12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959 |
- //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
- //
- //===----------------------------------------------------------------------===//
- #include "CodeGenFunction.h"
- #include "CGCXXABI.h"
- #include "CGDebugInfo.h"
- #include "CGObjCRuntime.h"
- #include "CGHLSLRuntime.h" // HLSL Change
- #include "CodeGenModule.h"
- #include "TargetInfo.h"
- #include "clang/AST/ASTContext.h"
- #include "clang/AST/DeclObjC.h"
- #include "clang/AST/RecordLayout.h"
- #include "clang/AST/StmtVisitor.h"
- #include "clang/Basic/TargetInfo.h"
- #include "clang/Frontend/CodeGenOptions.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Module.h"
- #include <cstdarg>
- using namespace clang;
- using namespace CodeGen;
- using llvm::Value;
- //===----------------------------------------------------------------------===//
- // Scalar Expression Emitter
- //===----------------------------------------------------------------------===//
- namespace {
- struct BinOpInfo {
- Value *LHS;
- Value *RHS;
- QualType Ty; // Computation Type.
- BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
- bool FPContractable;
- const Expr *E; // Entire expr, for error unsupported. May not be binop.
- };
- static bool MustVisitNullValue(const Expr *E) {
- // If a null pointer expression's type is the C++0x nullptr_t, then
- // it's not necessarily a simple constant and it must be evaluated
- // for its potential side effects.
- return E->getType()->isNullPtrType();
- }
- class ScalarExprEmitter
- : public StmtVisitor<ScalarExprEmitter, Value*> {
- CodeGenFunction &CGF;
- CGBuilderTy &Builder;
- bool IgnoreResultAssign;
- llvm::LLVMContext &VMContext;
- public:
- ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
- : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
- VMContext(cgf.getLLVMContext()) {
- }
- //===--------------------------------------------------------------------===//
- // Utilities
- //===--------------------------------------------------------------------===//
- bool TestAndClearIgnoreResultAssign() {
- bool I = IgnoreResultAssign;
- IgnoreResultAssign = false;
- return I;
- }
- llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
- LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
- LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
- return CGF.EmitCheckedLValue(E, TCK);
- }
- void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
- const BinOpInfo &Info);
- Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
- return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
- }
- void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
- const AlignValueAttr *AVAttr = nullptr;
- if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
- const ValueDecl *VD = DRE->getDecl();
- if (VD->getType()->isReferenceType()) {
- if (const auto *TTy =
- dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
- AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
- } else {
- // Assumptions for function parameters are emitted at the start of the
- // function, so there is no need to repeat that here.
- if (isa<ParmVarDecl>(VD))
- return;
- AVAttr = VD->getAttr<AlignValueAttr>();
- }
- }
- if (!AVAttr)
- if (const auto *TTy =
- dyn_cast<TypedefType>(E->getType()))
- AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
- if (!AVAttr)
- return;
- Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
- llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
- CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
- }
- /// EmitLoadOfLValue - Given an expression with complex type that represents a
- /// value l-value, this method emits the address of the l-value, then loads
- /// and returns the result.
- Value *EmitLoadOfLValue(const Expr *E) {
- Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
- E->getExprLoc());
- EmitLValueAlignmentAssumption(E, V);
- return V;
- }
- /// EmitConversionToBool - Convert the specified expression value to a
- /// boolean (i1) truth value. This is equivalent to "Val != 0".
- Value *EmitConversionToBool(Value *Src, QualType DstTy);
- /// \brief Emit a check that a conversion to or from a floating-point type
- /// does not overflow.
- void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
- Value *Src, QualType SrcType,
- QualType DstType, llvm::Type *DstTy);
- /// EmitScalarConversion - Emit a conversion from the specified type to the
- /// specified destination type, both of which are LLVM scalar types.
- Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
- /// EmitComplexToScalarConversion - Emit a conversion from the specified
- /// complex type to the specified destination type, where the destination type
- /// is an LLVM scalar type.
- Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
- QualType SrcTy, QualType DstTy);
- /// EmitNullValue - Emit a value that corresponds to null for the given type.
- Value *EmitNullValue(QualType Ty);
- /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
- Value *EmitFloatToBoolConversion(Value *V) {
- // Compare against 0.0 for fp scalars.
- llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
- return Builder.CreateFCmpUNE(V, Zero, "tobool");
- }
- /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
- Value *EmitPointerToBoolConversion(Value *V) {
- Value *Zero = llvm::ConstantPointerNull::get(
- cast<llvm::PointerType>(V->getType()));
- return Builder.CreateICmpNE(V, Zero, "tobool");
- }
- Value *EmitIntToBoolConversion(Value *V) {
- // Because of the type rules of C, we often end up computing a
- // logical value, then zero extending it to int, then wanting it
- // as a logical value again. Optimize this common case.
- if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
- if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
- Value *Result = ZI->getOperand(0);
- // If there aren't any more uses, zap the instruction to save space.
- // Note that there can be more uses, for example if this
- // is the result of an assignment.
- if (ZI->use_empty())
- ZI->eraseFromParent();
- return Result;
- }
- }
- return Builder.CreateIsNotNull(V, "tobool");
- }
- //===--------------------------------------------------------------------===//
- // Visitor Methods
- //===--------------------------------------------------------------------===//
- Value *Visit(Expr *E) {
- ApplyDebugLocation DL(CGF, E);
- // HLSL Change Begins
- // generate matrix operations
- if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
- if (hlsl::IsHLSLMatType(E->getType()) ||
- hlsl::IsHLSLMatType(BinOp->getLHS()->getType())) {
- if (BinOp->getOpcode() != BO_Assign) {
- llvm::Value *LHS = CGF.EmitScalarExpr(BinOp->getLHS());
- llvm::Value *RHS = CGF.EmitScalarExpr(BinOp->getRHS());
- return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
- CGF, E, ConvertType(E->getType()), { LHS, RHS });
- }
- else {
- LValue LHS = CGF.EmitLValue(BinOp->getLHS());
- llvm::Value *RHS = CGF.EmitScalarExpr(BinOp->getRHS());
- CGF.CGM.getHLSLRuntime().EmitHLSLMatrixStore(CGF, RHS, LHS.getAddress(), BinOp->getLHS()->getType());
- return RHS;
- }
- }
- } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
- if (hlsl::IsHLSLMatType(E->getType())) {
- llvm::Value *Oper = CGF.EmitScalarExpr(UnOp->getSubExpr());
- return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
- CGF, E, Oper->getType(), {Oper});
- }
- }
- // HLSL Change Ends
- return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
- }
- Value *VisitStmt(Stmt *S) {
- S->dump(CGF.getContext().getSourceManager());
- llvm_unreachable("Stmt can't have complex result type!");
- }
- Value *VisitExpr(Expr *S);
- Value *VisitParenExpr(ParenExpr *PE) {
- return Visit(PE->getSubExpr());
- }
- Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
- return Visit(E->getReplacement());
- }
- Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
- return Visit(GE->getResultExpr());
- }
- // Leaves.
- Value *VisitIntegerLiteral(const IntegerLiteral *E) {
- return Builder.getInt(E->getValue());
- }
- Value *VisitFloatingLiteral(const FloatingLiteral *E) {
- return llvm::ConstantFP::get(VMContext, E->getValue());
- }
- Value *VisitCharacterLiteral(const CharacterLiteral *E) {
- return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
- }
- Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
- return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
- }
- Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
- return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
- }
- Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
- return EmitNullValue(E->getType());
- }
- Value *VisitGNUNullExpr(const GNUNullExpr *E) {
- return EmitNullValue(E->getType());
- }
- Value *VisitOffsetOfExpr(OffsetOfExpr *E);
- Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
- Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
- llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
- return Builder.CreateBitCast(V, ConvertType(E->getType()));
- }
- Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
- return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
- }
- Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
- return CGF.EmitPseudoObjectRValue(E).getScalarVal();
- }
- Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
- if (E->isGLValue())
- return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
- // Otherwise, assume the mapping is the scalar directly.
- return CGF.getOpaqueRValueMapping(E).getScalarVal();
- }
- // l-values.
- Value *VisitDeclRefExpr(DeclRefExpr *E) {
- if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
- if (result.isReference())
- return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
- E->getExprLoc());
- return result.getValue();
- }
- return EmitLoadOfLValue(E);
- }
- Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
- return CGF.EmitObjCSelectorExpr(E);
- }
- Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
- return CGF.EmitObjCProtocolExpr(E);
- }
- Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
- return EmitLoadOfLValue(E);
- }
- Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
- if (E->getMethodDecl() &&
- E->getMethodDecl()->getReturnType()->isReferenceType())
- return EmitLoadOfLValue(E);
- return CGF.EmitObjCMessageExpr(E).getScalarVal();
- }
- Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
- LValue LV = CGF.EmitObjCIsaExpr(E);
- Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
- return V;
- }
- Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
- Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
- Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
- Value *VisitMemberExpr(MemberExpr *E);
- Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
- Value *VisitExtMatrixElementExpr(Expr *E) { return EmitLoadOfLValue(E); } // HLSL Change
- Value *VisitHLSLVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } // HLSL Change
- Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
- return EmitLoadOfLValue(E);
- }
- Value *VisitInitListExpr(InitListExpr *E);
- Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
- return EmitNullValue(E->getType());
- }
- Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
- if (E->getType()->isVariablyModifiedType())
- CGF.EmitVariablyModifiedType(E->getType());
- if (CGDebugInfo *DI = CGF.getDebugInfo())
- DI->EmitExplicitCastType(E->getType());
- return VisitCastExpr(E);
- }
- Value *VisitCastExpr(CastExpr *E);
- Value *VisitCallExpr(const CallExpr *E) {
- if (E->getCallReturnType(CGF.getContext())->isReferenceType())
- return EmitLoadOfLValue(E);
- // HLSL Change Starts
- if (CGF.getContext().getLangOpts().HLSL) {
- RValue RV = CGF.EmitCallExpr(E);
- Value *V = nullptr;
- if (RV.isScalar())
- V = RV.getScalarVal();
- else
- V = RV.getAggregateAddr();
- EmitLValueAlignmentAssumption(E, V);
- return V;
- }
- // HLSL Change Ends
- Value *V = CGF.EmitCallExpr(E).getScalarVal();
- EmitLValueAlignmentAssumption(E, V);
- return V;
- }
- Value *VisitStmtExpr(const StmtExpr *E);
- // Unary Operators.
- Value *VisitUnaryPostDec(const UnaryOperator *E) {
- LValue LV = EmitLValue(E->getSubExpr());
- return EmitScalarPrePostIncDec(E, LV, false, false);
- }
- Value *VisitUnaryPostInc(const UnaryOperator *E) {
- LValue LV = EmitLValue(E->getSubExpr());
- return EmitScalarPrePostIncDec(E, LV, true, false);
- }
- Value *VisitUnaryPreDec(const UnaryOperator *E) {
- LValue LV = EmitLValue(E->getSubExpr());
- return EmitScalarPrePostIncDec(E, LV, false, true);
- }
- Value *VisitUnaryPreInc(const UnaryOperator *E) {
- LValue LV = EmitLValue(E->getSubExpr());
- return EmitScalarPrePostIncDec(E, LV, true, true);
- }
- llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
- llvm::Value *InVal,
- bool IsInc);
- llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
- bool isInc, bool isPre);
- Value *VisitUnaryAddrOf(const UnaryOperator *E) {
- if (isa<MemberPointerType>(E->getType())) // never sugared
- return CGF.CGM.getMemberPointerConstant(E);
- return EmitLValue(E->getSubExpr()).getAddress();
- }
- Value *VisitUnaryDeref(const UnaryOperator *E) {
- if (E->getType()->isVoidType())
- return Visit(E->getSubExpr()); // the actual value should be unused
- return EmitLoadOfLValue(E);
- }
- Value *VisitUnaryPlus(const UnaryOperator *E) {
- // This differs from gcc, though, most likely due to a bug in gcc.
- TestAndClearIgnoreResultAssign();
- return Visit(E->getSubExpr());
- }
- Value *VisitUnaryMinus (const UnaryOperator *E);
- Value *VisitUnaryNot (const UnaryOperator *E);
- Value *VisitUnaryLNot (const UnaryOperator *E);
- Value *VisitUnaryReal (const UnaryOperator *E);
- Value *VisitUnaryImag (const UnaryOperator *E);
- Value *VisitUnaryExtension(const UnaryOperator *E) {
- return Visit(E->getSubExpr());
- }
- // C++
- Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
- return EmitLoadOfLValue(E);
- }
- Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
- return Visit(DAE->getExpr());
- }
- Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
- CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
- return Visit(DIE->getExpr());
- }
- Value *VisitCXXThisExpr(CXXThisExpr *TE) {
- return CGF.LoadCXXThis();
- }
- Value *VisitExprWithCleanups(ExprWithCleanups *E) {
- CGF.enterFullExpression(E);
- CodeGenFunction::RunCleanupsScope Scope(CGF);
- return Visit(E->getSubExpr());
- }
- Value *VisitCXXNewExpr(const CXXNewExpr *E) {
- return CGF.EmitCXXNewExpr(E);
- }
- Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
- CGF.EmitCXXDeleteExpr(E);
- return nullptr;
- }
- Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
- return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
- }
- Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
- return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
- }
- Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
- return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
- }
- Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
- // C++ [expr.pseudo]p1:
- // The result shall only be used as the operand for the function call
- // operator (), and the result of such a call has type void. The only
- // effect is the evaluation of the postfix-expression before the dot or
- // arrow.
- CGF.EmitScalarExpr(E->getBase());
- return nullptr;
- }
- Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
- return EmitNullValue(E->getType());
- }
- Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
- CGF.EmitCXXThrowExpr(E);
- return nullptr;
- }
- Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
- return Builder.getInt1(E->getValue());
- }
- // Binary Operators.
- Value *EmitMul(const BinOpInfo &Ops) {
- if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
- switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
- case LangOptions::SOB_Defined:
- return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
- case LangOptions::SOB_Undefined:
- if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
- return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
- // Fall through.
- case LangOptions::SOB_Trapping:
- return EmitOverflowCheckedBinOp(Ops);
- }
- }
- if (Ops.Ty->isUnsignedIntegerType() &&
- CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
- return EmitOverflowCheckedBinOp(Ops);
- if (Ops.LHS->getType()->isFPOrFPVectorTy())
- return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
- return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
- }
- /// Create a binary op that checks for overflow.
- /// Currently only supports +, - and *.
- Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
- // Check for undefined division and modulus behaviors.
- void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
- llvm::Value *Zero,bool isDiv);
- // Common helper for getting how wide LHS of shift is.
- static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
- Value *EmitDiv(const BinOpInfo &Ops);
- Value *EmitRem(const BinOpInfo &Ops);
- Value *EmitAdd(const BinOpInfo &Ops);
- Value *EmitSub(const BinOpInfo &Ops);
- Value *EmitShl(const BinOpInfo &Ops);
- Value *EmitShr(const BinOpInfo &Ops);
- Value *EmitAnd(const BinOpInfo &Ops) {
- return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
- }
- Value *EmitXor(const BinOpInfo &Ops) {
- return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
- }
- Value *EmitOr (const BinOpInfo &Ops) {
- return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
- }
- BinOpInfo EmitBinOps(const BinaryOperator *E);
- LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
- Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
- Value *&Result);
- Value *EmitCompoundAssign(const CompoundAssignOperator *E,
- Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
- // Binary operators and binary compound assignment operators.
- #define HANDLEBINOP(OP) \
- Value *VisitBin ## OP(const BinaryOperator *E) { \
- return Emit ## OP(EmitBinOps(E)); \
- } \
- Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
- return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
- }
- HANDLEBINOP(Mul)
- HANDLEBINOP(Div)
- HANDLEBINOP(Rem)
- HANDLEBINOP(Add)
- HANDLEBINOP(Sub)
- HANDLEBINOP(Shl)
- HANDLEBINOP(Shr)
- HANDLEBINOP(And)
- HANDLEBINOP(Xor)
- HANDLEBINOP(Or)
- #undef HANDLEBINOP
- // Comparisons.
- Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
- unsigned SICmpOpc, unsigned FCmpOpc);
- #define VISITCOMP(CODE, UI, SI, FP) \
- Value *VisitBin##CODE(const BinaryOperator *E) { \
- return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
- llvm::FCmpInst::FP); }
- VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
- VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
- VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
- VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
- VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
- VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
- #undef VISITCOMP
- Value *VisitBinAssign (const BinaryOperator *E);
- Value *VisitBinLAnd (const BinaryOperator *E);
- Value *VisitBinLOr (const BinaryOperator *E);
- Value *VisitBinComma (const BinaryOperator *E);
- Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
- Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
- // Other Operators.
- Value *VisitBlockExpr(const BlockExpr *BE);
- Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
- Value *VisitChooseExpr(ChooseExpr *CE);
- Value *VisitVAArgExpr(VAArgExpr *VE);
- Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
- return CGF.EmitObjCStringLiteral(E);
- }
- Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
- return CGF.EmitObjCBoxedExpr(E);
- }
- Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
- return CGF.EmitObjCArrayLiteral(E);
- }
- Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
- return CGF.EmitObjCDictionaryLiteral(E);
- }
- Value *VisitAsTypeExpr(AsTypeExpr *CE);
- Value *VisitAtomicExpr(AtomicExpr *AE);
- };
- } // end anonymous namespace.
- //===----------------------------------------------------------------------===//
- // Utilities
- //===----------------------------------------------------------------------===//
- /// EmitConversionToBool - Convert the specified expression value to a
- /// boolean (i1) truth value. This is equivalent to "Val != 0".
- Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
- assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
- if (SrcType->isRealFloatingType())
- return EmitFloatToBoolConversion(Src);
- if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
- return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
- assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
- "Unknown scalar type to convert");
- if (isa<llvm::IntegerType>(Src->getType()))
- return EmitIntToBoolConversion(Src);
- assert(isa<llvm::PointerType>(Src->getType()));
- return EmitPointerToBoolConversion(Src);
- }
- void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
- QualType OrigSrcType,
- Value *Src, QualType SrcType,
- QualType DstType,
- llvm::Type *DstTy) {
- CodeGenFunction::SanitizerScope SanScope(&CGF);
- using llvm::APFloat;
- using llvm::APSInt;
- llvm::Type *SrcTy = Src->getType();
- llvm::Value *Check = nullptr;
- if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
- // Integer to floating-point. This can fail for unsigned short -> __half
- // or unsigned __int128 -> float.
- assert(DstType->isFloatingType());
- bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
- APFloat LargestFloat =
- APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
- APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
- bool IsExact;
- if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
- &IsExact) != APFloat::opOK)
- // The range of representable values of this floating point type includes
- // all values of this integer type. Don't need an overflow check.
- return;
- llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
- if (SrcIsUnsigned)
- Check = Builder.CreateICmpULE(Src, Max);
- else {
- llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
- llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
- llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
- Check = Builder.CreateAnd(GE, LE);
- }
- } else {
- const llvm::fltSemantics &SrcSema =
- CGF.getContext().getFloatTypeSemantics(OrigSrcType);
- if (isa<llvm::IntegerType>(DstTy)) {
- // Floating-point to integer. This has undefined behavior if the source is
- // +-Inf, NaN, or doesn't fit into the destination type (after truncation
- // to an integer).
- unsigned Width = CGF.getContext().getIntWidth(DstType);
- bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
- APSInt Min = APSInt::getMinValue(Width, Unsigned);
- APFloat MinSrc(SrcSema, APFloat::uninitialized);
- if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
- APFloat::opOverflow)
- // Don't need an overflow check for lower bound. Just check for
- // -Inf/NaN.
- MinSrc = APFloat::getInf(SrcSema, true);
- else
- // Find the largest value which is too small to represent (before
- // truncation toward zero).
- MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
- APSInt Max = APSInt::getMaxValue(Width, Unsigned);
- APFloat MaxSrc(SrcSema, APFloat::uninitialized);
- if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
- APFloat::opOverflow)
- // Don't need an overflow check for upper bound. Just check for
- // +Inf/NaN.
- MaxSrc = APFloat::getInf(SrcSema, false);
- else
- // Find the smallest value which is too large to represent (before
- // truncation toward zero).
- MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
- // If we're converting from __half, convert the range to float to match
- // the type of src.
- if (OrigSrcType->isHalfType()) {
- const llvm::fltSemantics &Sema =
- CGF.getContext().getFloatTypeSemantics(SrcType);
- bool IsInexact;
- MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
- MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
- }
- llvm::Value *GE =
- Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
- llvm::Value *LE =
- Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
- Check = Builder.CreateAnd(GE, LE);
- } else {
- // FIXME: Maybe split this sanitizer out from float-cast-overflow.
- //
- // Floating-point to floating-point. This has undefined behavior if the
- // source is not in the range of representable values of the destination
- // type. The C and C++ standards are spectacularly unclear here. We
- // diagnose finite out-of-range conversions, but allow infinities and NaNs
- // to convert to the corresponding value in the smaller type.
- //
- // C11 Annex F gives all such conversions defined behavior for IEC 60559
- // conforming implementations. Unfortunately, LLVM's fptrunc instruction
- // does not.
- // Converting from a lower rank to a higher rank can never have
- // undefined behavior, since higher-rank types must have a superset
- // of values of lower-rank types.
- if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
- return;
- assert(!OrigSrcType->isHalfType() &&
- "should not check conversion from __half, it has the lowest rank");
- const llvm::fltSemantics &DstSema =
- CGF.getContext().getFloatTypeSemantics(DstType);
- APFloat MinBad = APFloat::getLargest(DstSema, false);
- APFloat MaxBad = APFloat::getInf(DstSema, false);
- bool IsInexact;
- MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
- MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
- Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
- CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
- llvm::Value *GE =
- Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
- llvm::Value *LE =
- Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
- Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
- }
- }
- // FIXME: Provide a SourceLocation.
- llvm::Constant *StaticArgs[] = {
- CGF.EmitCheckTypeDescriptor(OrigSrcType),
- CGF.EmitCheckTypeDescriptor(DstType)
- };
- CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
- "float_cast_overflow", StaticArgs, OrigSrc);
- }
- /// EmitScalarConversion - Emit a conversion from the specified type to the
- /// specified destination type, both of which are LLVM scalar types.
- Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
- QualType DstType) {
- SrcType = CGF.getContext().getCanonicalType(SrcType);
- DstType = CGF.getContext().getCanonicalType(DstType);
- if (SrcType == DstType) return Src;
- if (DstType->isVoidType()) return nullptr;
- llvm::Value *OrigSrc = Src;
- QualType OrigSrcType = SrcType;
- llvm::Type *SrcTy = Src->getType();
- // Handle conversions to bool first, they are special: comparisons against 0.
- if (DstType->isBooleanType())
- return EmitConversionToBool(Src, SrcType);
- llvm::Type *DstTy = ConvertType(DstType);
- // Cast from half through float if half isn't a native type.
- if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
- // Cast to FP using the intrinsic if the half type itself isn't supported.
- if (DstTy->isFloatingPointTy()) {
- if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
- return Builder.CreateCall(
- CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
- Src);
- } else {
- // Cast to other types through float, using either the intrinsic or FPExt,
- // depending on whether the half type itself is supported
- // (as opposed to operations on half, available with NativeHalfType).
- if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
- Src = Builder.CreateCall(
- CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
- CGF.CGM.FloatTy),
- Src);
- } else {
- Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
- }
- SrcType = CGF.getContext().FloatTy;
- SrcTy = CGF.FloatTy;
- }
- }
- // Ignore conversions like int -> uint.
- if (SrcTy == DstTy)
- return Src;
- // Handle pointer conversions next: pointers can only be converted to/from
- // other pointers and integers. Check for pointer types in terms of LLVM, as
- // some native types (like Obj-C id) may map to a pointer type.
- if (isa<llvm::PointerType>(DstTy)) {
- // The source value may be an integer, or a pointer.
- if (isa<llvm::PointerType>(SrcTy))
- return Builder.CreateBitCast(Src, DstTy, "conv");
- assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
- // First, convert to the correct width so that we control the kind of
- // extension.
- llvm::Type *MiddleTy = CGF.IntPtrTy;
- bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
- llvm::Value* IntResult =
- Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
- // Then, cast to pointer.
- return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
- }
- if (isa<llvm::PointerType>(SrcTy)) {
- // Must be an ptr to int cast.
- assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
- return Builder.CreatePtrToInt(Src, DstTy, "conv");
- }
- // A scalar can be splatted to an extended vector of the same element type
- if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
- // Cast the scalar to element type
- QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
- llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
- // Splat the element across to all elements
- unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
- return Builder.CreateVectorSplat(NumElements, Elt, "splat");
- }
- // HLSL Change Starts
- if (CGF.getContext().getLangOpts().HLSL) {
- // A scalar can be splatted to an extended vector of the same element type
- if (DstTy->isVectorTy() && !SrcTy->isVectorTy()) {
- // Cast the scalar to element type
- const ExtVectorType *DstVecType =
- hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(), DstType);
- QualType EltTy = DstVecType->getElementType();
- llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
- // Splat the element across to all elements
- unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
- return Builder.CreateVectorSplat(NumElements, Elt, "splat");
- }
- if (SrcTy->isVectorTy() && DstTy->isVectorTy()) {
- Value *Res = nullptr;
- const ExtVectorType *SrcVecType =
- hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(), SrcType);
- const ExtVectorType *DstVecType =
- hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(), DstType);
- const llvm::VectorType *SrcVecTy = cast<llvm::VectorType>(SrcTy);
- const llvm::VectorType *DstVecTy = cast<llvm::VectorType>(DstTy);
- if (SrcVecTy->getNumElements() != DstVecTy->getNumElements()) {
- if (SrcVecTy->getNumElements() == 1) {
- // Cast the scalar to element type
- const ExtVectorType *DstVecType =
- hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(),
- DstType);
- QualType EltTy = DstVecType->getElementType();
- llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
- // Splat the element across to all elements
- unsigned NumElements =
- cast<llvm::VectorType>(DstTy)->getNumElements();
- return Builder.CreateVectorSplat(NumElements, Elt, "splat");
- }
- }
- if (isa<llvm::IntegerType>(SrcVecTy->getElementType())) {
- bool InputSigned =
- SrcVecType->getElementType()->isSignedIntegerOrEnumerationType();
- if (isa<llvm::IntegerType>(DstVecTy->getElementType()))
- Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
- else if (InputSigned)
- Res = Builder.CreateSIToFP(Src, DstTy, "conv");
- else
- Res = Builder.CreateUIToFP(Src, DstTy, "conv");
- } else if (isa<llvm::IntegerType>(DstVecTy->getElementType())) {
- assert(SrcVecTy->getElementType()->isFloatingPointTy() &&
- "Unknown real conversion");
- if (DstVecType->getElementType()->isSignedIntegerOrEnumerationType())
- Res = Builder.CreateFPToSI(Src, DstTy, "conv");
- else
- Res = Builder.CreateFPToUI(Src, DstTy, "conv");
- } else {
- assert(SrcVecTy->getElementType()->isFloatingPointTy() &&
- DstVecTy->getElementType()->isFloatingPointTy() &&
- "Unknown real conversion");
- if (DstVecTy->getElementType()->getTypeID() <
- SrcVecTy->getElementType()->getTypeID())
- Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
- else
- Res = Builder.CreateFPExt(Src, DstTy, "conv");
- }
- return Res;
- }
- if (SrcTy->isVectorTy() && !DstTy->isVectorTy()) {
- return Builder.CreateExtractElement(Src, (uint64_t)0);
- }
- }
- // HLSL Change Ends
- // Allow bitcast from vector to integer/fp of the same size.
- if (isa<llvm::VectorType>(SrcTy) ||
- isa<llvm::VectorType>(DstTy))
- return Builder.CreateBitCast(Src, DstTy, "conv");
- // Finally, we have the arithmetic types: real int/float.
- Value *Res = nullptr;
- llvm::Type *ResTy = DstTy;
- // An overflowing conversion has undefined behavior if either the source type
- // or the destination type is a floating-point type.
- if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
- (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
- EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
- DstTy);
- // Cast to half through float if half isn't a native type.
- if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
- // Make sure we cast in a single step if from another FP type.
- if (SrcTy->isFloatingPointTy()) {
- // Use the intrinsic if the half type itself isn't supported
- // (as opposed to operations on half, available with NativeHalfType).
- if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
- return Builder.CreateCall(
- CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
- // If the half type is supported, just use an fptrunc.
- return Builder.CreateFPTrunc(Src, DstTy);
- }
- DstTy = CGF.FloatTy;
- }
- // HLSL Change Begins.
- if (const BuiltinType *BT = SrcType->getAs<BuiltinType>()) {
- if (BT->getKind() == BuiltinType::Kind::LitInt || BT->getKind() == BuiltinType::Kind::LitFloat) {
- Res = CGF.CGM.getHLSLRuntime().EmitHLSLLiteralCast(CGF, Src, SrcType, DstType);
- if (Res)
- return Res;
- }
- }
- // HLSL Change Ends.
- if (isa<llvm::IntegerType>(SrcTy)) {
- bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
- if (isa<llvm::IntegerType>(DstTy))
- Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
- else if (InputSigned)
- Res = Builder.CreateSIToFP(Src, DstTy, "conv");
- else
- Res = Builder.CreateUIToFP(Src, DstTy, "conv");
- } else if (isa<llvm::IntegerType>(DstTy)) {
- assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
- if (DstType->isSignedIntegerOrEnumerationType())
- Res = Builder.CreateFPToSI(Src, DstTy, "conv");
- else
- Res = Builder.CreateFPToUI(Src, DstTy, "conv");
- } else {
- assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
- "Unknown real conversion");
- if (DstTy->getTypeID() < SrcTy->getTypeID())
- Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
- else
- Res = Builder.CreateFPExt(Src, DstTy, "conv");
- }
- if (DstTy != ResTy) {
- if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
- assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
- Res = Builder.CreateCall(
- CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
- Res);
- } else {
- Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
- }
- }
- return Res;
- }
- /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
- /// type to the specified destination type, where the destination type is an
- /// LLVM scalar type.
- Value *ScalarExprEmitter::
- EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
- QualType SrcTy, QualType DstTy) {
- // Get the source element type.
- SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
- // Handle conversions to bool first, they are special: comparisons against 0.
- if (DstTy->isBooleanType()) {
- // Complex != 0 -> (Real != 0) | (Imag != 0)
- Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
- Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
- return Builder.CreateOr(Src.first, Src.second, "tobool");
- }
- // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
- // the imaginary part of the complex value is discarded and the value of the
- // real part is converted according to the conversion rules for the
- // corresponding real type.
- return EmitScalarConversion(Src.first, SrcTy, DstTy);
- }
- Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
- return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
- }
- /// \brief Emit a sanitization check for the given "binary" operation (which
- /// might actually be a unary increment which has been lowered to a binary
- /// operation). The check passes if all values in \p Checks (which are \c i1),
- /// are \c true.
- void ScalarExprEmitter::EmitBinOpCheck(
- ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
- assert(CGF.IsSanitizerScope);
- StringRef CheckName;
- SmallVector<llvm::Constant *, 4> StaticData;
- SmallVector<llvm::Value *, 2> DynamicData;
- BinaryOperatorKind Opcode = Info.Opcode;
- if (BinaryOperator::isCompoundAssignmentOp(Opcode))
- Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
- StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
- const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
- if (UO && UO->getOpcode() == UO_Minus) {
- CheckName = "negate_overflow";
- StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
- DynamicData.push_back(Info.RHS);
- } else {
- if (BinaryOperator::isShiftOp(Opcode)) {
- // Shift LHS negative or too large, or RHS out of bounds.
- CheckName = "shift_out_of_bounds";
- const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
- StaticData.push_back(
- CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
- StaticData.push_back(
- CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
- } else if (Opcode == BO_Div || Opcode == BO_Rem) {
- // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
- CheckName = "divrem_overflow";
- StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
- } else {
- // Arithmetic overflow (+, -, *).
- switch (Opcode) {
- case BO_Add: CheckName = "add_overflow"; break;
- case BO_Sub: CheckName = "sub_overflow"; break;
- case BO_Mul: CheckName = "mul_overflow"; break;
- default: llvm_unreachable("unexpected opcode for bin op check");
- }
- StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
- }
- DynamicData.push_back(Info.LHS);
- DynamicData.push_back(Info.RHS);
- }
- CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
- }
- //===----------------------------------------------------------------------===//
- // Visitor Methods
- //===----------------------------------------------------------------------===//
- Value *ScalarExprEmitter::VisitExpr(Expr *E) {
- CGF.ErrorUnsupported(E, "scalar expression");
- if (E->getType()->isVoidType())
- return nullptr;
- return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
- }
- Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
- // Vector Mask Case
- if (E->getNumSubExprs() == 2 ||
- (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
- Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
- Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
- Value *Mask;
- llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
- unsigned LHSElts = LTy->getNumElements();
- if (E->getNumSubExprs() == 3) {
- Mask = CGF.EmitScalarExpr(E->getExpr(2));
- // Shuffle LHS & RHS into one input vector.
- SmallVector<llvm::Constant*, 32> concat;
- for (unsigned i = 0; i != LHSElts; ++i) {
- concat.push_back(Builder.getInt32(2*i));
- concat.push_back(Builder.getInt32(2*i+1));
- }
- Value* CV = llvm::ConstantVector::get(concat);
- LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
- LHSElts *= 2;
- } else {
- Mask = RHS;
- }
- llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
- llvm::Constant* EltMask;
- EltMask = llvm::ConstantInt::get(MTy->getElementType(),
- llvm::NextPowerOf2(LHSElts-1)-1);
- // Mask off the high bits of each shuffle index.
- Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
- EltMask);
- Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
- // newv = undef
- // mask = mask & maskbits
- // for each elt
- // n = extract mask i
- // x = extract val n
- // newv = insert newv, x, i
- llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
- MTy->getNumElements());
- Value* NewV = llvm::UndefValue::get(RTy);
- for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
- Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
- Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
- Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
- NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
- }
- return NewV;
- }
- Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
- Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
- SmallVector<llvm::Constant*, 32> indices;
- for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
- llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
- // Check for -1 and output it as undef in the IR.
- if (Idx.isSigned() && Idx.isAllOnesValue())
- indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
- else
- indices.push_back(Builder.getInt32(Idx.getZExtValue()));
- }
- Value *SV = llvm::ConstantVector::get(indices);
- return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
- }
- Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
- QualType SrcType = E->getSrcExpr()->getType(),
- DstType = E->getType();
- Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
- SrcType = CGF.getContext().getCanonicalType(SrcType);
- DstType = CGF.getContext().getCanonicalType(DstType);
- if (SrcType == DstType) return Src;
- assert(SrcType->isVectorType() &&
- "ConvertVector source type must be a vector");
- assert(DstType->isVectorType() &&
- "ConvertVector destination type must be a vector");
- llvm::Type *SrcTy = Src->getType();
- llvm::Type *DstTy = ConvertType(DstType);
- // Ignore conversions like int -> uint.
- if (SrcTy == DstTy)
- return Src;
- QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
- DstEltType = DstType->getAs<VectorType>()->getElementType();
- assert(SrcTy->isVectorTy() &&
- "ConvertVector source IR type must be a vector");
- assert(DstTy->isVectorTy() &&
- "ConvertVector destination IR type must be a vector");
- llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
- *DstEltTy = DstTy->getVectorElementType();
- if (DstEltType->isBooleanType()) {
- assert((SrcEltTy->isFloatingPointTy() ||
- isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
- llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
- if (SrcEltTy->isFloatingPointTy()) {
- return Builder.CreateFCmpUNE(Src, Zero, "tobool");
- } else {
- return Builder.CreateICmpNE(Src, Zero, "tobool");
- }
- }
- // We have the arithmetic types: real int/float.
- Value *Res = nullptr;
- if (isa<llvm::IntegerType>(SrcEltTy)) {
- bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
- if (isa<llvm::IntegerType>(DstEltTy))
- Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
- else if (InputSigned)
- Res = Builder.CreateSIToFP(Src, DstTy, "conv");
- else
- Res = Builder.CreateUIToFP(Src, DstTy, "conv");
- } else if (isa<llvm::IntegerType>(DstEltTy)) {
- assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
- if (DstEltType->isSignedIntegerOrEnumerationType())
- Res = Builder.CreateFPToSI(Src, DstTy, "conv");
- else
- Res = Builder.CreateFPToUI(Src, DstTy, "conv");
- } else {
- assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
- "Unknown real conversion");
- if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
- Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
- else
- Res = Builder.CreateFPExt(Src, DstTy, "conv");
- }
- return Res;
- }
- Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
- llvm::APSInt Value;
- if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
- if (E->isArrow())
- CGF.EmitScalarExpr(E->getBase());
- else
- EmitLValue(E->getBase());
- return Builder.getInt(Value);
- }
- return EmitLoadOfLValue(E);
- }
- Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
- TestAndClearIgnoreResultAssign();
- // Emit subscript expressions in rvalue context's. For most cases, this just
- // loads the lvalue formed by the subscript expr. However, we have to be
- // careful, because the base of a vector subscript is occasionally an rvalue,
- // so we can't get it as an lvalue.
- if (!E->getBase()->getType()->isVectorType())
- return EmitLoadOfLValue(E);
- // Handle the vector case. The base must be a vector, the index must be an
- // integer value.
- Value *Base = Visit(E->getBase());
- Value *Idx = Visit(E->getIdx());
- QualType IdxTy = E->getIdx()->getType();
- if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
- CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
- return Builder.CreateExtractElement(Base, Idx, "vecext");
- }
- static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
- unsigned Off, llvm::Type *I32Ty) {
- int MV = SVI->getMaskValue(Idx);
- if (MV == -1)
- return llvm::UndefValue::get(I32Ty);
- return llvm::ConstantInt::get(I32Ty, Off+MV);
- }
- static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
- if (C->getBitWidth() != 32) {
- assert(llvm::ConstantInt::isValueValidForType(I32Ty,
- C->getZExtValue()) &&
- "Index operand too large for shufflevector mask!");
- return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
- }
- return C;
- }
- Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
- bool Ignore = TestAndClearIgnoreResultAssign();
- (void)Ignore;
- assert (Ignore == false && "init list ignored");
- unsigned NumInitElements = E->getNumInits();
- if (E->hadArrayRangeDesignator())
- CGF.ErrorUnsupported(E, "GNU array range designator extension");
- llvm::VectorType *VType =
- dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
- if (!VType) {
- // HLSL Change Begins
- if (hlsl::IsHLSLMatType(E->getType())) {
- // init function for matrix
- return CGF.CGM.getHLSLRuntime().EmitHLSLInitListExpr(CGF, E, /*DestPtr*/nullptr);
- }
- // HLSL Change Ends
- if (NumInitElements == 0) {
- // C++11 value-initialization for the scalar.
- return EmitNullValue(E->getType());
- }
- // We have a scalar in braces. Just use the first element.
- return Visit(E->getInit(0));
- }
- else {
- if (hlsl::IsHLSLVecType(E->getType())) {
- return CGF.CGM.getHLSLRuntime().EmitHLSLInitListExpr(CGF, E, /*DestPtr*/nullptr);
- }
- }
- unsigned ResElts = VType->getNumElements();
- // HLSL Note - Matrix swizzle members emit - Consider handling matrix swizzles here
- // Loop over initializers collecting the Value for each, and remembering
- // whether the source was swizzle (ExtVectorElementExpr). This will allow
- // us to fold the shuffle for the swizzle into the shuffle for the vector
- // initializer, since LLVM optimizers generally do not want to touch
- // shuffles.
- unsigned CurIdx = 0;
- bool VIsUndefShuffle = false;
- llvm::Value *V = llvm::UndefValue::get(VType);
- for (unsigned i = 0; i != NumInitElements; ++i) {
- Expr *IE = E->getInit(i);
- Value *Init = Visit(IE);
- SmallVector<llvm::Constant*, 16> Args;
- llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
- // Handle scalar elements. If the scalar initializer is actually one
- // element of a different vector of the same width, use shuffle instead of
- // extract+insert.
- if (!VVT) {
- if (isa<ExtVectorElementExpr>(IE)) {
- llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
- if (EI->getVectorOperandType()->getNumElements() == ResElts) {
- llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
- Value *LHS = nullptr, *RHS = nullptr;
- if (CurIdx == 0) {
- // insert into undef -> shuffle (src, undef)
- // shufflemask must use an i32
- Args.push_back(getAsInt32(C, CGF.Int32Ty));
- Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
- LHS = EI->getVectorOperand();
- RHS = V;
- VIsUndefShuffle = true;
- } else if (VIsUndefShuffle) {
- // insert into undefshuffle && size match -> shuffle (v, src)
- llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
- for (unsigned j = 0; j != CurIdx; ++j)
- Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
- Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
- Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
- LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
- RHS = EI->getVectorOperand();
- VIsUndefShuffle = false;
- }
- if (!Args.empty()) {
- llvm::Constant *Mask = llvm::ConstantVector::get(Args);
- V = Builder.CreateShuffleVector(LHS, RHS, Mask);
- ++CurIdx;
- continue;
- }
- }
- }
- V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
- "vecinit");
- VIsUndefShuffle = false;
- ++CurIdx;
- continue;
- }
- unsigned InitElts = VVT->getNumElements();
- // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
- // input is the same width as the vector being constructed, generate an
- // optimized shuffle of the swizzle input into the result.
- unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
- if (isa<ExtVectorElementExpr>(IE)) {
- llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
- Value *SVOp = SVI->getOperand(0);
- llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
- if (OpTy->getNumElements() == ResElts) {
- for (unsigned j = 0; j != CurIdx; ++j) {
- // If the current vector initializer is a shuffle with undef, merge
- // this shuffle directly into it.
- if (VIsUndefShuffle) {
- Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
- CGF.Int32Ty));
- } else {
- Args.push_back(Builder.getInt32(j));
- }
- }
- for (unsigned j = 0, je = InitElts; j != je; ++j)
- Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
- Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
- if (VIsUndefShuffle)
- V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
- Init = SVOp;
- }
- }
- // Extend init to result vector length, and then shuffle its contribution
- // to the vector initializer into V.
- if (Args.empty()) {
- for (unsigned j = 0; j != InitElts; ++j)
- Args.push_back(Builder.getInt32(j));
- Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
- llvm::Constant *Mask = llvm::ConstantVector::get(Args);
- Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
- Mask, "vext");
- Args.clear();
- for (unsigned j = 0; j != CurIdx; ++j)
- Args.push_back(Builder.getInt32(j));
- for (unsigned j = 0; j != InitElts; ++j)
- Args.push_back(Builder.getInt32(j+Offset));
- Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
- }
- // If V is undef, make sure it ends up on the RHS of the shuffle to aid
- // merging subsequent shuffles into this one.
- if (CurIdx == 0)
- std::swap(V, Init);
- llvm::Constant *Mask = llvm::ConstantVector::get(Args);
- V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
- VIsUndefShuffle = isa<llvm::UndefValue>(Init);
- CurIdx += InitElts;
- }
- // FIXME: evaluate codegen vs. shuffling against constant null vector.
- // Emit remaining default initializers.
- llvm::Type *EltTy = VType->getElementType();
- // Emit remaining default initializers
- for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
- Value *Idx = Builder.getInt32(CurIdx);
- llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
- V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
- }
- return V;
- }
- static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
- const Expr *E = CE->getSubExpr();
- if (CE->getCastKind() == CK_UncheckedDerivedToBase)
- return false;
- if (isa<CXXThisExpr>(E)) {
- // We always assume that 'this' is never null.
- return false;
- }
- if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
- // And that glvalue casts are never null.
- if (ICE->getValueKind() != VK_RValue)
- return false;
- }
- return true;
- }
- // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
- // have to handle a more broad range of conversions than explicit casts, as they
- // handle things like function to ptr-to-function decay etc.
- Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
- Expr *E = CE->getSubExpr();
- QualType DestTy = CE->getType();
- CastKind Kind = CE->getCastKind();
- // HLSL Change Begins
- if (hlsl::IsHLSLMatType(E->getType()) || hlsl::IsHLSLMatType(CE->getType())) {
- llvm::Value *V = CGF.EmitScalarExpr(E);
- llvm::Type *RetTy = CGF.ConvertType(DestTy);
- if (V->getType() == RetTy)
- return V;
- return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(CGF, CE, RetTy, { V });
- }
- // HLSL Change Ends
- if (!DestTy->isVoidType())
- TestAndClearIgnoreResultAssign();
- // Since almost all cast kinds apply to scalars, this switch doesn't have
- // a default case, so the compiler will warn on a missing case. The cases
- // are in the same order as in the CastKind enum.
- switch (Kind) {
- case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
- case CK_BuiltinFnToFnPtr:
- llvm_unreachable("builtin functions are handled elsewhere");
- case CK_LValueBitCast:
- case CK_ObjCObjectLValueCast: {
- Value *V = EmitLValue(E).getAddress();
- V = Builder.CreateBitCast(V,
- ConvertType(CGF.getContext().getPointerType(DestTy)));
- return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
- CE->getExprLoc());
- }
- case CK_CPointerToObjCPointerCast:
- case CK_BlockPointerToObjCPointerCast:
- case CK_AnyPointerToBlockPointerCast:
- case CK_BitCast: {
- Value *Src = Visit(const_cast<Expr*>(E));
- llvm::Type *SrcTy = Src->getType();
- llvm::Type *DstTy = ConvertType(DestTy);
- if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
- SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
- llvm_unreachable("wrong cast for pointers in different address spaces"
- "(must be an address space cast)!");
- }
- if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
- if (auto PT = DestTy->getAs<PointerType>())
- CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
- /*MayBeNull=*/true,
- CodeGenFunction::CFITCK_UnrelatedCast,
- CE->getLocStart());
- }
- return Builder.CreateBitCast(Src, DstTy);
- }
- case CK_AddressSpaceConversion: {
- Value *Src = Visit(const_cast<Expr*>(E));
- return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
- }
- case CK_AtomicToNonAtomic:
- case CK_NonAtomicToAtomic:
- case CK_NoOp:
- case CK_UserDefinedConversion:
- return Visit(const_cast<Expr*>(E));
- case CK_BaseToDerived: {
- const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
- assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
- llvm::Value *V = Visit(E);
- llvm::Value *Derived =
- CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
- CE->path_begin(), CE->path_end(),
- ShouldNullCheckClassCastValue(CE));
- // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
- // performed and the object is not of the derived type.
- if (CGF.sanitizePerformTypeCheck())
- CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
- Derived, DestTy->getPointeeType());
- if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
- CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
- /*MayBeNull=*/true,
- CodeGenFunction::CFITCK_DerivedCast,
- CE->getLocStart());
- return Derived;
- }
- case CK_UncheckedDerivedToBase:
- case CK_DerivedToBase: {
- const CXXRecordDecl *DerivedClassDecl =
- E->getType()->getPointeeCXXRecordDecl();
- assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
- return CGF.GetAddressOfBaseClass(
- Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(),
- ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
- }
- case CK_Dynamic: {
- Value *V = Visit(const_cast<Expr*>(E));
- const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
- return CGF.EmitDynamicCast(V, DCE);
- }
- case CK_ArrayToPointerDecay: {
- assert(E->getType()->isArrayType() &&
- "Array to pointer decay must have array source type!");
- Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
- // Note that VLA pointers are always decayed, so we don't need to do
- // anything here.
- if (!E->getType()->isVariableArrayType()) {
- assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
- llvm::Type *NewTy = ConvertType(E->getType());
- V = CGF.Builder.CreatePointerCast(
- V, NewTy->getPointerTo(V->getType()->getPointerAddressSpace()));
- assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) &&
- "Expected pointer to array");
- V = Builder.CreateStructGEP(NewTy, V, 0, "arraydecay");
- }
- // Make sure the array decay ends up being the right type. This matters if
- // the array type was of an incomplete type.
- return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
- }
- case CK_FunctionToPointerDecay:
- return EmitLValue(E).getAddress();
- case CK_NullToPointer:
- if (MustVisitNullValue(E))
- (void) Visit(E);
- return llvm::ConstantPointerNull::get(
- cast<llvm::PointerType>(ConvertType(DestTy)));
- case CK_NullToMemberPointer: {
- if (MustVisitNullValue(E))
- (void) Visit(E);
- const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
- return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
- }
- case CK_ReinterpretMemberPointer:
- case CK_BaseToDerivedMemberPointer:
- case CK_DerivedToBaseMemberPointer: {
- Value *Src = Visit(E);
- // Note that the AST doesn't distinguish between checked and
- // unchecked member pointer conversions, so we always have to
- // implement checked conversions here. This is inefficient when
- // actual control flow may be required in order to perform the
- // check, which it is for data member pointers (but not member
- // function pointers on Itanium and ARM).
- return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
- }
- case CK_ARCProduceObject:
- return CGF.EmitARCRetainScalarExpr(E);
- case CK_ARCConsumeObject:
- return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
- case CK_ARCReclaimReturnedObject: {
- llvm::Value *value = Visit(E);
- value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
- return CGF.EmitObjCConsumeObject(E->getType(), value);
- }
- case CK_ARCExtendBlockObject:
- return CGF.EmitARCExtendBlockObject(E);
- case CK_CopyAndAutoreleaseBlockObject:
- return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
- case CK_FloatingRealToComplex:
- case CK_FloatingComplexCast:
- case CK_IntegralRealToComplex:
- case CK_IntegralComplexCast:
- case CK_IntegralComplexToFloatingComplex:
- case CK_FloatingComplexToIntegralComplex:
- case CK_ConstructorConversion:
- case CK_ToUnion:
- llvm_unreachable("scalar cast to non-scalar value");
- case CK_LValueToRValue:
- assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
- assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
- return Visit(const_cast<Expr*>(E));
- case CK_IntegralToPointer: {
- Value *Src = Visit(const_cast<Expr*>(E));
- // First, convert to the correct width so that we control the kind of
- // extension.
- llvm::Type *MiddleTy = CGF.IntPtrTy;
- bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
- llvm::Value* IntResult =
- Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
- return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
- }
- case CK_PointerToIntegral:
- assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
- return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
- case CK_ToVoid: {
- CGF.EmitIgnoredExpr(E);
- return nullptr;
- }
- case CK_VectorSplat: {
- llvm::Type *DstTy = ConvertType(DestTy);
- Value *Elt = Visit(const_cast<Expr*>(E));
- Elt = EmitScalarConversion(Elt, E->getType(),
- DestTy->getAs<VectorType>()->getElementType());
- // Splat the element across to all elements
- unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
- return Builder.CreateVectorSplat(NumElements, Elt, "splat");
- }
- case CK_IntegralCast:
- case CK_IntegralToFloating:
- case CK_FloatingToIntegral:
- case CK_FloatingCast:
- return EmitScalarConversion(Visit(E), E->getType(), DestTy);
- case CK_IntegralToBoolean:
- return EmitIntToBoolConversion(Visit(E));
- case CK_PointerToBoolean:
- return EmitPointerToBoolConversion(Visit(E));
- case CK_FloatingToBoolean:
- return EmitFloatToBoolConversion(Visit(E));
- case CK_MemberPointerToBoolean: {
- llvm::Value *MemPtr = Visit(E);
- const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
- return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
- }
- case CK_FloatingComplexToReal:
- case CK_IntegralComplexToReal:
- return CGF.EmitComplexExpr(E, false, true).first;
- case CK_FloatingComplexToBoolean:
- case CK_IntegralComplexToBoolean: {
- CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
- // TODO: kill this function off, inline appropriate case here
- return EmitComplexToScalarConversion(V, E->getType(), DestTy);
- }
- case CK_ZeroToOCLEvent: {
- assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
- return llvm::Constant::getNullValue(ConvertType(DestTy));
- }
- // HLSL Change Starts
- case CK_HLSLMatrixTruncationCast:
- case CK_HLSLVectorTruncationCast: {
- // must be vector
- llvm::Value *val = Visit(E);
- if (const ExtVectorType *extVecTy =
- hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(),
- CE->getType())) {
- uint32_t vecSize = extVecTy->getNumElements();
- SmallVector<llvm::Constant *, 4> Mask;
- for (unsigned i = 0; i != vecSize; ++i)
- Mask.push_back(Builder.getInt32(i));
- llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
- return Builder.CreateShuffleVector(
- val, llvm::UndefValue::get(val->getType()), MaskV);
- } else if (E->getType()->isScalarType()) {
- return Builder.CreateExtractElement(val, (uint64_t)0);
- }
- }
- case CK_HLSLCC_FloatingToIntegral:
- case CK_HLSLCC_FloatingCast: {
- return EmitScalarConversion(Visit(E), E->getType(), DestTy);
- }
- case CK_HLSLVectorToMatrixCast:
- case CK_HLSLMatrixToVectorCast: {
- llvm::Value *val = Visit(E);
- llvm::Type *RetTy = CGF.ConvertType(DestTy);
- val = CGF.CGM.getHLSLRuntime().EmitHLSLMatrixLoad(CGF, val, E->getType());
- return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(CGF, CE, RetTy, { val });
- }
- case CK_HLSLCC_IntegralCast:
- case CK_HLSLCC_IntegralToFloating: {
- return EmitScalarConversion(Visit(E), E->getType(), DestTy);
- }
- case CK_HLSLMatrixSplat: {
- llvm::Type *DstTy = ConvertType(DestTy);
- Value *Elt = Visit(const_cast<Expr *>(E));
- return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(CGF, CE, DstTy, { Elt });
- }
- case CK_HLSLVectorSplat: {
- llvm::Type *DstTy = ConvertType(DestTy);
- Value *Elt = Visit(const_cast<Expr *>(E));
- const ExtVectorType *extVecTy = hlsl::ConvertHLSLVecMatTypeToExtVectorType(
- CGF.getContext(), CE->getType());
- Elt = EmitScalarConversion(Elt, E->getType(), extVecTy->getElementType());
- // Splat the element across to all elements
- unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
- return Builder.CreateVectorSplat(NumElements, Elt, "splat");
- }
- case CK_HLSLVectorToScalarCast:
- case CK_HLSLMatrixToScalarCast: {
- return Builder.CreateExtractElement(Visit(E), (uint64_t)0);
- }
- case CK_FlatConversion: {
- llvm::Value *val = Visit(E);
- llvm::Value *elem = Builder.CreateExtractValue(val, (uint64_t)0);
- return EmitScalarConversion(elem, E->getType(), DestTy);
- }
- case CK_HLSLCC_IntegralToBoolean:
- return EmitIntToBoolConversion(Visit(E));
- case CK_HLSLCC_FloatingToBoolean:
- return EmitFloatToBoolConversion(Visit(E));
- // HLSL Change Ends
- }
- llvm_unreachable("unknown scalar cast");
- }
- Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
- CodeGenFunction::StmtExprEvaluation eval(CGF);
- llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
- !E->getType()->isVoidType());
- if (!RetAlloca)
- return nullptr;
- return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
- E->getExprLoc());
- }
- //===----------------------------------------------------------------------===//
- // Unary Operators
- //===----------------------------------------------------------------------===//
- static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
- llvm::Value *InVal, bool IsInc) {
- BinOpInfo BinOp;
- BinOp.LHS = InVal;
- BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
- BinOp.Ty = E->getType();
- BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
- BinOp.FPContractable = false;
- BinOp.E = E;
- return BinOp;
- }
- llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
- const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
- llvm::Value *Amount =
- llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
- StringRef Name = IsInc ? "inc" : "dec";
- switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
- case LangOptions::SOB_Defined:
- return Builder.CreateAdd(InVal, Amount, Name);
- case LangOptions::SOB_Undefined:
- if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
- return Builder.CreateNSWAdd(InVal, Amount, Name);
- // Fall through.
- case LangOptions::SOB_Trapping:
- return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
- }
- llvm_unreachable("Unknown SignedOverflowBehaviorTy");
- }
- llvm::Value *
- ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
- bool isInc, bool isPre) {
- QualType type = E->getSubExpr()->getType();
- llvm::PHINode *atomicPHI = nullptr;
- llvm::Value *value;
- llvm::Value *input;
- int amount = (isInc ? 1 : -1);
- if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
- type = atomicTy->getValueType();
- if (isInc && type->isBooleanType()) {
- llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
- if (isPre) {
- Builder.Insert(new llvm::StoreInst(True,
- LV.getAddress(), LV.isVolatileQualified(),
- LV.getAlignment().getQuantity(),
- llvm::SequentiallyConsistent));
- return Builder.getTrue();
- }
- // For atomic bool increment, we just store true and return it for
- // preincrement, do an atomic swap with true for postincrement
- return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
- LV.getAddress(), True, llvm::SequentiallyConsistent);
- }
- // Special case for atomic increment / decrement on integers, emit
- // atomicrmw instructions. We skip this if we want to be doing overflow
- // checking, and fall into the slow path with the atomic cmpxchg loop.
- if (!type->isBooleanType() && type->isIntegerType() &&
- !(type->isUnsignedIntegerType() &&
- CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
- CGF.getLangOpts().getSignedOverflowBehavior() !=
- LangOptions::SOB_Trapping) {
- llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
- llvm::AtomicRMWInst::Sub;
- llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
- llvm::Instruction::Sub;
- llvm::Value *amt = CGF.EmitToMemory(
- llvm::ConstantInt::get(ConvertType(type), 1, true), type);
- llvm::Value *old = Builder.CreateAtomicRMW(aop,
- LV.getAddress(), amt, llvm::SequentiallyConsistent);
- return isPre ? Builder.CreateBinOp(op, old, amt) : old;
- }
- value = EmitLoadOfLValue(LV, E->getExprLoc());
- input = value;
- // For every other atomic operation, we need to emit a load-op-cmpxchg loop
- llvm::BasicBlock *startBB = Builder.GetInsertBlock();
- llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
- value = CGF.EmitToMemory(value, type);
- Builder.CreateBr(opBB);
- Builder.SetInsertPoint(opBB);
- atomicPHI = Builder.CreatePHI(value->getType(), 2);
- atomicPHI->addIncoming(value, startBB);
- value = atomicPHI;
- } else {
- value = EmitLoadOfLValue(LV, E->getExprLoc());
- input = value;
- }
- // Special case of integer increment that we have to check first: bool++.
- // Due to promotion rules, we get:
- // bool++ -> bool = bool + 1
- // -> bool = (int)bool + 1
- // -> bool = ((int)bool + 1 != 0)
- // An interesting aspect of this is that increment is always true.
- // Decrement does not have this property.
- if (isInc && type->isBooleanType()) {
- value = Builder.getTrue();
- // Most common case by far: integer increment.
- } else if (type->isIntegerType()) {
- // Note that signed integer inc/dec with width less than int can't
- // overflow because of promotion rules; we're just eliding a few steps here.
- bool CanOverflow = value->getType()->getIntegerBitWidth() >=
- CGF.IntTy->getIntegerBitWidth();
- if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
- value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
- } else if (CanOverflow && type->isUnsignedIntegerType() &&
- CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
- value =
- EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
- } else {
- llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
- value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
- }
- // Next most common: pointer increment.
- } else if (const PointerType *ptr = type->getAs<PointerType>()) {
- QualType type = ptr->getPointeeType();
- // VLA types don't have constant size.
- if (const VariableArrayType *vla
- = CGF.getContext().getAsVariableArrayType(type)) {
- llvm::Value *numElts = CGF.getVLASize(vla).first;
- if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
- if (CGF.getLangOpts().isSignedOverflowDefined())
- value = Builder.CreateGEP(value, numElts, "vla.inc");
- else
- value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
- // Arithmetic on function pointers (!) is just +-1.
- } else if (type->isFunctionType()) {
- llvm::Value *amt = Builder.getInt32(amount);
- value = CGF.EmitCastToVoidPtr(value);
- if (CGF.getLangOpts().isSignedOverflowDefined())
- value = Builder.CreateGEP(value, amt, "incdec.funcptr");
- else
- value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
- value = Builder.CreateBitCast(value, input->getType());
- // For everything else, we can just do a simple increment.
- } else {
- llvm::Value *amt = Builder.getInt32(amount);
- if (CGF.getLangOpts().isSignedOverflowDefined())
- value = Builder.CreateGEP(value, amt, "incdec.ptr");
- else
- value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
- }
- // Vector increment/decrement.
- } else if (type->isVectorType() ||
- hlsl::IsHLSLVecType(type)) { // HLSL Change
- if (type->hasIntegerRepresentation()) {
- llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
- value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
- } else {
- value = Builder.CreateFAdd(
- value,
- llvm::ConstantFP::get(value->getType(), amount),
- isInc ? "inc" : "dec");
- }
- // HLSL Change Begins
- // HLSL matrix
- } else if (hlsl::IsHLSLMatType(type)) {
- // generate operator call
- value = CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
- CGF, E, value->getType(), {value});
- // store updated value
- CGF.CGM.getHLSLRuntime().EmitHLSLMatrixStore(CGF, value, LV.getAddress(), E->getType());
- // If this is a postinc, return the value read from memory, otherwise use
- // the
- // updated value.
- return isPre ? value : input;
- // HLSL Change Ends
- // Floating point.
- } else if (type->isRealFloatingType()) {
- // Add the inc/dec to the real part.
- llvm::Value *amt;
- if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
- // Another special case: half FP increment should be done via float
- if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
- value = Builder.CreateCall(
- CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
- CGF.CGM.FloatTy),
- input, "incdec.conv");
- } else {
- value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
- }
- }
- if (value->getType()->isFloatTy())
- amt = llvm::ConstantFP::get(VMContext,
- llvm::APFloat(static_cast<float>(amount)));
- else if (value->getType()->isDoubleTy())
- amt = llvm::ConstantFP::get(VMContext,
- llvm::APFloat(static_cast<double>(amount)));
- else {
- // Remaining types are either Half or LongDouble. Convert from float.
- llvm::APFloat F(static_cast<float>(amount));
- bool ignored;
- // Don't use getFloatTypeSemantics because Half isn't
- // necessarily represented using the "half" LLVM type.
- F.convert(value->getType()->isHalfTy()
- ? CGF.getTarget().getHalfFormat()
- : CGF.getTarget().getLongDoubleFormat(),
- llvm::APFloat::rmTowardZero, &ignored);
- amt = llvm::ConstantFP::get(VMContext, F);
- }
- value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
- if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
- if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
- value = Builder.CreateCall(
- CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
- CGF.CGM.FloatTy),
- value, "incdec.conv");
- } else {
- value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
- }
- }
- // Objective-C pointer types.
- } else {
- const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
- value = CGF.EmitCastToVoidPtr(value);
- CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
- if (!isInc) size = -size;
- llvm::Value *sizeValue =
- llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
- if (CGF.getLangOpts().isSignedOverflowDefined())
- value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
- else
- value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
- value = Builder.CreateBitCast(value, input->getType());
- }
- if (atomicPHI) {
- llvm::BasicBlock *opBB = Builder.GetInsertBlock();
- llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
- auto Pair = CGF.EmitAtomicCompareExchange(
- LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
- llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
- llvm::Value *success = Pair.second;
- atomicPHI->addIncoming(old, opBB);
- Builder.CreateCondBr(success, contBB, opBB);
- Builder.SetInsertPoint(contBB);
- return isPre ? value : input;
- }
- // Store the updated result through the lvalue.
- if (LV.isBitField())
- CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
- else
- CGF.EmitStoreThroughLValue(RValue::get(value), LV);
- // If this is a postinc, return the value read from memory, otherwise use the
- // updated value.
- return isPre ? value : input;
- }
- Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
- TestAndClearIgnoreResultAssign();
- // Emit unary minus with EmitSub so we handle overflow cases etc.
- BinOpInfo BinOp;
- BinOp.RHS = Visit(E->getSubExpr());
- if (BinOp.RHS->getType()->isFPOrFPVectorTy())
- BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
- else
- BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
- BinOp.Ty = E->getType();
- BinOp.Opcode = BO_Sub;
- BinOp.FPContractable = false;
- BinOp.E = E;
- return EmitSub(BinOp);
- }
- Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
- TestAndClearIgnoreResultAssign();
- Value *Op = Visit(E->getSubExpr());
- return Builder.CreateNot(Op, "neg");
- }
- Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
- // Perform vector logical not on comparison with zero vector.
- if (E->getType()->isExtVectorType() ||
- hlsl::IsHLSLVecType(E->getType())) { // HLSL Change
- Value *Oper = Visit(E->getSubExpr());
- Value *Zero = llvm::Constant::getNullValue(Oper->getType());
- Value *Result;
- if (Oper->getType()->isFPOrFPVectorTy())
- Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
- else
- Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
- return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
- }
- // Compare operand to zero.
- Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
- // Invert value.
- // TODO: Could dynamically modify easy computations here. For example, if
- // the operand is an icmp ne, turn into icmp eq.
- BoolVal = Builder.CreateNot(BoolVal, "lnot");
- // ZExt result to the expr type.
- return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
- }
- Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
- // Try folding the offsetof to a constant.
- llvm::APSInt Value;
- if (E->EvaluateAsInt(Value, CGF.getContext()))
- return Builder.getInt(Value);
- // Loop over the components of the offsetof to compute the value.
- unsigned n = E->getNumComponents();
- llvm::Type* ResultType = ConvertType(E->getType());
- llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
- QualType CurrentType = E->getTypeSourceInfo()->getType();
- for (unsigned i = 0; i != n; ++i) {
- OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
- llvm::Value *Offset = nullptr;
- switch (ON.getKind()) {
- case OffsetOfExpr::OffsetOfNode::Array: {
- // Compute the index
- Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
- llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
- bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
- Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
- // Save the element type
- CurrentType =
- CGF.getContext().getAsArrayType(CurrentType)->getElementType();
- // Compute the element size
- llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
- CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
- // Multiply out to compute the result
- Offset = Builder.CreateMul(Idx, ElemSize);
- break;
- }
- case OffsetOfExpr::OffsetOfNode::Field: {
- FieldDecl *MemberDecl = ON.getField();
- RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
- const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
- // Compute the index of the field in its parent.
- unsigned i = 0;
- // FIXME: It would be nice if we didn't have to loop here!
- for (RecordDecl::field_iterator Field = RD->field_begin(),
- FieldEnd = RD->field_end();
- Field != FieldEnd; ++Field, ++i) {
- if (*Field == MemberDecl)
- break;
- }
- assert(i < RL.getFieldCount() && "offsetof field in wrong type");
- // Compute the offset to the field
- int64_t OffsetInt = RL.getFieldOffset(i) /
- CGF.getContext().getCharWidth();
- Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
- // Save the element type.
- CurrentType = MemberDecl->getType();
- break;
- }
- case OffsetOfExpr::OffsetOfNode::Identifier:
- llvm_unreachable("dependent __builtin_offsetof");
- case OffsetOfExpr::OffsetOfNode::Base: {
- if (ON.getBase()->isVirtual()) {
- CGF.ErrorUnsupported(E, "virtual base in offsetof");
- continue;
- }
- RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
- const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
- // Save the element type.
- CurrentType = ON.getBase()->getType();
- // Compute the offset to the base.
- const RecordType *BaseRT = CurrentType->getAs<RecordType>();
- CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
- CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
- Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
- break;
- }
- }
- Result = Builder.CreateAdd(Result, Offset);
- }
- return Result;
- }
- /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
- /// argument of the sizeof expression as an integer.
- Value *
- ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
- const UnaryExprOrTypeTraitExpr *E) {
- QualType TypeToSize = E->getTypeOfArgument();
- if (E->getKind() == UETT_SizeOf) {
- if (const VariableArrayType *VAT =
- CGF.getContext().getAsVariableArrayType(TypeToSize)) {
- if (E->isArgumentType()) {
- // sizeof(type) - make sure to emit the VLA size.
- CGF.EmitVariablyModifiedType(TypeToSize);
- } else {
- // C99 6.5.3.4p2: If the argument is an expression of type
- // VLA, it is evaluated.
- CGF.EmitIgnoredExpr(E->getArgumentExpr());
- }
- QualType eltType;
- llvm::Value *numElts;
- std::tie(numElts, eltType) = CGF.getVLASize(VAT);
- llvm::Value *size = numElts;
- // Scale the number of non-VLA elements by the non-VLA element size.
- CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
- if (!eltSize.isOne())
- size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
- return size;
- }
- } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
- auto Alignment =
- CGF.getContext()
- .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
- E->getTypeOfArgument()->getPointeeType()))
- .getQuantity();
- return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
- }
- // If this isn't sizeof(vla), the result must be constant; use the constant
- // folding logic so we don't have to duplicate it here.
- return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
- }
- Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
- Expr *Op = E->getSubExpr();
- if (Op->getType()->isAnyComplexType()) {
- // If it's an l-value, load through the appropriate subobject l-value.
- // Note that we have to ask E because Op might be an l-value that
- // this won't work for, e.g. an Obj-C property.
- if (E->isGLValue())
- return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
- E->getExprLoc()).getScalarVal();
- // Otherwise, calculate and project.
- return CGF.EmitComplexExpr(Op, false, true).first;
- }
- return Visit(Op);
- }
- Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
- Expr *Op = E->getSubExpr();
- if (Op->getType()->isAnyComplexType()) {
- // If it's an l-value, load through the appropriate subobject l-value.
- // Note that we have to ask E because Op might be an l-value that
- // this won't work for, e.g. an Obj-C property.
- if (Op->isGLValue())
- return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
- E->getExprLoc()).getScalarVal();
- // Otherwise, calculate and project.
- return CGF.EmitComplexExpr(Op, true, false).second;
- }
- // __imag on a scalar returns zero. Emit the subexpr to ensure side
- // effects are evaluated, but not the actual value.
- if (Op->isGLValue())
- CGF.EmitLValue(Op);
- else
- CGF.EmitScalarExpr(Op, true);
- return llvm::Constant::getNullValue(ConvertType(E->getType()));
- }
- //===----------------------------------------------------------------------===//
- // Binary Operators
- //===----------------------------------------------------------------------===//
- BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
- TestAndClearIgnoreResultAssign();
- BinOpInfo Result;
- Result.LHS = Visit(E->getLHS());
- Result.RHS = Visit(E->getRHS());
- Result.Ty = E->getType();
- Result.Opcode = E->getOpcode();
- Result.FPContractable = E->isFPContractable();
- Result.E = E;
- return Result;
- }
- LValue ScalarExprEmitter::EmitCompoundAssignLValue(
- const CompoundAssignOperator *E,
- Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
- Value *&Result) {
- // HLSL Change Begins
- if (hlsl::IsHLSLMatType(E->getType())) {
- const Expr *LHS = E->getLHS();
- const Expr *RHS = E->getRHS();
- LValue L = CGF.EmitLValue(LHS);
- Value *LVal = L.getAddress();
- Value *RVal = CGF.EmitScalarExpr(RHS);
- SmallVector<Value *, 4> paramList;
- Value *LdLVal =
- CGF.CGM.getHLSLRuntime().EmitHLSLMatrixLoad(CGF, LVal, LHS->getType());
- paramList.emplace_back(LdLVal);
- paramList.emplace_back(RVal);
- // Set return type to be none reference type for Result
- llvm::Type *RetType = LVal->getType()->getPointerElementType();
- Result = CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
- CGF, E, RetType, paramList);
- // store result to LVal
- CGF.CGM.getHLSLRuntime().EmitHLSLMatrixStore(CGF, Result, LVal,
- LHS->getType());
- return L;
- }
- // HLSL Change Ends
- QualType LHSTy = E->getLHS()->getType();
- BinOpInfo OpInfo;
- if (E->getComputationResultType()->isAnyComplexType())
- return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
- // Emit the RHS first. __block variables need to have the rhs evaluated
- // first, plus this should improve codegen a little.
- OpInfo.RHS = Visit(E->getRHS());
- OpInfo.Ty = E->getComputationResultType();
- OpInfo.Opcode = E->getOpcode();
- OpInfo.FPContractable = false;
- OpInfo.E = E;
- // Load/convert the LHS.
- LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
- llvm::PHINode *atomicPHI = nullptr;
- if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
- QualType type = atomicTy->getValueType();
- if (!type->isBooleanType() && type->isIntegerType() &&
- !(type->isUnsignedIntegerType() &&
- CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
- CGF.getLangOpts().getSignedOverflowBehavior() !=
- LangOptions::SOB_Trapping) {
- llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
- switch (OpInfo.Opcode) {
- // We don't have atomicrmw operands for *, %, /, <<, >>
- case BO_MulAssign: case BO_DivAssign:
- case BO_RemAssign:
- case BO_ShlAssign:
- case BO_ShrAssign:
- break;
- case BO_AddAssign:
- aop = llvm::AtomicRMWInst::Add;
- break;
- case BO_SubAssign:
- aop = llvm::AtomicRMWInst::Sub;
- break;
- case BO_AndAssign:
- aop = llvm::AtomicRMWInst::And;
- break;
- case BO_XorAssign:
- aop = llvm::AtomicRMWInst::Xor;
- break;
- case BO_OrAssign:
- aop = llvm::AtomicRMWInst::Or;
- break;
- default:
- llvm_unreachable("Invalid compound assignment type");
- }
- if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
- llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
- E->getRHS()->getType(), LHSTy), LHSTy);
- Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
- llvm::SequentiallyConsistent);
- return LHSLV;
- }
- }
- // FIXME: For floating point types, we should be saving and restoring the
- // floating point environment in the loop.
- llvm::BasicBlock *startBB = Builder.GetInsertBlock();
- llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
- OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
- OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
- Builder.CreateBr(opBB);
- Builder.SetInsertPoint(opBB);
- atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
- atomicPHI->addIncoming(OpInfo.LHS, startBB);
- OpInfo.LHS = atomicPHI;
- }
- else
- OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
- OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
- E->getComputationLHSType());
- // Expand the binary operator.
- Result = (this->*Func)(OpInfo);
- // Convert the result back to the LHS type.
- Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
- if (atomicPHI) {
- llvm::BasicBlock *opBB = Builder.GetInsertBlock();
- llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
- auto Pair = CGF.EmitAtomicCompareExchange(
- LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
- llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
- llvm::Value *success = Pair.second;
- atomicPHI->addIncoming(old, opBB);
- Builder.CreateCondBr(success, contBB, opBB);
- Builder.SetInsertPoint(contBB);
- return LHSLV;
- }
- // Store the result value into the LHS lvalue. Bit-fields are handled
- // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
- // 'An assignment expression has the value of the left operand after the
- // assignment...'.
- if (LHSLV.isBitField())
- CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
- else
- CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
- return LHSLV;
- }
- Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
- Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
- bool Ignore = TestAndClearIgnoreResultAssign();
- Value *RHS;
- LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
- // If the result is clearly ignored, return now.
- if (Ignore)
- return nullptr;
- // The result of an assignment in C is the assigned r-value.
- if (!CGF.getLangOpts().CPlusPlus)
- return RHS;
- // If the lvalue is non-volatile, return the computed value of the assignment.
- if (!LHS.isVolatileQualified())
- return RHS;
- // Otherwise, reload the value.
- return EmitLoadOfLValue(LHS, E->getExprLoc());
- }
- void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
- const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
- SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
- if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
- Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
- SanitizerKind::IntegerDivideByZero));
- }
- if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
- Ops.Ty->hasSignedIntegerRepresentation()) {
- llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
- llvm::Value *IntMin =
- Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
- llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
- llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
- llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
- llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
- Checks.push_back(
- std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
- }
- if (Checks.size() > 0)
- EmitBinOpCheck(Checks, Ops);
- }
- Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
- {
- CodeGenFunction::SanitizerScope SanScope(&CGF);
- if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
- CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
- Ops.Ty->isIntegerType()) {
- llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
- EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
- } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
- Ops.Ty->isRealFloatingType()) {
- llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
- llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
- EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
- Ops);
- }
- }
- if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
- llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
- if (CGF.getLangOpts().OpenCL) {
- // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
- llvm::Type *ValTy = Val->getType();
- if (ValTy->isFloatTy() ||
- (isa<llvm::VectorType>(ValTy) &&
- cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
- CGF.SetFPAccuracy(Val, 2.5);
- }
- return Val;
- }
- else if (Ops.Ty->hasUnsignedIntegerRepresentation())
- return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
- else
- return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
- }
- Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
- // Rem in C can't be a floating point type: C99 6.5.5p2.
- if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
- CodeGenFunction::SanitizerScope SanScope(&CGF);
- llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
- if (Ops.Ty->isIntegerType())
- EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
- }
- // HLSL Change Begins.
- if (CGF.getLangOpts().HLSL) {
- if (Ops.LHS->getType()->getScalarType()->isFloatingPointTy()) {
- return Builder.CreateFRem(Ops.LHS, Ops.RHS, "frem");
- }
- }
- // HLSL Change Ends.
- if (Ops.Ty->hasUnsignedIntegerRepresentation())
- return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
- else
- return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
- }
- Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
- unsigned IID;
- unsigned OpID = 0;
- bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
- switch (Ops.Opcode) {
- case BO_Add:
- case BO_AddAssign:
- OpID = 1;
- IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
- llvm::Intrinsic::uadd_with_overflow;
- break;
- case BO_Sub:
- case BO_SubAssign:
- OpID = 2;
- IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
- llvm::Intrinsic::usub_with_overflow;
- break;
- case BO_Mul:
- case BO_MulAssign:
- OpID = 3;
- IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
- llvm::Intrinsic::umul_with_overflow;
- break;
- default:
- llvm_unreachable("Unsupported operation for overflow detection");
- }
- OpID <<= 1;
- if (isSigned)
- OpID |= 1;
- llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
- llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
- Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
- Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
- Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
- // Handle overflow with llvm.trap if no custom handler has been specified.
- const std::string *handlerName =
- &CGF.getLangOpts().OverflowHandler;
- if (handlerName->empty()) {
- // If the signed-integer-overflow sanitizer is enabled, emit a call to its
- // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
- if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
- CodeGenFunction::SanitizerScope SanScope(&CGF);
- llvm::Value *NotOverflow = Builder.CreateNot(overflow);
- SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
- : SanitizerKind::UnsignedIntegerOverflow;
- EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
- } else
- CGF.EmitTrapCheck(Builder.CreateNot(overflow));
- return result;
- }
- // Branch in case of overflow.
- llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
- llvm::Function::iterator insertPt = initialBB;
- llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
- std::next(insertPt));
- llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
- Builder.CreateCondBr(overflow, overflowBB, continueBB);
- // If an overflow handler is set, then we want to call it and then use its
- // result, if it returns.
- Builder.SetInsertPoint(overflowBB);
- // Get the overflow handler.
- llvm::Type *Int8Ty = CGF.Int8Ty;
- llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
- llvm::FunctionType *handlerTy =
- llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
- llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
- // Sign extend the args to 64-bit, so that we can use the same handler for
- // all types of overflow.
- llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
- llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
- // Call the handler with the two arguments, the operation, and the size of
- // the result.
- llvm::Value *handlerArgs[] = {
- lhs,
- rhs,
- Builder.getInt8(OpID),
- Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
- };
- llvm::Value *handlerResult =
- CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
- // Truncate the result back to the desired size.
- handlerResult = Builder.CreateTrunc(handlerResult, opTy);
- Builder.CreateBr(continueBB);
- Builder.SetInsertPoint(continueBB);
- llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
- phi->addIncoming(result, initialBB);
- phi->addIncoming(handlerResult, overflowBB);
- return phi;
- }
- /// Emit pointer + index arithmetic.
- static Value *emitPointerArithmetic(CodeGenFunction &CGF,
- const BinOpInfo &op,
- bool isSubtraction) {
- // Must have binary (not unary) expr here. Unary pointer
- // increment/decrement doesn't use this path.
- const BinaryOperator *expr = cast<BinaryOperator>(op.E);
- Value *pointer = op.LHS;
- Expr *pointerOperand = expr->getLHS();
- Value *index = op.RHS;
- Expr *indexOperand = expr->getRHS();
- // In a subtraction, the LHS is always the pointer.
- if (!isSubtraction && !pointer->getType()->isPointerTy()) {
- std::swap(pointer, index);
- std::swap(pointerOperand, indexOperand);
- }
- unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
- if (width != CGF.PointerWidthInBits) {
- // Zero-extend or sign-extend the pointer value according to
- // whether the index is signed or not.
- bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
- index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
- "idx.ext");
- }
- // If this is subtraction, negate the index.
- if (isSubtraction)
- index = CGF.Builder.CreateNeg(index, "idx.neg");
- if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
- CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
- /*Accessed*/ false);
- const PointerType *pointerType
- = pointerOperand->getType()->getAs<PointerType>();
- if (!pointerType) {
- QualType objectType = pointerOperand->getType()
- ->castAs<ObjCObjectPointerType>()
- ->getPointeeType();
- llvm::Value *objectSize
- = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
- index = CGF.Builder.CreateMul(index, objectSize);
- Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
- result = CGF.Builder.CreateGEP(result, index, "add.ptr");
- return CGF.Builder.CreateBitCast(result, pointer->getType());
- }
- QualType elementType = pointerType->getPointeeType();
- if (const VariableArrayType *vla
- = CGF.getContext().getAsVariableArrayType(elementType)) {
- // The element count here is the total number of non-VLA elements.
- llvm::Value *numElements = CGF.getVLASize(vla).first;
- // Effectively, the multiply by the VLA size is part of the GEP.
- // GEP indexes are signed, and scaling an index isn't permitted to
- // signed-overflow, so we use the same semantics for our explicit
- // multiply. We suppress this if overflow is not undefined behavior.
- if (CGF.getLangOpts().isSignedOverflowDefined()) {
- index = CGF.Builder.CreateMul(index, numElements, "vla.index");
- pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
- } else {
- index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
- pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
- }
- return pointer;
- }
- // Explicitly handle GNU void* and function pointer arithmetic extensions. The
- // GNU void* casts amount to no-ops since our void* type is i8*, but this is
- // future proof.
- if (elementType->isVoidType() || elementType->isFunctionType()) {
- Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
- result = CGF.Builder.CreateGEP(result, index, "add.ptr");
- return CGF.Builder.CreateBitCast(result, pointer->getType());
- }
- if (CGF.getLangOpts().isSignedOverflowDefined())
- return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
- return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
- }
- // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
- // Addend. Use negMul and negAdd to negate the first operand of the Mul or
- // the add operand respectively. This allows fmuladd to represent a*b-c, or
- // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
- // efficient operations.
- static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
- const CodeGenFunction &CGF, CGBuilderTy &Builder,
- bool negMul, bool negAdd) {
- assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
- Value *MulOp0 = MulOp->getOperand(0);
- Value *MulOp1 = MulOp->getOperand(1);
- if (negMul) {
- MulOp0 =
- Builder.CreateFSub(
- llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
- "neg");
- } else if (negAdd) {
- Addend =
- Builder.CreateFSub(
- llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
- "neg");
- }
- Value *FMulAdd = Builder.CreateCall(
- CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
- {MulOp0, MulOp1, Addend});
- MulOp->eraseFromParent();
- return FMulAdd;
- }
- // Check whether it would be legal to emit an fmuladd intrinsic call to
- // represent op and if so, build the fmuladd.
- //
- // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
- // Does NOT check the type of the operation - it's assumed that this function
- // will be called from contexts where it's known that the type is contractable.
- static Value* tryEmitFMulAdd(const BinOpInfo &op,
- const CodeGenFunction &CGF, CGBuilderTy &Builder,
- bool isSub=false) {
- assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
- op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
- "Only fadd/fsub can be the root of an fmuladd.");
- // Check whether this op is marked as fusable.
- if (!op.FPContractable)
- return nullptr;
- // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
- // either disabled, or handled entirely by the LLVM backend).
- if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
- return nullptr;
- // We have a potentially fusable op. Look for a mul on one of the operands.
- if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
- if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
- assert(LHSBinOp->getNumUses() == 0 &&
- "Operations with multiple uses shouldn't be contracted.");
- return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
- }
- } else if (llvm::BinaryOperator* RHSBinOp =
- dyn_cast<llvm::BinaryOperator>(op.RHS)) {
- if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
- assert(RHSBinOp->getNumUses() == 0 &&
- "Operations with multiple uses shouldn't be contracted.");
- return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
- }
- }
- return nullptr;
- }
- Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
- if (op.LHS->getType()->isPointerTy() ||
- op.RHS->getType()->isPointerTy())
- return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
- if (op.Ty->isSignedIntegerOrEnumerationType()) {
- switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
- case LangOptions::SOB_Defined:
- return Builder.CreateAdd(op.LHS, op.RHS, "add");
- case LangOptions::SOB_Undefined:
- if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
- return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
- // Fall through.
- case LangOptions::SOB_Trapping:
- return EmitOverflowCheckedBinOp(op);
- }
- }
- if (op.Ty->isUnsignedIntegerType() &&
- CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
- return EmitOverflowCheckedBinOp(op);
- if (op.LHS->getType()->isFPOrFPVectorTy()) {
- // Try to form an fmuladd.
- if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
- return FMulAdd;
- return Builder.CreateFAdd(op.LHS, op.RHS, "add");
- }
- return Builder.CreateAdd(op.LHS, op.RHS, "add");
- }
- Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
- // The LHS is always a pointer if either side is.
- if (!op.LHS->getType()->isPointerTy()) {
- if (op.Ty->isSignedIntegerOrEnumerationType()) {
- switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
- case LangOptions::SOB_Defined:
- return Builder.CreateSub(op.LHS, op.RHS, "sub");
- case LangOptions::SOB_Undefined:
- if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
- return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
- // Fall through.
- case LangOptions::SOB_Trapping:
- return EmitOverflowCheckedBinOp(op);
- }
- }
- if (op.Ty->isUnsignedIntegerType() &&
- CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
- return EmitOverflowCheckedBinOp(op);
- if (op.LHS->getType()->isFPOrFPVectorTy()) {
- // Try to form an fmuladd.
- if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
- return FMulAdd;
- return Builder.CreateFSub(op.LHS, op.RHS, "sub");
- }
- return Builder.CreateSub(op.LHS, op.RHS, "sub");
- }
- // If the RHS is not a pointer, then we have normal pointer
- // arithmetic.
- if (!op.RHS->getType()->isPointerTy())
- return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
- // Otherwise, this is a pointer subtraction.
- // Do the raw subtraction part.
- llvm::Value *LHS
- = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
- llvm::Value *RHS
- = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
- Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
- // Okay, figure out the element size.
- const BinaryOperator *expr = cast<BinaryOperator>(op.E);
- QualType elementType = expr->getLHS()->getType()->getPointeeType();
- llvm::Value *divisor = nullptr;
- // For a variable-length array, this is going to be non-constant.
- if (const VariableArrayType *vla
- = CGF.getContext().getAsVariableArrayType(elementType)) {
- llvm::Value *numElements;
- std::tie(numElements, elementType) = CGF.getVLASize(vla);
- divisor = numElements;
- // Scale the number of non-VLA elements by the non-VLA element size.
- CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
- if (!eltSize.isOne())
- divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
- // For everything elese, we can just compute it, safe in the
- // assumption that Sema won't let anything through that we can't
- // safely compute the size of.
- } else {
- CharUnits elementSize;
- // Handle GCC extension for pointer arithmetic on void* and
- // function pointer types.
- if (elementType->isVoidType() || elementType->isFunctionType())
- elementSize = CharUnits::One();
- else
- elementSize = CGF.getContext().getTypeSizeInChars(elementType);
- // Don't even emit the divide for element size of 1.
- if (elementSize.isOne())
- return diffInChars;
- divisor = CGF.CGM.getSize(elementSize);
- }
- // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
- // pointer difference in C is only defined in the case where both operands
- // are pointing to elements of an array.
- return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
- }
- Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
- llvm::IntegerType *Ty;
- if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
- Ty = cast<llvm::IntegerType>(VT->getElementType());
- else
- Ty = cast<llvm::IntegerType>(LHS->getType());
- return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
- }
- Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
- // LLVM requires the LHS and RHS to be the same type: promote or truncate the
- // RHS to the same size as the LHS.
- Value *RHS = Ops.RHS;
- if (Ops.LHS->getType() != RHS->getType())
- RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
- bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
- Ops.Ty->hasSignedIntegerRepresentation();
- bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
- // OpenCL 6.3j: shift values are effectively % word size of LHS.
- if (CGF.getLangOpts().OpenCL)
- RHS =
- Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
- else if ((SanitizeBase || SanitizeExponent) &&
- isa<llvm::IntegerType>(Ops.LHS->getType())) {
- CodeGenFunction::SanitizerScope SanScope(&CGF);
- SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
- llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
- llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
- if (SanitizeExponent) {
- Checks.push_back(
- std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
- }
- if (SanitizeBase) {
- // Check whether we are shifting any non-zero bits off the top of the
- // integer. We only emit this check if exponent is valid - otherwise
- // instructions below will have undefined behavior themselves.
- llvm::BasicBlock *Orig = Builder.GetInsertBlock();
- llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
- llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
- Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
- CGF.EmitBlock(CheckShiftBase);
- llvm::Value *BitsShiftedOff =
- Builder.CreateLShr(Ops.LHS,
- Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
- /*NUW*/true, /*NSW*/true),
- "shl.check");
- if (CGF.getLangOpts().CPlusPlus) {
- // In C99, we are not permitted to shift a 1 bit into the sign bit.
- // Under C++11's rules, shifting a 1 bit into the sign bit is
- // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
- // define signed left shifts, so we use the C99 and C++11 rules there).
- llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
- BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
- }
- llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
- llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
- CGF.EmitBlock(Cont);
- llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
- BaseCheck->addIncoming(Builder.getTrue(), Orig);
- BaseCheck->addIncoming(ValidBase, CheckShiftBase);
- Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
- }
- assert(!Checks.empty());
- EmitBinOpCheck(Checks, Ops);
- }
- return Builder.CreateShl(Ops.LHS, RHS, "shl");
- }
- Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
- // LLVM requires the LHS and RHS to be the same type: promote or truncate the
- // RHS to the same size as the LHS.
- Value *RHS = Ops.RHS;
- if (Ops.LHS->getType() != RHS->getType())
- RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
- // OpenCL 6.3j: shift values are effectively % word size of LHS.
- if (CGF.getLangOpts().OpenCL)
- RHS =
- Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
- else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
- isa<llvm::IntegerType>(Ops.LHS->getType())) {
- CodeGenFunction::SanitizerScope SanScope(&CGF);
- llvm::Value *Valid =
- Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
- EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
- }
- if (Ops.Ty->hasUnsignedIntegerRepresentation())
- return Builder.CreateLShr(Ops.LHS, RHS, "shr");
- // HLSL Change Begin - check unsigned for vector.
- if (hlsl::IsHLSLVecType(Ops.Ty)) {
- if (hlsl::GetHLSLVecElementType(Ops.Ty)->hasUnsignedIntegerRepresentation())
- return Builder.CreateLShr(Ops.LHS, RHS, "shr");
- }
- // HLSL Change End.
- return Builder.CreateAShr(Ops.LHS, RHS, "shr");
- }
- enum IntrinsicType { VCMPEQ, VCMPGT };
- #if 0 // HLSL Change - remove platform intrinsics
- // return corresponding comparison intrinsic for given vector type
- static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
- BuiltinType::Kind ElemKind) {
- llvm_unreachable("HLSL Does not support altivec vectors");
- return llvm::Intrinsic::not_intrinsic; // HLSL Change - remove platform intrinsics
- switch (ElemKind) {
- default: llvm_unreachable("unexpected element type");
- case BuiltinType::Char_U:
- case BuiltinType::UChar:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
- llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
- case BuiltinType::Char_S:
- case BuiltinType::SChar:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
- llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
- case BuiltinType::UShort:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
- llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
- case BuiltinType::Short:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
- llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
- case BuiltinType::UInt:
- case BuiltinType::ULong:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
- llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
- case BuiltinType::Int:
- case BuiltinType::Long:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
- llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
- case BuiltinType::Float:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
- llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
- }
- }
- #endif // HLSL Change - remove platform intrinsics
- Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
- unsigned SICmpOpc, unsigned FCmpOpc) {
- TestAndClearIgnoreResultAssign();
- Value *Result;
- QualType LHSTy = E->getLHS()->getType();
- QualType RHSTy = E->getRHS()->getType();
- if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
- assert(E->getOpcode() == BO_EQ ||
- E->getOpcode() == BO_NE);
- Value *LHS = CGF.EmitScalarExpr(E->getLHS());
- Value *RHS = CGF.EmitScalarExpr(E->getRHS());
- Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
- CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
- } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
- Value *LHS = Visit(E->getLHS());
- Value *RHS = Visit(E->getRHS());
- // HLSL Change Begins
- if (hlsl::IsHLSLMatType(LHSTy) && hlsl::IsHLSLMatType(RHSTy)) {
- llvm::Type *RetTy = CGF.ConvertType(E->getType());
- return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(CGF, E, RetTy,
- {LHS, RHS});
- }
- // HLSL Change Ends
- // If AltiVec, the comparison results in a numeric type, so we use
- // intrinsics comparing vectors and giving 0 or 1 as a result
- if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
- llvm_unreachable("HLSL Does not support altivec vectors");
- #if 0 // HLSL Change - remove platform intrinsics
- // constants for mapping CR6 register bits to predicate result
- enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
- llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
- // in several cases vector arguments order will be reversed
- Value *FirstVecArg = LHS,
- *SecondVecArg = RHS;
- QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
- const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
- BuiltinType::Kind ElementKind = BTy->getKind();
- switch(E->getOpcode()) {
- default: llvm_unreachable("is not a comparison operation");
- case BO_EQ:
- CR6 = CR6_LT;
- ID = GetIntrinsic(VCMPEQ, ElementKind);
- break;
- case BO_NE:
- CR6 = CR6_EQ;
- ID = GetIntrinsic(VCMPEQ, ElementKind);
- break;
- case BO_LT:
- CR6 = CR6_LT;
- ID = GetIntrinsic(VCMPGT, ElementKind);
- std::swap(FirstVecArg, SecondVecArg);
- break;
- case BO_GT:
- CR6 = CR6_LT;
- ID = GetIntrinsic(VCMPGT, ElementKind);
- break;
- case BO_LE:
- if (ElementKind == BuiltinType::Float) {
- CR6 = CR6_LT;
- ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
- std::swap(FirstVecArg, SecondVecArg);
- }
- else {
- CR6 = CR6_EQ;
- ID = GetIntrinsic(VCMPGT, ElementKind);
- }
- break;
- case BO_GE:
- if (ElementKind == BuiltinType::Float) {
- CR6 = CR6_LT;
- ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
- }
- else {
- CR6 = CR6_EQ;
- ID = GetIntrinsic(VCMPGT, ElementKind);
- std::swap(FirstVecArg, SecondVecArg);
- }
- break;
- }
- Value *CR6Param = Builder.getInt32(CR6);
- llvm::Function *F = CGF.CGM.getIntrinsic(ID);
- Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
- return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
- #endif // HLSL Change - remove platform intrinsics
- }
- if (LHS->getType()->isFPOrFPVectorTy()) {
- Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
- LHS, RHS, "cmp");
- } else if (LHSTy->hasSignedIntegerRepresentation()) {
- Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
- LHS, RHS, "cmp");
- } else {
- // Unsigned integers and pointers.
- Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
- LHS, RHS, "cmp");
- }
- // If this is a vector comparison, sign extend the result to the appropriate
- // vector integer type and return it (don't convert to bool).
- if (LHSTy->isVectorType())
- return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
- // HLSL Change Starts
- if (const ExtVectorType *vecTy = hlsl::ConvertHLSLVecMatTypeToExtVectorType(
- CGF.getContext(), LHSTy)) {
- // Return Result directly when E is already a vector.
- if (hlsl::IsHLSLVecType(E->getType()))
- return Result;
- QualType bVecTy = CGF.getContext().getExtVectorType(
- E->getType(), vecTy->getNumElements());
- return Builder.CreateSExt(Result, ConvertType(bVecTy), "sext");
- }
- // HLSL Change Ends
- } else {
- // Complex Comparison: can only be an equality comparison.
- CodeGenFunction::ComplexPairTy LHS, RHS;
- QualType CETy;
- if (auto *CTy = LHSTy->getAs<ComplexType>()) {
- LHS = CGF.EmitComplexExpr(E->getLHS());
- CETy = CTy->getElementType();
- } else {
- LHS.first = Visit(E->getLHS());
- LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
- CETy = LHSTy;
- }
- if (auto *CTy = RHSTy->getAs<ComplexType>()) {
- RHS = CGF.EmitComplexExpr(E->getRHS());
- assert(CGF.getContext().hasSameUnqualifiedType(CETy,
- CTy->getElementType()) &&
- "The element types must always match.");
- (void)CTy;
- } else {
- RHS.first = Visit(E->getRHS());
- RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
- assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
- "The element types must always match.");
- }
- Value *ResultR, *ResultI;
- if (CETy->isRealFloatingType()) {
- ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
- LHS.first, RHS.first, "cmp.r");
- ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
- LHS.second, RHS.second, "cmp.i");
- } else {
- // Complex comparisons can only be equality comparisons. As such, signed
- // and unsigned opcodes are the same.
- ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
- LHS.first, RHS.first, "cmp.r");
- ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
- LHS.second, RHS.second, "cmp.i");
- }
- if (E->getOpcode() == BO_EQ) {
- Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
- } else {
- assert(E->getOpcode() == BO_NE &&
- "Complex comparison other than == or != ?");
- Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
- }
- }
- return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
- }
- Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
- bool Ignore = TestAndClearIgnoreResultAssign();
- Value *RHS;
- LValue LHS;
- switch (E->getLHS()->getType().getObjCLifetime()) {
- case Qualifiers::OCL_Strong:
- std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
- break;
- case Qualifiers::OCL_Autoreleasing:
- std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
- break;
- case Qualifiers::OCL_Weak:
- RHS = Visit(E->getRHS());
- LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
- RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
- break;
- // No reason to do any of these differently.
- case Qualifiers::OCL_None:
- case Qualifiers::OCL_ExplicitNone:
- // __block variables need to have the rhs evaluated first, plus
- // this should improve codegen just a little.
- RHS = Visit(E->getRHS());
- LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
- // Store the value into the LHS. Bit-fields are handled specially
- // because the result is altered by the store, i.e., [C99 6.5.16p1]
- // 'An assignment expression has the value of the left operand after
- // the assignment...'.
- if (LHS.isBitField())
- CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
- else
- CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
- }
- // If the result is clearly ignored, return now.
- if (Ignore)
- return nullptr;
- // The result of an assignment in C is the assigned r-value.
- if (!CGF.getLangOpts().CPlusPlus)
- return RHS;
- // If the lvalue is non-volatile, return the computed value of the assignment.
- if (!LHS.isVolatileQualified())
- return RHS;
- // Otherwise, reload the value.
- return EmitLoadOfLValue(LHS, E->getExprLoc());
- }
- Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
- // Perform vector logical and on comparisons with zero vectors.
- if (E->getType()->isVectorType()) {
- CGF.incrementProfileCounter(E);
- Value *LHS = Visit(E->getLHS());
- Value *RHS = Visit(E->getRHS());
- Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
- if (LHS->getType()->isFPOrFPVectorTy()) {
- LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
- RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
- } else {
- LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
- RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
- }
- Value *And = Builder.CreateAnd(LHS, RHS);
- return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
- }
- llvm::Type *ResTy = ConvertType(E->getType());
- // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
- // If we have 1 && X, just emit X without inserting the control flow.
- bool LHSCondVal;
- if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
- if (LHSCondVal) { // If we have 1 && X, just emit X.
- CGF.incrementProfileCounter(E);
- Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
- // ZExt result to int or bool.
- return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
- }
- // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
- if (!CGF.ContainsLabel(E->getRHS())) {
- // HLSL Change Begins.
- if (CGF.getLangOpts().HLSL) {
- // HLSL does not short circuit.
- Visit(E->getRHS());
- }
- // HLSL Change Ends.
- return llvm::Constant::getNullValue(ResTy);
- }
- }
- // HLSL Change Begins.
- if (CGF.getLangOpts().HLSL) {
- // HLSL does not short circuit.
- Value *LHS = Visit(E->getLHS());
- Value *RHS = Visit(E->getRHS());
- if (ResTy->isVectorTy()) {
- Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
- if (LHS->getType()->isFPOrFPVectorTy()) {
- LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
- RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
- } else {
- LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
- RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
- }
- }
- Value *And = Builder.CreateAnd(LHS, RHS);
- return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
- }
- // HLSL Change Ends.
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
- llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
- CodeGenFunction::ConditionalEvaluation eval(CGF);
- // Branch on the LHS first. If it is false, go to the failure (cont) block.
- CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
- CGF.getProfileCount(E->getRHS()));
- // Any edges into the ContBlock are now from an (indeterminate number of)
- // edges from this first condition. All of these values will be false. Start
- // setting up the PHI node in the Cont Block for this.
- llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
- "", ContBlock);
- for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
- PI != PE; ++PI)
- PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
- eval.begin(CGF);
- CGF.EmitBlock(RHSBlock);
- CGF.incrementProfileCounter(E);
- Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
- eval.end(CGF);
- // Reaquire the RHS block, as there may be subblocks inserted.
- RHSBlock = Builder.GetInsertBlock();
- // Emit an unconditional branch from this block to ContBlock.
- {
- // There is no need to emit line number for unconditional branch.
- auto NL = ApplyDebugLocation::CreateEmpty(CGF);
- CGF.EmitBlock(ContBlock);
- }
- // Insert an entry into the phi node for the edge with the value of RHSCond.
- PN->addIncoming(RHSCond, RHSBlock);
- // ZExt result to int.
- return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
- }
- Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
- // Perform vector logical or on comparisons with zero vectors.
- if (E->getType()->isVectorType()) {
- CGF.incrementProfileCounter(E);
- Value *LHS = Visit(E->getLHS());
- Value *RHS = Visit(E->getRHS());
- Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
- if (LHS->getType()->isFPOrFPVectorTy()) {
- LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
- RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
- } else {
- LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
- RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
- }
- Value *Or = Builder.CreateOr(LHS, RHS);
- return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
- }
- llvm::Type *ResTy = ConvertType(E->getType());
- // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
- // If we have 0 || X, just emit X without inserting the control flow.
- bool LHSCondVal;
- if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
- if (!LHSCondVal) { // If we have 0 || X, just emit X.
- CGF.incrementProfileCounter(E);
- Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
- // ZExt result to int or bool.
- return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
- }
- // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
- if (!CGF.ContainsLabel(E->getRHS())) {
- // HLSL Change Begins.
- if (CGF.getLangOpts().HLSL) {
- // HLSL does not short circuit.
- Visit(E->getRHS());
- }
- // HLSL Change Ends.
- return llvm::ConstantInt::get(ResTy, 1);
- }
- }
- // HLSL Change Begins.
- if (CGF.getLangOpts().HLSL) {
- // HLSL does not short circuit.
- Value *LHS = Visit(E->getLHS());
- Value *RHS = Visit(E->getRHS());
- if (ResTy->isVectorTy()) {
- Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
- if (LHS->getType()->isFPOrFPVectorTy()) {
- LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
- RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
- } else {
- LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
- RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
- }
- }
- Value *Or = Builder.CreateOr(LHS, RHS);
- return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
- }
- // HLSL Change Ends.
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
- llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
- CodeGenFunction::ConditionalEvaluation eval(CGF);
- // Branch on the LHS first. If it is true, go to the success (cont) block.
- CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
- CGF.getCurrentProfileCount() -
- CGF.getProfileCount(E->getRHS()));
- // Any edges into the ContBlock are now from an (indeterminate number of)
- // edges from this first condition. All of these values will be true. Start
- // setting up the PHI node in the Cont Block for this.
- llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
- "", ContBlock);
- for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
- PI != PE; ++PI)
- PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
- eval.begin(CGF);
- // Emit the RHS condition as a bool value.
- CGF.EmitBlock(RHSBlock);
- CGF.incrementProfileCounter(E);
- Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
- eval.end(CGF);
- // Reaquire the RHS block, as there may be subblocks inserted.
- RHSBlock = Builder.GetInsertBlock();
- // Emit an unconditional branch from this block to ContBlock. Insert an entry
- // into the phi node for the edge with the value of RHSCond.
- CGF.EmitBlock(ContBlock);
- PN->addIncoming(RHSCond, RHSBlock);
- // ZExt result to int.
- return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
- }
- Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
- CGF.EmitIgnoredExpr(E->getLHS());
- CGF.EnsureInsertPoint();
- return Visit(E->getRHS());
- }
- //===----------------------------------------------------------------------===//
- // Other Operators
- //===----------------------------------------------------------------------===//
- /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
- /// expression is cheap enough and side-effect-free enough to evaluate
- /// unconditionally instead of conditionally. This is used to convert control
- /// flow into selects in some cases.
- static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
- CodeGenFunction &CGF) {
- // Anything that is an integer or floating point constant is fine.
- return E->IgnoreParens()->isEvaluatable(CGF.getContext());
- // Even non-volatile automatic variables can't be evaluated unconditionally.
- // Referencing a thread_local may cause non-trivial initialization work to
- // occur. If we're inside a lambda and one of the variables is from the scope
- // outside the lambda, that function may have returned already. Reading its
- // locals is a bad idea. Also, these reads may introduce races there didn't
- // exist in the source-level program.
- }
- Value *ScalarExprEmitter::
- VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
- TestAndClearIgnoreResultAssign();
- // Bind the common expression if necessary.
- CodeGenFunction::OpaqueValueMapping binding(CGF, E);
- Expr *condExpr = E->getCond();
- Expr *lhsExpr = E->getTrueExpr();
- Expr *rhsExpr = E->getFalseExpr();
- // If the condition constant folds and can be elided, try to avoid emitting
- // the condition and the dead arm.
- bool CondExprBool;
- if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
- Expr *live = lhsExpr, *dead = rhsExpr;
- if (!CondExprBool) std::swap(live, dead);
- // If the dead side doesn't have labels we need, just emit the Live part.
- if (!CGF.ContainsLabel(dead)) {
- if (CondExprBool)
- CGF.incrementProfileCounter(E);
- Value *Result = Visit(live);
- // If the live part is a throw expression, it acts like it has a void
- // type, so evaluating it returns a null Value*. However, a conditional
- // with non-void type must return a non-null Value*.
- if (!Result && !E->getType()->isVoidType())
- Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
- return Result;
- }
- }
- // OpenCL: If the condition is a vector, we can treat this condition like
- // the select function.
- if (CGF.getLangOpts().OpenCL
- && condExpr->getType()->isVectorType()) {
- CGF.incrementProfileCounter(E);
- llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
- llvm::Value *LHS = Visit(lhsExpr);
- llvm::Value *RHS = Visit(rhsExpr);
- llvm::Type *condType = ConvertType(condExpr->getType());
- llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
- unsigned numElem = vecTy->getNumElements();
- llvm::Type *elemType = vecTy->getElementType();
- llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
- llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
- llvm::Value *tmp = Builder.CreateSExt(TestMSB,
- llvm::VectorType::get(elemType,
- numElem),
- "sext");
- llvm::Value *tmp2 = Builder.CreateNot(tmp);
- // Cast float to int to perform ANDs if necessary.
- llvm::Value *RHSTmp = RHS;
- llvm::Value *LHSTmp = LHS;
- bool wasCast = false;
- llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
- if (rhsVTy->getElementType()->isFloatingPointTy()) {
- RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
- LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
- wasCast = true;
- }
- llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
- llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
- llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
- if (wasCast)
- tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
- return tmp5;
- }
- // HLSL Change Starts
- if (CGF.getLangOpts().HLSL && hlsl::IsHLSLVecType(E->getType())) {
- llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
- llvm::Value *LHS = Visit(lhsExpr);
- llvm::Value *RHS = Visit(rhsExpr);
- if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(CondV->getType())) {
- llvm::VectorType *ResultVT = cast<llvm::VectorType>(LHS->getType());
- llvm::Value *result = llvm::UndefValue::get(ResultVT);
- for (unsigned i = 0; i < VT->getNumElements(); i++) {
- llvm::Value *EltCond = Builder.CreateExtractElement(CondV, i);
- llvm::Value *EltL = Builder.CreateExtractElement(LHS, i);
- llvm::Value *EltR = Builder.CreateExtractElement(RHS, i);
- llvm::Value *EltSelect = Builder.CreateSelect(EltCond, EltL, EltR);
- result = Builder.CreateInsertElement(result, EltSelect, i);
- }
- return result;
- } else {
- return Builder.CreateSelect(CondV, LHS, RHS);
- }
- }
- if (CGF.getLangOpts().HLSL && hlsl::IsHLSLMatType(E->getType())) {
- llvm::Value *Cond = CGF.EmitScalarExpr(condExpr);
- llvm::Value *LHS = Visit(lhsExpr);
- llvm::Value *RHS = Visit(rhsExpr);
- return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
- CGF, E, LHS->getType(), {Cond, LHS, RHS});
- }
- // HLSL Change Ends
- // If this is a really simple expression (like x ? 4 : 5), emit this as a
- // select instead of as control flow. We can only do this if it is cheap and
- // safe to evaluate the LHS and RHS unconditionally.
- if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
- isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
- CGF.incrementProfileCounter(E);
- llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
- llvm::Value *LHS = Visit(lhsExpr);
- llvm::Value *RHS = Visit(rhsExpr);
- if (!LHS) {
- // If the conditional has void type, make sure we return a null Value*.
- assert(!RHS && "LHS and RHS types must match");
- return nullptr;
- }
- return Builder.CreateSelect(CondV, LHS, RHS, "cond");
- }
- llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
- llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
- CodeGenFunction::ConditionalEvaluation eval(CGF);
- CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
- CGF.getProfileCount(lhsExpr));
- CGF.EmitBlock(LHSBlock);
- CGF.incrementProfileCounter(E);
- eval.begin(CGF);
- Value *LHS = Visit(lhsExpr);
- eval.end(CGF);
- LHSBlock = Builder.GetInsertBlock();
- Builder.CreateBr(ContBlock);
- CGF.EmitBlock(RHSBlock);
- eval.begin(CGF);
- Value *RHS = Visit(rhsExpr);
- eval.end(CGF);
- RHSBlock = Builder.GetInsertBlock();
- CGF.EmitBlock(ContBlock);
- // If the LHS or RHS is a throw expression, it will be legitimately null.
- if (!LHS)
- return RHS;
- if (!RHS)
- return LHS;
- // Create a PHI node for the real part.
- llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
- PN->addIncoming(LHS, LHSBlock);
- PN->addIncoming(RHS, RHSBlock);
- return PN;
- }
- Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
- return Visit(E->getChosenSubExpr());
- }
- Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
- QualType Ty = VE->getType();
- if (Ty->isVariablyModifiedType())
- CGF.EmitVariablyModifiedType(Ty);
- llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
- llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
- llvm::Type *ArgTy = ConvertType(VE->getType());
- // If EmitVAArg fails, we fall back to the LLVM instruction.
- if (!ArgPtr)
- return Builder.CreateVAArg(ArgValue, ArgTy);
- // FIXME Volatility.
- llvm::Value *Val = Builder.CreateLoad(ArgPtr);
- // If EmitVAArg promoted the type, we must truncate it.
- if (ArgTy != Val->getType()) {
- if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
- Val = Builder.CreateIntToPtr(Val, ArgTy);
- else
- Val = Builder.CreateTrunc(Val, ArgTy);
- }
- return Val;
- }
- Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
- return CGF.EmitBlockLiteral(block);
- }
- Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
- Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
- llvm::Type *DstTy = ConvertType(E->getType());
- // Going from vec4->vec3 or vec3->vec4 is a special case and requires
- // a shuffle vector instead of a bitcast.
- llvm::Type *SrcTy = Src->getType();
- if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
- unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
- unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
- if ((numElementsDst == 3 && numElementsSrc == 4)
- || (numElementsDst == 4 && numElementsSrc == 3)) {
- // In the case of going from int4->float3, a bitcast is needed before
- // doing a shuffle.
- llvm::Type *srcElemTy =
- cast<llvm::VectorType>(SrcTy)->getElementType();
- llvm::Type *dstElemTy =
- cast<llvm::VectorType>(DstTy)->getElementType();
- if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
- || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
- // Create a float type of the same size as the source or destination.
- llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
- numElementsSrc);
- Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
- }
- llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
- SmallVector<llvm::Constant*, 3> Args;
- Args.push_back(Builder.getInt32(0));
- Args.push_back(Builder.getInt32(1));
- Args.push_back(Builder.getInt32(2));
- if (numElementsDst == 4)
- Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
- llvm::Constant *Mask = llvm::ConstantVector::get(Args);
- return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
- }
- }
- return Builder.CreateBitCast(Src, DstTy, "astype");
- }
- Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
- return CGF.EmitAtomicExpr(E).getScalarVal();
- }
- //===----------------------------------------------------------------------===//
- // Entry Point into this File
- //===----------------------------------------------------------------------===//
- /// EmitScalarExpr - Emit the computation of the specified expression of scalar
- /// type, ignoring the result.
- Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
- assert(E && hasScalarEvaluationKind(E->getType()) &&
- "Invalid scalar expression to emit");
- return ScalarExprEmitter(*this, IgnoreResultAssign)
- .Visit(const_cast<Expr *>(E));
- }
- /// EmitScalarConversion - Emit a conversion from the specified type to the
- /// specified destination type, both of which are LLVM scalar types.
- Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
- QualType DstTy) {
- assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
- "Invalid scalar expression to emit");
- return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
- }
- /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
- /// type to the specified destination type, where the destination type is an
- /// LLVM scalar type.
- Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
- QualType SrcTy,
- QualType DstTy) {
- assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
- "Invalid complex -> scalar conversion");
- return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
- DstTy);
- }
- llvm::Value *CodeGenFunction::
- EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
- bool isInc, bool isPre) {
- return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
- }
- LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
- llvm::Value *V;
- // object->isa or (*object).isa
- // Generate code as for: *(Class*)object
- // build Class* type
- llvm::Type *ClassPtrTy = ConvertType(E->getType());
- Expr *BaseExpr = E->getBase();
- if (BaseExpr->isRValue()) {
- V = CreateMemTemp(E->getType(), "resval");
- llvm::Value *Src = EmitScalarExpr(BaseExpr);
- Builder.CreateStore(Src, V);
- V = ScalarExprEmitter(*this).EmitLoadOfLValue(
- MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
- } else {
- if (E->isArrow())
- V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
- else
- V = EmitLValue(BaseExpr).getAddress();
- }
- // build Class* type
- ClassPtrTy = ClassPtrTy->getPointerTo();
- V = Builder.CreateBitCast(V, ClassPtrTy);
- return MakeNaturalAlignAddrLValue(V, E->getType());
- }
- LValue CodeGenFunction::EmitCompoundAssignmentLValue(
- const CompoundAssignOperator *E) {
- ScalarExprEmitter Scalar(*this);
- Value *Result = nullptr;
- switch (E->getOpcode()) {
- #define COMPOUND_OP(Op) \
- case BO_##Op##Assign: \
- return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
- Result)
- COMPOUND_OP(Mul);
- COMPOUND_OP(Div);
- COMPOUND_OP(Rem);
- COMPOUND_OP(Add);
- COMPOUND_OP(Sub);
- COMPOUND_OP(Shl);
- COMPOUND_OP(Shr);
- COMPOUND_OP(And);
- COMPOUND_OP(Xor);
- COMPOUND_OP(Or);
- #undef COMPOUND_OP
- case BO_PtrMemD:
- case BO_PtrMemI:
- case BO_Mul:
- case BO_Div:
- case BO_Rem:
- case BO_Add:
- case BO_Sub:
- case BO_Shl:
- case BO_Shr:
- case BO_LT:
- case BO_GT:
- case BO_LE:
- case BO_GE:
- case BO_EQ:
- case BO_NE:
- case BO_And:
- case BO_Xor:
- case BO_Or:
- case BO_LAnd:
- case BO_LOr:
- case BO_Assign:
- case BO_Comma:
- llvm_unreachable("Not valid compound assignment operators");
- }
- llvm_unreachable("Unhandled compound assignment operator");
- }
|