (isa<Argument>(I))
- // An incoming argument to the function is a base pointer
- // We should have never reached here if this argument isn't an gc value
- return I;
- if (isa<GlobalVariable>(I))
- // base case
- return I;
- // inlining could possibly introduce phi node that contains
- // undef if callee has multiple returns
- if (isa<UndefValue>(I))
- // utterly meaningless, but useful for dealing with
- // partially optimized code.
- return I;
- // Due to inheritance, this must be _after_ the global variable and undef
- // checks
- if (Constant *Con = dyn_cast<Constant>(I)) {
- assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
- "order of checks wrong!");
- // Note: Finding a constant base for something marked for relocation
- // doesn't really make sense. The most likely case is either a) some
- // screwed up the address space usage or b) your validating against
- // compiled C++ code w/o the proper separation. The only real exception
- // is a null pointer. You could have generic code written to index of
- // off a potentially null value and have proven it null. We also use
- // null pointers in dead paths of relocation phis (which we might later
- // want to find a base pointer for).
- assert(isa<ConstantPointerNull>(Con) &&
- "null is the only case which makes sense");
- return Con;
- }
- if (CastInst *CI = dyn_cast<CastInst>(I)) {
- Value *Def = CI->stripPointerCasts();
- // If we find a cast instruction here, it means we've found a cast which is
- // not simply a pointer cast (i.e. an inttoptr). We don't know how to
- // handle int->ptr conversion.
- assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
- return findBaseDefiningValue(Def);
- }
- if (isa<LoadInst>(I))
- return I; // The value loaded is an gc base itself
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
- // The base of this GEP is the base
- return findBaseDefiningValue(GEP->getPointerOperand());
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- case Intrinsic::experimental_gc_result_ptr:
- default:
- // fall through to general call handling
- break;
- case Intrinsic::experimental_gc_statepoint:
- case Intrinsic::experimental_gc_result_float:
- case Intrinsic::experimental_gc_result_int:
- llvm_unreachable("these don't produce pointers");
- case Intrinsic::experimental_gc_relocate: {
- // Rerunning safepoint insertion after safepoints are already
- // inserted is not supported. It could probably be made to work,
- // but why are you doing this? There's no good reason.
- llvm_unreachable("repeat safepoint insertion is not supported");
- }
- case Intrinsic::gcroot:
- // Currently, this mechanism hasn't been extended to work with gcroot.
- // There's no reason it couldn't be, but I haven't thought about the
- // implications much.
- llvm_unreachable(
- "interaction with the gcroot mechanism is not supported");
- }
- }
- // We assume that functions in the source language only return base
- // pointers. This should probably be generalized via attributes to support
- // both source language and internal functions.
- if (isa<CallInst>(I) || isa<InvokeInst>(I))
- return I;
- // I have absolutely no idea how to implement this part yet. It's not
- // neccessarily hard, I just haven't really looked at it yet.
- assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
- if (isa<AtomicCmpXchgInst>(I))
- // A CAS is effectively a atomic store and load combined under a
- // predicate. From the perspective of base pointers, we just treat it
- // like a load.
- return I;
- assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
- "binary ops which don't apply to pointers");
- // The aggregate ops. Aggregates can either be in the heap or on the
- // stack, but in either case, this is simply a field load. As a result,
- // this is a defining definition of the base just like a load is.
- if (isa<ExtractValueInst>(I))
- return I;
- // We should never see an insert vector since that would require we be
- // tracing back a struct value not a pointer value.
- assert(!isa<InsertValueInst>(I) &&
- "Base pointer for a struct is meaningless");
- // The last two cases here don't return a base pointer. Instead, they
- // return a value which dynamically selects from amoung several base
- // derived pointers (each with it's own base potentially). It's the job of
- // the caller to resolve these.
- assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
- "missing instruction case in findBaseDefiningValing");
- return I;
- }
- /// Returns the base defining value for this value.
- static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
- Value *&Cached = Cache[I];
- if (!Cached) {
- Cached = findBaseDefiningValue(I);
- }
- assert(Cache[I] != nullptr);
- if (TraceLSP) {
- dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName()
- << "\n";
- }
- return Cached;
- }
- /// Return a base pointer for this value if known. Otherwise, return it's
- /// base defining value.
- static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
- Value *Def = findBaseDefiningValueCached(I, Cache);
- auto Found = Cache.find(Def);
- if (Found != Cache.end()) {
- // Either a base-of relation, or a self reference. Caller must check.
- return Found->second;
- }
- // Only a BDV available
- return Def;
- }
- /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
- /// is it known to be a base pointer? Or do we need to continue searching.
- static bool isKnownBaseResult(Value *V) {
- if (!isa<PHINode>(V) && !isa<SelectInst>(V)) {
- // no recursion possible
- return true;
- }
- if (isa<Instruction>(V) &&
- cast<Instruction>(V)->getMetadata("is_base_value")) {
- // This is a previously inserted base phi or select. We know
- // that this is a base value.
- return true;
- }
- // We need to keep searching
- return false;
- }
- // TODO: find a better name for this
- namespace {
- class PhiState {
- public:
- enum Status { Unknown, Base, Conflict };
- PhiState(Status s, Value *b = nullptr) : status(s), base(b) {
- assert(status != Base || b);
- }
- PhiState(Value *b) : status(Base), base(b) {}
- PhiState() : status(Unknown), base(nullptr) {}
- Status getStatus() const { return status; }
- Value *getBase() const { return base; }
- bool isBase() const { return getStatus() == Base; }
- bool isUnknown() const { return getStatus() == Unknown; }
- bool isConflict() const { return getStatus() == Conflict; }
- bool operator==(const PhiState &other) const {
- return base == other.base && status == other.status;
- }
- bool operator!=(const PhiState &other) const { return !(*this == other); }
- void dump() {
- errs() << status << " (" << base << " - "
- << (base ? base->getName() : "nullptr") << "): ";
- }
- private:
- Status status;
- Value *base; // non null only if status == base
- };
- typedef DenseMap<Value *, PhiState> ConflictStateMapTy;
- // Values of type PhiState form a lattice, and this is a helper
- // class that implementes the meet operation. The meat of the meet
- // operation is implemented in MeetPhiStates::pureMeet
- class MeetPhiStates {
- public:
- // phiStates is a mapping from PHINodes and SelectInst's to PhiStates.
- explicit MeetPhiStates(const ConflictStateMapTy &phiStates)
- : phiStates(phiStates) {}
- // Destructively meet the current result with the base V. V can
- // either be a merge instruction (SelectInst / PHINode), in which
- // case its status is looked up in the phiStates map; or a regular
- // SSA value, in which case it is assumed to be a base.
- void meetWith(Value *V) {
- PhiState otherState = getStateForBDV(V);
- assert((MeetPhiStates::pureMeet(otherState, currentResult) ==
- MeetPhiStates::pureMeet(currentResult, otherState)) &&
- "math is wrong: meet does not commute!");
- currentResult = MeetPhiStates::pureMeet(otherState, currentResult);
- }
- PhiState getResult() const { return currentResult; }
- private:
- const ConflictStateMapTy &phiStates;
- PhiState currentResult;
- /// Return a phi state for a base defining value. We'll generate a new
- /// base state for known bases and expect to find a cached state otherwise
- PhiState getStateForBDV(Value *baseValue) {
- if (isKnownBaseResult(baseValue)) {
- return PhiState(baseValue);
- } else {
- return lookupFromMap(baseValue);
- }
- }
- PhiState lookupFromMap(Value *V) {
- auto I = phiStates.find(V);
- assert(I != phiStates.end() && "lookup failed!");
- return I->second;
- }
- static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) {
- switch (stateA.getStatus()) {
- case PhiState::Unknown:
- return stateB;
- case PhiState::Base:
- assert(stateA.getBase() && "can't be null");
- if (stateB.isUnknown())
- return stateA;
- if (stateB.isBase()) {
- if (stateA.getBase() == stateB.getBase()) {
- assert(stateA == stateB && "equality broken!");
- return stateA;
- }
- return PhiState(PhiState::Conflict);
- }
- assert(stateB.isConflict() && "only three states!");
- return PhiState(PhiState::Conflict);
- case PhiState::Conflict:
- return stateA;
- }
- llvm_unreachable("only three states!");
- }
- };
- }
- /// For a given value or instruction, figure out what base ptr it's derived
- /// from. For gc objects, this is simply itself. On success, returns a value
- /// which is the base pointer. (This is reliable and can be used for
- /// relocation.) On failure, returns nullptr.
- static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
- Value *def = findBaseOrBDV(I, cache);
- if (isKnownBaseResult(def)) {
- return def;
- }
- // Here's the rough algorithm:
- // - For every SSA value, construct a mapping to either an actual base
- // pointer or a PHI which obscures the base pointer.
- // - Construct a mapping from PHI to unknown TOP state. Use an
- // optimistic algorithm to propagate base pointer information. Lattice
- // looks like:
- // UNKNOWN
- // b1 b2 b3 b4
- // CONFLICT
- // When algorithm terminates, all PHIs will either have a single concrete
- // base or be in a conflict state.
- // - For every conflict, insert a dummy PHI node without arguments. Add
- // these to the base[Instruction] = BasePtr mapping. For every
- // non-conflict, add the actual base.
- // - For every conflict, add arguments for the base[a] of each input
- // arguments.
- //
- // Note: A simpler form of this would be to add the conflict form of all
- // PHIs without running the optimistic algorithm. This would be
- // analougous to pessimistic data flow and would likely lead to an
- // overall worse solution.
- ConflictStateMapTy states;
- states[def] = PhiState();
- // Recursively fill in all phis & selects reachable from the initial one
- // for which we don't already know a definite base value for
- // TODO: This should be rewritten with a worklist
- bool done = false;
- while (!done) {
- done = true;
- // Since we're adding elements to 'states' as we run, we can't keep
- // iterators into the set.
- SmallVector<Value *, 16> Keys;
- Keys.reserve(states.size());
- for (auto Pair : states) {
- Value *V = Pair.first;
- Keys.push_back(V);
- }
- for (Value *v : Keys) {
- assert(!isKnownBaseResult(v) && "why did it get added?");
- if (PHINode *phi = dyn_cast<PHINode>(v)) {
- assert(phi->getNumIncomingValues() > 0 &&
- "zero input phis are illegal");
- for (Value *InVal : phi->incoming_values()) {
- Value *local = findBaseOrBDV(InVal, cache);
- if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
- states[local] = PhiState();
- done = false;
- }
- }
- } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) {
- Value *local = findBaseOrBDV(sel->getTrueValue(), cache);
- if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
- states[local] = PhiState();
- done = false;
- }
- local = findBaseOrBDV(sel->getFalseValue(), cache);
- if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
- states[local] = PhiState();
- done = false;
- }
- }
- }
- }
- if (TraceLSP) {
- errs() << "States after initialization:\n";
- for (auto Pair : states) {
- Instruction *v = cast<Instruction>(Pair.first);
- PhiState state = Pair.second;
- state.dump();
- v->dump();
- }
- }
- // TODO: come back and revisit the state transitions around inputs which
- // have reached conflict state. The current version seems too conservative.
- bool progress = true;
- while (progress) {
- #ifndef NDEBUG
- size_t oldSize = states.size();
- #endif
- progress = false;
- // We're only changing keys in this loop, thus safe to keep iterators
- for (auto Pair : states) {
- MeetPhiStates calculateMeet(states);
- Value *v = Pair.first;
- assert(!isKnownBaseResult(v) && "why did it get added?");
- if (SelectInst *select = dyn_cast<SelectInst>(v)) {
- calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache));
- calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache));
- } else
- for (Value *Val : cast<PHINode>(v)->incoming_values())
- calculateMeet.meetWith(findBaseOrBDV(Val, cache));
- PhiState oldState = states[v];
- PhiState newState = calculateMeet.getResult();
- if (oldState != newState) {
- progress = true;
- states[v] = newState;
- }
- }
- assert(oldSize <= states.size());
- assert(oldSize == states.size() || progress);
- }
- if (TraceLSP) {
- errs() << "States after meet iteration:\n";
- for (auto Pair : states) {
- Instruction *v = cast<Instruction>(Pair.first);
- PhiState state = Pair.second;
- state.dump();
- v->dump();
- }
- }
- // Insert Phis for all conflicts
- // We want to keep naming deterministic in the loop that follows, so
- // sort the keys before iteration. This is useful in allowing us to
- // write stable tests. Note that there is no invalidation issue here.
- SmallVector<Value *, 16> Keys;
- Keys.reserve(states.size());
- for (auto Pair : states) {
- Value *V = Pair.first;
- Keys.push_back(V);
- }
- std::sort(Keys.begin(), Keys.end(), order_by_name);
- // TODO: adjust naming patterns to avoid this order of iteration dependency
- for (Value *V : Keys) {
- Instruction *v = cast<Instruction>(V);
- PhiState state = states[V];
- assert(!isKnownBaseResult(v) && "why did it get added?");
- assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
- if (!state.isConflict())
- continue;
- if (isa<PHINode>(v)) {
- int num_preds =
- std::distance(pred_begin(v->getParent()), pred_end(v->getParent()));
- assert(num_preds > 0 && "how did we reach here");
- PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v);
- // Add metadata marking this as a base value
- auto *const_1 = ConstantInt::get(
- Type::getInt32Ty(
- v->getParent()->getParent()->getParent()->getContext()),
- 1);
- auto MDConst = ConstantAsMetadata::get(const_1);
- MDNode *md = MDNode::get(
- v->getParent()->getParent()->getParent()->getContext(), MDConst);
- phi->setMetadata("is_base_value", md);
- states[v] = PhiState(PhiState::Conflict, phi);
- } else {
- SelectInst *sel = cast<SelectInst>(v);
- // The undef will be replaced later
- UndefValue *undef = UndefValue::get(sel->getType());
- SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef,
- undef, "base_select", sel);
- // Add metadata marking this as a base value
- auto *const_1 = ConstantInt::get(
- Type::getInt32Ty(
- v->getParent()->getParent()->getParent()->getContext()),
- 1);
- auto MDConst = ConstantAsMetadata::get(const_1);
- MDNode *md = MDNode::get(
- v->getParent()->getParent()->getParent()->getContext(), MDConst);
- basesel->setMetadata("is_base_value", md);
- states[v] = PhiState(PhiState::Conflict, basesel);
- }
- }
- // Fixup all the inputs of the new PHIs
- for (auto Pair : states) {
- Instruction *v = cast<Instruction>(Pair.first);
- PhiState state = Pair.second;
- assert(!isKnownBaseResult(v) && "why did it get added?");
- assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
- if (!state.isConflict())
- continue;
- if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) {
- PHINode *phi = cast<PHINode>(v);
- unsigned NumPHIValues = phi->getNumIncomingValues();
- for (unsigned i = 0; i < NumPHIValues; i++) {
- Value *InVal = phi->getIncomingValue(i);
- BasicBlock *InBB = phi->getIncomingBlock(i);
- // If we've already seen InBB, add the same incoming value
- // we added for it earlier. The IR verifier requires phi
- // nodes with multiple entries from the same basic block
- // to have the same incoming value for each of those
- // entries. If we don't do this check here and basephi
- // has a different type than base, we'll end up adding two
- // bitcasts (and hence two distinct values) as incoming
- // values for the same basic block.
- int blockIndex = basephi->getBasicBlockIndex(InBB);
- if (blockIndex != -1) {
- Value *oldBase = basephi->getIncomingValue(blockIndex);
- basephi->addIncoming(oldBase, InBB);
- #ifndef NDEBUG
- Value *base = findBaseOrBDV(InVal, cache);
- if (!isKnownBaseResult(base)) {
- // Either conflict or base.
- assert(states.count(base));
- base = states[base].getBase();
- assert(base != nullptr && "unknown PhiState!");
- }
- // In essense this assert states: the only way two
- // values incoming from the same basic block may be
- // different is by being different bitcasts of the same
- // value. A cleanup that remains TODO is changing
- // findBaseOrBDV to return an llvm::Value of the correct
- // type (and still remain pure). This will remove the
- // need to add bitcasts.
- assert(base->stripPointerCasts() == oldBase->stripPointerCasts() &&
- "sanity -- findBaseOrBDV should be pure!");
- #endif
- continue;
- }
- // Find either the defining value for the PHI or the normal base for
- // a non-phi node
- Value *base = findBaseOrBDV(InVal, cache);
- if (!isKnownBaseResult(base)) {
- // Either conflict or base.
- assert(states.count(base));
- base = states[base].getBase();
- assert(base != nullptr && "unknown PhiState!");
- }
- assert(base && "can't be null");
- // Must use original input BB since base may not be Instruction
- // The cast is needed since base traversal may strip away bitcasts
- if (base->getType() != basephi->getType()) {
- base = new BitCastInst(base, basephi->getType(), "cast",
- InBB->getTerminator());
- }
- basephi->addIncoming(base, InBB);
- }
- assert(basephi->getNumIncomingValues() == NumPHIValues);
- } else {
- SelectInst *basesel = cast<SelectInst>(state.getBase());
- SelectInst *sel = cast<SelectInst>(v);
- // Operand 1 & 2 are true, false path respectively. TODO: refactor to
- // something more safe and less hacky.
- for (int i = 1; i <= 2; i++) {
- Value *InVal = sel->getOperand(i);
- // Find either the defining value for the PHI or the normal base for
- // a non-phi node
- Value *base = findBaseOrBDV(InVal, cache);
- if (!isKnownBaseResult(base)) {
- // Either conflict or base.
- assert(states.count(base));
- base = states[base].getBase();
- assert(base != nullptr && "unknown PhiState!");
- }
- assert(base && "can't be null");
- // Must use original input BB since base may not be Instruction
- // The cast is needed since base traversal may strip away bitcasts
- if (base->getType() != basesel->getType()) {
- base = new BitCastInst(base, basesel->getType(), "cast", basesel);
- }
- basesel->setOperand(i, base);
- }
- }
- }
- // Cache all of our results so we can cheaply reuse them
- // NOTE: This is actually two caches: one of the base defining value
- // relation and one of the base pointer relation! FIXME
- for (auto item : states) {
- Value *v = item.first;
- Value *base = item.second.getBase();
- assert(v && base);
- assert(!isKnownBaseResult(v) && "why did it get added?");
- if (TraceLSP) {
- std::string fromstr =
- cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "")
- : "none";
- errs() << "Updating base value cache"
- << " for: " << (v->hasName() ? v->getName() : "")
- << " from: " << fromstr
- << " to: " << (base->hasName() ? base->getName() : "") << "\n";
- }
- assert(isKnownBaseResult(base) &&
- "must be something we 'know' is a base pointer");
- if (cache.count(v)) {
- // Once we transition from the BDV relation being store in the cache to
- // the base relation being stored, it must be stable
- assert((!isKnownBaseResult(cache[v]) || cache[v] == base) &&
- "base relation should be stable");
- }
- cache[v] = base;
- }
- assert(cache.find(def) != cache.end());
- return cache[def];
- }
- // For a set of live pointers (base and/or derived), identify the base
- // pointer of the object which they are derived from. This routine will
- // mutate the IR graph as needed to make the 'base' pointer live at the
- // definition site of 'derived'. This ensures that any use of 'derived' can
- // also use 'base'. This may involve the insertion of a number of
- // additional PHI nodes.
- //
- // preconditions: live is a set of pointer type Values
- //
- // side effects: may insert PHI nodes into the existing CFG, will preserve
- // CFG, will not remove or mutate any existing nodes
- //
- // post condition: PointerToBase contains one (derived, base) pair for every
- // pointer in live. Note that derived can be equal to base if the original
- // pointer was a base pointer.
- static void
- findBasePointers(const StatepointLiveSetTy &live,
- DenseMap<llvm::Value *, llvm::Value *> &PointerToBase,
- DominatorTree *DT, DefiningValueMapTy &DVCache) {
- // For the naming of values inserted to be deterministic - which makes for
- // much cleaner and more stable tests - we need to assign an order to the
- // live values. DenseSets do not provide a deterministic order across runs.
- SmallVector<Value *, 64> Temp;
- Temp.insert(Temp.end(), live.begin(), live.end());
- std::sort(Temp.begin(), Temp.end(), order_by_name);
- for (Value *ptr : Temp) {
- Value *base = findBasePointer(ptr, DVCache);
- assert(base && "failed to find base pointer");
- PointerToBase[ptr] = base;
- assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
- DT->dominates(cast<Instruction>(base)->getParent(),
- cast<Instruction>(ptr)->getParent())) &&
- "The base we found better dominate the derived pointer");
- // If you see this trip and like to live really dangerously, the code should
- // be correct, just with idioms the verifier can't handle. You can try
- // disabling the verifier at your own substaintial risk.
- assert(!isa<ConstantPointerNull>(base) &&
- "the relocation code needs adjustment to handle the relocation of "
- "a null pointer constant without causing false positives in the "
- "safepoint ir verifier.");
- }
- }
- /// Find the required based pointers (and adjust the live set) for the given
- /// parse point.
- static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
- const CallSite &CS,
- PartiallyConstructedSafepointRecord &result) {
- DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
- findBasePointers(result.liveset, PointerToBase, &DT, DVCache);
- if (PrintBasePointers) {
- // Note: Need to print these in a stable order since this is checked in
- // some tests.
- errs() << "Base Pairs (w/o Relocation):\n";
- SmallVector<Value *, 64> Temp;
- Temp.reserve(PointerToBase.size());
- for (auto Pair : PointerToBase) {
- Temp.push_back(Pair.first);
- }
- std::sort(Temp.begin(), Temp.end(), order_by_name);
- for (Value *Ptr : Temp) {
- Value *Base = PointerToBase[Ptr];
- errs() << " derived %" << Ptr->getName() << " base %" << Base->getName()
- << "\n";
- }
- }
- result.PointerToBase = PointerToBase;
- }
- /// Given an updated version of the dataflow liveness results, update the
- /// liveset and base pointer maps for the call site CS.
- static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
- const CallSite &CS,
- PartiallyConstructedSafepointRecord &result);
- static void recomputeLiveInValues(
- Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
- MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
- // TODO-PERF: reuse the original liveness, then simply run the dataflow
- // again. The old values are still live and will help it stablize quickly.
- GCPtrLivenessData RevisedLivenessData;
- computeLiveInValues(DT, F, RevisedLivenessData);
- for (size_t i = 0; i < records.size(); i++) {
- struct PartiallyConstructedSafepointRecord &info = records[i];
- const CallSite &CS = toUpdate[i];
- recomputeLiveInValues(RevisedLivenessData, CS, info);
- }
- }
- // When inserting gc.relocate calls, we need to ensure there are no uses
- // of the original value between the gc.statepoint and the gc.relocate call.
- // One case which can arise is a phi node starting one of the successor blocks.
- // We also need to be able to insert the gc.relocates only on the path which
- // goes through the statepoint. We might need to split an edge to make this
- // possible.
- static BasicBlock *
- normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
- DominatorTree &DT) {
- BasicBlock *Ret = BB;
- if (!BB->getUniquePredecessor()) {
- Ret = SplitBlockPredecessors(BB, InvokeParent, "", nullptr, &DT);
- }
- // Now that 'ret' has unique predecessor we can safely remove all phi nodes
- // from it
- FoldSingleEntryPHINodes(Ret);
- assert(!isa<PHINode>(Ret->begin()));
- // At this point, we can safely insert a gc.relocate as the first instruction
- // in Ret if needed.
- return Ret;
- }
- static int find_index(ArrayRef<Value *> livevec, Value *val) {
- auto itr = std::find(livevec.begin(), livevec.end(), val);
- assert(livevec.end() != itr);
- size_t index = std::distance(livevec.begin(), itr);
- assert(index < livevec.size());
- return index;
- }
- // Create new attribute set containing only attributes which can be transfered
- // from original call to the safepoint.
- static AttributeSet legalizeCallAttributes(AttributeSet AS) {
- AttributeSet ret;
- for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
- unsigned index = AS.getSlotIndex(Slot);
- if (index == AttributeSet::ReturnIndex ||
- index == AttributeSet::FunctionIndex) {
- for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end;
- ++it) {
- Attribute attr = *it;
- // Do not allow certain attributes - just skip them
- // Safepoint can not be read only or read none.
- if (attr.hasAttribute(Attribute::ReadNone) ||
- attr.hasAttribute(Attribute::ReadOnly))
- continue;
- ret = ret.addAttributes(
- AS.getContext(), index,
- AttributeSet::get(AS.getContext(), index, AttrBuilder(attr)));
- }
- }
- // Just skip parameter attributes for now
- }
- return ret;
- }
- /// Helper function to place all gc relocates necessary for the given
- /// statepoint.
- /// Inputs:
- /// liveVariables - list of variables to be relocated.
- /// liveStart - index of the first live variable.
- /// basePtrs - base pointers.
- /// statepointToken - statepoint instruction to which relocates should be
- /// bound.
- /// Builder - Llvm IR builder to be used to construct new calls.
- static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables,
- const int LiveStart,
- ArrayRef<llvm::Value *> BasePtrs,
- Instruction *StatepointToken,
- IRBuilder<> Builder) {
- SmallVector<Instruction *, 64> NewDefs;
- NewDefs.reserve(LiveVariables.size());
- Module *M = StatepointToken->getParent()->getParent()->getParent();
- for (unsigned i = 0; i < LiveVariables.size(); i++) {
- // We generate a (potentially) unique declaration for every pointer type
- // combination. This results is some blow up the function declarations in
- // the IR, but removes the need for argument bitcasts which shrinks the IR
- // greatly and makes it much more readable.
- SmallVector<Type *, 1> Types; // one per 'any' type
- // All gc_relocate are set to i8 addrspace(1)* type. This could help avoid
- // cases where the actual value's type mangling is not supported by llvm. A
- // bitcast is added later to convert gc_relocate to the actual value's type.
- Types.push_back(Type::getInt8PtrTy(M->getContext(), 1));
- Value *GCRelocateDecl = Intrinsic::getDeclaration(
- M, Intrinsic::experimental_gc_relocate, Types);
- // Generate the gc.relocate call and save the result
- Value *BaseIdx =
- ConstantInt::get(Type::getInt32Ty(M->getContext()),
- LiveStart + find_index(LiveVariables, BasePtrs[i]));
- Value *LiveIdx = ConstantInt::get(
- Type::getInt32Ty(M->getContext()),
- LiveStart + find_index(LiveVariables, LiveVariables[i]));
- // only specify a debug name if we can give a useful one
- Value *Reloc = Builder.CreateCall(
- GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
- LiveVariables[i]->hasName() ? LiveVariables[i]->getName() + ".relocated"
- : "");
- // Trick CodeGen into thinking there are lots of free registers at this
- // fake call.
- cast<CallInst>(Reloc)->setCallingConv(CallingConv::Cold);
- NewDefs.push_back(cast<Instruction>(Reloc));
- }
- assert(NewDefs.size() == LiveVariables.size() &&
- "missing or extra redefinition at safepoint");
- }
- static void
- makeStatepointExplicitImpl(const CallSite &CS, /* to replace */
- const SmallVectorImpl<llvm::Value *> &basePtrs,
- const SmallVectorImpl<llvm::Value *> &liveVariables,
- Pass *P,
- PartiallyConstructedSafepointRecord &result) {
- assert(basePtrs.size() == liveVariables.size());
- assert(isStatepoint(CS) &&
- "This method expects to be rewriting a statepoint");
- BasicBlock *BB = CS.getInstruction()->getParent();
- assert(BB);
- Function *F = BB->getParent();
- assert(F && "must be set");
- Module *M = F->getParent();
- (void)M;
- assert(M && "must be set");
- // We're not changing the function signature of the statepoint since the gc
- // arguments go into the var args section.
- Function *gc_statepoint_decl = CS.getCalledFunction();
- // Then go ahead and use the builder do actually do the inserts. We insert
- // immediately before the previous instruction under the assumption that all
- // arguments will be available here. We can't insert afterwards since we may
- // be replacing a terminator.
- Instruction *insertBefore = CS.getInstruction();
- IRBuilder<> Builder(insertBefore);
- // Copy all of the arguments from the original statepoint - this includes the
- // target, call args, and deopt args
- SmallVector<llvm::Value *, 64> args;
- args.insert(args.end(), CS.arg_begin(), CS.arg_end());
- // TODO: Clear the 'needs rewrite' flag
- // add all the pointers to be relocated (gc arguments)
- // Capture the start of the live variable list for use in the gc_relocates
- const int live_start = args.size();
- args.insert(args.end(), liveVariables.begin(), liveVariables.end());
- // Create the statepoint given all the arguments
- Instruction *token = nullptr;
- AttributeSet return_attributes;
- if (CS.isCall()) {
- CallInst *toReplace = cast<CallInst>(CS.getInstruction());
- CallInst *call =
- Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token");
- call->setTailCall(toReplace->isTailCall());
- call->setCallingConv(toReplace->getCallingConv());
- // Currently we will fail on parameter attributes and on certain
- // function attributes.
- AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
- // In case if we can handle this set of sttributes - set up function attrs
- // directly on statepoint and return attrs later for gc_result intrinsic.
- call->setAttributes(new_attrs.getFnAttributes());
- return_attributes = new_attrs.getRetAttributes();
- token = call;
- // Put the following gc_result and gc_relocate calls immediately after the
- // the old call (which we're about to delete)
- BasicBlock::iterator next(toReplace);
- assert(BB->end() != next && "not a terminator, must have next");
- next++;
- Instruction *IP = &*(next);
- Builder.SetInsertPoint(IP);
- Builder.SetCurrentDebugLocation(IP->getDebugLoc());
- } else {
- InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction());
- // Insert the new invoke into the old block. We'll remove the old one in a
- // moment at which point this will become the new terminator for the
- // original block.
- InvokeInst *invoke = InvokeInst::Create(
- gc_statepoint_decl, toReplace->getNormalDest(),
- toReplace->getUnwindDest(), args, "", toReplace->getParent());
- invoke->setCallingConv(toReplace->getCallingConv());
- // Currently we will fail on parameter attributes and on certain
- // function attributes.
- AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
- // In case if we can handle this set of sttributes - set up function attrs
- // directly on statepoint and return attrs later for gc_result intrinsic.
- invoke->setAttributes(new_attrs.getFnAttributes());
- return_attributes = new_attrs.getRetAttributes();
- token = invoke;
- // Generate gc relocates in exceptional path
- BasicBlock *unwindBlock = toReplace->getUnwindDest();
- assert(!isa<PHINode>(unwindBlock->begin()) &&
- unwindBlock->getUniquePredecessor() &&
- "can't safely insert in this block!");
- Instruction *IP = &*(unwindBlock->getFirstInsertionPt());
- Builder.SetInsertPoint(IP);
- Builder.SetCurrentDebugLocation(toReplace->getDebugLoc());
- // Extract second element from landingpad return value. We will attach
- // exceptional gc relocates to it.
- const unsigned idx = 1;
- Instruction *exceptional_token =
- cast<Instruction>(Builder.CreateExtractValue(
- unwindBlock->getLandingPadInst(), idx, "relocate_token"));
- result.UnwindToken = exceptional_token;
- // Just throw away return value. We will use the one we got for normal
- // block.
- (void)CreateGCRelocates(liveVariables, live_start, basePtrs,
- exceptional_token, Builder);
- // Generate gc relocates and returns for normal block
- BasicBlock *normalDest = toReplace->getNormalDest();
- assert(!isa<PHINode>(normalDest->begin()) &&
- normalDest->getUniquePredecessor() &&
- "can't safely insert in this block!");
- IP = &*(normalDest->getFirstInsertionPt());
- Builder.SetInsertPoint(IP);
- // gc relocates will be generated later as if it were regular call
- // statepoint
- }
- assert(token);
- // Take the name of the original value call if it had one.
- token->takeName(CS.getInstruction());
- // The GCResult is already inserted, we just need to find it
- #ifndef NDEBUG
- Instruction *toReplace = CS.getInstruction();
- assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) &&
- "only valid use before rewrite is gc.result");
- assert(!toReplace->hasOneUse() ||
- isGCResult(cast<Instruction>(*toReplace->user_begin())));
- #endif
- // Update the gc.result of the original statepoint (if any) to use the newly
- // inserted statepoint. This is safe to do here since the token can't be
- // considered a live reference.
- CS.getInstruction()->replaceAllUsesWith(token);
- result.StatepointToken = token;
- // Second, create a gc.relocate for every live variable
- CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder);
- }
- namespace {
- struct name_ordering {
- Value *base;
- Value *derived;
- bool operator()(name_ordering const &a, name_ordering const &b) {
- return -1 == a.derived->getName().compare(b.derived->getName());
- }
- };
- }
- static void stablize_order(SmallVectorImpl<Value *> &basevec,
- SmallVectorImpl<Value *> &livevec) {
- assert(basevec.size() == livevec.size());
- SmallVector<name_ordering, 64> temp;
- for (size_t i = 0; i < basevec.size(); i++) {
- name_ordering v;
- v.base = basevec[i];
- v.derived = livevec[i];
- temp.push_back(v);
- }
- std::sort(temp.begin(), temp.end(), name_ordering());
- for (size_t i = 0; i < basevec.size(); i++) {
- basevec[i] = temp[i].base;
- livevec[i] = temp[i].derived;
- }
- }
- // Replace an existing gc.statepoint with a new one and a set of gc.relocates
- // which make the relocations happening at this safepoint explicit.
- //
- // WARNING: Does not do any fixup to adjust users of the original live
- // values. That's the callers responsibility.
- static void
- makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P,
- PartiallyConstructedSafepointRecord &result) {
- auto liveset = result.liveset;
- auto PointerToBase = result.PointerToBase;
- // Convert to vector for efficient cross referencing.
- SmallVector<Value *, 64> basevec, livevec;
- livevec.reserve(liveset.size());
- basevec.reserve(liveset.size());
- for (Value *L : liveset) {
- livevec.push_back(L);
- assert(PointerToBase.find(L) != PointerToBase.end());
- Value *base = PointerToBase[L];
- basevec.push_back(base);
- }
- assert(livevec.size() == basevec.size());
- // To make the output IR slightly more stable (for use in diffs), ensure a
- // fixed order of the values in the safepoint (by sorting the value name).
- // The order is otherwise meaningless.
- stablize_order(basevec, livevec);
- // Do the actual rewriting and delete the old statepoint
- makeStatepointExplicitImpl(CS, basevec, livevec, P, result);
- CS.getInstruction()->eraseFromParent();
- }
- // Helper function for the relocationViaAlloca.
- // It receives iterator to the statepoint gc relocates and emits store to the
- // assigned
- // location (via allocaMap) for the each one of them.
- // Add visited values into the visitedLiveValues set we will later use them
- // for sanity check.
- static void
- insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
- DenseMap<Value *, Value *> &AllocaMap,
- DenseSet<Value *> &VisitedLiveValues) {
- for (User *U : GCRelocs) {
- if (!isa<IntrinsicInst>(U))
- continue;
- IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U);
- // We only care about relocates
- if (RelocatedValue->getIntrinsicID() !=
- Intrinsic::experimental_gc_relocate) {
- continue;
- }
- GCRelocateOperands RelocateOperands(RelocatedValue);
- Value *OriginalValue =
- const_cast<Value *>(RelocateOperands.getDerivedPtr());
- assert(AllocaMap.count(OriginalValue));
- Value *Alloca = AllocaMap[OriginalValue];
- // Emit store into the related alloca
- // All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to
- // the correct type according to alloca.
- assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator");
- IRBuilder<> Builder(RelocatedValue->getNextNode());
- Value *CastedRelocatedValue =
- Builder.CreateBitCast(RelocatedValue, cast<AllocaInst>(Alloca)->getAllocatedType(),
- RelocatedValue->hasName() ? RelocatedValue->getName() + ".casted" : "");
- StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
- Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
- #ifndef NDEBUG
- VisitedLiveValues.insert(OriginalValue);
- #endif
- }
- }
- // Helper function for the "relocationViaAlloca". Similar to the
- // "insertRelocationStores" but works for rematerialized values.
- static void
- insertRematerializationStores(
- RematerializedValueMapTy RematerializedValues,
- DenseMap<Value *, Value *> &AllocaMap,
- DenseSet<Value *> &VisitedLiveValues) {
- for (auto RematerializedValuePair: RematerializedValues) {
- Instruction *RematerializedValue = RematerializedValuePair.first;
- Value *OriginalValue = RematerializedValuePair.second;
- assert(AllocaMap.count(OriginalValue) &&
- "Can not find alloca for rematerialized value");
- Value *Alloca = AllocaMap[OriginalValue];
- StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
- Store->insertAfter(RematerializedValue);
- #ifndef NDEBUG
- VisitedLiveValues.insert(OriginalValue);
- #endif
- }
- }
- /// do all the relocation update via allocas and mem2reg
- static void relocationViaAlloca(
- Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
- ArrayRef<struct PartiallyConstructedSafepointRecord> Records) {
- #ifndef NDEBUG
- // record initial number of (static) allocas; we'll check we have the same
- // number when we get done.
- int InitialAllocaNum = 0;
- for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
- I++)
- if (isa<AllocaInst>(*I))
- InitialAllocaNum++;
- #endif
- // TODO-PERF: change data structures, reserve
- DenseMap<Value *, Value *> AllocaMap;
- SmallVector<AllocaInst *, 200> PromotableAllocas;
- // Used later to chack that we have enough allocas to store all values
- std::size_t NumRematerializedValues = 0;
- PromotableAllocas.reserve(Live.size());
- // Emit alloca for "LiveValue" and record it in "allocaMap" and
- // "PromotableAllocas"
- auto emitAllocaFor = [&](Value *LiveValue) {
- AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
- F.getEntryBlock().getFirstNonPHI());
- AllocaMap[LiveValue] = Alloca;
- PromotableAllocas.push_back(Alloca);
- };
- // emit alloca for each live gc pointer
- for (unsigned i = 0; i < Live.size(); i++) {
- emitAllocaFor(Live[i]);
- }
- // emit allocas for rematerialized values
- for (size_t i = 0; i < Records.size(); i++) {
- const struct PartiallyConstructedSafepointRecord &Info = Records[i];
- for (auto RematerializedValuePair : Info.RematerializedValues) {
- Value *OriginalValue = RematerializedValuePair.second;
- if (AllocaMap.count(OriginalValue) != 0)
- continue;
- emitAllocaFor(OriginalValue);
- ++NumRematerializedValues;
- }
- }
- // The next two loops are part of the same conceptual operation. We need to
- // insert a store to the alloca after the original def and at each
- // redefinition. We need to insert a load before each use. These are split
- // into distinct loops for performance reasons.
- // update gc pointer after each statepoint
- // either store a relocated value or null (if no relocated value found for
- // this gc pointer and it is not a gc_result)
- // this must happen before we update the statepoint with load of alloca
- // otherwise we lose the link between statepoint and old def
- for (size_t i = 0; i < Records.size(); i++) {
- const struct PartiallyConstructedSafepointRecord &Info = Records[i];
- Value *Statepoint = Info.StatepointToken;
- // This will be used for consistency check
- DenseSet<Value *> VisitedLiveValues;
- // Insert stores for normal statepoint gc relocates
- insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
- // In case if it was invoke statepoint
- // we will insert stores for exceptional path gc relocates.
- if (isa<InvokeInst>(Statepoint)) {
- insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
- VisitedLiveValues);
- }
- // Do similar thing with rematerialized values
- insertRematerializationStores(Info.RematerializedValues, AllocaMap,
- VisitedLiveValues);
- if (ClobberNonLive) {
- // As a debuging aid, pretend that an unrelocated pointer becomes null at
- // the gc.statepoint. This will turn some subtle GC problems into
- // slightly easier to debug SEGVs. Note that on large IR files with
- // lots of gc.statepoints this is extremely costly both memory and time
- // wise.
- SmallVector<AllocaInst *, 64> ToClobber;
- for (auto Pair : AllocaMap) {
- Value *Def = Pair.first;
- AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
- // This value was relocated
- if (VisitedLiveValues.count(Def)) {
- continue;
- }
- ToClobber.push_back(Alloca);
- }
- auto InsertClobbersAt = [&](Instruction *IP) {
- for (auto *AI : ToClobber) {
- auto AIType = cast<PointerType>(AI->getType());
- auto PT = cast<PointerType>(AIType->getElementType());
- Constant *CPN = ConstantPointerNull::get(PT);
- StoreInst *Store = new StoreInst(CPN, AI);
- Store->insertBefore(IP);
- }
- };
- // Insert the clobbering stores. These may get intermixed with the
- // gc.results and gc.relocates, but that's fine.
- if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
- InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt());
- InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt());
- } else {
- BasicBlock::iterator Next(cast<CallInst>(Statepoint));
- Next++;
- InsertClobbersAt(Next);
- }
- }
- }
- // update use with load allocas and add store for gc_relocated
- for (auto Pair : AllocaMap) {
- Value *Def = Pair.first;
- Value *Alloca = Pair.second;
- // we pre-record the uses of allocas so that we dont have to worry about
- // later update
- // that change the user information.
- SmallVector<Instruction *, 20> Uses;
- // PERF: trade a linear scan for repeated reallocation
- Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
- for (User *U : Def->users()) {
- if (!isa<ConstantExpr>(U)) {
- // If the def has a ConstantExpr use, then the def is either a
- // ConstantExpr use itself or null. In either case
- // (recursively in the first, directly in the second), the oop
- // it is ultimately dependent on is null and this particular
- // use does not need to be fixed up.
- Uses.push_back(cast<Instruction>(U));
- }
- }
- std::sort(Uses.begin(), Uses.end());
- auto Last = std::unique(Uses.begin(), Uses.end());
- Uses.erase(Last, Uses.end());
- for (Instruction *Use : Uses) {
- if (isa<PHINode>(Use)) {
- PHINode *Phi = cast<PHINode>(Use);
- for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
- if (Def == Phi->getIncomingValue(i)) {
- LoadInst *Load = new LoadInst(
- Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
- Phi->setIncomingValue(i, Load);
- }
- }
- } else {
- LoadInst *Load = new LoadInst(Alloca, "", Use);
- Use->replaceUsesOfWith(Def, Load);
- }
- }
- // emit store for the initial gc value
- // store must be inserted after load, otherwise store will be in alloca's
- // use list and an extra load will be inserted before it
- StoreInst *Store = new StoreInst(Def, Alloca);
- if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
- if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
- // InvokeInst is a TerminatorInst so the store need to be inserted
- // into its normal destination block.
- BasicBlock *NormalDest = Invoke->getNormalDest();
- Store->insertBefore(NormalDest->getFirstNonPHI());
- } else {
- assert(!Inst->isTerminator() &&
- "The only TerminatorInst that can produce a value is "
- "InvokeInst which is handled above.");
- Store->insertAfter(Inst);
- }
- } else {
- assert(isa<Argument>(Def));
- Store->insertAfter(cast<Instruction>(Alloca));
- }
- }
- assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
- "we must have the same allocas with lives");
- if (!PromotableAllocas.empty()) {
- // apply mem2reg to promote alloca to SSA
- PromoteMemToReg(PromotableAllocas, DT);
- }
- #ifndef NDEBUG
- for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
- I++)
- if (isa<AllocaInst>(*I))
- InitialAllocaNum--;
- assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
- #endif
- }
- /// Implement a unique function which doesn't require we sort the input
- /// vector. Doing so has the effect of changing the output of a couple of
- /// tests in ways which make them less useful in testing fused safepoints.
- template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
- SmallSet<T, 8> Seen;
- Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
- return !Seen.insert(V).second;
- }), Vec.end());
- }
- /// Insert holders so that each Value is obviously live through the entire
- /// lifetime of the call.
- static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
- SmallVectorImpl<CallInst *> &Holders) {
- if (Values.empty())
- // No values to hold live, might as well not insert the empty holder
- return;
- Module *M = CS.getInstruction()->getParent()->getParent()->getParent();
- // Use a dummy vararg function to actually hold the values live
- Function *Func = cast<Function>(M->getOrInsertFunction(
- "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
- if (CS.isCall()) {
- // For call safepoints insert dummy calls right after safepoint
- BasicBlock::iterator Next(CS.getInstruction());
- Next++;
- Holders.push_back(CallInst::Create(Func, Values, "", Next));
- return;
- }
- // For invoke safepooints insert dummy calls both in normal and
- // exceptional destination blocks
- auto *II = cast<InvokeInst>(CS.getInstruction());
- Holders.push_back(CallInst::Create(
- Func, Values, "", II->getNormalDest()->getFirstInsertionPt()));
- Holders.push_back(CallInst::Create(
- Func, Values, "", II->getUnwindDest()->getFirstInsertionPt()));
- }
- static void findLiveReferences(
- Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
- MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
- GCPtrLivenessData OriginalLivenessData;
- computeLiveInValues(DT, F, OriginalLivenessData);
- for (size_t i = 0; i < records.size(); i++) {
- struct PartiallyConstructedSafepointRecord &info = records[i];
- const CallSite &CS = toUpdate[i];
- analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
- }
- }
- /// Remove any vector of pointers from the liveset by scalarizing them over the
- /// statepoint instruction. Adds the scalarized pieces to the liveset. It
- /// would be preferrable to include the vector in the statepoint itself, but
- /// the lowering code currently does not handle that. Extending it would be
- /// slightly non-trivial since it requires a format change. Given how rare
- /// such cases are (for the moment?) scalarizing is an acceptable comprimise.
- static void splitVectorValues(Instruction *StatepointInst,
- StatepointLiveSetTy &LiveSet,
- DenseMap<Value *, Value *>& PointerToBase,
- DominatorTree &DT) {
- SmallVector<Value *, 16> ToSplit;
- for (Value *V : LiveSet)
- if (isa<VectorType>(V->getType()))
- ToSplit.push_back(V);
- if (ToSplit.empty())
- return;
- DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping;
- Function &F = *(StatepointInst->getParent()->getParent());
- DenseMap<Value *, AllocaInst *> AllocaMap;
- // First is normal return, second is exceptional return (invoke only)
- DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
- for (Value *V : ToSplit) {
- AllocaInst *Alloca =
- new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
- AllocaMap[V] = Alloca;
- VectorType *VT = cast<VectorType>(V->getType());
- IRBuilder<> Builder(StatepointInst);
- SmallVector<Value *, 16> Elements;
- for (unsigned i = 0; i < VT->getNumElements(); i++)
- Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
- ElementMapping[V] = Elements;
- auto InsertVectorReform = [&](Instruction *IP) {
- Builder.SetInsertPoint(IP);
- Builder.SetCurrentDebugLocation(IP->getDebugLoc());
- Value *ResultVec = UndefValue::get(VT);
- for (unsigned i = 0; i < VT->getNumElements(); i++)
- ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
- Builder.getInt32(i));
- return ResultVec;
- };
- if (isa<CallInst>(StatepointInst)) {
- BasicBlock::iterator Next(StatepointInst);
- Next++;
- Instruction *IP = &*(Next);
- Replacements[V].first = InsertVectorReform(IP);
- Replacements[V].second = nullptr;
- } else {
- InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
- // We've already normalized - check that we don't have shared destination
- // blocks
- BasicBlock *NormalDest = Invoke->getNormalDest();
- assert(!isa<PHINode>(NormalDest->begin()));
- BasicBlock *UnwindDest = Invoke->getUnwindDest();
- assert(!isa<PHINode>(UnwindDest->begin()));
- // Insert insert element sequences in both successors
- Instruction *IP = &*(NormalDest->getFirstInsertionPt());
- Replacements[V].first = InsertVectorReform(IP);
- IP = &*(UnwindDest->getFirstInsertionPt());
- Replacements[V].second = InsertVectorReform(IP);
- }
- }
- for (Value *V : ToSplit) {
- AllocaInst *Alloca = AllocaMap[V];
- // Capture all users before we start mutating use lists
- SmallVector<Instruction *, 16> Users;
- for (User *U : V->users())
- Users.push_back(cast<Instruction>(U));
- for (Instruction *I : Users) {
- if (auto Phi = dyn_cast<PHINode>(I)) {
- for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
- if (V == Phi->getIncomingValue(i)) {
- LoadInst *Load = new LoadInst(
- Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
- Phi->setIncomingValue(i, Load);
- }
- } else {
- LoadInst *Load = new LoadInst(Alloca, "", I);
- I->replaceUsesOfWith(V, Load);
- }
- }
- // Store the original value and the replacement value into the alloca
- StoreInst *Store = new StoreInst(V, Alloca);
- if (auto I = dyn_cast<Instruction>(V))
- Store->insertAfter(I);
- else
- Store->insertAfter(Alloca);
- // Normal return for invoke, or call return
- Instruction *Replacement = cast<Instruction>(Replacements[V].first);
- (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
- // Unwind return for invoke only
- Replacement = cast_or_null<Instruction>(Replacements[V].second);
- if (Replacement)
- (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
- }
- // apply mem2reg to promote alloca to SSA
- SmallVector<AllocaInst *, 16> Allocas;
- for (Value *V : ToSplit)
- Allocas.push_back(AllocaMap[V]);
- PromoteMemToReg(Allocas, DT);
- // Update our tracking of live pointers and base mappings to account for the
- // changes we just made.
- for (Value *V : ToSplit) {
- auto &Elements = ElementMapping[V];
- LiveSet.erase(V);
- LiveSet.insert(Elements.begin(), Elements.end());
- // We need to update the base mapping as well.
- assert(PointerToBase.count(V));
- Value *OldBase = PointerToBase[V];
- auto &BaseElements = ElementMapping[OldBase];
- PointerToBase.erase(V);
- assert(Elements.size() == BaseElements.size());
- for (unsigned i = 0; i < Elements.size(); i++) {
- Value *Elem = Elements[i];
- PointerToBase[Elem] = BaseElements[i];
- }
- }
- }
- // Helper function for the "rematerializeLiveValues". It walks use chain
- // starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
- // values are visited (currently it is GEP's and casts). Returns true if it
- // sucessfully reached "BaseValue" and false otherwise.
- // Fills "ChainToBase" array with all visited values. "BaseValue" is not
- // recorded.
- static bool findRematerializableChainToBasePointer(
- SmallVectorImpl<Instruction*> &ChainToBase,
- Value *CurrentValue, Value *BaseValue) {
- // We have found a base value
- if (CurrentValue == BaseValue) {
- return true;
- }
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
- ChainToBase.push_back(GEP);
- return findRematerializableChainToBasePointer(ChainToBase,
- GEP->getPointerOperand(),
- BaseValue);
- }
- if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
- Value *Def = CI->stripPointerCasts();
- // This two checks are basically similar. First one is here for the
- // consistency with findBasePointers logic.
- assert(!isa<CastInst>(Def) && "not a pointer cast found");
- if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
- return false;
- ChainToBase.push_back(CI);
- return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue);
- }
- // Not supported instruction in the chain
- return false;
- }
- // Helper function for the "rematerializeLiveValues". Compute cost of the use
- // chain we are going to rematerialize.
- static unsigned
- chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
- TargetTransformInfo &TTI) {
- unsigned Cost = 0;
- for (Instruction *Instr : Chain) {
- if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
- assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
- "non noop cast is found during rematerialization");
- Type *SrcTy = CI->getOperand(0)->getType();
- Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
- } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
- // Cost of the address calculation
- Type *ValTy = GEP->getPointerOperandType()->getPointerElementType();
- Cost += TTI.getAddressComputationCost(ValTy);
- // And cost of the GEP itself
- // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
- // allowed for the external usage)
- if (!GEP->hasAllConstantIndices())
- Cost += 2;
- } else {
- llvm_unreachable("unsupported instruciton type during rematerialization");
- }
- }
- return Cost;
- }
- // From the statepoint liveset pick values that are cheaper to recompute then to
- // relocate. Remove this values from the liveset, rematerialize them after
- // statepoint and record them in "Info" structure. Note that similar to
- // relocated values we don't do any user adjustments here.
- static void rematerializeLiveValues(CallSite CS,
- PartiallyConstructedSafepointRecord &Info,
- TargetTransformInfo &TTI) {
- const unsigned int ChainLengthThreshold = 10;
- // Record values we are going to delete from this statepoint live set.
- // We can not di this in following loop due to iterator invalidation.
- SmallVector<Value *, 32> LiveValuesToBeDeleted;
- for (Value *LiveValue: Info.liveset) {
- // For each live pointer find it's defining chain
- SmallVector<Instruction *, 3> ChainToBase;
- assert(Info.PointerToBase.find(LiveValue) != Info.PointerToBase.end());
- bool FoundChain =
- findRematerializableChainToBasePointer(ChainToBase,
- LiveValue,
- Info.PointerToBase[LiveValue]);
- // Nothing to do, or chain is too long
- if (!FoundChain ||
- ChainToBase.size() == 0 ||
- ChainToBase.size() > ChainLengthThreshold)
- continue;
- // Compute cost of this chain
- unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
- // TODO: We can also account for cases when we will be able to remove some
- // of the rematerialized values by later optimization passes. I.e if
- // we rematerialized several intersecting chains. Or if original values
- // don't have any uses besides this statepoint.
- // For invokes we need to rematerialize each chain twice - for normal and
- // for unwind basic blocks. Model this by multiplying cost by two.
- if (CS.isInvoke()) {
- Cost *= 2;
- }
- // If it's too expensive - skip it
- if (Cost >= RematerializationThreshold)
- continue;
- // Remove value from the live set
- LiveValuesToBeDeleted.push_back(LiveValue);
- // Clone instructions and record them inside "Info" structure
- // Walk backwards to visit top-most instructions first
- std::reverse(ChainToBase.begin(), ChainToBase.end());
- // Utility function which clones all instructions from "ChainToBase"
- // and inserts them before "InsertBefore". Returns rematerialized value
- // which should be used after statepoint.
- auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
- Instruction *LastClonedValue = nullptr;
- Instruction *LastValue = nullptr;
- for (Instruction *Instr: ChainToBase) {
- // Only GEP's and casts are suported as we need to be careful to not
- // introduce any new uses of pointers not in the liveset.
- // Note that it's fine to introduce new uses of pointers which were
- // otherwise not used after this statepoint.
- assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
- Instruction *ClonedValue = Instr->clone();
- ClonedValue->insertBefore(InsertBefore);
- ClonedValue->setName(Instr->getName() + ".remat");
- // If it is not first instruction in the chain then it uses previously
- // cloned value. We should update it to use cloned value.
- if (LastClonedValue) {
- assert(LastValue);
- ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
- #ifndef NDEBUG
- // Assert that cloned instruction does not use any instructions from
- // this chain other than LastClonedValue
- for (auto OpValue : ClonedValue->operand_values()) {
- assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
- ChainToBase.end() &&
- "incorrect use in rematerialization chain");
- }
- #endif
- }
- LastClonedValue = ClonedValue;
- LastValue = Instr;
- }
- assert(LastClonedValue);
- return LastClonedValue;
- };
- // Different cases for calls and invokes. For invokes we need to clone
- // instructions both on normal and unwind path.
- if (CS.isCall()) {
- Instruction *InsertBefore = CS.getInstruction()->getNextNode();
- assert(InsertBefore);
- Instruction *RematerializedValue = rematerializeChain(InsertBefore);
- Info.RematerializedValues[RematerializedValue] = LiveValue;
- } else {
- InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
- Instruction *NormalInsertBefore =
- Invoke->getNormalDest()->getFirstInsertionPt();
- Instruction *UnwindInsertBefore =
- Invoke->getUnwindDest()->getFirstInsertionPt();
- Instruction *NormalRematerializedValue =
- rematerializeChain(NormalInsertBefore);
- Instruction *UnwindRematerializedValue =
- rematerializeChain(UnwindInsertBefore);
- Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
- Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
- }
- }
- // Remove rematerializaed values from the live set
- for (auto LiveValue: LiveValuesToBeDeleted) {
- Info.liveset.erase(LiveValue);
- }
- }
- static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
- SmallVectorImpl<CallSite> &toUpdate) {
- #ifndef NDEBUG
- // sanity check the input
- std::set<CallSite> uniqued;
- uniqued.insert(toUpdate.begin(), toUpdate.end());
- assert(uniqued.size() == toUpdate.size() && "no duplicates please!");
- for (size_t i = 0; i < toUpdate.size(); i++) {
- CallSite &CS = toUpdate[i];
- assert(CS.getInstruction()->getParent()->getParent() == &F);
- assert(isStatepoint(CS) && "expected to already be a deopt statepoint");
- }
- #endif
- // When inserting gc.relocates for invokes, we need to be able to insert at
- // the top of the successor blocks. See the comment on
- // normalForInvokeSafepoint on exactly what is needed. Note that this step
- // may restructure the CFG.
- for (CallSite CS : toUpdate) {
- if (!CS.isInvoke())
- continue;
- InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction());
- normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(),
- DT);
- normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(),
- DT);
- }
- // A list of dummy calls added to the IR to keep various values obviously
- // live in the IR. We'll remove all of these when done.
- SmallVector<CallInst *, 64> holders;
- // Insert a dummy call with all of the arguments to the vm_state we'll need
- // for the actual safepoint insertion. This ensures reference arguments in
- // the deopt argument list are considered live through the safepoint (and
- // thus makes sure they get relocated.)
- for (size_t i = 0; i < toUpdate.size(); i++) {
- CallSite &CS = toUpdate[i];
- Statepoint StatepointCS(CS);
- SmallVector<Value *, 64> DeoptValues;
- for (Use &U : StatepointCS.vm_state_args()) {
- Value *Arg = cast<Value>(&U);
- assert(!isUnhandledGCPointerType(Arg->getType()) &&
- "support for FCA unimplemented");
- if (isHandledGCPointerType(Arg->getType()))
- DeoptValues.push_back(Arg);
- }
- insertUseHolderAfter(CS, DeoptValues, holders);
- }
- SmallVector<struct PartiallyConstructedSafepointRecord, 64> records;
- records.reserve(toUpdate.size());
- for (size_t i = 0; i < toUpdate.size(); i++) {
- struct PartiallyConstructedSafepointRecord info;
- records.push_back(info);
- }
- assert(records.size() == toUpdate.size());
- // A) Identify all gc pointers which are staticly live at the given call
- // site.
- findLiveReferences(F, DT, P, toUpdate, records);
- // B) Find the base pointers for each live pointer
- /* scope for caching */ {
- // Cache the 'defining value' relation used in the computation and
- // insertion of base phis and selects. This ensures that we don't insert
- // large numbers of duplicate base_phis.
- DefiningValueMapTy DVCache;
- for (size_t i = 0; i < records.size(); i++) {
- struct PartiallyConstructedSafepointRecord &info = records[i];
- CallSite &CS = toUpdate[i];
- findBasePointers(DT, DVCache, CS, info);
- }
- } // end of cache scope
- // The base phi insertion logic (for any safepoint) may have inserted new
- // instructions which are now live at some safepoint. The simplest such
- // example is:
- // loop:
- // phi a <-- will be a new base_phi here
- // safepoint 1 <-- that needs to be live here
- // gep a + 1
- // safepoint 2
- // br loop
- // We insert some dummy calls after each safepoint to definitely hold live
- // the base pointers which were identified for that safepoint. We'll then
- // ask liveness for _every_ base inserted to see what is now live. Then we
- // remove the dummy calls.
- holders.reserve(holders.size() + records.size());
- for (size_t i = 0; i < records.size(); i++) {
- struct PartiallyConstructedSafepointRecord &info = records[i];
- CallSite &CS = toUpdate[i];
- SmallVector<Value *, 128> Bases;
- for (auto Pair : info.PointerToBase) {
- Bases.push_back(Pair.second);
- }
- insertUseHolderAfter(CS, Bases, holders);
- }
- // By selecting base pointers, we've effectively inserted new uses. Thus, we
- // need to rerun liveness. We may *also* have inserted new defs, but that's
- // not the key issue.
- recomputeLiveInValues(F, DT, P, toUpdate, records);
- if (PrintBasePointers) {
- for (size_t i = 0; i < records.size(); i++) {
- struct PartiallyConstructedSafepointRecord &info = records[i];
- errs() << "Base Pairs: (w/Relocation)\n";
- for (auto Pair : info.PointerToBase) {
- errs() << " derived %" << Pair.first->getName() << " base %"
- << Pair.second->getName() << "\n";
- }
- }
- }
- for (size_t i = 0; i < holders.size(); i++) {
- holders[i]->eraseFromParent();
- holders[i] = nullptr;
- }
- holders.clear();
- // Do a limited scalarization of any live at safepoint vector values which
- // contain pointers. This enables this pass to run after vectorization at
- // the cost of some possible performance loss. TODO: it would be nice to
- // natively support vectors all the way through the backend so we don't need
- // to scalarize here.
- for (size_t i = 0; i < records.size(); i++) {
- struct PartiallyConstructedSafepointRecord &info = records[i];
- Instruction *statepoint = toUpdate[i].getInstruction();
- splitVectorValues(cast<Instruction>(statepoint), info.liveset,
- info.PointerToBase, DT);
- }
- // In order to reduce live set of statepoint we might choose to rematerialize
- // some values instead of relocating them. This is purelly an optimization and
- // does not influence correctness.
- TargetTransformInfo &TTI =
- P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- for (size_t i = 0; i < records.size(); i++) {
- struct PartiallyConstructedSafepointRecord &info = records[i];
- CallSite &CS = toUpdate[i];
- rematerializeLiveValues(CS, info, TTI);
- }
- // Now run through and replace the existing statepoints with new ones with
- // the live variables listed. We do not yet update uses of the values being
- // relocated. We have references to live variables that need to
- // survive to the last iteration of this loop. (By construction, the
- // previous statepoint can not be a live variable, thus we can and remove
- // the old statepoint calls as we go.)
- for (size_t i = 0; i < records.size(); i++) {
- struct PartiallyConstructedSafepointRecord &info = records[i];
- CallSite &CS = toUpdate[i];
- makeStatepointExplicit(DT, CS, P, info);
- }
- toUpdate.clear(); // prevent accident use of invalid CallSites
- // Do all the fixups of the original live variables to their relocated selves
- SmallVector<Value *, 128> live;
- for (size_t i = 0; i < records.size(); i++) {
- struct PartiallyConstructedSafepointRecord &info = records[i];
- // We can't simply save the live set from the original insertion. One of
- // the live values might be the result of a call which needs a safepoint.
- // That Value* no longer exists and we need to use the new gc_result.
- // Thankfully, the liveset is embedded in the statepoint (and updated), so
- // we just grab that.
- Statepoint statepoint(info.StatepointToken);
- live.insert(live.end(), statepoint.gc_args_begin(),
- statepoint.gc_args_end());
- #ifndef NDEBUG
- // Do some basic sanity checks on our liveness results before performing
- // relocation. Relocation can and will turn mistakes in liveness results
- // into non-sensical code which is must harder to debug.
- // TODO: It would be nice to test consistency as well
- assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) &&
- "statepoint must be reachable or liveness is meaningless");
- for (Value *V : statepoint.gc_args()) {
- if (!isa<Instruction>(V))
- // Non-instruction values trivial dominate all possible uses
- continue;
- auto LiveInst = cast<Instruction>(V);
- assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
- "unreachable values should never be live");
- assert(DT.dominates(LiveInst, info.StatepointToken) &&
- "basic SSA liveness expectation violated by liveness analysis");
- }
- #endif
- }
- unique_unsorted(live);
- #ifndef NDEBUG
- // sanity check
- for (auto ptr : live) {
- assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type");
- }
- #endif
- relocationViaAlloca(F, DT, live, records);
- return !records.empty();
- }
- // Handles both return values and arguments for Functions and CallSites.
- template <typename AttrHolder>
- static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
- unsigned Index) {
- AttrBuilder R;
- if (AH.getDereferenceableBytes(Index))
- R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
- AH.getDereferenceableBytes(Index)));
- if (AH.getDereferenceableOrNullBytes(Index))
- R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
- AH.getDereferenceableOrNullBytes(Index)));
- if (!R.empty())
- AH.setAttributes(AH.getAttributes().removeAttributes(
- Ctx, Index, AttributeSet::get(Ctx, Index, R)));
- }
- void
- RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) {
- LLVMContext &Ctx = F.getContext();
- for (Argument &A : F.args())
- if (isa<PointerType>(A.getType()))
- RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1);
- if (isa<PointerType>(F.getReturnType()))
- RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
- }
- void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) {
- if (F.empty())
- return;
- LLVMContext &Ctx = F.getContext();
- MDBuilder Builder(Ctx);
- for (Instruction &I : inst_range(F)) {
- if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
- assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
- bool IsImmutableTBAA =
- MD->getNumOperands() == 4 &&
- mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
- if (!IsImmutableTBAA)
- continue; // no work to do, MD_tbaa is already marked mutable
- MDNode *Base = cast<MDNode>(MD->getOperand(0));
- MDNode *Access = cast<MDNode>(MD->getOperand(1));
- uint64_t Offset =
- mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
- MDNode *MutableTBAA =
- Builder.createTBAAStructTagNode(Base, Access, Offset);
- I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
- }
- if (CallSite CS = CallSite(&I)) {
- for (int i = 0, e = CS.arg_size(); i != e; i++)
- if (isa<PointerType>(CS.getArgument(i)->getType()))
- RemoveDerefAttrAtIndex(Ctx, CS, i + 1);
- if (isa<PointerType>(CS.getType()))
- RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
- }
- }
- }
- /// Returns true if this function should be rewritten by this pass. The main
- /// point of this function is as an extension point for custom logic.
- static bool shouldRewriteStatepointsIn(Function &F) {
- // TODO: This should check the GCStrategy
- if (F.hasGC()) {
- const char *FunctionGCName = F.getGC();
- const StringRef StatepointExampleName("statepoint-example");
- const StringRef CoreCLRName("coreclr");
- return (StatepointExampleName == FunctionGCName) ||
- (CoreCLRName == FunctionGCName);
- } else
- return false;
- }
- void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) {
- #ifndef NDEBUG
- assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
- "precondition!");
- #endif
- for (Function &F : M)
- stripDereferenceabilityInfoFromPrototype(F);
- for (Function &F : M)
- stripDereferenceabilityInfoFromBody(F);
- }
- bool RewriteStatepointsForGC::runOnFunction(Function &F) {
- // Nothing to do for declarations.
- if (F.isDeclaration() || F.empty())
- return false;
- // Policy choice says not to rewrite - the most common reason is that we're
- // compiling code without a GCStrategy.
- if (!shouldRewriteStatepointsIn(F))
- return false;
- DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
- // Gather all the statepoints which need rewritten. Be careful to only
- // consider those in reachable code since we need to ask dominance queries
- // when rewriting. We'll delete the unreachable ones in a moment.
- SmallVector<CallSite, 64> ParsePointNeeded;
- bool HasUnreachableStatepoint = false;
- for (Instruction &I : inst_range(F)) {
- // TODO: only the ones with the flag set!
- if (isStatepoint(I)) {
- if (DT.isReachableFromEntry(I.getParent()))
- ParsePointNeeded.push_back(CallSite(&I));
- else
- HasUnreachableStatepoint = true;
- }
- }
- bool MadeChange = false;
- // Delete any unreachable statepoints so that we don't have unrewritten
- // statepoints surviving this pass. This makes testing easier and the
- // resulting IR less confusing to human readers. Rather than be fancy, we
- // just reuse a utility function which removes the unreachable blocks.
- if (HasUnreachableStatepoint)
- MadeChange |= removeUnreachableBlocks(F);
- // Return early if no work to do.
- if (ParsePointNeeded.empty())
- return MadeChange;
- // As a prepass, go ahead and aggressively destroy single entry phi nodes.
- // These are created by LCSSA. They have the effect of increasing the size
- // of liveness sets for no good reason. It may be harder to do this post
- // insertion since relocations and base phis can confuse things.
- for (BasicBlock &BB : F)
- if (BB.getUniquePredecessor()) {
- MadeChange = true;
- FoldSingleEntryPHINodes(&BB);
- }
- MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded);
- return MadeChange;
- }
- // liveness computation via standard dataflow
- // -------------------------------------------------------------------
- // TODO: Consider using bitvectors for liveness, the set of potentially
- // interesting values should be small and easy to pre-compute.
- /// Compute the live-in set for the location rbegin starting from
- /// the live-out set of the basic block
- static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
- BasicBlock::reverse_iterator rend,
- DenseSet<Value *> &LiveTmp) {
- for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
- Instruction *I = &*ritr;
- // KILL/Def - Remove this definition from LiveIn
- LiveTmp.erase(I);
- // Don't consider *uses* in PHI nodes, we handle their contribution to
- // predecessor blocks when we seed the LiveOut sets
- if (isa<PHINode>(I))
- continue;
- // USE - Add to the LiveIn set for this instruction
- for (Value *V : I->operands()) {
- assert(!isUnhandledGCPointerType(V->getType()) &&
- "support for FCA unimplemented");
- if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
- // The choice to exclude all things constant here is slightly subtle.
- // There are two idependent reasons:
- // - We assume that things which are constant (from LLVM's definition)
- // do not move at runtime. For example, the address of a global
- // variable is fixed, even though it's contents may not be.
- // - Second, we can't disallow arbitrary inttoptr constants even
- // if the language frontend does. Optimization passes are free to
- // locally exploit facts without respect to global reachability. This
- // can create sections of code which are dynamically unreachable and
- // contain just about anything. (see constants.ll in tests)
- LiveTmp.insert(V);
- }
- }
- }
- }
- static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
- for (BasicBlock *Succ : successors(BB)) {
- const BasicBlock::iterator E(Succ->getFirstNonPHI());
- for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
- PHINode *Phi = cast<PHINode>(&*I);
- Value *V = Phi->getIncomingValueForBlock(BB);
- assert(!isUnhandledGCPointerType(V->getType()) &&
- "support for FCA unimplemented");
- if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
- LiveTmp.insert(V);
- }
- }
- }
- }
- static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
- DenseSet<Value *> KillSet;
- for (Instruction &I : *BB)
- if (isHandledGCPointerType(I.getType()))
- KillSet.insert(&I);
- return KillSet;
- }
- #ifndef NDEBUG
- /// Check that the items in 'Live' dominate 'TI'. This is used as a basic
- /// sanity check for the liveness computation.
- static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
- TerminatorInst *TI, bool TermOkay = false) {
- for (Value *V : Live) {
- if (auto *I = dyn_cast<Instruction>(V)) {
- // The terminator can be a member of the LiveOut set. LLVM's definition
- // of instruction dominance states that V does not dominate itself. As
- // such, we need to special case this to allow it.
- if (TermOkay && TI == I)
- continue;
- assert(DT.dominates(I, TI) &&
- "basic SSA liveness expectation violated by liveness analysis");
- }
- }
- }
- /// Check that all the liveness sets used during the computation of liveness
- /// obey basic SSA properties. This is useful for finding cases where we miss
- /// a def.
- static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
- BasicBlock &BB) {
- checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
- checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
- checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
- }
- #endif
- static void computeLiveInValues(DominatorTree &DT, Function &F,
- GCPtrLivenessData &Data) {
- SmallSetVector<BasicBlock *, 200> Worklist;
- auto AddPredsToWorklist = [&](BasicBlock *BB) {
- // We use a SetVector so that we don't have duplicates in the worklist.
- Worklist.insert(pred_begin(BB), pred_end(BB));
- };
- auto NextItem = [&]() {
- BasicBlock *BB = Worklist.back();
- Worklist.pop_back();
- return BB;
- };
- // Seed the liveness for each individual block
- for (BasicBlock &BB : F) {
- Data.KillSet[&BB] = computeKillSet(&BB);
- Data.LiveSet[&BB].clear();
- computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
- #ifndef NDEBUG
- for (Value *Kill : Data.KillSet[&BB])
- assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
- #endif
- Data.LiveOut[&BB] = DenseSet<Value *>();
- computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
- Data.LiveIn[&BB] = Data.LiveSet[&BB];
- set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
- set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
- if (!Data.LiveIn[&BB].empty())
- AddPredsToWorklist(&BB);
- }
- // Propagate that liveness until stable
- while (!Worklist.empty()) {
- BasicBlock *BB = NextItem();
- // Compute our new liveout set, then exit early if it hasn't changed
- // despite the contribution of our successor.
- DenseSet<Value *> LiveOut = Data.LiveOut[BB];
- const auto OldLiveOutSize = LiveOut.size();
- for (BasicBlock *Succ : successors(BB)) {
- assert(Data.LiveIn.count(Succ));
- set_union(LiveOut, Data.LiveIn[Succ]);
- }
- // assert OutLiveOut is a subset of LiveOut
- if (OldLiveOutSize == LiveOut.size()) {
- // If the sets are the same size, then we didn't actually add anything
- // when unioning our successors LiveIn Thus, the LiveIn of this block
- // hasn't changed.
- continue;
- }
- Data.LiveOut[BB] = LiveOut;
- // Apply the effects of this basic block
- DenseSet<Value *> LiveTmp = LiveOut;
- set_union(LiveTmp, Data.LiveSet[BB]);
- set_subtract(LiveTmp, Data.KillSet[BB]);
- assert(Data.LiveIn.count(BB));
- const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
- // assert: OldLiveIn is a subset of LiveTmp
- if (OldLiveIn.size() != LiveTmp.size()) {
- Data.LiveIn[BB] = LiveTmp;
- AddPredsToWorklist(BB);
- }
- } // while( !worklist.empty() )
- #ifndef NDEBUG
- // Sanity check our ouput against SSA properties. This helps catch any
- // missing kills during the above iteration.
- for (BasicBlock &BB : F) {
- checkBasicSSA(DT, Data, BB);
- }
- #endif
- }
- static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
- StatepointLiveSetTy &Out) {
- BasicBlock *BB = Inst->getParent();
- // Note: The copy is intentional and required
- assert(Data.LiveOut.count(BB));
- DenseSet<Value *> LiveOut = Data.LiveOut[BB];
- // We want to handle the statepoint itself oddly. It's
- // call result is not live (normal), nor are it's arguments
- // (unless they're used again later). This adjustment is
- // specifically what we need to relocate
- BasicBlock::reverse_iterator rend(Inst);
- computeLiveInValues(BB->rbegin(), rend, LiveOut);
- LiveOut.erase(Inst);
- Out.insert(LiveOut.begin(), LiveOut.end());
- }
- static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
- const CallSite &CS,
- PartiallyConstructedSafepointRecord &Info) {
- Instruction *Inst = CS.getInstruction();
- StatepointLiveSetTy Updated;
- findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
- #ifndef NDEBUG
- DenseSet<Value *> Bases;
- for (auto KVPair : Info.PointerToBase) {
- Bases.insert(KVPair.second);
- }
- #endif
- // We may have base pointers which are now live that weren't before. We need
- // to update the PointerToBase structure to reflect this.
- for (auto V : Updated)
- if (!Info.PointerToBase.count(V)) {
- assert(Bases.count(V) && "can't find base for unexpected live value");
- Info.PointerToBase[V] = V;
- continue;
- }
- #ifndef NDEBUG
- for (auto V : Updated) {
- assert(Info.PointerToBase.count(V) &&
- "must be able to find base for live value");
- }
- #endif
- // Remove any stale base mappings - this can happen since our liveness is
- // more precise then the one inherent in the base pointer analysis
- DenseSet<Value *> ToErase;
- for (auto KVPair : Info.PointerToBase)
- if (!Updated.count(KVPair.first))
- ToErase.insert(KVPair.first);
- for (auto V : ToErase)
- Info.PointerToBase.erase(V);
- #ifndef NDEBUG
- for (auto KVPair : Info.PointerToBase)
- assert(Updated.count(KVPair.first) && "record for non-live value");
- #endif
- Info.liveset = Updated;
- }
|