123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731 |
- //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // Peephole optimize the CFG.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/NoFolder.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/ValueMapper.h"
- #include <algorithm>
- #include <map>
- #include <set>
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "simplifycfg"
- // Chosen as 2 so as to be cheap, but still to have enough power to fold
- // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
- // To catch this, we need to fold a compare and a select, hence '2' being the
- // minimum reasonable default.
- #if 0 // HLSL Change Starts - option pending
- static cl::opt<unsigned>
- PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2),
- cl::desc("Control the amount of phi node folding to perform (default = 2)"));
- static cl::opt<bool>
- DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
- cl::desc("Duplicate return instructions into unconditional branches"));
- static cl::opt<bool>
- SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
- cl::desc("Sink common instructions down to the end block"));
- static cl::opt<bool> HoistCondStores(
- "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
- cl::desc("Hoist conditional stores if an unconditional store precedes"));
- #else
- static const unsigned PHINodeFoldingThreshold = 2;
- static const bool DupRet = false;
- static const bool SinkCommon = true;
- static const bool HoistCondStores = true;
- #endif // HLSL Change Ends
- STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
- STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping");
- STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
- STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
- STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
- STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
- STATISTIC(NumSpeculations, "Number of speculative executed instructions");
- namespace {
- // The first field contains the value that the switch produces when a certain
- // case group is selected, and the second field is a vector containing the cases
- // composing the case group.
- typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
- SwitchCaseResultVectorTy;
- // The first field contains the phi node that generates a result of the switch
- // and the second field contains the value generated for a certain case in the switch
- // for that PHI.
- typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
- /// ValueEqualityComparisonCase - Represents a case of a switch.
- struct ValueEqualityComparisonCase {
- ConstantInt *Value;
- BasicBlock *Dest;
- ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
- : Value(Value), Dest(Dest) {}
- bool operator<(ValueEqualityComparisonCase RHS) const {
- // Comparing pointers is ok as we only rely on the order for uniquing.
- return Value < RHS.Value;
- }
- bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
- };
- class SimplifyCFGOpt {
- const TargetTransformInfo &TTI;
- const DataLayout &DL;
- unsigned BonusInstThreshold;
- AssumptionCache *AC;
- Value *isValueEqualityComparison(TerminatorInst *TI);
- BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
- std::vector<ValueEqualityComparisonCase> &Cases);
- bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
- BasicBlock *Pred,
- IRBuilder<> &Builder);
- bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
- IRBuilder<> &Builder);
- bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
- bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
- bool SimplifyUnreachable(UnreachableInst *UI);
- bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
- bool SimplifyIndirectBr(IndirectBrInst *IBI);
- bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
- bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
- public:
- SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
- unsigned BonusInstThreshold, AssumptionCache *AC)
- : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {}
- bool run(BasicBlock *BB);
- };
- }
- /// Return true if it is safe to merge these two
- /// terminator instructions together.
- static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
- if (SI1 == SI2) return false; // Can't merge with self!
- // It is not safe to merge these two switch instructions if they have a common
- // successor, and if that successor has a PHI node, and if *that* PHI node has
- // conflicting incoming values from the two switch blocks.
- BasicBlock *SI1BB = SI1->getParent();
- BasicBlock *SI2BB = SI2->getParent();
- SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
- for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
- if (SI1Succs.count(*I))
- for (BasicBlock::iterator BBI = (*I)->begin();
- isa<PHINode>(BBI); ++BBI) {
- PHINode *PN = cast<PHINode>(BBI);
- if (PN->getIncomingValueForBlock(SI1BB) !=
- PN->getIncomingValueForBlock(SI2BB))
- return false;
- }
- return true;
- }
- /// Return true if it is safe and profitable to merge these two terminator
- /// instructions together, where SI1 is an unconditional branch. PhiNodes will
- /// store all PHI nodes in common successors.
- static bool isProfitableToFoldUnconditional(BranchInst *SI1,
- BranchInst *SI2,
- Instruction *Cond,
- SmallVectorImpl<PHINode*> &PhiNodes) {
- if (SI1 == SI2) return false; // Can't merge with self!
- assert(SI1->isUnconditional() && SI2->isConditional());
- // We fold the unconditional branch if we can easily update all PHI nodes in
- // common successors:
- // 1> We have a constant incoming value for the conditional branch;
- // 2> We have "Cond" as the incoming value for the unconditional branch;
- // 3> SI2->getCondition() and Cond have same operands.
- CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
- if (!Ci2) return false;
- if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
- Cond->getOperand(1) == Ci2->getOperand(1)) &&
- !(Cond->getOperand(0) == Ci2->getOperand(1) &&
- Cond->getOperand(1) == Ci2->getOperand(0)))
- return false;
- BasicBlock *SI1BB = SI1->getParent();
- BasicBlock *SI2BB = SI2->getParent();
- SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
- for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
- if (SI1Succs.count(*I))
- for (BasicBlock::iterator BBI = (*I)->begin();
- isa<PHINode>(BBI); ++BBI) {
- PHINode *PN = cast<PHINode>(BBI);
- if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
- !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
- return false;
- PhiNodes.push_back(PN);
- }
- return true;
- }
- /// Update PHI nodes in Succ to indicate that there will now be entries in it
- /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
- /// will be the same as those coming in from ExistPred, an existing predecessor
- /// of Succ.
- static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
- BasicBlock *ExistPred) {
- if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
- PHINode *PN;
- for (BasicBlock::iterator I = Succ->begin();
- (PN = dyn_cast<PHINode>(I)); ++I)
- PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
- }
- /// Compute an abstract "cost" of speculating the given instruction,
- /// which is assumed to be safe to speculate. TCC_Free means cheap,
- /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
- /// expensive.
- static unsigned ComputeSpeculationCost(const User *I,
- const TargetTransformInfo &TTI) {
- assert(isSafeToSpeculativelyExecute(I) &&
- "Instruction is not safe to speculatively execute!");
- return TTI.getUserCost(I);
- }
- /// If we have a merge point of an "if condition" as accepted above,
- /// return true if the specified value dominates the block. We
- /// don't handle the true generality of domination here, just a special case
- /// which works well enough for us.
- ///
- /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
- /// see if V (which must be an instruction) and its recursive operands
- /// that do not dominate BB have a combined cost lower than CostRemaining and
- /// are non-trapping. If both are true, the instruction is inserted into the
- /// set and true is returned.
- ///
- /// The cost for most non-trapping instructions is defined as 1 except for
- /// Select whose cost is 2.
- ///
- /// After this function returns, CostRemaining is decreased by the cost of
- /// V plus its non-dominating operands. If that cost is greater than
- /// CostRemaining, false is returned and CostRemaining is undefined.
- static bool DominatesMergePoint(Value *V, BasicBlock *BB,
- SmallPtrSetImpl<Instruction*> *AggressiveInsts,
- unsigned &CostRemaining,
- const TargetTransformInfo &TTI) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) {
- // Non-instructions all dominate instructions, but not all constantexprs
- // can be executed unconditionally.
- if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
- if (C->canTrap())
- return false;
- return true;
- }
- BasicBlock *PBB = I->getParent();
- // We don't want to allow weird loops that might have the "if condition" in
- // the bottom of this block.
- if (PBB == BB) return false;
- // If this instruction is defined in a block that contains an unconditional
- // branch to BB, then it must be in the 'conditional' part of the "if
- // statement". If not, it definitely dominates the region.
- BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
- if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
- return true;
- // If we aren't allowing aggressive promotion anymore, then don't consider
- // instructions in the 'if region'.
- if (!AggressiveInsts) return false;
- // If we have seen this instruction before, don't count it again.
- if (AggressiveInsts->count(I)) return true;
- // Okay, it looks like the instruction IS in the "condition". Check to
- // see if it's a cheap instruction to unconditionally compute, and if it
- // only uses stuff defined outside of the condition. If so, hoist it out.
- if (!isSafeToSpeculativelyExecute(I))
- return false;
- unsigned Cost = ComputeSpeculationCost(I, TTI);
- if (Cost > CostRemaining)
- return false;
- CostRemaining -= Cost;
- // Okay, we can only really hoist these out if their operands do
- // not take us over the cost threshold.
- for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
- if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI))
- return false;
- // Okay, it's safe to do this! Remember this instruction.
- AggressiveInsts->insert(I);
- return true;
- }
- /// Extract ConstantInt from value, looking through IntToPtr
- /// and PointerNullValue. Return NULL if value is not a constant int.
- static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
- // Normal constant int.
- ConstantInt *CI = dyn_cast<ConstantInt>(V);
- if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
- return CI;
- // This is some kind of pointer constant. Turn it into a pointer-sized
- // ConstantInt if possible.
- IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
- // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
- if (isa<ConstantPointerNull>(V))
- return ConstantInt::get(PtrTy, 0);
- // IntToPtr const int.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- if (CE->getOpcode() == Instruction::IntToPtr)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
- // The constant is very likely to have the right type already.
- if (CI->getType() == PtrTy)
- return CI;
- else
- return cast<ConstantInt>
- (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
- }
- return nullptr;
- }
- namespace {
- /// Given a chain of or (||) or and (&&) comparison of a value against a
- /// constant, this will try to recover the information required for a switch
- /// structure.
- /// It will depth-first traverse the chain of comparison, seeking for patterns
- /// like %a == 12 or %a < 4 and combine them to produce a set of integer
- /// representing the different cases for the switch.
- /// Note that if the chain is composed of '||' it will build the set of elements
- /// that matches the comparisons (i.e. any of this value validate the chain)
- /// while for a chain of '&&' it will build the set elements that make the test
- /// fail.
- struct ConstantComparesGatherer {
- const DataLayout &DL;
- Value *CompValue; /// Value found for the switch comparison
- Value *Extra; /// Extra clause to be checked before the switch
- SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
- unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
- /// Construct and compute the result for the comparison instruction Cond
- ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
- : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
- gather(Cond);
- }
- /// Prevent copy
- ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
- ConstantComparesGatherer &
- operator=(const ConstantComparesGatherer &) = delete;
- private:
- /// Try to set the current value used for the comparison, it succeeds only if
- /// it wasn't set before or if the new value is the same as the old one
- bool setValueOnce(Value *NewVal) {
- if(CompValue && CompValue != NewVal) return false;
- CompValue = NewVal;
- return (CompValue != nullptr);
- }
- /// Try to match Instruction "I" as a comparison against a constant and
- /// populates the array Vals with the set of values that match (or do not
- /// match depending on isEQ).
- /// Return false on failure. On success, the Value the comparison matched
- /// against is placed in CompValue.
- /// If CompValue is already set, the function is expected to fail if a match
- /// is found but the value compared to is different.
- bool matchInstruction(Instruction *I, bool isEQ) {
- // If this is an icmp against a constant, handle this as one of the cases.
- ICmpInst *ICI;
- ConstantInt *C;
- if (!((ICI = dyn_cast<ICmpInst>(I)) &&
- (C = GetConstantInt(I->getOperand(1), DL)))) {
- return false;
- }
- Value *RHSVal;
- ConstantInt *RHSC;
- // Pattern match a special case
- // (x & ~2^x) == y --> x == y || x == y|2^x
- // This undoes a transformation done by instcombine to fuse 2 compares.
- if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
- if (match(ICI->getOperand(0),
- m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
- APInt Not = ~RHSC->getValue();
- if (Not.isPowerOf2()) {
- // If we already have a value for the switch, it has to match!
- if(!setValueOnce(RHSVal))
- return false;
- Vals.push_back(C);
- Vals.push_back(ConstantInt::get(C->getContext(),
- C->getValue() | Not));
- UsedICmps++;
- return true;
- }
- }
- // If we already have a value for the switch, it has to match!
- if(!setValueOnce(ICI->getOperand(0)))
- return false;
- UsedICmps++;
- Vals.push_back(C);
- return ICI->getOperand(0);
- }
- // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
- ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
- ICI->getPredicate(), C->getValue());
- // Shift the range if the compare is fed by an add. This is the range
- // compare idiom as emitted by instcombine.
- Value *CandidateVal = I->getOperand(0);
- if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
- Span = Span.subtract(RHSC->getValue());
- CandidateVal = RHSVal;
- }
- // If this is an and/!= check, then we are looking to build the set of
- // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
- // x != 0 && x != 1.
- if (!isEQ)
- Span = Span.inverse();
- // If there are a ton of values, we don't want to make a ginormous switch.
- if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
- return false;
- }
- // If we already have a value for the switch, it has to match!
- if(!setValueOnce(CandidateVal))
- return false;
- // Add all values from the range to the set
- for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
- Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
- UsedICmps++;
- return true;
- }
- /// Given a potentially 'or'd or 'and'd together collection of icmp
- /// eq/ne/lt/gt instructions that compare a value against a constant, extract
- /// the value being compared, and stick the list constants into the Vals
- /// vector.
- /// One "Extra" case is allowed to differ from the other.
- void gather(Value *V) {
- Instruction *I = dyn_cast<Instruction>(V);
- bool isEQ = (I->getOpcode() == Instruction::Or);
- // Keep a stack (SmallVector for efficiency) for depth-first traversal
- SmallVector<Value *, 8> DFT;
- // Initialize
- DFT.push_back(V);
- while(!DFT.empty()) {
- V = DFT.pop_back_val();
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- // If it is a || (or && depending on isEQ), process the operands.
- if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
- DFT.push_back(I->getOperand(1));
- DFT.push_back(I->getOperand(0));
- continue;
- }
- // Try to match the current instruction
- if (matchInstruction(I, isEQ))
- // Match succeed, continue the loop
- continue;
- }
- // One element of the sequence of || (or &&) could not be match as a
- // comparison against the same value as the others.
- // We allow only one "Extra" case to be checked before the switch
- if (!Extra) {
- Extra = V;
- continue;
- }
- // Failed to parse a proper sequence, abort now
- CompValue = nullptr;
- break;
- }
- }
- };
- }
- static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
- Instruction *Cond = nullptr;
- if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
- Cond = dyn_cast<Instruction>(SI->getCondition());
- } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- if (BI->isConditional())
- Cond = dyn_cast<Instruction>(BI->getCondition());
- } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
- Cond = dyn_cast<Instruction>(IBI->getAddress());
- }
- TI->eraseFromParent();
- if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
- }
- /// Return true if the specified terminator checks
- /// to see if a value is equal to constant integer value.
- Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
- Value *CV = nullptr;
- if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
- // Do not permit merging of large switch instructions into their
- // predecessors unless there is only one predecessor.
- if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
- pred_end(SI->getParent())) <= 128)
- CV = SI->getCondition();
- } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
- if (BI->isConditional() && BI->getCondition()->hasOneUse())
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
- if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
- CV = ICI->getOperand(0);
- }
- // Unwrap any lossless ptrtoint cast.
- if (CV) {
- if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
- Value *Ptr = PTII->getPointerOperand();
- if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
- CV = Ptr;
- }
- }
- return CV;
- }
- /// Given a value comparison instruction,
- /// decode all of the 'cases' that it represents and return the 'default' block.
- BasicBlock *SimplifyCFGOpt::
- GetValueEqualityComparisonCases(TerminatorInst *TI,
- std::vector<ValueEqualityComparisonCase>
- &Cases) {
- if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
- Cases.reserve(SI->getNumCases());
- for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
- Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
- i.getCaseSuccessor()));
- return SI->getDefaultDest();
- }
- BranchInst *BI = cast<BranchInst>(TI);
- ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
- BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
- Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
- DL),
- Succ));
- return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
- }
- /// Given a vector of bb/value pairs, remove any entries
- /// in the list that match the specified block.
- static void EliminateBlockCases(BasicBlock *BB,
- std::vector<ValueEqualityComparisonCase> &Cases) {
- Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
- }
- /// Return true if there are any keys in C1 that exist in C2 as well.
- static bool
- ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
- std::vector<ValueEqualityComparisonCase > &C2) {
- std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
- // Make V1 be smaller than V2.
- if (V1->size() > V2->size())
- std::swap(V1, V2);
- if (V1->size() == 0) return false;
- if (V1->size() == 1) {
- // Just scan V2.
- ConstantInt *TheVal = (*V1)[0].Value;
- for (unsigned i = 0, e = V2->size(); i != e; ++i)
- if (TheVal == (*V2)[i].Value)
- return true;
- }
- // Otherwise, just sort both lists and compare element by element.
- array_pod_sort(V1->begin(), V1->end());
- array_pod_sort(V2->begin(), V2->end());
- unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
- while (i1 != e1 && i2 != e2) {
- if ((*V1)[i1].Value == (*V2)[i2].Value)
- return true;
- if ((*V1)[i1].Value < (*V2)[i2].Value)
- ++i1;
- else
- ++i2;
- }
- return false;
- }
- /// If TI is known to be a terminator instruction and its block is known to
- /// only have a single predecessor block, check to see if that predecessor is
- /// also a value comparison with the same value, and if that comparison
- /// determines the outcome of this comparison. If so, simplify TI. This does a
- /// very limited form of jump threading.
- bool SimplifyCFGOpt::
- SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
- BasicBlock *Pred,
- IRBuilder<> &Builder) {
- Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
- if (!PredVal) return false; // Not a value comparison in predecessor.
- Value *ThisVal = isValueEqualityComparison(TI);
- assert(ThisVal && "This isn't a value comparison!!");
- if (ThisVal != PredVal) return false; // Different predicates.
- // TODO: Preserve branch weight metadata, similarly to how
- // FoldValueComparisonIntoPredecessors preserves it.
- // Find out information about when control will move from Pred to TI's block.
- std::vector<ValueEqualityComparisonCase> PredCases;
- BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
- PredCases);
- EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
- // Find information about how control leaves this block.
- std::vector<ValueEqualityComparisonCase> ThisCases;
- BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
- EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
- // If TI's block is the default block from Pred's comparison, potentially
- // simplify TI based on this knowledge.
- if (PredDef == TI->getParent()) {
- // If we are here, we know that the value is none of those cases listed in
- // PredCases. If there are any cases in ThisCases that are in PredCases, we
- // can simplify TI.
- if (!ValuesOverlap(PredCases, ThisCases))
- return false;
- if (isa<BranchInst>(TI)) {
- // Okay, one of the successors of this condbr is dead. Convert it to a
- // uncond br.
- assert(ThisCases.size() == 1 && "Branch can only have one case!");
- // Insert the new branch.
- Instruction *NI = Builder.CreateBr(ThisDef);
- (void) NI;
- // Remove PHI node entries for the dead edge.
- ThisCases[0].Dest->removePredecessor(TI->getParent());
- DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
- << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
- EraseTerminatorInstAndDCECond(TI);
- return true;
- }
- SwitchInst *SI = cast<SwitchInst>(TI);
- // Okay, TI has cases that are statically dead, prune them away.
- SmallPtrSet<Constant*, 16> DeadCases;
- for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
- DeadCases.insert(PredCases[i].Value);
- DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
- << "Through successor TI: " << *TI);
- // Collect branch weights into a vector.
- SmallVector<uint32_t, 8> Weights;
- MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
- bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
- if (HasWeight)
- for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
- ++MD_i) {
- ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
- Weights.push_back(CI->getValue().getZExtValue());
- }
- for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
- --i;
- if (DeadCases.count(i.getCaseValue())) {
- if (HasWeight) {
- std::swap(Weights[i.getCaseIndex()+1], Weights.back());
- Weights.pop_back();
- }
- i.getCaseSuccessor()->removePredecessor(TI->getParent());
- SI->removeCase(i);
- }
- }
- if (HasWeight && Weights.size() >= 2)
- SI->setMetadata(LLVMContext::MD_prof,
- MDBuilder(SI->getParent()->getContext()).
- createBranchWeights(Weights));
- DEBUG(dbgs() << "Leaving: " << *TI << "\n");
- return true;
- }
- // Otherwise, TI's block must correspond to some matched value. Find out
- // which value (or set of values) this is.
- ConstantInt *TIV = nullptr;
- BasicBlock *TIBB = TI->getParent();
- for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
- if (PredCases[i].Dest == TIBB) {
- if (TIV)
- return false; // Cannot handle multiple values coming to this block.
- TIV = PredCases[i].Value;
- }
- assert(TIV && "No edge from pred to succ?");
- // Okay, we found the one constant that our value can be if we get into TI's
- // BB. Find out which successor will unconditionally be branched to.
- BasicBlock *TheRealDest = nullptr;
- for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
- if (ThisCases[i].Value == TIV) {
- TheRealDest = ThisCases[i].Dest;
- break;
- }
- // If not handled by any explicit cases, it is handled by the default case.
- if (!TheRealDest) TheRealDest = ThisDef;
- // Remove PHI node entries for dead edges.
- BasicBlock *CheckEdge = TheRealDest;
- for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
- if (*SI != CheckEdge)
- (*SI)->removePredecessor(TIBB);
- else
- CheckEdge = nullptr;
- // Insert the new branch.
- Instruction *NI = Builder.CreateBr(TheRealDest);
- (void) NI;
- DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
- << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
- EraseTerminatorInstAndDCECond(TI);
- return true;
- }
- namespace {
- /// This class implements a stable ordering of constant
- /// integers that does not depend on their address. This is important for
- /// applications that sort ConstantInt's to ensure uniqueness.
- struct ConstantIntOrdering {
- bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
- return LHS->getValue().ult(RHS->getValue());
- }
- };
- }
- // HLSL Change: changed calling convention to __cdecl
- static int __cdecl ConstantIntSortPredicate(ConstantInt *const *P1,
- ConstantInt *const *P2) {
- const ConstantInt *LHS = *P1;
- const ConstantInt *RHS = *P2;
- if (LHS->getValue().ult(RHS->getValue()))
- return 1;
- if (LHS->getValue() == RHS->getValue())
- return 0;
- return -1;
- }
- static inline bool HasBranchWeights(const Instruction* I) {
- MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
- if (ProfMD && ProfMD->getOperand(0))
- if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
- return MDS->getString().equals("branch_weights");
- return false;
- }
- /// Get Weights of a given TerminatorInst, the default weight is at the front
- /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
- /// metadata.
- static void GetBranchWeights(TerminatorInst *TI,
- SmallVectorImpl<uint64_t> &Weights) {
- MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
- assert(MD);
- for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
- ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
- Weights.push_back(CI->getValue().getZExtValue());
- }
- // If TI is a conditional eq, the default case is the false case,
- // and the corresponding branch-weight data is at index 2. We swap the
- // default weight to be the first entry.
- if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
- assert(Weights.size() == 2);
- ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
- if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
- std::swap(Weights.front(), Weights.back());
- }
- }
- /// Keep halving the weights until all can fit in uint32_t.
- static void FitWeights(MutableArrayRef<uint64_t> Weights) {
- uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
- if (Max > UINT_MAX) {
- unsigned Offset = 32 - countLeadingZeros(Max);
- for (uint64_t &I : Weights)
- I >>= Offset;
- }
- }
- /// The specified terminator is a value equality comparison instruction
- /// (either a switch or a branch on "X == c").
- /// See if any of the predecessors of the terminator block are value comparisons
- /// on the same value. If so, and if safe to do so, fold them together.
- bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
- IRBuilder<> &Builder) {
- #if 0 // HLSL Change - fold to switch will not help hlsl.
- BasicBlock *BB = TI->getParent();
- Value *CV = isValueEqualityComparison(TI); // CondVal
- assert(CV && "Not a comparison?");
- bool Changed = false;
- SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
- while (!Preds.empty()) {
- BasicBlock *Pred = Preds.pop_back_val();
- // See if the predecessor is a comparison with the same value.
- TerminatorInst *PTI = Pred->getTerminator();
- Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
- if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
- // Figure out which 'cases' to copy from SI to PSI.
- std::vector<ValueEqualityComparisonCase> BBCases;
- BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
- std::vector<ValueEqualityComparisonCase> PredCases;
- BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
- // Based on whether the default edge from PTI goes to BB or not, fill in
- // PredCases and PredDefault with the new switch cases we would like to
- // build.
- SmallVector<BasicBlock*, 8> NewSuccessors;
- // Update the branch weight metadata along the way
- SmallVector<uint64_t, 8> Weights;
- bool PredHasWeights = HasBranchWeights(PTI);
- bool SuccHasWeights = HasBranchWeights(TI);
- if (PredHasWeights) {
- GetBranchWeights(PTI, Weights);
- // branch-weight metadata is inconsistent here.
- if (Weights.size() != 1 + PredCases.size())
- PredHasWeights = SuccHasWeights = false;
- } else if (SuccHasWeights)
- // If there are no predecessor weights but there are successor weights,
- // populate Weights with 1, which will later be scaled to the sum of
- // successor's weights
- Weights.assign(1 + PredCases.size(), 1);
- SmallVector<uint64_t, 8> SuccWeights;
- if (SuccHasWeights) {
- GetBranchWeights(TI, SuccWeights);
- // branch-weight metadata is inconsistent here.
- if (SuccWeights.size() != 1 + BBCases.size())
- PredHasWeights = SuccHasWeights = false;
- } else if (PredHasWeights)
- SuccWeights.assign(1 + BBCases.size(), 1);
- if (PredDefault == BB) {
- // If this is the default destination from PTI, only the edges in TI
- // that don't occur in PTI, or that branch to BB will be activated.
- std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
- for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
- if (PredCases[i].Dest != BB)
- PTIHandled.insert(PredCases[i].Value);
- else {
- // The default destination is BB, we don't need explicit targets.
- std::swap(PredCases[i], PredCases.back());
- if (PredHasWeights || SuccHasWeights) {
- // Increase weight for the default case.
- Weights[0] += Weights[i+1];
- std::swap(Weights[i+1], Weights.back());
- Weights.pop_back();
- }
- PredCases.pop_back();
- --i; --e;
- }
- // Reconstruct the new switch statement we will be building.
- if (PredDefault != BBDefault) {
- PredDefault->removePredecessor(Pred);
- PredDefault = BBDefault;
- NewSuccessors.push_back(BBDefault);
- }
- unsigned CasesFromPred = Weights.size();
- uint64_t ValidTotalSuccWeight = 0;
- for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
- if (!PTIHandled.count(BBCases[i].Value) &&
- BBCases[i].Dest != BBDefault) {
- PredCases.push_back(BBCases[i]);
- NewSuccessors.push_back(BBCases[i].Dest);
- if (SuccHasWeights || PredHasWeights) {
- // The default weight is at index 0, so weight for the ith case
- // should be at index i+1. Scale the cases from successor by
- // PredDefaultWeight (Weights[0]).
- Weights.push_back(Weights[0] * SuccWeights[i+1]);
- ValidTotalSuccWeight += SuccWeights[i+1];
- }
- }
- if (SuccHasWeights || PredHasWeights) {
- ValidTotalSuccWeight += SuccWeights[0];
- // Scale the cases from predecessor by ValidTotalSuccWeight.
- for (unsigned i = 1; i < CasesFromPred; ++i)
- Weights[i] *= ValidTotalSuccWeight;
- // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
- Weights[0] *= SuccWeights[0];
- }
- } else {
- // If this is not the default destination from PSI, only the edges
- // in SI that occur in PSI with a destination of BB will be
- // activated.
- std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
- std::map<ConstantInt*, uint64_t> WeightsForHandled;
- for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
- if (PredCases[i].Dest == BB) {
- PTIHandled.insert(PredCases[i].Value);
- if (PredHasWeights || SuccHasWeights) {
- WeightsForHandled[PredCases[i].Value] = Weights[i+1];
- std::swap(Weights[i+1], Weights.back());
- Weights.pop_back();
- }
- std::swap(PredCases[i], PredCases.back());
- PredCases.pop_back();
- --i; --e;
- }
- // Okay, now we know which constants were sent to BB from the
- // predecessor. Figure out where they will all go now.
- for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
- if (PTIHandled.count(BBCases[i].Value)) {
- // If this is one we are capable of getting...
- if (PredHasWeights || SuccHasWeights)
- Weights.push_back(WeightsForHandled[BBCases[i].Value]);
- PredCases.push_back(BBCases[i]);
- NewSuccessors.push_back(BBCases[i].Dest);
- PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
- }
- // If there are any constants vectored to BB that TI doesn't handle,
- // they must go to the default destination of TI.
- for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
- PTIHandled.begin(),
- E = PTIHandled.end(); I != E; ++I) {
- if (PredHasWeights || SuccHasWeights)
- Weights.push_back(WeightsForHandled[*I]);
- PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
- NewSuccessors.push_back(BBDefault);
- }
- }
- // Okay, at this point, we know which new successor Pred will get. Make
- // sure we update the number of entries in the PHI nodes for these
- // successors.
- for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
- AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
- Builder.SetInsertPoint(PTI);
- // Convert pointer to int before we switch.
- if (CV->getType()->isPointerTy()) {
- CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
- "magicptr");
- }
- // Now that the successors are updated, create the new Switch instruction.
- SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
- PredCases.size());
- NewSI->setDebugLoc(PTI->getDebugLoc());
- for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
- NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
- if (PredHasWeights || SuccHasWeights) {
- // Halve the weights if any of them cannot fit in an uint32_t
- FitWeights(Weights);
- SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
- NewSI->setMetadata(LLVMContext::MD_prof,
- MDBuilder(BB->getContext()).
- createBranchWeights(MDWeights));
- }
- EraseTerminatorInstAndDCECond(PTI);
- // Okay, last check. If BB is still a successor of PSI, then we must
- // have an infinite loop case. If so, add an infinitely looping block
- // to handle the case to preserve the behavior of the code.
- BasicBlock *InfLoopBlock = nullptr;
- for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
- if (NewSI->getSuccessor(i) == BB) {
- if (!InfLoopBlock) {
- // Insert it at the end of the function, because it's either code,
- // or it won't matter if it's hot. :)
- InfLoopBlock = BasicBlock::Create(BB->getContext(),
- "infloop", BB->getParent());
- BranchInst::Create(InfLoopBlock, InfLoopBlock);
- }
- NewSI->setSuccessor(i, InfLoopBlock);
- }
- Changed = true;
- }
- }
- return Changed;
- #else // HLSL Change Begin. // fold to switch will not help hlsl.
- return false;
- #endif // HLSL Change End.
- }
- // If we would need to insert a select that uses the value of this invoke
- // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
- // can't hoist the invoke, as there is nowhere to put the select in this case.
- static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
- Instruction *I1, Instruction *I2) {
- for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
- PHINode *PN;
- for (BasicBlock::iterator BBI = SI->begin();
- (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
- Value *BB1V = PN->getIncomingValueForBlock(BB1);
- Value *BB2V = PN->getIncomingValueForBlock(BB2);
- if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
- return false;
- }
- }
- }
- return true;
- }
- static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
- /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
- /// in the two blocks up into the branch block. The caller of this function
- /// guarantees that BI's block dominates BB1 and BB2.
- static bool HoistThenElseCodeToIf(BranchInst *BI,
- const TargetTransformInfo &TTI) {
- // HLSL Change Begins.
- // Leave CSE to target backend.
- // Also wave operations should not be CSEed.
- return false;
- // HLSL Change Ends.
- // This does very trivial matching, with limited scanning, to find identical
- // instructions in the two blocks. In particular, we don't want to get into
- // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
- // such, we currently just scan for obviously identical instructions in an
- // identical order.
- BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
- BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
- BasicBlock::iterator BB1_Itr = BB1->begin();
- BasicBlock::iterator BB2_Itr = BB2->begin();
- Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
- // Skip debug info if it is not identical.
- DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
- DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
- if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
- while (isa<DbgInfoIntrinsic>(I1))
- I1 = BB1_Itr++;
- while (isa<DbgInfoIntrinsic>(I2))
- I2 = BB2_Itr++;
- }
- if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
- (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
- return false;
- BasicBlock *BIParent = BI->getParent();
- bool Changed = false;
- do {
- // If we are hoisting the terminator instruction, don't move one (making a
- // broken BB), instead clone it, and remove BI.
- if (isa<TerminatorInst>(I1))
- goto HoistTerminator;
- if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
- return Changed;
- // For a normal instruction, we just move one to right before the branch,
- // then replace all uses of the other with the first. Finally, we remove
- // the now redundant second instruction.
- BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
- if (!I2->use_empty())
- I2->replaceAllUsesWith(I1);
- I1->intersectOptionalDataWith(I2);
- unsigned KnownIDs[] = {
- LLVMContext::MD_tbaa,
- LLVMContext::MD_range,
- LLVMContext::MD_fpmath,
- LLVMContext::MD_invariant_load,
- LLVMContext::MD_nonnull
- };
- combineMetadata(I1, I2, KnownIDs);
- I2->eraseFromParent();
- Changed = true;
- I1 = BB1_Itr++;
- I2 = BB2_Itr++;
- // Skip debug info if it is not identical.
- DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
- DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
- if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
- while (isa<DbgInfoIntrinsic>(I1))
- I1 = BB1_Itr++;
- while (isa<DbgInfoIntrinsic>(I2))
- I2 = BB2_Itr++;
- }
- } while (I1->isIdenticalToWhenDefined(I2));
- return true;
- HoistTerminator:
- // It may not be possible to hoist an invoke.
- if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
- return Changed;
- for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
- PHINode *PN;
- for (BasicBlock::iterator BBI = SI->begin();
- (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
- Value *BB1V = PN->getIncomingValueForBlock(BB1);
- Value *BB2V = PN->getIncomingValueForBlock(BB2);
- if (BB1V == BB2V)
- continue;
- // Check for passingValueIsAlwaysUndefined here because we would rather
- // eliminate undefined control flow then converting it to a select.
- if (passingValueIsAlwaysUndefined(BB1V, PN) ||
- passingValueIsAlwaysUndefined(BB2V, PN))
- return Changed;
- if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
- return Changed;
- if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
- return Changed;
- }
- }
- // Okay, it is safe to hoist the terminator.
- Instruction *NT = I1->clone();
- BIParent->getInstList().insert(BI, NT);
- if (!NT->getType()->isVoidTy()) {
- I1->replaceAllUsesWith(NT);
- I2->replaceAllUsesWith(NT);
- NT->takeName(I1);
- }
- IRBuilder<true, NoFolder> Builder(NT);
- // Hoisting one of the terminators from our successor is a great thing.
- // Unfortunately, the successors of the if/else blocks may have PHI nodes in
- // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
- // nodes, so we insert select instruction to compute the final result.
- std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
- for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
- PHINode *PN;
- for (BasicBlock::iterator BBI = SI->begin();
- (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
- Value *BB1V = PN->getIncomingValueForBlock(BB1);
- Value *BB2V = PN->getIncomingValueForBlock(BB2);
- if (BB1V == BB2V) continue;
- // These values do not agree. Insert a select instruction before NT
- // that determines the right value.
- SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
- if (!SI)
- SI = cast<SelectInst>
- (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
- BB1V->getName()+"."+BB2V->getName()));
- // Make the PHI node use the select for all incoming values for BB1/BB2
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
- PN->setIncomingValue(i, SI);
- }
- }
- // Update any PHI nodes in our new successors.
- for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
- AddPredecessorToBlock(*SI, BIParent, BB1);
- EraseTerminatorInstAndDCECond(BI);
- return true;
- }
- /// Given an unconditional branch that goes to BBEnd,
- /// check whether BBEnd has only two predecessors and the other predecessor
- /// ends with an unconditional branch. If it is true, sink any common code
- /// in the two predecessors to BBEnd.
- static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
- assert(BI1->isUnconditional());
- BasicBlock *BB1 = BI1->getParent();
- BasicBlock *BBEnd = BI1->getSuccessor(0);
- // Check that BBEnd has two predecessors and the other predecessor ends with
- // an unconditional branch.
- pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
- BasicBlock *Pred0 = *PI++;
- if (PI == PE) // Only one predecessor.
- return false;
- BasicBlock *Pred1 = *PI++;
- if (PI != PE) // More than two predecessors.
- return false;
- BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
- BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
- if (!BI2 || !BI2->isUnconditional())
- return false;
- // Gather the PHI nodes in BBEnd.
- SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
- Instruction *FirstNonPhiInBBEnd = nullptr;
- for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
- if (PHINode *PN = dyn_cast<PHINode>(I)) {
- Value *BB1V = PN->getIncomingValueForBlock(BB1);
- Value *BB2V = PN->getIncomingValueForBlock(BB2);
- JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
- } else {
- FirstNonPhiInBBEnd = &*I;
- break;
- }
- }
- if (!FirstNonPhiInBBEnd)
- return false;
- // This does very trivial matching, with limited scanning, to find identical
- // instructions in the two blocks. We scan backward for obviously identical
- // instructions in an identical order.
- BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
- RE1 = BB1->getInstList().rend(),
- RI2 = BB2->getInstList().rbegin(),
- RE2 = BB2->getInstList().rend();
- // Skip debug info.
- while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
- if (RI1 == RE1)
- return false;
- while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
- if (RI2 == RE2)
- return false;
- // Skip the unconditional branches.
- ++RI1;
- ++RI2;
- bool Changed = false;
- while (RI1 != RE1 && RI2 != RE2) {
- // Skip debug info.
- while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
- if (RI1 == RE1)
- return Changed;
- while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
- if (RI2 == RE2)
- return Changed;
- Instruction *I1 = &*RI1, *I2 = &*RI2;
- auto InstPair = std::make_pair(I1, I2);
- // I1 and I2 should have a single use in the same PHI node, and they
- // perform the same operation.
- // Cannot move control-flow-involving, volatile loads, vaarg, etc.
- if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
- isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
- isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
- isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
- I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
- I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
- !I1->hasOneUse() || !I2->hasOneUse() ||
- !JointValueMap.count(InstPair))
- return Changed;
- // Check whether we should swap the operands of ICmpInst.
- // TODO: Add support of communativity.
- ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
- bool SwapOpnds = false;
- if (ICmp1 && ICmp2 &&
- ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
- ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
- (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
- ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
- ICmp2->swapOperands();
- SwapOpnds = true;
- }
- if (!I1->isSameOperationAs(I2)) {
- if (SwapOpnds)
- ICmp2->swapOperands();
- return Changed;
- }
- // The operands should be either the same or they need to be generated
- // with a PHI node after sinking. We only handle the case where there is
- // a single pair of different operands.
- Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
- unsigned Op1Idx = ~0U;
- for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
- if (I1->getOperand(I) == I2->getOperand(I))
- continue;
- // Early exit if we have more-than one pair of different operands or if
- // we need a PHI node to replace a constant.
- if (Op1Idx != ~0U ||
- isa<Constant>(I1->getOperand(I)) ||
- isa<Constant>(I2->getOperand(I))) {
- // If we can't sink the instructions, undo the swapping.
- if (SwapOpnds)
- ICmp2->swapOperands();
- return Changed;
- }
- DifferentOp1 = I1->getOperand(I);
- Op1Idx = I;
- DifferentOp2 = I2->getOperand(I);
- }
- // HLSL Change Begin.
- // Don't sink struct type which will generate struct PhiNode to make sure
- // struct type value only used by Extract/InsertValue.
- if (DifferentOp1 && DifferentOp1->getType()->isStructTy())
- return Changed;
- // HLSL Change End.
- DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
- DEBUG(dbgs() << " " << *I2 << "\n");
- // We insert the pair of different operands to JointValueMap and
- // remove (I1, I2) from JointValueMap.
- if (Op1Idx != ~0U) {
- auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
- if (!NewPN) {
- NewPN =
- PHINode::Create(DifferentOp1->getType(), 2,
- DifferentOp1->getName() + ".sink", BBEnd->begin());
- NewPN->addIncoming(DifferentOp1, BB1);
- NewPN->addIncoming(DifferentOp2, BB2);
- DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
- }
- // I1 should use NewPN instead of DifferentOp1.
- I1->setOperand(Op1Idx, NewPN);
- }
- PHINode *OldPN = JointValueMap[InstPair];
- JointValueMap.erase(InstPair);
- // We need to update RE1 and RE2 if we are going to sink the first
- // instruction in the basic block down.
- bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
- // Sink the instruction.
- BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
- if (!OldPN->use_empty())
- OldPN->replaceAllUsesWith(I1);
- OldPN->eraseFromParent();
- if (!I2->use_empty())
- I2->replaceAllUsesWith(I1);
- I1->intersectOptionalDataWith(I2);
- // TODO: Use combineMetadata here to preserve what metadata we can
- // (analogous to the hoisting case above).
- I2->eraseFromParent();
- if (UpdateRE1)
- RE1 = BB1->getInstList().rend();
- if (UpdateRE2)
- RE2 = BB2->getInstList().rend();
- FirstNonPhiInBBEnd = I1;
- NumSinkCommons++;
- Changed = true;
- }
- return Changed;
- }
- /// \brief Determine if we can hoist sink a sole store instruction out of a
- /// conditional block.
- ///
- /// We are looking for code like the following:
- /// BrBB:
- /// store i32 %add, i32* %arrayidx2
- /// ... // No other stores or function calls (we could be calling a memory
- /// ... // function).
- /// %cmp = icmp ult %x, %y
- /// br i1 %cmp, label %EndBB, label %ThenBB
- /// ThenBB:
- /// store i32 %add5, i32* %arrayidx2
- /// br label EndBB
- /// EndBB:
- /// ...
- /// We are going to transform this into:
- /// BrBB:
- /// store i32 %add, i32* %arrayidx2
- /// ... //
- /// %cmp = icmp ult %x, %y
- /// %add.add5 = select i1 %cmp, i32 %add, %add5
- /// store i32 %add.add5, i32* %arrayidx2
- /// ...
- ///
- /// \return The pointer to the value of the previous store if the store can be
- /// hoisted into the predecessor block. 0 otherwise.
- static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
- BasicBlock *StoreBB, BasicBlock *EndBB) {
- StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
- if (!StoreToHoist)
- return nullptr;
- // Volatile or atomic.
- if (!StoreToHoist->isSimple())
- return nullptr;
- Value *StorePtr = StoreToHoist->getPointerOperand();
- // Look for a store to the same pointer in BrBB.
- unsigned MaxNumInstToLookAt = 10;
- for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
- RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
- Instruction *CurI = &*RI;
- // Could be calling an instruction that effects memory like free().
- if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
- return nullptr;
- StoreInst *SI = dyn_cast<StoreInst>(CurI);
- // Found the previous store make sure it stores to the same location.
- if (SI && SI->getPointerOperand() == StorePtr)
- // Found the previous store, return its value operand.
- return SI->getValueOperand();
- else if (SI)
- return nullptr; // Unknown store.
- }
- return nullptr;
- }
- /// \brief Speculate a conditional basic block flattening the CFG.
- ///
- /// Note that this is a very risky transform currently. Speculating
- /// instructions like this is most often not desirable. Instead, there is an MI
- /// pass which can do it with full awareness of the resource constraints.
- /// However, some cases are "obvious" and we should do directly. An example of
- /// this is speculating a single, reasonably cheap instruction.
- ///
- /// There is only one distinct advantage to flattening the CFG at the IR level:
- /// it makes very common but simplistic optimizations such as are common in
- /// instcombine and the DAG combiner more powerful by removing CFG edges and
- /// modeling their effects with easier to reason about SSA value graphs.
- ///
- ///
- /// An illustration of this transform is turning this IR:
- /// \code
- /// BB:
- /// %cmp = icmp ult %x, %y
- /// br i1 %cmp, label %EndBB, label %ThenBB
- /// ThenBB:
- /// %sub = sub %x, %y
- /// br label BB2
- /// EndBB:
- /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
- /// ...
- /// \endcode
- ///
- /// Into this IR:
- /// \code
- /// BB:
- /// %cmp = icmp ult %x, %y
- /// %sub = sub %x, %y
- /// %cond = select i1 %cmp, 0, %sub
- /// ...
- /// \endcode
- ///
- /// \returns true if the conditional block is removed.
- static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
- const TargetTransformInfo &TTI) {
- // HLSL Change Begins.
- // Skip block with control flow hint.
- if (BI->hasMetadata()) {
- return false;
- }
- // HLSL Change Ends.
- // Be conservative for now. FP select instruction can often be expensive.
- Value *BrCond = BI->getCondition();
- if (isa<FCmpInst>(BrCond))
- return false;
- BasicBlock *BB = BI->getParent();
- BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
- // If ThenBB is actually on the false edge of the conditional branch, remember
- // to swap the select operands later.
- bool Invert = false;
- if (ThenBB != BI->getSuccessor(0)) {
- assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
- Invert = true;
- }
- assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
- // Keep a count of how many times instructions are used within CondBB when
- // they are candidates for sinking into CondBB. Specifically:
- // - They are defined in BB, and
- // - They have no side effects, and
- // - All of their uses are in CondBB.
- SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
- unsigned SpeculationCost = 0;
- Value *SpeculatedStoreValue = nullptr;
- StoreInst *SpeculatedStore = nullptr;
- for (BasicBlock::iterator BBI = ThenBB->begin(),
- BBE = std::prev(ThenBB->end());
- BBI != BBE; ++BBI) {
- Instruction *I = BBI;
- // Skip debug info.
- if (isa<DbgInfoIntrinsic>(I))
- continue;
- // Only speculatively execute a single instruction (not counting the
- // terminator) for now.
- ++SpeculationCost;
- if (SpeculationCost > 1)
- return false;
- // Don't hoist the instruction if it's unsafe or expensive.
- if (!isSafeToSpeculativelyExecute(I) &&
- !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
- I, BB, ThenBB, EndBB))))
- return false;
- if (!SpeculatedStoreValue &&
- ComputeSpeculationCost(I, TTI) >
- PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
- return false;
- // Store the store speculation candidate.
- if (SpeculatedStoreValue)
- SpeculatedStore = cast<StoreInst>(I);
- // Do not hoist the instruction if any of its operands are defined but not
- // used in BB. The transformation will prevent the operand from
- // being sunk into the use block.
- for (User::op_iterator i = I->op_begin(), e = I->op_end();
- i != e; ++i) {
- Instruction *OpI = dyn_cast<Instruction>(*i);
- if (!OpI || OpI->getParent() != BB ||
- OpI->mayHaveSideEffects())
- continue; // Not a candidate for sinking.
- ++SinkCandidateUseCounts[OpI];
- }
- }
- // Consider any sink candidates which are only used in CondBB as costs for
- // speculation. Note, while we iterate over a DenseMap here, we are summing
- // and so iteration order isn't significant.
- for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
- SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
- I != E; ++I)
- if (I->first->getNumUses() == I->second) {
- ++SpeculationCost;
- if (SpeculationCost > 1)
- return false;
- }
- // Check that the PHI nodes can be converted to selects.
- bool HaveRewritablePHIs = false;
- for (BasicBlock::iterator I = EndBB->begin();
- PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- Value *OrigV = PN->getIncomingValueForBlock(BB);
- Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
- // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
- // Skip PHIs which are trivial.
- if (ThenV == OrigV)
- continue;
- // Don't convert to selects if we could remove undefined behavior instead.
- if (passingValueIsAlwaysUndefined(OrigV, PN) ||
- passingValueIsAlwaysUndefined(ThenV, PN))
- return false;
- HaveRewritablePHIs = true;
- ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
- ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
- if (!OrigCE && !ThenCE)
- continue; // Known safe and cheap.
- if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
- (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
- return false;
- unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
- unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
- unsigned MaxCost = 2 * PHINodeFoldingThreshold *
- TargetTransformInfo::TCC_Basic;
- if (OrigCost + ThenCost > MaxCost)
- return false;
- // Account for the cost of an unfolded ConstantExpr which could end up
- // getting expanded into Instructions.
- // FIXME: This doesn't account for how many operations are combined in the
- // constant expression.
- ++SpeculationCost;
- if (SpeculationCost > 1)
- return false;
- }
- // If there are no PHIs to process, bail early. This helps ensure idempotence
- // as well.
- if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
- return false;
- // If we get here, we can hoist the instruction and if-convert.
- DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
- // Insert a select of the value of the speculated store.
- if (SpeculatedStoreValue) {
- IRBuilder<true, NoFolder> Builder(BI);
- Value *TrueV = SpeculatedStore->getValueOperand();
- Value *FalseV = SpeculatedStoreValue;
- if (Invert)
- std::swap(TrueV, FalseV);
- Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
- "." + FalseV->getName());
- SpeculatedStore->setOperand(0, S);
- }
- // Hoist the instructions.
- BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
- std::prev(ThenBB->end()));
- // Insert selects and rewrite the PHI operands.
- IRBuilder<true, NoFolder> Builder(BI);
- for (BasicBlock::iterator I = EndBB->begin();
- PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- unsigned OrigI = PN->getBasicBlockIndex(BB);
- unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
- Value *OrigV = PN->getIncomingValue(OrigI);
- Value *ThenV = PN->getIncomingValue(ThenI);
- // Skip PHIs which are trivial.
- if (OrigV == ThenV)
- continue;
- // Create a select whose true value is the speculatively executed value and
- // false value is the preexisting value. Swap them if the branch
- // destinations were inverted.
- Value *TrueV = ThenV, *FalseV = OrigV;
- if (Invert)
- std::swap(TrueV, FalseV);
- Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
- TrueV->getName() + "." + FalseV->getName());
- PN->setIncomingValue(OrigI, V);
- PN->setIncomingValue(ThenI, V);
- }
- ++NumSpeculations;
- return true;
- }
- /// \returns True if this block contains a CallInst with the NoDuplicate
- /// attribute.
- static bool HasNoDuplicateCall(const BasicBlock *BB) {
- for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
- const CallInst *CI = dyn_cast<CallInst>(I);
- if (!CI)
- continue;
- if (CI->cannotDuplicate())
- return true;
- }
- return false;
- }
- /// Return true if we can thread a branch across this block.
- static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
- BranchInst *BI = cast<BranchInst>(BB->getTerminator());
- unsigned Size = 0;
- for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
- if (isa<DbgInfoIntrinsic>(BBI))
- continue;
- if (Size > 10) return false; // Don't clone large BB's.
- ++Size;
- // We can only support instructions that do not define values that are
- // live outside of the current basic block.
- for (User *U : BBI->users()) {
- Instruction *UI = cast<Instruction>(U);
- if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
- }
- // Looks ok, continue checking.
- }
- return true;
- }
- /// If we have a conditional branch on a PHI node value that is defined in the
- /// same block as the branch and if any PHI entries are constants, thread edges
- /// corresponding to that entry to be branches to their ultimate destination.
- static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
- BasicBlock *BB = BI->getParent();
- PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
- // NOTE: we currently cannot transform this case if the PHI node is used
- // outside of the block.
- if (!PN || PN->getParent() != BB || !PN->hasOneUse())
- return false;
- // Degenerate case of a single entry PHI.
- if (PN->getNumIncomingValues() == 1) {
- FoldSingleEntryPHINodes(PN->getParent());
- return true;
- }
- // Now we know that this block has multiple preds and two succs.
- if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
- if (HasNoDuplicateCall(BB)) return false;
- // Okay, this is a simple enough basic block. See if any phi values are
- // constants.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
- if (!CB || !CB->getType()->isIntegerTy(1)) continue;
- // Okay, we now know that all edges from PredBB should be revectored to
- // branch to RealDest.
- BasicBlock *PredBB = PN->getIncomingBlock(i);
- BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
- if (RealDest == BB) continue; // Skip self loops.
- // Skip if the predecessor's terminator is an indirect branch.
- if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
- // The dest block might have PHI nodes, other predecessors and other
- // difficult cases. Instead of being smart about this, just insert a new
- // block that jumps to the destination block, effectively splitting
- // the edge we are about to create.
- BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
- RealDest->getName()+".critedge",
- RealDest->getParent(), RealDest);
- BranchInst::Create(RealDest, EdgeBB);
- // Update PHI nodes.
- AddPredecessorToBlock(RealDest, EdgeBB, BB);
- // BB may have instructions that are being threaded over. Clone these
- // instructions into EdgeBB. We know that there will be no uses of the
- // cloned instructions outside of EdgeBB.
- BasicBlock::iterator InsertPt = EdgeBB->begin();
- DenseMap<Value*, Value*> TranslateMap; // Track translated values.
- for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
- if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
- TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
- continue;
- }
- // Clone the instruction.
- Instruction *N = BBI->clone();
- if (BBI->hasName()) N->setName(BBI->getName()+".c");
- // Update operands due to translation.
- for (User::op_iterator i = N->op_begin(), e = N->op_end();
- i != e; ++i) {
- DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
- if (PI != TranslateMap.end())
- *i = PI->second;
- }
- // Check for trivial simplification.
- if (Value *V = SimplifyInstruction(N, DL)) {
- TranslateMap[BBI] = V;
- delete N; // Instruction folded away, don't need actual inst
- } else {
- // Insert the new instruction into its new home.
- EdgeBB->getInstList().insert(InsertPt, N);
- if (!BBI->use_empty())
- TranslateMap[BBI] = N;
- }
- }
- // Loop over all of the edges from PredBB to BB, changing them to branch
- // to EdgeBB instead.
- TerminatorInst *PredBBTI = PredBB->getTerminator();
- for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
- if (PredBBTI->getSuccessor(i) == BB) {
- BB->removePredecessor(PredBB);
- PredBBTI->setSuccessor(i, EdgeBB);
- }
- // Recurse, simplifying any other constants.
- return FoldCondBranchOnPHI(BI, DL) | true;
- }
- return false;
- }
- /// Given a BB that starts with the specified two-entry PHI node,
- /// see if we can eliminate it.
- static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
- const DataLayout &DL) {
- // Ok, this is a two entry PHI node. Check to see if this is a simple "if
- // statement", which has a very simple dominance structure. Basically, we
- // are trying to find the condition that is being branched on, which
- // subsequently causes this merge to happen. We really want control
- // dependence information for this check, but simplifycfg can't keep it up
- // to date, and this catches most of the cases we care about anyway.
- BasicBlock *BB = PN->getParent();
- BasicBlock *IfTrue, *IfFalse;
- Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
- if (!IfCond ||
- // Don't bother if the branch will be constant folded trivially.
- isa<ConstantInt>(IfCond))
- return false;
- // Okay, we found that we can merge this two-entry phi node into a select.
- // Doing so would require us to fold *all* two entry phi nodes in this block.
- // At some point this becomes non-profitable (particularly if the target
- // doesn't support cmov's). Only do this transformation if there are two or
- // fewer PHI nodes in this block.
- unsigned NumPhis = 0;
- for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
- if (NumPhis > 2)
- return false;
- // Loop over the PHI's seeing if we can promote them all to select
- // instructions. While we are at it, keep track of the instructions
- // that need to be moved to the dominating block.
- SmallPtrSet<Instruction*, 4> AggressiveInsts;
- unsigned MaxCostVal0 = PHINodeFoldingThreshold,
- MaxCostVal1 = PHINodeFoldingThreshold;
- MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
- MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
- for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
- PHINode *PN = cast<PHINode>(II++);
- if (Value *V = SimplifyInstruction(PN, DL)) {
- PN->replaceAllUsesWith(V);
- PN->eraseFromParent();
- continue;
- }
- if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
- MaxCostVal0, TTI) ||
- !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
- MaxCostVal1, TTI))
- return false;
- }
- // If we folded the first phi, PN dangles at this point. Refresh it. If
- // we ran out of PHIs then we simplified them all.
- PN = dyn_cast<PHINode>(BB->begin());
- if (!PN) return true;
- // Don't fold i1 branches on PHIs which contain binary operators. These can
- // often be turned into switches and other things.
- if (PN->getType()->isIntegerTy(1) &&
- (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
- isa<BinaryOperator>(PN->getIncomingValue(1)) ||
- isa<BinaryOperator>(IfCond)))
- return false;
- // If we all PHI nodes are promotable, check to make sure that all
- // instructions in the predecessor blocks can be promoted as well. If
- // not, we won't be able to get rid of the control flow, so it's not
- // worth promoting to select instructions.
- BasicBlock *DomBlock = nullptr;
- BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
- BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
- if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
- IfBlock1 = nullptr;
- } else {
- DomBlock = *pred_begin(IfBlock1);
- for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
- if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
- // This is not an aggressive instruction that we can promote.
- // Because of this, we won't be able to get rid of the control
- // flow, so the xform is not worth it.
- return false;
- }
- }
- if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
- IfBlock2 = nullptr;
- } else {
- DomBlock = *pred_begin(IfBlock2);
- for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
- if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
- // This is not an aggressive instruction that we can promote.
- // Because of this, we won't be able to get rid of the control
- // flow, so the xform is not worth it.
- return false;
- }
- }
- DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: "
- << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
- // If we can still promote the PHI nodes after this gauntlet of tests,
- // do all of the PHI's now.
- Instruction *InsertPt = DomBlock->getTerminator();
- // HLSL Change Begins.
- // Skip block with control flow hint.
- if (InsertPt->hasMetadata()) {
- return false;
- }
- // HLSL Change Ends.
- IRBuilder<true, NoFolder> Builder(InsertPt);
- // Move all 'aggressive' instructions, which are defined in the
- // conditional parts of the if's up to the dominating block.
- if (IfBlock1)
- DomBlock->getInstList().splice(InsertPt,
- IfBlock1->getInstList(), IfBlock1->begin(),
- IfBlock1->getTerminator());
- if (IfBlock2)
- DomBlock->getInstList().splice(InsertPt,
- IfBlock2->getInstList(), IfBlock2->begin(),
- IfBlock2->getTerminator());
- while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
- // Change the PHI node into a select instruction.
- Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
- Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
- SelectInst *NV =
- cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
- PN->replaceAllUsesWith(NV);
- NV->takeName(PN);
- PN->eraseFromParent();
- }
- // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
- // has been flattened. Change DomBlock to jump directly to our new block to
- // avoid other simplifycfg's kicking in on the diamond.
- TerminatorInst *OldTI = DomBlock->getTerminator();
- Builder.SetInsertPoint(OldTI);
- Builder.CreateBr(BB);
- OldTI->eraseFromParent();
- return true;
- }
- /// If we found a conditional branch that goes to two returning blocks,
- /// try to merge them together into one return,
- /// introducing a select if the return values disagree.
- static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
- IRBuilder<> &Builder) {
- assert(BI->isConditional() && "Must be a conditional branch");
- BasicBlock *TrueSucc = BI->getSuccessor(0);
- BasicBlock *FalseSucc = BI->getSuccessor(1);
- ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
- ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
- // Check to ensure both blocks are empty (just a return) or optionally empty
- // with PHI nodes. If there are other instructions, merging would cause extra
- // computation on one path or the other.
- if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
- return false;
- if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
- return false;
- Builder.SetInsertPoint(BI);
- // Okay, we found a branch that is going to two return nodes. If
- // there is no return value for this function, just change the
- // branch into a return.
- if (FalseRet->getNumOperands() == 0) {
- TrueSucc->removePredecessor(BI->getParent());
- FalseSucc->removePredecessor(BI->getParent());
- Builder.CreateRetVoid();
- EraseTerminatorInstAndDCECond(BI);
- return true;
- }
- // Otherwise, figure out what the true and false return values are
- // so we can insert a new select instruction.
- Value *TrueValue = TrueRet->getReturnValue();
- Value *FalseValue = FalseRet->getReturnValue();
- // Unwrap any PHI nodes in the return blocks.
- if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
- if (TVPN->getParent() == TrueSucc)
- TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
- if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
- if (FVPN->getParent() == FalseSucc)
- FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
- // In order for this transformation to be safe, we must be able to
- // unconditionally execute both operands to the return. This is
- // normally the case, but we could have a potentially-trapping
- // constant expression that prevents this transformation from being
- // safe.
- if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
- if (TCV->canTrap())
- return false;
- if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
- if (FCV->canTrap())
- return false;
- // Okay, we collected all the mapped values and checked them for sanity, and
- // defined to really do this transformation. First, update the CFG.
- TrueSucc->removePredecessor(BI->getParent());
- FalseSucc->removePredecessor(BI->getParent());
- // Insert select instructions where needed.
- Value *BrCond = BI->getCondition();
- if (TrueValue) {
- // Insert a select if the results differ.
- if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
- } else if (isa<UndefValue>(TrueValue)) {
- TrueValue = FalseValue;
- } else {
- TrueValue = Builder.CreateSelect(BrCond, TrueValue,
- FalseValue, "retval");
- }
- }
- Value *RI = !TrueValue ?
- Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
- (void) RI;
- DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
- << "\n " << *BI << "NewRet = " << *RI
- << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
- EraseTerminatorInstAndDCECond(BI);
- return true;
- }
- /// Given a conditional BranchInstruction, retrieve the probabilities of the
- /// branch taking each edge. Fills in the two APInt parameters and returns true,
- /// or returns false if no or invalid metadata was found.
- static bool ExtractBranchMetadata(BranchInst *BI,
- uint64_t &ProbTrue, uint64_t &ProbFalse) {
- assert(BI->isConditional() &&
- "Looking for probabilities on unconditional branch?");
- MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
- if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
- ConstantInt *CITrue =
- mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
- ConstantInt *CIFalse =
- mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
- if (!CITrue || !CIFalse) return false;
- ProbTrue = CITrue->getValue().getZExtValue();
- ProbFalse = CIFalse->getValue().getZExtValue();
- return true;
- }
- /// Return true if the given instruction is available
- /// in its predecessor block. If yes, the instruction will be removed.
- static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
- if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
- return false;
- for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
- Instruction *PBI = &*I;
- // Check whether Inst and PBI generate the same value.
- if (Inst->isIdenticalTo(PBI)) {
- Inst->replaceAllUsesWith(PBI);
- Inst->eraseFromParent();
- return true;
- }
- }
- return false;
- }
- /// If this basic block is simple enough, and if a predecessor branches to us
- /// and one of our successors, fold the block into the predecessor and use
- /// logical operations to pick the right destination.
- bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
- BasicBlock *BB = BI->getParent();
- Instruction *Cond = nullptr;
- if (BI->isConditional())
- Cond = dyn_cast<Instruction>(BI->getCondition());
- else {
- // For unconditional branch, check for a simple CFG pattern, where
- // BB has a single predecessor and BB's successor is also its predecessor's
- // successor. If such pattern exisits, check for CSE between BB and its
- // predecessor.
- if (BasicBlock *PB = BB->getSinglePredecessor())
- if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
- if (PBI->isConditional() &&
- (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
- BI->getSuccessor(0) == PBI->getSuccessor(1))) {
- for (BasicBlock::iterator I = BB->begin(), E = BB->end();
- I != E; ) {
- Instruction *Curr = I++;
- if (isa<CmpInst>(Curr)) {
- Cond = Curr;
- break;
- }
- // Quit if we can't remove this instruction.
- if (!checkCSEInPredecessor(Curr, PB))
- return false;
- }
- }
- if (!Cond)
- return false;
- }
- if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
- Cond->getParent() != BB || !Cond->hasOneUse())
- return false;
- // Make sure the instruction after the condition is the cond branch.
- BasicBlock::iterator CondIt = Cond; ++CondIt;
- // Ignore dbg intrinsics.
- while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
- if (&*CondIt != BI)
- return false;
- // Only allow this transformation if computing the condition doesn't involve
- // too many instructions and these involved instructions can be executed
- // unconditionally. We denote all involved instructions except the condition
- // as "bonus instructions", and only allow this transformation when the
- // number of the bonus instructions does not exceed a certain threshold.
- unsigned NumBonusInsts = 0;
- for (auto I = BB->begin(); Cond != I; ++I) {
- // Ignore dbg intrinsics.
- if (isa<DbgInfoIntrinsic>(I))
- continue;
- if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(I))
- return false;
- // I has only one use and can be executed unconditionally.
- Instruction *User = dyn_cast<Instruction>(I->user_back());
- if (User == nullptr || User->getParent() != BB)
- return false;
- // I is used in the same BB. Since BI uses Cond and doesn't have more slots
- // to use any other instruction, User must be an instruction between next(I)
- // and Cond.
- ++NumBonusInsts;
- // Early exits once we reach the limit.
- if (NumBonusInsts > BonusInstThreshold)
- return false;
- }
- // Cond is known to be a compare or binary operator. Check to make sure that
- // neither operand is a potentially-trapping constant expression.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
- if (CE->canTrap())
- return false;
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
- if (CE->canTrap())
- return false;
- // Finally, don't infinitely unroll conditional loops.
- BasicBlock *TrueDest = BI->getSuccessor(0);
- BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
- if (TrueDest == BB || FalseDest == BB)
- return false;
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
- BasicBlock *PredBlock = *PI;
- BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
- // Check that we have two conditional branches. If there is a PHI node in
- // the common successor, verify that the same value flows in from both
- // blocks.
- SmallVector<PHINode*, 4> PHIs;
- if (!PBI || PBI->isUnconditional() ||
- (BI->isConditional() &&
- !SafeToMergeTerminators(BI, PBI)) ||
- (!BI->isConditional() &&
- !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
- continue;
- // Determine if the two branches share a common destination.
- Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
- bool InvertPredCond = false;
- if (BI->isConditional()) {
- if (PBI->getSuccessor(0) == TrueDest)
- Opc = Instruction::Or;
- else if (PBI->getSuccessor(1) == FalseDest)
- Opc = Instruction::And;
- else if (PBI->getSuccessor(0) == FalseDest)
- Opc = Instruction::And, InvertPredCond = true;
- else if (PBI->getSuccessor(1) == TrueDest)
- Opc = Instruction::Or, InvertPredCond = true;
- else
- continue;
- } else {
- if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
- continue;
- }
- DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
- IRBuilder<> Builder(PBI);
- // If we need to invert the condition in the pred block to match, do so now.
- if (InvertPredCond) {
- Value *NewCond = PBI->getCondition();
- if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
- CmpInst *CI = cast<CmpInst>(NewCond);
- CI->setPredicate(CI->getInversePredicate());
- } else {
- NewCond = Builder.CreateNot(NewCond,
- PBI->getCondition()->getName()+".not");
- }
- PBI->setCondition(NewCond);
- PBI->swapSuccessors();
- }
- // If we have bonus instructions, clone them into the predecessor block.
- // Note that there may be multiple predecessor blocks, so we cannot move
- // bonus instructions to a predecessor block.
- ValueToValueMapTy VMap; // maps original values to cloned values
- // We already make sure Cond is the last instruction before BI. Therefore,
- // all instructions before Cond other than DbgInfoIntrinsic are bonus
- // instructions.
- for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) {
- if (isa<DbgInfoIntrinsic>(BonusInst))
- continue;
- Instruction *NewBonusInst = BonusInst->clone();
- RemapInstruction(NewBonusInst, VMap,
- RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
- VMap[BonusInst] = NewBonusInst;
- // If we moved a load, we cannot any longer claim any knowledge about
- // its potential value. The previous information might have been valid
- // only given the branch precondition.
- // For an analogous reason, we must also drop all the metadata whose
- // semantics we don't understand.
- NewBonusInst->dropUnknownMetadata(LLVMContext::MD_dbg);
- PredBlock->getInstList().insert(PBI, NewBonusInst);
- NewBonusInst->takeName(BonusInst);
- BonusInst->setName(BonusInst->getName() + ".old");
- }
- // Clone Cond into the predecessor basic block, and or/and the
- // two conditions together.
- Instruction *New = Cond->clone();
- RemapInstruction(New, VMap,
- RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
- PredBlock->getInstList().insert(PBI, New);
- New->takeName(Cond);
- Cond->setName(New->getName() + ".old");
- if (BI->isConditional()) {
- Instruction *NewCond =
- cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
- New, "or.cond"));
- PBI->setCondition(NewCond);
- uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
- bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
- PredFalseWeight);
- bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
- SuccFalseWeight);
- SmallVector<uint64_t, 8> NewWeights;
- if (PBI->getSuccessor(0) == BB) {
- if (PredHasWeights && SuccHasWeights) {
- // PBI: br i1 %x, BB, FalseDest
- // BI: br i1 %y, TrueDest, FalseDest
- //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
- NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
- //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
- // TrueWeight for PBI * FalseWeight for BI.
- // We assume that total weights of a BranchInst can fit into 32 bits.
- // Therefore, we will not have overflow using 64-bit arithmetic.
- NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
- SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
- }
- AddPredecessorToBlock(TrueDest, PredBlock, BB);
- PBI->setSuccessor(0, TrueDest);
- }
- if (PBI->getSuccessor(1) == BB) {
- if (PredHasWeights && SuccHasWeights) {
- // PBI: br i1 %x, TrueDest, BB
- // BI: br i1 %y, TrueDest, FalseDest
- //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
- // FalseWeight for PBI * TrueWeight for BI.
- NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
- SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
- //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
- NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
- }
- AddPredecessorToBlock(FalseDest, PredBlock, BB);
- PBI->setSuccessor(1, FalseDest);
- }
- if (NewWeights.size() == 2) {
- // Halve the weights if any of them cannot fit in an uint32_t
- FitWeights(NewWeights);
- SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
- PBI->setMetadata(LLVMContext::MD_prof,
- MDBuilder(BI->getContext()).
- createBranchWeights(MDWeights));
- } else
- PBI->setMetadata(LLVMContext::MD_prof, nullptr);
- } else {
- // Update PHI nodes in the common successors.
- for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
- ConstantInt *PBI_C = cast<ConstantInt>(
- PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
- assert(PBI_C->getType()->isIntegerTy(1));
- Instruction *MergedCond = nullptr;
- if (PBI->getSuccessor(0) == TrueDest) {
- // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
- // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
- // is false: !PBI_Cond and BI_Value
- Instruction *NotCond =
- cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
- "not.cond"));
- MergedCond =
- cast<Instruction>(Builder.CreateBinOp(Instruction::And,
- NotCond, New,
- "and.cond"));
- if (PBI_C->isOne())
- MergedCond =
- cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
- PBI->getCondition(), MergedCond,
- "or.cond"));
- } else {
- // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
- // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
- // is false: PBI_Cond and BI_Value
- MergedCond =
- cast<Instruction>(Builder.CreateBinOp(Instruction::And,
- PBI->getCondition(), New,
- "and.cond"));
- if (PBI_C->isOne()) {
- Instruction *NotCond =
- cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
- "not.cond"));
- MergedCond =
- cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
- NotCond, MergedCond,
- "or.cond"));
- }
- }
- // Update PHI Node.
- PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
- MergedCond);
- }
- // Change PBI from Conditional to Unconditional.
- BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
- EraseTerminatorInstAndDCECond(PBI);
- PBI = New_PBI;
- }
- // TODO: If BB is reachable from all paths through PredBlock, then we
- // could replace PBI's branch probabilities with BI's.
- // Copy any debug value intrinsics into the end of PredBlock.
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (isa<DbgInfoIntrinsic>(*I))
- I->clone()->insertBefore(PBI);
- return true;
- }
- return false;
- }
- /// If we have a conditional branch as a predecessor of another block,
- /// this function tries to simplify it. We know
- /// that PBI and BI are both conditional branches, and BI is in one of the
- /// successor blocks of PBI - PBI branches to BI.
- static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
- assert(PBI->isConditional() && BI->isConditional());
- BasicBlock *BB = BI->getParent();
- // If this block ends with a branch instruction, and if there is a
- // predecessor that ends on a branch of the same condition, make
- // this conditional branch redundant.
- if (PBI->getCondition() == BI->getCondition() &&
- PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
- // Okay, the outcome of this conditional branch is statically
- // knowable. If this block had a single pred, handle specially.
- if (BB->getSinglePredecessor()) {
- // Turn this into a branch on constant.
- bool CondIsTrue = PBI->getSuccessor(0) == BB;
- BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
- CondIsTrue));
- return true; // Nuke the branch on constant.
- }
- // Otherwise, if there are multiple predecessors, insert a PHI that merges
- // in the constant and simplify the block result. Subsequent passes of
- // simplifycfg will thread the block.
- if (BlockIsSimpleEnoughToThreadThrough(BB)) {
- pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
- PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
- std::distance(PB, PE),
- BI->getCondition()->getName() + ".pr",
- BB->begin());
- // Okay, we're going to insert the PHI node. Since PBI is not the only
- // predecessor, compute the PHI'd conditional value for all of the preds.
- // Any predecessor where the condition is not computable we keep symbolic.
- for (pred_iterator PI = PB; PI != PE; ++PI) {
- BasicBlock *P = *PI;
- if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
- PBI != BI && PBI->isConditional() &&
- PBI->getCondition() == BI->getCondition() &&
- PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
- bool CondIsTrue = PBI->getSuccessor(0) == BB;
- NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
- CondIsTrue), P);
- } else {
- NewPN->addIncoming(BI->getCondition(), P);
- }
- }
- BI->setCondition(NewPN);
- return true;
- }
- }
- // If this is a conditional branch in an empty block, and if any
- // predecessors are a conditional branch to one of our destinations,
- // fold the conditions into logical ops and one cond br.
- BasicBlock::iterator BBI = BB->begin();
- // Ignore dbg intrinsics.
- while (isa<DbgInfoIntrinsic>(BBI))
- ++BBI;
- if (&*BBI != BI)
- return false;
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
- if (CE->canTrap())
- return false;
- int PBIOp, BIOp;
- if (PBI->getSuccessor(0) == BI->getSuccessor(0))
- PBIOp = BIOp = 0;
- else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
- PBIOp = 0, BIOp = 1;
- else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
- PBIOp = 1, BIOp = 0;
- else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
- PBIOp = BIOp = 1;
- else
- return false;
- // Check to make sure that the other destination of this branch
- // isn't BB itself. If so, this is an infinite loop that will
- // keep getting unwound.
- if (PBI->getSuccessor(PBIOp) == BB)
- return false;
- // Do not perform this transformation if it would require
- // insertion of a large number of select instructions. For targets
- // without predication/cmovs, this is a big pessimization.
- // Also do not perform this transformation if any phi node in the common
- // destination block can trap when reached by BB or PBB (PR17073). In that
- // case, it would be unsafe to hoist the operation into a select instruction.
- BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
- unsigned NumPhis = 0;
- for (BasicBlock::iterator II = CommonDest->begin();
- isa<PHINode>(II); ++II, ++NumPhis) {
- if (NumPhis > 2) // Disable this xform.
- return false;
- PHINode *PN = cast<PHINode>(II);
- Value *BIV = PN->getIncomingValueForBlock(BB);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
- if (CE->canTrap())
- return false;
- unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
- Value *PBIV = PN->getIncomingValue(PBBIdx);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
- if (CE->canTrap())
- return false;
- }
- // Finally, if everything is ok, fold the branches to logical ops.
- BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
- DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
- << "AND: " << *BI->getParent());
- // If OtherDest *is* BB, then BB is a basic block with a single conditional
- // branch in it, where one edge (OtherDest) goes back to itself but the other
- // exits. We don't *know* that the program avoids the infinite loop
- // (even though that seems likely). If we do this xform naively, we'll end up
- // recursively unpeeling the loop. Since we know that (after the xform is
- // done) that the block *is* infinite if reached, we just make it an obviously
- // infinite loop with no cond branch.
- if (OtherDest == BB) {
- // Insert it at the end of the function, because it's either code,
- // or it won't matter if it's hot. :)
- BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
- "infloop", BB->getParent());
- BranchInst::Create(InfLoopBlock, InfLoopBlock);
- OtherDest = InfLoopBlock;
- }
- DEBUG(dbgs() << *PBI->getParent()->getParent());
- // BI may have other predecessors. Because of this, we leave
- // it alone, but modify PBI.
- // Make sure we get to CommonDest on True&True directions.
- Value *PBICond = PBI->getCondition();
- IRBuilder<true, NoFolder> Builder(PBI);
- if (PBIOp)
- PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
- Value *BICond = BI->getCondition();
- if (BIOp)
- BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
- // Merge the conditions.
- Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
- // Modify PBI to branch on the new condition to the new dests.
- PBI->setCondition(Cond);
- PBI->setSuccessor(0, CommonDest);
- PBI->setSuccessor(1, OtherDest);
- // Update branch weight for PBI.
- uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
- bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
- PredFalseWeight);
- bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
- SuccFalseWeight);
- if (PredHasWeights && SuccHasWeights) {
- uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
- uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
- uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
- uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
- // The weight to CommonDest should be PredCommon * SuccTotal +
- // PredOther * SuccCommon.
- // The weight to OtherDest should be PredOther * SuccOther.
- uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
- PredOther * SuccCommon,
- PredOther * SuccOther};
- // Halve the weights if any of them cannot fit in an uint32_t
- FitWeights(NewWeights);
- PBI->setMetadata(LLVMContext::MD_prof,
- MDBuilder(BI->getContext())
- .createBranchWeights(NewWeights[0], NewWeights[1]));
- }
- // OtherDest may have phi nodes. If so, add an entry from PBI's
- // block that are identical to the entries for BI's block.
- AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
- // We know that the CommonDest already had an edge from PBI to
- // it. If it has PHIs though, the PHIs may have different
- // entries for BB and PBI's BB. If so, insert a select to make
- // them agree.
- PHINode *PN;
- for (BasicBlock::iterator II = CommonDest->begin();
- (PN = dyn_cast<PHINode>(II)); ++II) {
- Value *BIV = PN->getIncomingValueForBlock(BB);
- unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
- Value *PBIV = PN->getIncomingValue(PBBIdx);
- if (BIV != PBIV) {
- // Insert a select in PBI to pick the right value.
- Value *NV = cast<SelectInst>
- (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
- PN->setIncomingValue(PBBIdx, NV);
- }
- }
- DEBUG(dbgs() << "INTO: " << *PBI->getParent());
- DEBUG(dbgs() << *PBI->getParent()->getParent());
- // This basic block is probably dead. We know it has at least
- // one fewer predecessor.
- return true;
- }
- // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
- // true or to FalseBB if Cond is false.
- // Takes care of updating the successors and removing the old terminator.
- // Also makes sure not to introduce new successors by assuming that edges to
- // non-successor TrueBBs and FalseBBs aren't reachable.
- static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
- BasicBlock *TrueBB, BasicBlock *FalseBB,
- uint32_t TrueWeight,
- uint32_t FalseWeight){
- // Remove any superfluous successor edges from the CFG.
- // First, figure out which successors to preserve.
- // If TrueBB and FalseBB are equal, only try to preserve one copy of that
- // successor.
- BasicBlock *KeepEdge1 = TrueBB;
- BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
- // Then remove the rest.
- for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
- BasicBlock *Succ = OldTerm->getSuccessor(I);
- // Make sure only to keep exactly one copy of each edge.
- if (Succ == KeepEdge1)
- KeepEdge1 = nullptr;
- else if (Succ == KeepEdge2)
- KeepEdge2 = nullptr;
- else
- Succ->removePredecessor(OldTerm->getParent());
- }
- IRBuilder<> Builder(OldTerm);
- Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
- // Insert an appropriate new terminator.
- if (!KeepEdge1 && !KeepEdge2) {
- if (TrueBB == FalseBB)
- // We were only looking for one successor, and it was present.
- // Create an unconditional branch to it.
- Builder.CreateBr(TrueBB);
- else {
- // We found both of the successors we were looking for.
- // Create a conditional branch sharing the condition of the select.
- BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
- if (TrueWeight != FalseWeight)
- NewBI->setMetadata(LLVMContext::MD_prof,
- MDBuilder(OldTerm->getContext()).
- createBranchWeights(TrueWeight, FalseWeight));
- }
- } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
- // Neither of the selected blocks were successors, so this
- // terminator must be unreachable.
- new UnreachableInst(OldTerm->getContext(), OldTerm);
- } else {
- // One of the selected values was a successor, but the other wasn't.
- // Insert an unconditional branch to the one that was found;
- // the edge to the one that wasn't must be unreachable.
- if (!KeepEdge1)
- // Only TrueBB was found.
- Builder.CreateBr(TrueBB);
- else
- // Only FalseBB was found.
- Builder.CreateBr(FalseBB);
- }
- EraseTerminatorInstAndDCECond(OldTerm);
- return true;
- }
- // Replaces
- // (switch (select cond, X, Y)) on constant X, Y
- // with a branch - conditional if X and Y lead to distinct BBs,
- // unconditional otherwise.
- static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
- // Check for constant integer values in the select.
- ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
- ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
- if (!TrueVal || !FalseVal)
- return false;
- // Find the relevant condition and destinations.
- Value *Condition = Select->getCondition();
- BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
- BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
- // Get weight for TrueBB and FalseBB.
- uint32_t TrueWeight = 0, FalseWeight = 0;
- SmallVector<uint64_t, 8> Weights;
- bool HasWeights = HasBranchWeights(SI);
- if (HasWeights) {
- GetBranchWeights(SI, Weights);
- if (Weights.size() == 1 + SI->getNumCases()) {
- TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
- getSuccessorIndex()];
- FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
- getSuccessorIndex()];
- }
- }
- // Perform the actual simplification.
- return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
- TrueWeight, FalseWeight);
- }
- // Replaces
- // (indirectbr (select cond, blockaddress(@fn, BlockA),
- // blockaddress(@fn, BlockB)))
- // with
- // (br cond, BlockA, BlockB).
- static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
- // Check that both operands of the select are block addresses.
- BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
- BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
- if (!TBA || !FBA)
- return false;
- // Extract the actual blocks.
- BasicBlock *TrueBB = TBA->getBasicBlock();
- BasicBlock *FalseBB = FBA->getBasicBlock();
- // Perform the actual simplification.
- return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
- 0, 0);
- }
- /// This is called when we find an icmp instruction
- /// (a seteq/setne with a constant) as the only instruction in a
- /// block that ends with an uncond branch. We are looking for a very specific
- /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
- /// this case, we merge the first two "or's of icmp" into a switch, but then the
- /// default value goes to an uncond block with a seteq in it, we get something
- /// like:
- ///
- /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
- /// DEFAULT:
- /// %tmp = icmp eq i8 %A, 92
- /// br label %end
- /// end:
- /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
- ///
- /// We prefer to split the edge to 'end' so that there is a true/false entry to
- /// the PHI, merging the third icmp into the switch.
- static bool TryToSimplifyUncondBranchWithICmpInIt(
- ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
- const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
- AssumptionCache *AC) {
- BasicBlock *BB = ICI->getParent();
- // If the block has any PHIs in it or the icmp has multiple uses, it is too
- // complex.
- if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
- Value *V = ICI->getOperand(0);
- ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
- // The pattern we're looking for is where our only predecessor is a switch on
- // 'V' and this block is the default case for the switch. In this case we can
- // fold the compared value into the switch to simplify things.
- BasicBlock *Pred = BB->getSinglePredecessor();
- if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
- SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
- if (SI->getCondition() != V)
- return false;
- // If BB is reachable on a non-default case, then we simply know the value of
- // V in this block. Substitute it and constant fold the icmp instruction
- // away.
- if (SI->getDefaultDest() != BB) {
- ConstantInt *VVal = SI->findCaseDest(BB);
- assert(VVal && "Should have a unique destination value");
- ICI->setOperand(0, VVal);
- if (Value *V = SimplifyInstruction(ICI, DL)) {
- ICI->replaceAllUsesWith(V);
- ICI->eraseFromParent();
- }
- // BB is now empty, so it is likely to simplify away.
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- }
- // Ok, the block is reachable from the default dest. If the constant we're
- // comparing exists in one of the other edges, then we can constant fold ICI
- // and zap it.
- if (SI->findCaseValue(Cst) != SI->case_default()) {
- Value *V;
- if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
- V = ConstantInt::getFalse(BB->getContext());
- else
- V = ConstantInt::getTrue(BB->getContext());
- ICI->replaceAllUsesWith(V);
- ICI->eraseFromParent();
- // BB is now empty, so it is likely to simplify away.
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- }
- // The use of the icmp has to be in the 'end' block, by the only PHI node in
- // the block.
- BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
- PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
- if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
- isa<PHINode>(++BasicBlock::iterator(PHIUse)))
- return false;
- // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
- // true in the PHI.
- Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
- Constant *NewCst = ConstantInt::getFalse(BB->getContext());
- if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
- std::swap(DefaultCst, NewCst);
- // Replace ICI (which is used by the PHI for the default value) with true or
- // false depending on if it is EQ or NE.
- ICI->replaceAllUsesWith(DefaultCst);
- ICI->eraseFromParent();
- // Okay, the switch goes to this block on a default value. Add an edge from
- // the switch to the merge point on the compared value.
- BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
- BB->getParent(), BB);
- SmallVector<uint64_t, 8> Weights;
- bool HasWeights = HasBranchWeights(SI);
- if (HasWeights) {
- GetBranchWeights(SI, Weights);
- if (Weights.size() == 1 + SI->getNumCases()) {
- // Split weight for default case to case for "Cst".
- Weights[0] = (Weights[0]+1) >> 1;
- Weights.push_back(Weights[0]);
- SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
- SI->setMetadata(LLVMContext::MD_prof,
- MDBuilder(SI->getContext()).
- createBranchWeights(MDWeights));
- }
- }
- SI->addCase(Cst, NewBB);
- // NewBB branches to the phi block, add the uncond branch and the phi entry.
- Builder.SetInsertPoint(NewBB);
- Builder.SetCurrentDebugLocation(SI->getDebugLoc());
- Builder.CreateBr(SuccBlock);
- PHIUse->addIncoming(NewCst, NewBB);
- return true;
- }
- #if 0 // HLSL Change Begins. This will not help for hlsl.
- /// The specified branch is a conditional branch.
- /// Check to see if it is branching on an or/and chain of icmp instructions, and
- /// fold it into a switch instruction if so.
- static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
- const DataLayout &DL) {
- Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
- if (!Cond) return false;
- // Change br (X == 0 | X == 1), T, F into a switch instruction.
- // If this is a bunch of seteq's or'd together, or if it's a bunch of
- // 'setne's and'ed together, collect them.
- // Try to gather values from a chain of and/or to be turned into a switch
- ConstantComparesGatherer ConstantCompare(Cond, DL);
- // Unpack the result
- SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals;
- Value *CompVal = ConstantCompare.CompValue;
- unsigned UsedICmps = ConstantCompare.UsedICmps;
- Value *ExtraCase = ConstantCompare.Extra;
- // If we didn't have a multiply compared value, fail.
- if (!CompVal) return false;
- // Avoid turning single icmps into a switch.
- if (UsedICmps <= 1)
- return false;
- bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
- // There might be duplicate constants in the list, which the switch
- // instruction can't handle, remove them now.
- array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
- Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
- // If Extra was used, we require at least two switch values to do the
- // transformation. A switch with one value is just an cond branch.
- if (ExtraCase && Values.size() < 2) return false;
- // TODO: Preserve branch weight metadata, similarly to how
- // FoldValueComparisonIntoPredecessors preserves it.
- // Figure out which block is which destination.
- BasicBlock *DefaultBB = BI->getSuccessor(1);
- BasicBlock *EdgeBB = BI->getSuccessor(0);
- if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
- BasicBlock *BB = BI->getParent();
- DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
- << " cases into SWITCH. BB is:\n" << *BB);
- // If there are any extra values that couldn't be folded into the switch
- // then we evaluate them with an explicit branch first. Split the block
- // right before the condbr to handle it.
- if (ExtraCase) {
- BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
- // Remove the uncond branch added to the old block.
- TerminatorInst *OldTI = BB->getTerminator();
- Builder.SetInsertPoint(OldTI);
- if (TrueWhenEqual)
- Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
- else
- Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
- OldTI->eraseFromParent();
- // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
- // for the edge we just added.
- AddPredecessorToBlock(EdgeBB, BB, NewBB);
- DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
- << "\nEXTRABB = " << *BB);
- BB = NewBB;
- }
- Builder.SetInsertPoint(BI);
- // Convert pointer to int before we switch.
- if (CompVal->getType()->isPointerTy()) {
- CompVal = Builder.CreatePtrToInt(
- CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
- }
- // Create the new switch instruction now.
- SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
- // Add all of the 'cases' to the switch instruction.
- for (unsigned i = 0, e = Values.size(); i != e; ++i)
- New->addCase(Values[i], EdgeBB);
- // We added edges from PI to the EdgeBB. As such, if there were any
- // PHI nodes in EdgeBB, they need entries to be added corresponding to
- // the number of edges added.
- for (BasicBlock::iterator BBI = EdgeBB->begin();
- isa<PHINode>(BBI); ++BBI) {
- PHINode *PN = cast<PHINode>(BBI);
- Value *InVal = PN->getIncomingValueForBlock(BB);
- for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
- PN->addIncoming(InVal, BB);
- }
- // Erase the old branch instruction.
- EraseTerminatorInstAndDCECond(BI);
- DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
- return true;
- }
- #endif // HLSL Change Ends
- bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
- // If this is a trivial landing pad that just continues unwinding the caught
- // exception then zap the landing pad, turning its invokes into calls.
- BasicBlock *BB = RI->getParent();
- LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
- if (RI->getValue() != LPInst)
- // Not a landing pad, or the resume is not unwinding the exception that
- // caused control to branch here.
- return false;
- // Check that there are no other instructions except for debug intrinsics.
- BasicBlock::iterator I = LPInst, E = RI;
- while (++I != E)
- if (!isa<DbgInfoIntrinsic>(I))
- return false;
- // Turn all invokes that unwind here into calls and delete the basic block.
- for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
- InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
- SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
- // Insert a call instruction before the invoke.
- CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
- Call->takeName(II);
- Call->setCallingConv(II->getCallingConv());
- Call->setAttributes(II->getAttributes());
- Call->setDebugLoc(II->getDebugLoc());
- // Anything that used the value produced by the invoke instruction now uses
- // the value produced by the call instruction. Note that we do this even
- // for void functions and calls with no uses so that the callgraph edge is
- // updated.
- II->replaceAllUsesWith(Call);
- BB->removePredecessor(II->getParent());
- // Insert a branch to the normal destination right before the invoke.
- BranchInst::Create(II->getNormalDest(), II);
- // Finally, delete the invoke instruction!
- II->eraseFromParent();
- }
- // The landingpad is now unreachable. Zap it.
- BB->eraseFromParent();
- return true;
- }
- bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
- BasicBlock *BB = RI->getParent();
- if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
- // Find predecessors that end with branches.
- SmallVector<BasicBlock*, 8> UncondBranchPreds;
- SmallVector<BranchInst*, 8> CondBranchPreds;
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
- BasicBlock *P = *PI;
- TerminatorInst *PTI = P->getTerminator();
- if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
- if (BI->isUnconditional())
- UncondBranchPreds.push_back(P);
- else
- CondBranchPreds.push_back(BI);
- }
- }
- // If we found some, do the transformation!
- if (!UncondBranchPreds.empty() && DupRet) {
- while (!UncondBranchPreds.empty()) {
- BasicBlock *Pred = UncondBranchPreds.pop_back_val();
- DEBUG(dbgs() << "FOLDING: " << *BB
- << "INTO UNCOND BRANCH PRED: " << *Pred);
- (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
- }
- // If we eliminated all predecessors of the block, delete the block now.
- if (pred_empty(BB))
- // We know there are no successors, so just nuke the block.
- BB->eraseFromParent();
- return true;
- }
- // Check out all of the conditional branches going to this return
- // instruction. If any of them just select between returns, change the
- // branch itself into a select/return pair.
- while (!CondBranchPreds.empty()) {
- BranchInst *BI = CondBranchPreds.pop_back_val();
- // Check to see if the non-BB successor is also a return block.
- if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
- isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
- SimplifyCondBranchToTwoReturns(BI, Builder))
- return true;
- }
- return false;
- }
- bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
- BasicBlock *BB = UI->getParent();
- bool Changed = false;
- // If there are any instructions immediately before the unreachable that can
- // be removed, do so.
- while (UI != BB->begin()) {
- BasicBlock::iterator BBI = UI;
- --BBI;
- // Do not delete instructions that can have side effects which might cause
- // the unreachable to not be reachable; specifically, calls and volatile
- // operations may have this effect.
- if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
- if (BBI->mayHaveSideEffects()) {
- if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
- if (SI->isVolatile())
- break;
- } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
- if (LI->isVolatile())
- break;
- } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
- if (RMWI->isVolatile())
- break;
- } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
- if (CXI->isVolatile())
- break;
- } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
- !isa<LandingPadInst>(BBI)) {
- break;
- }
- // Note that deleting LandingPad's here is in fact okay, although it
- // involves a bit of subtle reasoning. If this inst is a LandingPad,
- // all the predecessors of this block will be the unwind edges of Invokes,
- // and we can therefore guarantee this block will be erased.
- }
- // Delete this instruction (any uses are guaranteed to be dead)
- if (!BBI->use_empty())
- BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
- BBI->eraseFromParent();
- Changed = true;
- }
- // If the unreachable instruction is the first in the block, take a gander
- // at all of the predecessors of this instruction, and simplify them.
- if (&BB->front() != UI) return Changed;
- SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
- for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
- TerminatorInst *TI = Preds[i]->getTerminator();
- IRBuilder<> Builder(TI);
- if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- if (BI->isUnconditional()) {
- if (BI->getSuccessor(0) == BB) {
- new UnreachableInst(TI->getContext(), TI);
- TI->eraseFromParent();
- Changed = true;
- }
- } else {
- if (BI->getSuccessor(0) == BB) {
- Builder.CreateBr(BI->getSuccessor(1));
- EraseTerminatorInstAndDCECond(BI);
- } else if (BI->getSuccessor(1) == BB) {
- Builder.CreateBr(BI->getSuccessor(0));
- EraseTerminatorInstAndDCECond(BI);
- Changed = true;
- }
- }
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
- for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
- i != e; ++i)
- if (i.getCaseSuccessor() == BB) {
- BB->removePredecessor(SI->getParent());
- SI->removeCase(i);
- --i; --e;
- Changed = true;
- }
- } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
- if (II->getUnwindDest() == BB) {
- // Convert the invoke to a call instruction. This would be a good
- // place to note that the call does not throw though.
- BranchInst *BI = Builder.CreateBr(II->getNormalDest());
- II->removeFromParent(); // Take out of symbol table
- // Insert the call now...
- SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
- Builder.SetInsertPoint(BI);
- CallInst *CI = Builder.CreateCall(II->getCalledValue(),
- Args, II->getName());
- CI->setCallingConv(II->getCallingConv());
- CI->setAttributes(II->getAttributes());
- // If the invoke produced a value, the call does now instead.
- II->replaceAllUsesWith(CI);
- delete II;
- Changed = true;
- }
- }
- }
- // If this block is now dead, remove it.
- if (pred_empty(BB) &&
- BB != &BB->getParent()->getEntryBlock()) {
- // We know there are no successors, so just nuke the block.
- BB->eraseFromParent();
- return true;
- }
- return Changed;
- }
- static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
- assert(Cases.size() >= 1);
- array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
- for (size_t I = 1, E = Cases.size(); I != E; ++I) {
- if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
- return false;
- }
- return true;
- }
- /// Turn a switch with two reachable destinations into an integer range
- /// comparison and branch.
- static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
- assert(SI->getNumCases() > 1 && "Degenerate switch?");
- bool HasDefault =
- !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
- // Partition the cases into two sets with different destinations.
- BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
- BasicBlock *DestB = nullptr;
- SmallVector <ConstantInt *, 16> CasesA;
- SmallVector <ConstantInt *, 16> CasesB;
- for (SwitchInst::CaseIt I : SI->cases()) {
- BasicBlock *Dest = I.getCaseSuccessor();
- if (!DestA) DestA = Dest;
- if (Dest == DestA) {
- CasesA.push_back(I.getCaseValue());
- continue;
- }
- if (!DestB) DestB = Dest;
- if (Dest == DestB) {
- CasesB.push_back(I.getCaseValue());
- continue;
- }
- return false; // More than two destinations.
- }
- assert(DestA && DestB && "Single-destination switch should have been folded.");
- assert(DestA != DestB);
- assert(DestB != SI->getDefaultDest());
- assert(!CasesB.empty() && "There must be non-default cases.");
- assert(!CasesA.empty() || HasDefault);
- // Figure out if one of the sets of cases form a contiguous range.
- SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
- BasicBlock *ContiguousDest = nullptr;
- BasicBlock *OtherDest = nullptr;
- if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
- ContiguousCases = &CasesA;
- ContiguousDest = DestA;
- OtherDest = DestB;
- } else if (CasesAreContiguous(CasesB)) {
- ContiguousCases = &CasesB;
- ContiguousDest = DestB;
- OtherDest = DestA;
- } else
- return false;
- // Start building the compare and branch.
- Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
- Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size());
- Value *Sub = SI->getCondition();
- if (!Offset->isNullValue())
- Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
- Value *Cmp;
- // If NumCases overflowed, then all possible values jump to the successor.
- if (NumCases->isNullValue() && !ContiguousCases->empty())
- Cmp = ConstantInt::getTrue(SI->getContext());
- else
- Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
- BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
- // Update weight for the newly-created conditional branch.
- if (HasBranchWeights(SI)) {
- SmallVector<uint64_t, 8> Weights;
- GetBranchWeights(SI, Weights);
- if (Weights.size() == 1 + SI->getNumCases()) {
- uint64_t TrueWeight = 0;
- uint64_t FalseWeight = 0;
- for (size_t I = 0, E = Weights.size(); I != E; ++I) {
- if (SI->getSuccessor(I) == ContiguousDest)
- TrueWeight += Weights[I];
- else
- FalseWeight += Weights[I];
- }
- while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
- TrueWeight /= 2;
- FalseWeight /= 2;
- }
- NewBI->setMetadata(LLVMContext::MD_prof,
- MDBuilder(SI->getContext()).createBranchWeights(
- (uint32_t)TrueWeight, (uint32_t)FalseWeight));
- }
- }
- // Prune obsolete incoming values off the successors' PHI nodes.
- for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
- unsigned PreviousEdges = ContiguousCases->size();
- if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges;
- for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
- cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
- }
- for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
- unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
- if (OtherDest == SI->getDefaultDest()) ++PreviousEdges;
- for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
- cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
- }
- // Drop the switch.
- SI->eraseFromParent();
- return true;
- }
- /// Compute masked bits for the condition of a switch
- /// and use it to remove dead cases.
- static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
- const DataLayout &DL) {
- Value *Cond = SI->getCondition();
- unsigned Bits = Cond->getType()->getIntegerBitWidth();
- APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
- computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
- // Gather dead cases.
- SmallVector<ConstantInt*, 8> DeadCases;
- for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
- if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
- (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
- DeadCases.push_back(I.getCaseValue());
- DEBUG(dbgs() << "SimplifyCFG: switch case '"
- << I.getCaseValue() << "' is dead.\n");
- }
- }
- SmallVector<uint64_t, 8> Weights;
- bool HasWeight = HasBranchWeights(SI);
- if (HasWeight) {
- GetBranchWeights(SI, Weights);
- HasWeight = (Weights.size() == 1 + SI->getNumCases());
- }
- // Remove dead cases from the switch.
- for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
- SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
- assert(Case != SI->case_default() &&
- "Case was not found. Probably mistake in DeadCases forming.");
- if (HasWeight) {
- std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
- Weights.pop_back();
- }
- // Prune unused values from PHI nodes.
- Case.getCaseSuccessor()->removePredecessor(SI->getParent());
- SI->removeCase(Case);
- }
- if (HasWeight && Weights.size() >= 2) {
- SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
- SI->setMetadata(LLVMContext::MD_prof,
- MDBuilder(SI->getParent()->getContext()).
- createBranchWeights(MDWeights));
- }
- return !DeadCases.empty();
- }
- /// If BB would be eligible for simplification by
- /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
- /// by an unconditional branch), look at the phi node for BB in the successor
- /// block and see if the incoming value is equal to CaseValue. If so, return
- /// the phi node, and set PhiIndex to BB's index in the phi node.
- static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
- BasicBlock *BB,
- int *PhiIndex) {
- if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
- return nullptr; // BB must be empty to be a candidate for simplification.
- if (!BB->getSinglePredecessor())
- return nullptr; // BB must be dominated by the switch.
- BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
- if (!Branch || !Branch->isUnconditional())
- return nullptr; // Terminator must be unconditional branch.
- BasicBlock *Succ = Branch->getSuccessor(0);
- BasicBlock::iterator I = Succ->begin();
- while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
- int Idx = PHI->getBasicBlockIndex(BB);
- assert(Idx >= 0 && "PHI has no entry for predecessor?");
- Value *InValue = PHI->getIncomingValue(Idx);
- if (InValue != CaseValue) continue;
- *PhiIndex = Idx;
- return PHI;
- }
- return nullptr;
- }
- /// Try to forward the condition of a switch instruction to a phi node
- /// dominated by the switch, if that would mean that some of the destination
- /// blocks of the switch can be folded away.
- /// Returns true if a change is made.
- static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
- typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
- ForwardingNodesMap ForwardingNodes;
- for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
- ConstantInt *CaseValue = I.getCaseValue();
- BasicBlock *CaseDest = I.getCaseSuccessor();
- int PhiIndex;
- PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
- &PhiIndex);
- if (!PHI) continue;
- ForwardingNodes[PHI].push_back(PhiIndex);
- }
- bool Changed = false;
- for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
- E = ForwardingNodes.end(); I != E; ++I) {
- PHINode *Phi = I->first;
- SmallVectorImpl<int> &Indexes = I->second;
- if (Indexes.size() < 2) continue;
- for (size_t I = 0, E = Indexes.size(); I != E; ++I)
- Phi->setIncomingValue(Indexes[I], SI->getCondition());
- Changed = true;
- }
- return Changed;
- }
- /// Return true if the backend will be able to handle
- /// initializing an array of constants like C.
- static bool ValidLookupTableConstant(Constant *C) {
- if (C->isThreadDependent())
- return false;
- if (C->isDLLImportDependent())
- return false;
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
- return CE->isGEPWithNoNotionalOverIndexing();
- return isa<ConstantFP>(C) ||
- isa<ConstantInt>(C) ||
- isa<ConstantPointerNull>(C) ||
- isa<GlobalValue>(C) ||
- isa<UndefValue>(C);
- }
- /// If V is a Constant, return it. Otherwise, try to look up
- /// its constant value in ConstantPool, returning 0 if it's not there.
- static Constant *LookupConstant(Value *V,
- const SmallDenseMap<Value*, Constant*>& ConstantPool) {
- if (Constant *C = dyn_cast<Constant>(V))
- return C;
- return ConstantPool.lookup(V);
- }
- /// Try to fold instruction I into a constant. This works for
- /// simple instructions such as binary operations where both operands are
- /// constant or can be replaced by constants from the ConstantPool. Returns the
- /// resulting constant on success, 0 otherwise.
- static Constant *
- ConstantFold(Instruction *I, const DataLayout &DL,
- const SmallDenseMap<Value *, Constant *> &ConstantPool) {
- if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
- Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
- if (!A)
- return nullptr;
- if (A->isAllOnesValue())
- return LookupConstant(Select->getTrueValue(), ConstantPool);
- if (A->isNullValue())
- return LookupConstant(Select->getFalseValue(), ConstantPool);
- return nullptr;
- }
- SmallVector<Constant *, 4> COps;
- for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
- if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
- COps.push_back(A);
- else
- return nullptr;
- }
- if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
- return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
- COps[1], DL);
- }
- return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
- }
- /// Try to determine the resulting constant values in phi nodes
- /// at the common destination basic block, *CommonDest, for one of the case
- /// destionations CaseDest corresponding to value CaseVal (0 for the default
- /// case), of a switch instruction SI.
- static bool
- GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
- BasicBlock **CommonDest,
- SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
- const DataLayout &DL) {
- // The block from which we enter the common destination.
- BasicBlock *Pred = SI->getParent();
- // If CaseDest is empty except for some side-effect free instructions through
- // which we can constant-propagate the CaseVal, continue to its successor.
- SmallDenseMap<Value*, Constant*> ConstantPool;
- ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
- for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
- ++I) {
- if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
- // If the terminator is a simple branch, continue to the next block.
- if (T->getNumSuccessors() != 1)
- return false;
- Pred = CaseDest;
- CaseDest = T->getSuccessor(0);
- } else if (isa<DbgInfoIntrinsic>(I)) {
- // Skip debug intrinsic.
- continue;
- } else if (Constant *C = ConstantFold(I, DL, ConstantPool)) {
- // Instruction is side-effect free and constant.
- // If the instruction has uses outside this block or a phi node slot for
- // the block, it is not safe to bypass the instruction since it would then
- // no longer dominate all its uses.
- for (auto &Use : I->uses()) {
- User *User = Use.getUser();
- if (Instruction *I = dyn_cast<Instruction>(User))
- if (I->getParent() == CaseDest)
- continue;
- if (PHINode *Phi = dyn_cast<PHINode>(User))
- if (Phi->getIncomingBlock(Use) == CaseDest)
- continue;
- return false;
- }
- ConstantPool.insert(std::make_pair(I, C));
- } else {
- break;
- }
- }
- // If we did not have a CommonDest before, use the current one.
- if (!*CommonDest)
- *CommonDest = CaseDest;
- // If the destination isn't the common one, abort.
- if (CaseDest != *CommonDest)
- return false;
- // Get the values for this case from phi nodes in the destination block.
- BasicBlock::iterator I = (*CommonDest)->begin();
- while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
- int Idx = PHI->getBasicBlockIndex(Pred);
- if (Idx == -1)
- continue;
- Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
- ConstantPool);
- if (!ConstVal)
- return false;
- // Be conservative about which kinds of constants we support.
- if (!ValidLookupTableConstant(ConstVal))
- return false;
- Res.push_back(std::make_pair(PHI, ConstVal));
- }
- return Res.size() > 0;
- }
- // Helper function used to add CaseVal to the list of cases that generate
- // Result.
- static void MapCaseToResult(ConstantInt *CaseVal,
- SwitchCaseResultVectorTy &UniqueResults,
- Constant *Result) {
- for (auto &I : UniqueResults) {
- if (I.first == Result) {
- I.second.push_back(CaseVal);
- return;
- }
- }
- UniqueResults.push_back(std::make_pair(Result,
- SmallVector<ConstantInt*, 4>(1, CaseVal)));
- }
- // Helper function that initializes a map containing
- // results for the PHI node of the common destination block for a switch
- // instruction. Returns false if multiple PHI nodes have been found or if
- // there is not a common destination block for the switch.
- static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
- BasicBlock *&CommonDest,
- SwitchCaseResultVectorTy &UniqueResults,
- Constant *&DefaultResult,
- const DataLayout &DL) {
- for (auto &I : SI->cases()) {
- ConstantInt *CaseVal = I.getCaseValue();
- // Resulting value at phi nodes for this case value.
- SwitchCaseResultsTy Results;
- if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
- DL))
- return false;
- // Only one value per case is permitted
- if (Results.size() > 1)
- return false;
- MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
- // Check the PHI consistency.
- if (!PHI)
- PHI = Results[0].first;
- else if (PHI != Results[0].first)
- return false;
- }
- // Find the default result value.
- SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
- BasicBlock *DefaultDest = SI->getDefaultDest();
- GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
- DL);
- // If the default value is not found abort unless the default destination
- // is unreachable.
- DefaultResult =
- DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
- if ((!DefaultResult &&
- !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
- return false;
- return true;
- }
- // Helper function that checks if it is possible to transform a switch with only
- // two cases (or two cases + default) that produces a result into a select.
- // Example:
- // switch (a) {
- // case 10: %0 = icmp eq i32 %a, 10
- // return 10; %1 = select i1 %0, i32 10, i32 4
- // case 20: ----> %2 = icmp eq i32 %a, 20
- // return 2; %3 = select i1 %2, i32 2, i32 %1
- // default:
- // return 4;
- // }
- static Value *
- ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
- Constant *DefaultResult, Value *Condition,
- IRBuilder<> &Builder) {
- assert(ResultVector.size() == 2 &&
- "We should have exactly two unique results at this point");
- // If we are selecting between only two cases transform into a simple
- // select or a two-way select if default is possible.
- if (ResultVector[0].second.size() == 1 &&
- ResultVector[1].second.size() == 1) {
- ConstantInt *const FirstCase = ResultVector[0].second[0];
- ConstantInt *const SecondCase = ResultVector[1].second[0];
- bool DefaultCanTrigger = DefaultResult;
- Value *SelectValue = ResultVector[1].first;
- if (DefaultCanTrigger) {
- Value *const ValueCompare =
- Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
- SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
- DefaultResult, "switch.select");
- }
- Value *const ValueCompare =
- Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
- return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue,
- "switch.select");
- }
- return nullptr;
- }
- // Helper function to cleanup a switch instruction that has been converted into
- // a select, fixing up PHI nodes and basic blocks.
- static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
- Value *SelectValue,
- IRBuilder<> &Builder) {
- BasicBlock *SelectBB = SI->getParent();
- while (PHI->getBasicBlockIndex(SelectBB) >= 0)
- PHI->removeIncomingValue(SelectBB);
- PHI->addIncoming(SelectValue, SelectBB);
- Builder.CreateBr(PHI->getParent());
- // Remove the switch.
- for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
- BasicBlock *Succ = SI->getSuccessor(i);
- if (Succ == PHI->getParent())
- continue;
- Succ->removePredecessor(SelectBB);
- }
- SI->eraseFromParent();
- }
- /// If the switch is only used to initialize one or more
- /// phi nodes in a common successor block with only two different
- /// constant values, replace the switch with select.
- static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
- AssumptionCache *AC, const DataLayout &DL) {
- Value *const Cond = SI->getCondition();
- PHINode *PHI = nullptr;
- BasicBlock *CommonDest = nullptr;
- Constant *DefaultResult;
- SwitchCaseResultVectorTy UniqueResults;
- // Collect all the cases that will deliver the same value from the switch.
- if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
- DL))
- return false;
- // Selects choose between maximum two values.
- if (UniqueResults.size() != 2)
- return false;
- assert(PHI != nullptr && "PHI for value select not found");
- Builder.SetInsertPoint(SI);
- Value *SelectValue = ConvertTwoCaseSwitch(
- UniqueResults,
- DefaultResult, Cond, Builder);
- if (SelectValue) {
- RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
- return true;
- }
- // The switch couldn't be converted into a select.
- return false;
- }
- namespace {
- /// This class represents a lookup table that can be used to replace a switch.
- class SwitchLookupTable {
- public:
- /// Create a lookup table to use as a switch replacement with the contents
- /// of Values, using DefaultValue to fill any holes in the table.
- SwitchLookupTable(
- Module &M, uint64_t TableSize, ConstantInt *Offset,
- const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
- Constant *DefaultValue, const DataLayout &DL);
- /// Build instructions with Builder to retrieve the value at
- /// the position given by Index in the lookup table.
- Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
- /// Return true if a table with TableSize elements of
- /// type ElementType would fit in a target-legal register.
- static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
- const Type *ElementType);
- private:
- // Depending on the contents of the table, it can be represented in
- // different ways.
- enum {
- // For tables where each element contains the same value, we just have to
- // store that single value and return it for each lookup.
- SingleValueKind,
- // For tables where there is a linear relationship between table index
- // and values. We calculate the result with a simple multiplication
- // and addition instead of a table lookup.
- LinearMapKind,
- // For small tables with integer elements, we can pack them into a bitmap
- // that fits into a target-legal register. Values are retrieved by
- // shift and mask operations.
- BitMapKind,
- // The table is stored as an array of values. Values are retrieved by load
- // instructions from the table.
- ArrayKind
- } Kind;
- // For SingleValueKind, this is the single value.
- Constant *SingleValue;
- // For BitMapKind, this is the bitmap.
- ConstantInt *BitMap;
- IntegerType *BitMapElementTy;
- // For LinearMapKind, these are the constants used to derive the value.
- ConstantInt *LinearOffset;
- ConstantInt *LinearMultiplier;
- // For ArrayKind, this is the array.
- GlobalVariable *Array;
- };
- }
- SwitchLookupTable::SwitchLookupTable(
- Module &M, uint64_t TableSize, ConstantInt *Offset,
- const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
- Constant *DefaultValue, const DataLayout &DL)
- : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
- LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
- assert(Values.size() && "Can't build lookup table without values!");
- assert(TableSize >= Values.size() && "Can't fit values in table!");
- // If all values in the table are equal, this is that value.
- SingleValue = Values.begin()->second;
- Type *ValueType = Values.begin()->second->getType();
- // Build up the table contents.
- SmallVector<Constant*, 64> TableContents(TableSize);
- for (size_t I = 0, E = Values.size(); I != E; ++I) {
- ConstantInt *CaseVal = Values[I].first;
- Constant *CaseRes = Values[I].second;
- assert(CaseRes->getType() == ValueType);
- uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
- .getLimitedValue();
- TableContents[Idx] = CaseRes;
- if (CaseRes != SingleValue)
- SingleValue = nullptr;
- }
- // Fill in any holes in the table with the default result.
- if (Values.size() < TableSize) {
- assert(DefaultValue &&
- "Need a default value to fill the lookup table holes.");
- assert(DefaultValue->getType() == ValueType);
- for (uint64_t I = 0; I < TableSize; ++I) {
- if (!TableContents[I])
- TableContents[I] = DefaultValue;
- }
- if (DefaultValue != SingleValue)
- SingleValue = nullptr;
- }
- // If each element in the table contains the same value, we only need to store
- // that single value.
- if (SingleValue) {
- Kind = SingleValueKind;
- return;
- }
- // Check if we can derive the value with a linear transformation from the
- // table index.
- if (isa<IntegerType>(ValueType)) {
- bool LinearMappingPossible = true;
- APInt PrevVal;
- APInt DistToPrev;
- assert(TableSize >= 2 && "Should be a SingleValue table.");
- // Check if there is the same distance between two consecutive values.
- for (uint64_t I = 0; I < TableSize; ++I) {
- ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
- if (!ConstVal) {
- // This is an undef. We could deal with it, but undefs in lookup tables
- // are very seldom. It's probably not worth the additional complexity.
- LinearMappingPossible = false;
- break;
- }
- APInt Val = ConstVal->getValue();
- if (I != 0) {
- APInt Dist = Val - PrevVal;
- if (I == 1) {
- DistToPrev = Dist;
- } else if (Dist != DistToPrev) {
- LinearMappingPossible = false;
- break;
- }
- }
- PrevVal = Val;
- }
- if (LinearMappingPossible) {
- LinearOffset = cast<ConstantInt>(TableContents[0]);
- LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
- Kind = LinearMapKind;
- ++NumLinearMaps;
- return;
- }
- }
- // If the type is integer and the table fits in a register, build a bitmap.
- if (WouldFitInRegister(DL, TableSize, ValueType)) {
- IntegerType *IT = cast<IntegerType>(ValueType);
- APInt TableInt(TableSize * IT->getBitWidth(), 0);
- for (uint64_t I = TableSize; I > 0; --I) {
- TableInt <<= IT->getBitWidth();
- // Insert values into the bitmap. Undef values are set to zero.
- if (!isa<UndefValue>(TableContents[I - 1])) {
- ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
- TableInt |= Val->getValue().zext(TableInt.getBitWidth());
- }
- }
- BitMap = ConstantInt::get(M.getContext(), TableInt);
- BitMapElementTy = IT;
- Kind = BitMapKind;
- ++NumBitMaps;
- return;
- }
- // Store the table in an array.
- ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
- Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
- Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
- GlobalVariable::PrivateLinkage,
- Initializer,
- "switch.table");
- Array->setUnnamedAddr(true);
- Kind = ArrayKind;
- }
- Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
- switch (Kind) {
- case SingleValueKind:
- return SingleValue;
- case LinearMapKind: {
- // Derive the result value from the input value.
- Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
- false, "switch.idx.cast");
- if (!LinearMultiplier->isOne())
- Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
- if (!LinearOffset->isZero())
- Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
- return Result;
- }
- case BitMapKind: {
- // Type of the bitmap (e.g. i59).
- IntegerType *MapTy = BitMap->getType();
- // Cast Index to the same type as the bitmap.
- // Note: The Index is <= the number of elements in the table, so
- // truncating it to the width of the bitmask is safe.
- Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
- // Multiply the shift amount by the element width.
- ShiftAmt = Builder.CreateMul(ShiftAmt,
- ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
- "switch.shiftamt");
- // Shift down.
- Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
- "switch.downshift");
- // Mask off.
- return Builder.CreateTrunc(DownShifted, BitMapElementTy,
- "switch.masked");
- }
- case ArrayKind: {
- // Make sure the table index will not overflow when treated as signed.
- IntegerType *IT = cast<IntegerType>(Index->getType());
- uint64_t TableSize = Array->getInitializer()->getType()
- ->getArrayNumElements();
- if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
- Index = Builder.CreateZExt(Index,
- IntegerType::get(IT->getContext(),
- IT->getBitWidth() + 1),
- "switch.tableidx.zext");
- Value *GEPIndices[] = { Builder.getInt32(0), Index };
- Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
- GEPIndices, "switch.gep");
- return Builder.CreateLoad(GEP, "switch.load");
- }
- }
- llvm_unreachable("Unknown lookup table kind!");
- }
- bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
- uint64_t TableSize,
- const Type *ElementType) {
- const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
- if (!IT)
- return false;
- // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
- // are <= 15, we could try to narrow the type.
- // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
- if (TableSize >= UINT_MAX/IT->getBitWidth())
- return false;
- return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
- }
- /// Determine whether a lookup table should be built for this switch, based on
- /// the number of cases, size of the table, and the types of the results.
- static bool
- ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
- const TargetTransformInfo &TTI, const DataLayout &DL,
- const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
- if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
- return false; // TableSize overflowed, or mul below might overflow.
- bool AllTablesFitInRegister = true;
- bool HasIllegalType = false;
- for (const auto &I : ResultTypes) {
- Type *Ty = I.second;
- // Saturate this flag to true.
- HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
- // Saturate this flag to false.
- AllTablesFitInRegister = AllTablesFitInRegister &&
- SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
- // If both flags saturate, we're done. NOTE: This *only* works with
- // saturating flags, and all flags have to saturate first due to the
- // non-deterministic behavior of iterating over a dense map.
- if (HasIllegalType && !AllTablesFitInRegister)
- break;
- }
- // If each table would fit in a register, we should build it anyway.
- if (AllTablesFitInRegister)
- return true;
- // Don't build a table that doesn't fit in-register if it has illegal types.
- if (HasIllegalType)
- return false;
- // The table density should be at least 40%. This is the same criterion as for
- // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
- // FIXME: Find the best cut-off.
- return SI->getNumCases() * 10 >= TableSize * 4;
- }
- /// Try to reuse the switch table index compare. Following pattern:
- /// \code
- /// if (idx < tablesize)
- /// r = table[idx]; // table does not contain default_value
- /// else
- /// r = default_value;
- /// if (r != default_value)
- /// ...
- /// \endcode
- /// Is optimized to:
- /// \code
- /// cond = idx < tablesize;
- /// if (cond)
- /// r = table[idx];
- /// else
- /// r = default_value;
- /// if (cond)
- /// ...
- /// \endcode
- /// Jump threading will then eliminate the second if(cond).
- static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock,
- BranchInst *RangeCheckBranch, Constant *DefaultValue,
- const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) {
- ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
- if (!CmpInst)
- return;
- // We require that the compare is in the same block as the phi so that jump
- // threading can do its work afterwards.
- if (CmpInst->getParent() != PhiBlock)
- return;
- Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
- if (!CmpOp1)
- return;
- Value *RangeCmp = RangeCheckBranch->getCondition();
- Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
- Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
- // Check if the compare with the default value is constant true or false.
- Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
- DefaultValue, CmpOp1, true);
- if (DefaultConst != TrueConst && DefaultConst != FalseConst)
- return;
- // Check if the compare with the case values is distinct from the default
- // compare result.
- for (auto ValuePair : Values) {
- Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
- ValuePair.second, CmpOp1, true);
- if (!CaseConst || CaseConst == DefaultConst)
- return;
- assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
- "Expect true or false as compare result.");
- }
-
- // Check if the branch instruction dominates the phi node. It's a simple
- // dominance check, but sufficient for our needs.
- // Although this check is invariant in the calling loops, it's better to do it
- // at this late stage. Practically we do it at most once for a switch.
- BasicBlock *BranchBlock = RangeCheckBranch->getParent();
- for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
- BasicBlock *Pred = *PI;
- if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
- return;
- }
- if (DefaultConst == FalseConst) {
- // The compare yields the same result. We can replace it.
- CmpInst->replaceAllUsesWith(RangeCmp);
- ++NumTableCmpReuses;
- } else {
- // The compare yields the same result, just inverted. We can replace it.
- Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp,
- ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
- RangeCheckBranch);
- CmpInst->replaceAllUsesWith(InvertedTableCmp);
- ++NumTableCmpReuses;
- }
- }
- /// If the switch is only used to initialize one or more phi nodes in a common
- /// successor block with different constant values, replace the switch with
- /// lookup tables.
- static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
- const DataLayout &DL,
- const TargetTransformInfo &TTI) {
- assert(SI->getNumCases() > 1 && "Degenerate switch?");
- // Only build lookup table when we have a target that supports it.
- if (!TTI.shouldBuildLookupTables())
- return false;
- // FIXME: If the switch is too sparse for a lookup table, perhaps we could
- // split off a dense part and build a lookup table for that.
- // FIXME: This creates arrays of GEPs to constant strings, which means each
- // GEP needs a runtime relocation in PIC code. We should just build one big
- // string and lookup indices into that.
- // Ignore switches with less than three cases. Lookup tables will not make them
- // faster, so we don't analyze them.
- if (SI->getNumCases() < 3)
- return false;
- // Figure out the corresponding result for each case value and phi node in the
- // common destination, as well as the min and max case values.
- assert(SI->case_begin() != SI->case_end());
- SwitchInst::CaseIt CI = SI->case_begin();
- ConstantInt *MinCaseVal = CI.getCaseValue();
- ConstantInt *MaxCaseVal = CI.getCaseValue();
- BasicBlock *CommonDest = nullptr;
- typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
- SmallDenseMap<PHINode*, ResultListTy> ResultLists;
- SmallDenseMap<PHINode*, Constant*> DefaultResults;
- SmallDenseMap<PHINode*, Type*> ResultTypes;
- SmallVector<PHINode*, 4> PHIs;
- for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
- ConstantInt *CaseVal = CI.getCaseValue();
- if (CaseVal->getValue().slt(MinCaseVal->getValue()))
- MinCaseVal = CaseVal;
- if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
- MaxCaseVal = CaseVal;
- // Resulting value at phi nodes for this case value.
- typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
- ResultsTy Results;
- if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
- Results, DL))
- return false;
- // Append the result from this case to the list for each phi.
- for (const auto &I : Results) {
- PHINode *PHI = I.first;
- Constant *Value = I.second;
- if (!ResultLists.count(PHI))
- PHIs.push_back(PHI);
- ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
- }
- }
- // Keep track of the result types.
- for (PHINode *PHI : PHIs) {
- ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
- }
- uint64_t NumResults = ResultLists[PHIs[0]].size();
- APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
- uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
- bool TableHasHoles = (NumResults < TableSize);
- // If the table has holes, we need a constant result for the default case
- // or a bitmask that fits in a register.
- SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
- bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
- &CommonDest, DefaultResultsList, DL);
- bool NeedMask = (TableHasHoles && !HasDefaultResults);
- if (NeedMask) {
- // As an extra penalty for the validity test we require more cases.
- if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
- return false;
- if (!DL.fitsInLegalInteger(TableSize))
- return false;
- }
- for (const auto &I : DefaultResultsList) {
- PHINode *PHI = I.first;
- Constant *Result = I.second;
- DefaultResults[PHI] = Result;
- }
- if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
- return false;
- // Create the BB that does the lookups.
- Module &Mod = *CommonDest->getParent()->getParent();
- BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
- "switch.lookup",
- CommonDest->getParent(),
- CommonDest);
- // Compute the table index value.
- Builder.SetInsertPoint(SI);
- Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
- "switch.tableidx");
- // Compute the maximum table size representable by the integer type we are
- // switching upon.
- unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
- uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
- assert(MaxTableSize >= TableSize &&
- "It is impossible for a switch to have more entries than the max "
- "representable value of its input integer type's size.");
- // If the default destination is unreachable, or if the lookup table covers
- // all values of the conditional variable, branch directly to the lookup table
- // BB. Otherwise, check that the condition is within the case range.
- const bool DefaultIsReachable =
- !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
- const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
- BranchInst *RangeCheckBranch = nullptr;
- if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
- Builder.CreateBr(LookupBB);
- // Note: We call removeProdecessor later since we need to be able to get the
- // PHI value for the default case in case we're using a bit mask.
- } else {
- Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
- MinCaseVal->getType(), TableSize));
- RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
- }
- // Populate the BB that does the lookups.
- Builder.SetInsertPoint(LookupBB);
- if (NeedMask) {
- // Before doing the lookup we do the hole check.
- // The LookupBB is therefore re-purposed to do the hole check
- // and we create a new LookupBB.
- BasicBlock *MaskBB = LookupBB;
- MaskBB->setName("switch.hole_check");
- LookupBB = BasicBlock::Create(Mod.getContext(),
- "switch.lookup",
- CommonDest->getParent(),
- CommonDest);
- // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
- // unnecessary illegal types.
- uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
- APInt MaskInt(TableSizePowOf2, 0);
- APInt One(TableSizePowOf2, 1);
- // Build bitmask; fill in a 1 bit for every case.
- const ResultListTy &ResultList = ResultLists[PHIs[0]];
- for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
- uint64_t Idx = (ResultList[I].first->getValue() -
- MinCaseVal->getValue()).getLimitedValue();
- MaskInt |= One << Idx;
- }
- ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
- // Get the TableIndex'th bit of the bitmask.
- // If this bit is 0 (meaning hole) jump to the default destination,
- // else continue with table lookup.
- IntegerType *MapTy = TableMask->getType();
- Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy,
- "switch.maskindex");
- Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex,
- "switch.shifted");
- Value *LoBit = Builder.CreateTrunc(Shifted,
- Type::getInt1Ty(Mod.getContext()),
- "switch.lobit");
- Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
- Builder.SetInsertPoint(LookupBB);
- AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
- }
- if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
- // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
- // do not delete PHINodes here.
- SI->getDefaultDest()->removePredecessor(SI->getParent(),
- /*DontDeleteUselessPHIs=*/true);
- }
- bool ReturnedEarly = false;
- for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
- PHINode *PHI = PHIs[I];
- const ResultListTy &ResultList = ResultLists[PHI];
- // If using a bitmask, use any value to fill the lookup table holes.
- Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
- SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
- Value *Result = Table.BuildLookup(TableIndex, Builder);
- // If the result is used to return immediately from the function, we want to
- // do that right here.
- if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
- PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
- Builder.CreateRet(Result);
- ReturnedEarly = true;
- break;
- }
- // Do a small peephole optimization: re-use the switch table compare if
- // possible.
- if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
- BasicBlock *PhiBlock = PHI->getParent();
- // Search for compare instructions which use the phi.
- for (auto *User : PHI->users()) {
- reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
- }
- }
- PHI->addIncoming(Result, LookupBB);
- }
- if (!ReturnedEarly)
- Builder.CreateBr(CommonDest);
- // Remove the switch.
- for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
- BasicBlock *Succ = SI->getSuccessor(i);
- if (Succ == SI->getDefaultDest())
- continue;
- Succ->removePredecessor(SI->getParent());
- }
- SI->eraseFromParent();
- ++NumLookupTables;
- if (NeedMask)
- ++NumLookupTablesHoles;
- return true;
- }
- bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
- BasicBlock *BB = SI->getParent();
- if (isValueEqualityComparison(SI)) {
- // If we only have one predecessor, and if it is a branch on this value,
- // see if that predecessor totally determines the outcome of this switch.
- if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
- if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- Value *Cond = SI->getCondition();
- if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
- if (SimplifySwitchOnSelect(SI, Select))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- // If the block only contains the switch, see if we can fold the block
- // away into any preds.
- BasicBlock::iterator BBI = BB->begin();
- // Ignore dbg intrinsics.
- while (isa<DbgInfoIntrinsic>(BBI))
- ++BBI;
- if (SI == &*BBI)
- if (FoldValueComparisonIntoPredecessors(SI, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- }
- // Try to transform the switch into an icmp and a branch.
- if (TurnSwitchRangeIntoICmp(SI, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- // Remove unreachable cases.
- if (EliminateDeadSwitchCases(SI, AC, DL))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- if (SwitchToSelect(SI, Builder, AC, DL))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- if (ForwardSwitchConditionToPHI(SI))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- if (SwitchToLookupTable(SI, Builder, DL, TTI))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- return false;
- }
- bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
- BasicBlock *BB = IBI->getParent();
- bool Changed = false;
- // Eliminate redundant destinations.
- SmallPtrSet<Value *, 8> Succs;
- for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
- BasicBlock *Dest = IBI->getDestination(i);
- if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
- Dest->removePredecessor(BB);
- IBI->removeDestination(i);
- --i; --e;
- Changed = true;
- }
- }
- if (IBI->getNumDestinations() == 0) {
- // If the indirectbr has no successors, change it to unreachable.
- new UnreachableInst(IBI->getContext(), IBI);
- EraseTerminatorInstAndDCECond(IBI);
- return true;
- }
- if (IBI->getNumDestinations() == 1) {
- // If the indirectbr has one successor, change it to a direct branch.
- BranchInst::Create(IBI->getDestination(0), IBI);
- EraseTerminatorInstAndDCECond(IBI);
- return true;
- }
- if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
- if (SimplifyIndirectBrOnSelect(IBI, SI))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- }
- return Changed;
- }
- /// Given an block with only a single landing pad and a unconditional branch
- /// try to find another basic block which this one can be merged with. This
- /// handles cases where we have multiple invokes with unique landing pads, but
- /// a shared handler.
- ///
- /// We specifically choose to not worry about merging non-empty blocks
- /// here. That is a PRE/scheduling problem and is best solved elsewhere. In
- /// practice, the optimizer produces empty landing pad blocks quite frequently
- /// when dealing with exception dense code. (see: instcombine, gvn, if-else
- /// sinking in this file)
- ///
- /// This is primarily a code size optimization. We need to avoid performing
- /// any transform which might inhibit optimization (such as our ability to
- /// specialize a particular handler via tail commoning). We do this by not
- /// merging any blocks which require us to introduce a phi. Since the same
- /// values are flowing through both blocks, we don't loose any ability to
- /// specialize. If anything, we make such specialization more likely.
- ///
- /// TODO - This transformation could remove entries from a phi in the target
- /// block when the inputs in the phi are the same for the two blocks being
- /// merged. In some cases, this could result in removal of the PHI entirely.
- static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
- BasicBlock *BB) {
- auto Succ = BB->getUniqueSuccessor();
- assert(Succ);
- // If there's a phi in the successor block, we'd likely have to introduce
- // a phi into the merged landing pad block.
- if (isa<PHINode>(*Succ->begin()))
- return false;
- for (BasicBlock *OtherPred : predecessors(Succ)) {
- if (BB == OtherPred)
- continue;
- BasicBlock::iterator I = OtherPred->begin();
- LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
- if (!LPad2 || !LPad2->isIdenticalTo(LPad))
- continue;
- for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
- BranchInst *BI2 = dyn_cast<BranchInst>(I);
- if (!BI2 || !BI2->isIdenticalTo(BI))
- continue;
- // We've found an identical block. Update our predeccessors to take that
- // path instead and make ourselves dead.
- SmallSet<BasicBlock *, 16> Preds;
- Preds.insert(pred_begin(BB), pred_end(BB));
- for (BasicBlock *Pred : Preds) {
- InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
- assert(II->getNormalDest() != BB &&
- II->getUnwindDest() == BB && "unexpected successor");
- II->setUnwindDest(OtherPred);
- }
- // The debug info in OtherPred doesn't cover the merged control flow that
- // used to go through BB. We need to delete it or update it.
- for (auto I = OtherPred->begin(), E = OtherPred->end();
- I != E;) {
- Instruction &Inst = *I; I++;
- if (isa<DbgInfoIntrinsic>(Inst))
- Inst.eraseFromParent();
- }
- SmallSet<BasicBlock *, 16> Succs;
- Succs.insert(succ_begin(BB), succ_end(BB));
- for (BasicBlock *Succ : Succs) {
- Succ->removePredecessor(BB);
- }
- IRBuilder<> Builder(BI);
- Builder.CreateUnreachable();
- BI->eraseFromParent();
- return true;
- }
- return false;
- }
- bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
- BasicBlock *BB = BI->getParent();
- if (SinkCommon && SinkThenElseCodeToEnd(BI))
- return true;
- // If the Terminator is the only non-phi instruction, simplify the block.
- BasicBlock::iterator I = BB->getFirstNonPHIOrDbg();
- if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
- TryToSimplifyUncondBranchFromEmptyBlock(BB))
- return true;
- // If the only instruction in the block is a seteq/setne comparison
- // against a constant, try to simplify the block.
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
- if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
- for (++I; isa<DbgInfoIntrinsic>(I); ++I)
- ;
- if (I->isTerminator() &&
- TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
- BonusInstThreshold, AC))
- return true;
- }
- // See if we can merge an empty landing pad block with another which is
- // equivalent.
- if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
- for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
- if (I->isTerminator() &&
- TryToMergeLandingPad(LPad, BI, BB))
- return true;
- }
- // If this basic block is ONLY a compare and a branch, and if a predecessor
- // branches to us and our successor, fold the comparison into the
- // predecessor and use logical operations to update the incoming value
- // for PHI nodes in common successor.
- if (FoldBranchToCommonDest(BI, BonusInstThreshold))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- return false;
- }
- bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
- BasicBlock *BB = BI->getParent();
- // Conditional branch
- if (isValueEqualityComparison(BI)) {
- // If we only have one predecessor, and if it is a branch on this value,
- // see if that predecessor totally determines the outcome of this
- // switch.
- if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
- if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- // This block must be empty, except for the setcond inst, if it exists.
- // Ignore dbg intrinsics.
- BasicBlock::iterator I = BB->begin();
- // Ignore dbg intrinsics.
- while (isa<DbgInfoIntrinsic>(I))
- ++I;
- if (&*I == BI) {
- if (FoldValueComparisonIntoPredecessors(BI, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- } else if (&*I == cast<Instruction>(BI->getCondition())){
- ++I;
- // Ignore dbg intrinsics.
- while (isa<DbgInfoIntrinsic>(I))
- ++I;
- if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- }
- }
- #if 0 // HLSL Change Begins. This will not help for hlsl.
- // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
- if (SimplifyBranchOnICmpChain(BI, Builder, DL))
- return true;
- #endif // HLSL Change Ends.
- // If this basic block is ONLY a compare and a branch, and if a predecessor
- // branches to us and one of our successors, fold the comparison into the
- // predecessor and use logical operations to pick the right destination.
- if (FoldBranchToCommonDest(BI, BonusInstThreshold))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- // We have a conditional branch to two blocks that are only reachable
- // from BI. We know that the condbr dominates the two blocks, so see if
- // there is any identical code in the "then" and "else" blocks. If so, we
- // can hoist it up to the branching block.
- if (BI->getSuccessor(0)->getSinglePredecessor()) {
- if (BI->getSuccessor(1)->getSinglePredecessor()) {
- if (HoistThenElseCodeToIf(BI, TTI))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- } else {
- // If Successor #1 has multiple preds, we may be able to conditionally
- // execute Successor #0 if it branches to Successor #1.
- TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
- if (Succ0TI->getNumSuccessors() == 1 &&
- Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
- if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- }
- } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
- // If Successor #0 has multiple preds, we may be able to conditionally
- // execute Successor #1 if it branches to Successor #0.
- TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
- if (Succ1TI->getNumSuccessors() == 1 &&
- Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
- if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- }
- // If this is a branch on a phi node in the current block, thread control
- // through this block if any PHI node entries are constants.
- if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
- if (PN->getParent() == BI->getParent())
- if (FoldCondBranchOnPHI(BI, DL))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- // Scan predecessor blocks for conditional branches.
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
- if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
- if (PBI != BI && PBI->isConditional())
- if (SimplifyCondBranchToCondBranch(PBI, BI))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- return false;
- }
- /// Check if passing a value to an instruction will cause undefined behavior.
- static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
- Constant *C = dyn_cast<Constant>(V);
- if (!C)
- return false;
- if (I->use_empty())
- return false;
- if (C->isNullValue()) {
- // Only look at the first use, avoid hurting compile time with long uselists
- User *Use = *I->user_begin();
- // Now make sure that there are no instructions in between that can alter
- // control flow (eg. calls)
- for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
- if (i == I->getParent()->end() || i->mayHaveSideEffects())
- return false;
- // Look through GEPs. A load from a GEP derived from NULL is still undefined
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
- if (GEP->getPointerOperand() == I)
- return passingValueIsAlwaysUndefined(V, GEP);
- // Look through bitcasts.
- if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
- return passingValueIsAlwaysUndefined(V, BC);
- // Load from null is undefined.
- if (LoadInst *LI = dyn_cast<LoadInst>(Use))
- if (!LI->isVolatile())
- return LI->getPointerAddressSpace() == 0;
- // Store to null is undefined.
- if (StoreInst *SI = dyn_cast<StoreInst>(Use))
- if (!SI->isVolatile())
- return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
- }
- return false;
- }
- /// If BB has an incoming value that will always trigger undefined behavior
- /// (eg. null pointer dereference), remove the branch leading here.
- static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
- for (BasicBlock::iterator i = BB->begin();
- PHINode *PHI = dyn_cast<PHINode>(i); ++i)
- for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
- if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
- TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
- IRBuilder<> Builder(T);
- if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
- BB->removePredecessor(PHI->getIncomingBlock(i));
- // Turn uncoditional branches into unreachables and remove the dead
- // destination from conditional branches.
- if (BI->isUnconditional())
- Builder.CreateUnreachable();
- else
- Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
- BI->getSuccessor(0));
- BI->eraseFromParent();
- return true;
- }
- // TODO: SwitchInst.
- }
- return false;
- }
- bool SimplifyCFGOpt::run(BasicBlock *BB) {
- bool Changed = false;
- assert(BB && BB->getParent() && "Block not embedded in function!");
- assert(BB->getTerminator() && "Degenerate basic block encountered!");
- // Remove basic blocks that have no predecessors (except the entry block)...
- // or that just have themself as a predecessor. These are unreachable.
- if ((pred_empty(BB) &&
- BB != &BB->getParent()->getEntryBlock()) ||
- BB->getSinglePredecessor() == BB) {
- DEBUG(dbgs() << "Removing BB: \n" << *BB);
- DeleteDeadBlock(BB);
- return true;
- }
- // Check to see if we can constant propagate this terminator instruction
- // away...
- Changed |= ConstantFoldTerminator(BB, true);
- // Check for and eliminate duplicate PHI nodes in this block.
- Changed |= EliminateDuplicatePHINodes(BB);
- // Check for and remove branches that will always cause undefined behavior.
- Changed |= removeUndefIntroducingPredecessor(BB);
- // Merge basic blocks into their predecessor if there is only one distinct
- // pred, and if there is only one distinct successor of the predecessor, and
- // if there are no PHI nodes.
- //
- if (MergeBlockIntoPredecessor(BB))
- return true;
- IRBuilder<> Builder(BB);
- // If there is a trivial two-entry PHI node in this basic block, and we can
- // eliminate it, do so now.
- if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
- if (PN->getNumIncomingValues() == 2)
- Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
- Builder.SetInsertPoint(BB->getTerminator());
- if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
- if (BI->isUnconditional()) {
- if (SimplifyUncondBranch(BI, Builder)) return true;
- } else {
- if (SimplifyCondBranch(BI, Builder)) return true;
- }
- } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
- if (SimplifyReturn(RI, Builder)) return true;
- } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
- if (SimplifyResume(RI, Builder)) return true;
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
- if (SimplifySwitch(SI, Builder)) return true;
- } else if (UnreachableInst *UI =
- dyn_cast<UnreachableInst>(BB->getTerminator())) {
- if (SimplifyUnreachable(UI)) return true;
- } else if (IndirectBrInst *IBI =
- dyn_cast<IndirectBrInst>(BB->getTerminator())) {
- if (SimplifyIndirectBr(IBI)) return true;
- }
- return Changed;
- }
- /// This function is used to do simplification of a CFG.
- /// For example, it adjusts branches to branches to eliminate the extra hop,
- /// eliminates unreachable basic blocks, and does other "peephole" optimization
- /// of the CFG. It returns true if a modification was made.
- ///
- bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
- unsigned BonusInstThreshold, AssumptionCache *AC) {
- return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
- BonusInstThreshold, AC).run(BB);
- }
|