CGExprScalar.cpp 150 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959
  1. //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "CodeGenFunction.h"
  14. #include "CGCXXABI.h"
  15. #include "CGDebugInfo.h"
  16. #include "CGObjCRuntime.h"
  17. #include "CGHLSLRuntime.h" // HLSL Change
  18. #include "CodeGenModule.h"
  19. #include "TargetInfo.h"
  20. #include "clang/AST/ASTContext.h"
  21. #include "clang/AST/DeclObjC.h"
  22. #include "clang/AST/RecordLayout.h"
  23. #include "clang/AST/StmtVisitor.h"
  24. #include "clang/Basic/TargetInfo.h"
  25. #include "clang/Frontend/CodeGenOptions.h"
  26. #include "llvm/IR/CFG.h"
  27. #include "llvm/IR/Constants.h"
  28. #include "llvm/IR/DataLayout.h"
  29. #include "llvm/IR/Function.h"
  30. #include "llvm/IR/GlobalVariable.h"
  31. #include "llvm/IR/Intrinsics.h"
  32. #include "llvm/IR/Module.h"
  33. #include <cstdarg>
  34. using namespace clang;
  35. using namespace CodeGen;
  36. using llvm::Value;
  37. //===----------------------------------------------------------------------===//
  38. // Scalar Expression Emitter
  39. //===----------------------------------------------------------------------===//
  40. namespace {
  41. struct BinOpInfo {
  42. Value *LHS;
  43. Value *RHS;
  44. QualType Ty; // Computation Type.
  45. BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
  46. bool FPContractable;
  47. const Expr *E; // Entire expr, for error unsupported. May not be binop.
  48. };
  49. static bool MustVisitNullValue(const Expr *E) {
  50. // If a null pointer expression's type is the C++0x nullptr_t, then
  51. // it's not necessarily a simple constant and it must be evaluated
  52. // for its potential side effects.
  53. return E->getType()->isNullPtrType();
  54. }
  55. class ScalarExprEmitter
  56. : public StmtVisitor<ScalarExprEmitter, Value*> {
  57. CodeGenFunction &CGF;
  58. CGBuilderTy &Builder;
  59. bool IgnoreResultAssign;
  60. llvm::LLVMContext &VMContext;
  61. public:
  62. ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
  63. : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
  64. VMContext(cgf.getLLVMContext()) {
  65. }
  66. //===--------------------------------------------------------------------===//
  67. // Utilities
  68. //===--------------------------------------------------------------------===//
  69. bool TestAndClearIgnoreResultAssign() {
  70. bool I = IgnoreResultAssign;
  71. IgnoreResultAssign = false;
  72. return I;
  73. }
  74. llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
  75. LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
  76. LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
  77. return CGF.EmitCheckedLValue(E, TCK);
  78. }
  79. void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
  80. const BinOpInfo &Info);
  81. Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
  82. return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
  83. }
  84. void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
  85. const AlignValueAttr *AVAttr = nullptr;
  86. if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
  87. const ValueDecl *VD = DRE->getDecl();
  88. if (VD->getType()->isReferenceType()) {
  89. if (const auto *TTy =
  90. dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
  91. AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
  92. } else {
  93. // Assumptions for function parameters are emitted at the start of the
  94. // function, so there is no need to repeat that here.
  95. if (isa<ParmVarDecl>(VD))
  96. return;
  97. AVAttr = VD->getAttr<AlignValueAttr>();
  98. }
  99. }
  100. if (!AVAttr)
  101. if (const auto *TTy =
  102. dyn_cast<TypedefType>(E->getType()))
  103. AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
  104. if (!AVAttr)
  105. return;
  106. Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
  107. llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
  108. CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
  109. }
  110. /// EmitLoadOfLValue - Given an expression with complex type that represents a
  111. /// value l-value, this method emits the address of the l-value, then loads
  112. /// and returns the result.
  113. Value *EmitLoadOfLValue(const Expr *E) {
  114. Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
  115. E->getExprLoc());
  116. EmitLValueAlignmentAssumption(E, V);
  117. return V;
  118. }
  119. /// EmitConversionToBool - Convert the specified expression value to a
  120. /// boolean (i1) truth value. This is equivalent to "Val != 0".
  121. Value *EmitConversionToBool(Value *Src, QualType DstTy);
  122. /// \brief Emit a check that a conversion to or from a floating-point type
  123. /// does not overflow.
  124. void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
  125. Value *Src, QualType SrcType,
  126. QualType DstType, llvm::Type *DstTy);
  127. /// EmitScalarConversion - Emit a conversion from the specified type to the
  128. /// specified destination type, both of which are LLVM scalar types.
  129. Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
  130. /// EmitComplexToScalarConversion - Emit a conversion from the specified
  131. /// complex type to the specified destination type, where the destination type
  132. /// is an LLVM scalar type.
  133. Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
  134. QualType SrcTy, QualType DstTy);
  135. /// EmitNullValue - Emit a value that corresponds to null for the given type.
  136. Value *EmitNullValue(QualType Ty);
  137. /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
  138. Value *EmitFloatToBoolConversion(Value *V) {
  139. // Compare against 0.0 for fp scalars.
  140. llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
  141. return Builder.CreateFCmpUNE(V, Zero, "tobool");
  142. }
  143. /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
  144. Value *EmitPointerToBoolConversion(Value *V) {
  145. Value *Zero = llvm::ConstantPointerNull::get(
  146. cast<llvm::PointerType>(V->getType()));
  147. return Builder.CreateICmpNE(V, Zero, "tobool");
  148. }
  149. Value *EmitIntToBoolConversion(Value *V) {
  150. // Because of the type rules of C, we often end up computing a
  151. // logical value, then zero extending it to int, then wanting it
  152. // as a logical value again. Optimize this common case.
  153. if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
  154. if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
  155. Value *Result = ZI->getOperand(0);
  156. // If there aren't any more uses, zap the instruction to save space.
  157. // Note that there can be more uses, for example if this
  158. // is the result of an assignment.
  159. if (ZI->use_empty())
  160. ZI->eraseFromParent();
  161. return Result;
  162. }
  163. }
  164. return Builder.CreateIsNotNull(V, "tobool");
  165. }
  166. //===--------------------------------------------------------------------===//
  167. // Visitor Methods
  168. //===--------------------------------------------------------------------===//
  169. Value *Visit(Expr *E) {
  170. ApplyDebugLocation DL(CGF, E);
  171. // HLSL Change Begins
  172. // generate matrix operations
  173. if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
  174. if (hlsl::IsHLSLMatType(E->getType()) ||
  175. hlsl::IsHLSLMatType(BinOp->getLHS()->getType())) {
  176. if (BinOp->getOpcode() != BO_Assign) {
  177. llvm::Value *LHS = CGF.EmitScalarExpr(BinOp->getLHS());
  178. llvm::Value *RHS = CGF.EmitScalarExpr(BinOp->getRHS());
  179. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
  180. CGF, E, ConvertType(E->getType()), { LHS, RHS });
  181. }
  182. else {
  183. LValue LHS = CGF.EmitLValue(BinOp->getLHS());
  184. llvm::Value *RHS = CGF.EmitScalarExpr(BinOp->getRHS());
  185. CGF.CGM.getHLSLRuntime().EmitHLSLMatrixStore(CGF, RHS, LHS.getAddress(), BinOp->getLHS()->getType());
  186. return RHS;
  187. }
  188. }
  189. } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
  190. if (hlsl::IsHLSLMatType(E->getType())) {
  191. llvm::Value *Oper = CGF.EmitScalarExpr(UnOp->getSubExpr());
  192. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
  193. CGF, E, Oper->getType(), {Oper});
  194. }
  195. }
  196. // HLSL Change Ends
  197. return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
  198. }
  199. Value *VisitStmt(Stmt *S) {
  200. S->dump(CGF.getContext().getSourceManager());
  201. llvm_unreachable("Stmt can't have complex result type!");
  202. }
  203. Value *VisitExpr(Expr *S);
  204. Value *VisitParenExpr(ParenExpr *PE) {
  205. return Visit(PE->getSubExpr());
  206. }
  207. Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
  208. return Visit(E->getReplacement());
  209. }
  210. Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
  211. return Visit(GE->getResultExpr());
  212. }
  213. // Leaves.
  214. Value *VisitIntegerLiteral(const IntegerLiteral *E) {
  215. return Builder.getInt(E->getValue());
  216. }
  217. Value *VisitFloatingLiteral(const FloatingLiteral *E) {
  218. return llvm::ConstantFP::get(VMContext, E->getValue());
  219. }
  220. Value *VisitCharacterLiteral(const CharacterLiteral *E) {
  221. return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  222. }
  223. Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
  224. return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  225. }
  226. Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
  227. return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  228. }
  229. Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
  230. return EmitNullValue(E->getType());
  231. }
  232. Value *VisitGNUNullExpr(const GNUNullExpr *E) {
  233. return EmitNullValue(E->getType());
  234. }
  235. Value *VisitOffsetOfExpr(OffsetOfExpr *E);
  236. Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
  237. Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
  238. llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
  239. return Builder.CreateBitCast(V, ConvertType(E->getType()));
  240. }
  241. Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
  242. return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
  243. }
  244. Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
  245. return CGF.EmitPseudoObjectRValue(E).getScalarVal();
  246. }
  247. Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
  248. if (E->isGLValue())
  249. return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
  250. // Otherwise, assume the mapping is the scalar directly.
  251. return CGF.getOpaqueRValueMapping(E).getScalarVal();
  252. }
  253. // l-values.
  254. Value *VisitDeclRefExpr(DeclRefExpr *E) {
  255. if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
  256. if (result.isReference())
  257. return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
  258. E->getExprLoc());
  259. return result.getValue();
  260. }
  261. return EmitLoadOfLValue(E);
  262. }
  263. Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
  264. return CGF.EmitObjCSelectorExpr(E);
  265. }
  266. Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
  267. return CGF.EmitObjCProtocolExpr(E);
  268. }
  269. Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
  270. return EmitLoadOfLValue(E);
  271. }
  272. Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
  273. if (E->getMethodDecl() &&
  274. E->getMethodDecl()->getReturnType()->isReferenceType())
  275. return EmitLoadOfLValue(E);
  276. return CGF.EmitObjCMessageExpr(E).getScalarVal();
  277. }
  278. Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
  279. LValue LV = CGF.EmitObjCIsaExpr(E);
  280. Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
  281. return V;
  282. }
  283. Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
  284. Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
  285. Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
  286. Value *VisitMemberExpr(MemberExpr *E);
  287. Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
  288. Value *VisitExtMatrixElementExpr(Expr *E) { return EmitLoadOfLValue(E); } // HLSL Change
  289. Value *VisitHLSLVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } // HLSL Change
  290. Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
  291. return EmitLoadOfLValue(E);
  292. }
  293. Value *VisitInitListExpr(InitListExpr *E);
  294. Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
  295. return EmitNullValue(E->getType());
  296. }
  297. Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
  298. if (E->getType()->isVariablyModifiedType())
  299. CGF.EmitVariablyModifiedType(E->getType());
  300. if (CGDebugInfo *DI = CGF.getDebugInfo())
  301. DI->EmitExplicitCastType(E->getType());
  302. return VisitCastExpr(E);
  303. }
  304. Value *VisitCastExpr(CastExpr *E);
  305. Value *VisitCallExpr(const CallExpr *E) {
  306. if (E->getCallReturnType(CGF.getContext())->isReferenceType())
  307. return EmitLoadOfLValue(E);
  308. // HLSL Change Starts
  309. if (CGF.getContext().getLangOpts().HLSL) {
  310. RValue RV = CGF.EmitCallExpr(E);
  311. Value *V = nullptr;
  312. if (RV.isScalar())
  313. V = RV.getScalarVal();
  314. else
  315. V = RV.getAggregateAddr();
  316. EmitLValueAlignmentAssumption(E, V);
  317. return V;
  318. }
  319. // HLSL Change Ends
  320. Value *V = CGF.EmitCallExpr(E).getScalarVal();
  321. EmitLValueAlignmentAssumption(E, V);
  322. return V;
  323. }
  324. Value *VisitStmtExpr(const StmtExpr *E);
  325. // Unary Operators.
  326. Value *VisitUnaryPostDec(const UnaryOperator *E) {
  327. LValue LV = EmitLValue(E->getSubExpr());
  328. return EmitScalarPrePostIncDec(E, LV, false, false);
  329. }
  330. Value *VisitUnaryPostInc(const UnaryOperator *E) {
  331. LValue LV = EmitLValue(E->getSubExpr());
  332. return EmitScalarPrePostIncDec(E, LV, true, false);
  333. }
  334. Value *VisitUnaryPreDec(const UnaryOperator *E) {
  335. LValue LV = EmitLValue(E->getSubExpr());
  336. return EmitScalarPrePostIncDec(E, LV, false, true);
  337. }
  338. Value *VisitUnaryPreInc(const UnaryOperator *E) {
  339. LValue LV = EmitLValue(E->getSubExpr());
  340. return EmitScalarPrePostIncDec(E, LV, true, true);
  341. }
  342. llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
  343. llvm::Value *InVal,
  344. bool IsInc);
  345. llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
  346. bool isInc, bool isPre);
  347. Value *VisitUnaryAddrOf(const UnaryOperator *E) {
  348. if (isa<MemberPointerType>(E->getType())) // never sugared
  349. return CGF.CGM.getMemberPointerConstant(E);
  350. return EmitLValue(E->getSubExpr()).getAddress();
  351. }
  352. Value *VisitUnaryDeref(const UnaryOperator *E) {
  353. if (E->getType()->isVoidType())
  354. return Visit(E->getSubExpr()); // the actual value should be unused
  355. return EmitLoadOfLValue(E);
  356. }
  357. Value *VisitUnaryPlus(const UnaryOperator *E) {
  358. // This differs from gcc, though, most likely due to a bug in gcc.
  359. TestAndClearIgnoreResultAssign();
  360. return Visit(E->getSubExpr());
  361. }
  362. Value *VisitUnaryMinus (const UnaryOperator *E);
  363. Value *VisitUnaryNot (const UnaryOperator *E);
  364. Value *VisitUnaryLNot (const UnaryOperator *E);
  365. Value *VisitUnaryReal (const UnaryOperator *E);
  366. Value *VisitUnaryImag (const UnaryOperator *E);
  367. Value *VisitUnaryExtension(const UnaryOperator *E) {
  368. return Visit(E->getSubExpr());
  369. }
  370. // C++
  371. Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
  372. return EmitLoadOfLValue(E);
  373. }
  374. Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
  375. return Visit(DAE->getExpr());
  376. }
  377. Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
  378. CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
  379. return Visit(DIE->getExpr());
  380. }
  381. Value *VisitCXXThisExpr(CXXThisExpr *TE) {
  382. return CGF.LoadCXXThis();
  383. }
  384. Value *VisitExprWithCleanups(ExprWithCleanups *E) {
  385. CGF.enterFullExpression(E);
  386. CodeGenFunction::RunCleanupsScope Scope(CGF);
  387. return Visit(E->getSubExpr());
  388. }
  389. Value *VisitCXXNewExpr(const CXXNewExpr *E) {
  390. return CGF.EmitCXXNewExpr(E);
  391. }
  392. Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
  393. CGF.EmitCXXDeleteExpr(E);
  394. return nullptr;
  395. }
  396. Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
  397. return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  398. }
  399. Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
  400. return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
  401. }
  402. Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
  403. return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
  404. }
  405. Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
  406. // C++ [expr.pseudo]p1:
  407. // The result shall only be used as the operand for the function call
  408. // operator (), and the result of such a call has type void. The only
  409. // effect is the evaluation of the postfix-expression before the dot or
  410. // arrow.
  411. CGF.EmitScalarExpr(E->getBase());
  412. return nullptr;
  413. }
  414. Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
  415. return EmitNullValue(E->getType());
  416. }
  417. Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
  418. CGF.EmitCXXThrowExpr(E);
  419. return nullptr;
  420. }
  421. Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
  422. return Builder.getInt1(E->getValue());
  423. }
  424. // Binary Operators.
  425. Value *EmitMul(const BinOpInfo &Ops) {
  426. if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
  427. switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
  428. case LangOptions::SOB_Defined:
  429. return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
  430. case LangOptions::SOB_Undefined:
  431. if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
  432. return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
  433. // Fall through.
  434. case LangOptions::SOB_Trapping:
  435. return EmitOverflowCheckedBinOp(Ops);
  436. }
  437. }
  438. if (Ops.Ty->isUnsignedIntegerType() &&
  439. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
  440. return EmitOverflowCheckedBinOp(Ops);
  441. if (Ops.LHS->getType()->isFPOrFPVectorTy())
  442. return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
  443. return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
  444. }
  445. /// Create a binary op that checks for overflow.
  446. /// Currently only supports +, - and *.
  447. Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
  448. // Check for undefined division and modulus behaviors.
  449. void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
  450. llvm::Value *Zero,bool isDiv);
  451. // Common helper for getting how wide LHS of shift is.
  452. static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
  453. Value *EmitDiv(const BinOpInfo &Ops);
  454. Value *EmitRem(const BinOpInfo &Ops);
  455. Value *EmitAdd(const BinOpInfo &Ops);
  456. Value *EmitSub(const BinOpInfo &Ops);
  457. Value *EmitShl(const BinOpInfo &Ops);
  458. Value *EmitShr(const BinOpInfo &Ops);
  459. Value *EmitAnd(const BinOpInfo &Ops) {
  460. return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
  461. }
  462. Value *EmitXor(const BinOpInfo &Ops) {
  463. return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
  464. }
  465. Value *EmitOr (const BinOpInfo &Ops) {
  466. return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
  467. }
  468. BinOpInfo EmitBinOps(const BinaryOperator *E);
  469. LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
  470. Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
  471. Value *&Result);
  472. Value *EmitCompoundAssign(const CompoundAssignOperator *E,
  473. Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
  474. // Binary operators and binary compound assignment operators.
  475. #define HANDLEBINOP(OP) \
  476. Value *VisitBin ## OP(const BinaryOperator *E) { \
  477. return Emit ## OP(EmitBinOps(E)); \
  478. } \
  479. Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
  480. return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
  481. }
  482. HANDLEBINOP(Mul)
  483. HANDLEBINOP(Div)
  484. HANDLEBINOP(Rem)
  485. HANDLEBINOP(Add)
  486. HANDLEBINOP(Sub)
  487. HANDLEBINOP(Shl)
  488. HANDLEBINOP(Shr)
  489. HANDLEBINOP(And)
  490. HANDLEBINOP(Xor)
  491. HANDLEBINOP(Or)
  492. #undef HANDLEBINOP
  493. // Comparisons.
  494. Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
  495. unsigned SICmpOpc, unsigned FCmpOpc);
  496. #define VISITCOMP(CODE, UI, SI, FP) \
  497. Value *VisitBin##CODE(const BinaryOperator *E) { \
  498. return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
  499. llvm::FCmpInst::FP); }
  500. VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
  501. VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
  502. VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
  503. VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
  504. VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
  505. VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
  506. #undef VISITCOMP
  507. Value *VisitBinAssign (const BinaryOperator *E);
  508. Value *VisitBinLAnd (const BinaryOperator *E);
  509. Value *VisitBinLOr (const BinaryOperator *E);
  510. Value *VisitBinComma (const BinaryOperator *E);
  511. Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
  512. Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
  513. // Other Operators.
  514. Value *VisitBlockExpr(const BlockExpr *BE);
  515. Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
  516. Value *VisitChooseExpr(ChooseExpr *CE);
  517. Value *VisitVAArgExpr(VAArgExpr *VE);
  518. Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
  519. return CGF.EmitObjCStringLiteral(E);
  520. }
  521. Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
  522. return CGF.EmitObjCBoxedExpr(E);
  523. }
  524. Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
  525. return CGF.EmitObjCArrayLiteral(E);
  526. }
  527. Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
  528. return CGF.EmitObjCDictionaryLiteral(E);
  529. }
  530. Value *VisitAsTypeExpr(AsTypeExpr *CE);
  531. Value *VisitAtomicExpr(AtomicExpr *AE);
  532. };
  533. } // end anonymous namespace.
  534. //===----------------------------------------------------------------------===//
  535. // Utilities
  536. //===----------------------------------------------------------------------===//
  537. /// EmitConversionToBool - Convert the specified expression value to a
  538. /// boolean (i1) truth value. This is equivalent to "Val != 0".
  539. Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
  540. assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
  541. if (SrcType->isRealFloatingType())
  542. return EmitFloatToBoolConversion(Src);
  543. if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
  544. return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
  545. assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
  546. "Unknown scalar type to convert");
  547. if (isa<llvm::IntegerType>(Src->getType()))
  548. return EmitIntToBoolConversion(Src);
  549. assert(isa<llvm::PointerType>(Src->getType()));
  550. return EmitPointerToBoolConversion(Src);
  551. }
  552. void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
  553. QualType OrigSrcType,
  554. Value *Src, QualType SrcType,
  555. QualType DstType,
  556. llvm::Type *DstTy) {
  557. CodeGenFunction::SanitizerScope SanScope(&CGF);
  558. using llvm::APFloat;
  559. using llvm::APSInt;
  560. llvm::Type *SrcTy = Src->getType();
  561. llvm::Value *Check = nullptr;
  562. if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
  563. // Integer to floating-point. This can fail for unsigned short -> __half
  564. // or unsigned __int128 -> float.
  565. assert(DstType->isFloatingType());
  566. bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
  567. APFloat LargestFloat =
  568. APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
  569. APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
  570. bool IsExact;
  571. if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
  572. &IsExact) != APFloat::opOK)
  573. // The range of representable values of this floating point type includes
  574. // all values of this integer type. Don't need an overflow check.
  575. return;
  576. llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
  577. if (SrcIsUnsigned)
  578. Check = Builder.CreateICmpULE(Src, Max);
  579. else {
  580. llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
  581. llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
  582. llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
  583. Check = Builder.CreateAnd(GE, LE);
  584. }
  585. } else {
  586. const llvm::fltSemantics &SrcSema =
  587. CGF.getContext().getFloatTypeSemantics(OrigSrcType);
  588. if (isa<llvm::IntegerType>(DstTy)) {
  589. // Floating-point to integer. This has undefined behavior if the source is
  590. // +-Inf, NaN, or doesn't fit into the destination type (after truncation
  591. // to an integer).
  592. unsigned Width = CGF.getContext().getIntWidth(DstType);
  593. bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
  594. APSInt Min = APSInt::getMinValue(Width, Unsigned);
  595. APFloat MinSrc(SrcSema, APFloat::uninitialized);
  596. if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
  597. APFloat::opOverflow)
  598. // Don't need an overflow check for lower bound. Just check for
  599. // -Inf/NaN.
  600. MinSrc = APFloat::getInf(SrcSema, true);
  601. else
  602. // Find the largest value which is too small to represent (before
  603. // truncation toward zero).
  604. MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
  605. APSInt Max = APSInt::getMaxValue(Width, Unsigned);
  606. APFloat MaxSrc(SrcSema, APFloat::uninitialized);
  607. if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
  608. APFloat::opOverflow)
  609. // Don't need an overflow check for upper bound. Just check for
  610. // +Inf/NaN.
  611. MaxSrc = APFloat::getInf(SrcSema, false);
  612. else
  613. // Find the smallest value which is too large to represent (before
  614. // truncation toward zero).
  615. MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
  616. // If we're converting from __half, convert the range to float to match
  617. // the type of src.
  618. if (OrigSrcType->isHalfType()) {
  619. const llvm::fltSemantics &Sema =
  620. CGF.getContext().getFloatTypeSemantics(SrcType);
  621. bool IsInexact;
  622. MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
  623. MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
  624. }
  625. llvm::Value *GE =
  626. Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
  627. llvm::Value *LE =
  628. Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
  629. Check = Builder.CreateAnd(GE, LE);
  630. } else {
  631. // FIXME: Maybe split this sanitizer out from float-cast-overflow.
  632. //
  633. // Floating-point to floating-point. This has undefined behavior if the
  634. // source is not in the range of representable values of the destination
  635. // type. The C and C++ standards are spectacularly unclear here. We
  636. // diagnose finite out-of-range conversions, but allow infinities and NaNs
  637. // to convert to the corresponding value in the smaller type.
  638. //
  639. // C11 Annex F gives all such conversions defined behavior for IEC 60559
  640. // conforming implementations. Unfortunately, LLVM's fptrunc instruction
  641. // does not.
  642. // Converting from a lower rank to a higher rank can never have
  643. // undefined behavior, since higher-rank types must have a superset
  644. // of values of lower-rank types.
  645. if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
  646. return;
  647. assert(!OrigSrcType->isHalfType() &&
  648. "should not check conversion from __half, it has the lowest rank");
  649. const llvm::fltSemantics &DstSema =
  650. CGF.getContext().getFloatTypeSemantics(DstType);
  651. APFloat MinBad = APFloat::getLargest(DstSema, false);
  652. APFloat MaxBad = APFloat::getInf(DstSema, false);
  653. bool IsInexact;
  654. MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
  655. MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
  656. Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
  657. CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
  658. llvm::Value *GE =
  659. Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
  660. llvm::Value *LE =
  661. Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
  662. Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
  663. }
  664. }
  665. // FIXME: Provide a SourceLocation.
  666. llvm::Constant *StaticArgs[] = {
  667. CGF.EmitCheckTypeDescriptor(OrigSrcType),
  668. CGF.EmitCheckTypeDescriptor(DstType)
  669. };
  670. CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
  671. "float_cast_overflow", StaticArgs, OrigSrc);
  672. }
  673. /// EmitScalarConversion - Emit a conversion from the specified type to the
  674. /// specified destination type, both of which are LLVM scalar types.
  675. Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
  676. QualType DstType) {
  677. SrcType = CGF.getContext().getCanonicalType(SrcType);
  678. DstType = CGF.getContext().getCanonicalType(DstType);
  679. if (SrcType == DstType) return Src;
  680. if (DstType->isVoidType()) return nullptr;
  681. llvm::Value *OrigSrc = Src;
  682. QualType OrigSrcType = SrcType;
  683. llvm::Type *SrcTy = Src->getType();
  684. // Handle conversions to bool first, they are special: comparisons against 0.
  685. if (DstType->isBooleanType())
  686. return EmitConversionToBool(Src, SrcType);
  687. llvm::Type *DstTy = ConvertType(DstType);
  688. // Cast from half through float if half isn't a native type.
  689. if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
  690. // Cast to FP using the intrinsic if the half type itself isn't supported.
  691. if (DstTy->isFloatingPointTy()) {
  692. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
  693. return Builder.CreateCall(
  694. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
  695. Src);
  696. } else {
  697. // Cast to other types through float, using either the intrinsic or FPExt,
  698. // depending on whether the half type itself is supported
  699. // (as opposed to operations on half, available with NativeHalfType).
  700. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
  701. Src = Builder.CreateCall(
  702. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
  703. CGF.CGM.FloatTy),
  704. Src);
  705. } else {
  706. Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
  707. }
  708. SrcType = CGF.getContext().FloatTy;
  709. SrcTy = CGF.FloatTy;
  710. }
  711. }
  712. // Ignore conversions like int -> uint.
  713. if (SrcTy == DstTy)
  714. return Src;
  715. // Handle pointer conversions next: pointers can only be converted to/from
  716. // other pointers and integers. Check for pointer types in terms of LLVM, as
  717. // some native types (like Obj-C id) may map to a pointer type.
  718. if (isa<llvm::PointerType>(DstTy)) {
  719. // The source value may be an integer, or a pointer.
  720. if (isa<llvm::PointerType>(SrcTy))
  721. return Builder.CreateBitCast(Src, DstTy, "conv");
  722. assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
  723. // First, convert to the correct width so that we control the kind of
  724. // extension.
  725. llvm::Type *MiddleTy = CGF.IntPtrTy;
  726. bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
  727. llvm::Value* IntResult =
  728. Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
  729. // Then, cast to pointer.
  730. return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
  731. }
  732. if (isa<llvm::PointerType>(SrcTy)) {
  733. // Must be an ptr to int cast.
  734. assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
  735. return Builder.CreatePtrToInt(Src, DstTy, "conv");
  736. }
  737. // A scalar can be splatted to an extended vector of the same element type
  738. if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
  739. // Cast the scalar to element type
  740. QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
  741. llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
  742. // Splat the element across to all elements
  743. unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
  744. return Builder.CreateVectorSplat(NumElements, Elt, "splat");
  745. }
  746. // HLSL Change Starts
  747. if (CGF.getContext().getLangOpts().HLSL) {
  748. // A scalar can be splatted to an extended vector of the same element type
  749. if (DstTy->isVectorTy() && !SrcTy->isVectorTy()) {
  750. // Cast the scalar to element type
  751. const ExtVectorType *DstVecType =
  752. hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(), DstType);
  753. QualType EltTy = DstVecType->getElementType();
  754. llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
  755. // Splat the element across to all elements
  756. unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
  757. return Builder.CreateVectorSplat(NumElements, Elt, "splat");
  758. }
  759. if (SrcTy->isVectorTy() && DstTy->isVectorTy()) {
  760. Value *Res = nullptr;
  761. const ExtVectorType *SrcVecType =
  762. hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(), SrcType);
  763. const ExtVectorType *DstVecType =
  764. hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(), DstType);
  765. const llvm::VectorType *SrcVecTy = cast<llvm::VectorType>(SrcTy);
  766. const llvm::VectorType *DstVecTy = cast<llvm::VectorType>(DstTy);
  767. if (SrcVecTy->getNumElements() != DstVecTy->getNumElements()) {
  768. if (SrcVecTy->getNumElements() == 1) {
  769. // Cast the scalar to element type
  770. const ExtVectorType *DstVecType =
  771. hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(),
  772. DstType);
  773. QualType EltTy = DstVecType->getElementType();
  774. llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
  775. // Splat the element across to all elements
  776. unsigned NumElements =
  777. cast<llvm::VectorType>(DstTy)->getNumElements();
  778. return Builder.CreateVectorSplat(NumElements, Elt, "splat");
  779. }
  780. }
  781. if (isa<llvm::IntegerType>(SrcVecTy->getElementType())) {
  782. bool InputSigned =
  783. SrcVecType->getElementType()->isSignedIntegerOrEnumerationType();
  784. if (isa<llvm::IntegerType>(DstVecTy->getElementType()))
  785. Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
  786. else if (InputSigned)
  787. Res = Builder.CreateSIToFP(Src, DstTy, "conv");
  788. else
  789. Res = Builder.CreateUIToFP(Src, DstTy, "conv");
  790. } else if (isa<llvm::IntegerType>(DstVecTy->getElementType())) {
  791. assert(SrcVecTy->getElementType()->isFloatingPointTy() &&
  792. "Unknown real conversion");
  793. if (DstVecType->getElementType()->isSignedIntegerOrEnumerationType())
  794. Res = Builder.CreateFPToSI(Src, DstTy, "conv");
  795. else
  796. Res = Builder.CreateFPToUI(Src, DstTy, "conv");
  797. } else {
  798. assert(SrcVecTy->getElementType()->isFloatingPointTy() &&
  799. DstVecTy->getElementType()->isFloatingPointTy() &&
  800. "Unknown real conversion");
  801. if (DstVecTy->getElementType()->getTypeID() <
  802. SrcVecTy->getElementType()->getTypeID())
  803. Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
  804. else
  805. Res = Builder.CreateFPExt(Src, DstTy, "conv");
  806. }
  807. return Res;
  808. }
  809. if (SrcTy->isVectorTy() && !DstTy->isVectorTy()) {
  810. return Builder.CreateExtractElement(Src, (uint64_t)0);
  811. }
  812. }
  813. // HLSL Change Ends
  814. // Allow bitcast from vector to integer/fp of the same size.
  815. if (isa<llvm::VectorType>(SrcTy) ||
  816. isa<llvm::VectorType>(DstTy))
  817. return Builder.CreateBitCast(Src, DstTy, "conv");
  818. // Finally, we have the arithmetic types: real int/float.
  819. Value *Res = nullptr;
  820. llvm::Type *ResTy = DstTy;
  821. // An overflowing conversion has undefined behavior if either the source type
  822. // or the destination type is a floating-point type.
  823. if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
  824. (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
  825. EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
  826. DstTy);
  827. // Cast to half through float if half isn't a native type.
  828. if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
  829. // Make sure we cast in a single step if from another FP type.
  830. if (SrcTy->isFloatingPointTy()) {
  831. // Use the intrinsic if the half type itself isn't supported
  832. // (as opposed to operations on half, available with NativeHalfType).
  833. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
  834. return Builder.CreateCall(
  835. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
  836. // If the half type is supported, just use an fptrunc.
  837. return Builder.CreateFPTrunc(Src, DstTy);
  838. }
  839. DstTy = CGF.FloatTy;
  840. }
  841. // HLSL Change Begins.
  842. if (const BuiltinType *BT = SrcType->getAs<BuiltinType>()) {
  843. if (BT->getKind() == BuiltinType::Kind::LitInt || BT->getKind() == BuiltinType::Kind::LitFloat) {
  844. Res = CGF.CGM.getHLSLRuntime().EmitHLSLLiteralCast(CGF, Src, SrcType, DstType);
  845. if (Res)
  846. return Res;
  847. }
  848. }
  849. // HLSL Change Ends.
  850. if (isa<llvm::IntegerType>(SrcTy)) {
  851. bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
  852. if (isa<llvm::IntegerType>(DstTy))
  853. Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
  854. else if (InputSigned)
  855. Res = Builder.CreateSIToFP(Src, DstTy, "conv");
  856. else
  857. Res = Builder.CreateUIToFP(Src, DstTy, "conv");
  858. } else if (isa<llvm::IntegerType>(DstTy)) {
  859. assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
  860. if (DstType->isSignedIntegerOrEnumerationType())
  861. Res = Builder.CreateFPToSI(Src, DstTy, "conv");
  862. else
  863. Res = Builder.CreateFPToUI(Src, DstTy, "conv");
  864. } else {
  865. assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
  866. "Unknown real conversion");
  867. if (DstTy->getTypeID() < SrcTy->getTypeID())
  868. Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
  869. else
  870. Res = Builder.CreateFPExt(Src, DstTy, "conv");
  871. }
  872. if (DstTy != ResTy) {
  873. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
  874. assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
  875. Res = Builder.CreateCall(
  876. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
  877. Res);
  878. } else {
  879. Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
  880. }
  881. }
  882. return Res;
  883. }
  884. /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
  885. /// type to the specified destination type, where the destination type is an
  886. /// LLVM scalar type.
  887. Value *ScalarExprEmitter::
  888. EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
  889. QualType SrcTy, QualType DstTy) {
  890. // Get the source element type.
  891. SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
  892. // Handle conversions to bool first, they are special: comparisons against 0.
  893. if (DstTy->isBooleanType()) {
  894. // Complex != 0 -> (Real != 0) | (Imag != 0)
  895. Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
  896. Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
  897. return Builder.CreateOr(Src.first, Src.second, "tobool");
  898. }
  899. // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
  900. // the imaginary part of the complex value is discarded and the value of the
  901. // real part is converted according to the conversion rules for the
  902. // corresponding real type.
  903. return EmitScalarConversion(Src.first, SrcTy, DstTy);
  904. }
  905. Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
  906. return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
  907. }
  908. /// \brief Emit a sanitization check for the given "binary" operation (which
  909. /// might actually be a unary increment which has been lowered to a binary
  910. /// operation). The check passes if all values in \p Checks (which are \c i1),
  911. /// are \c true.
  912. void ScalarExprEmitter::EmitBinOpCheck(
  913. ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
  914. assert(CGF.IsSanitizerScope);
  915. StringRef CheckName;
  916. SmallVector<llvm::Constant *, 4> StaticData;
  917. SmallVector<llvm::Value *, 2> DynamicData;
  918. BinaryOperatorKind Opcode = Info.Opcode;
  919. if (BinaryOperator::isCompoundAssignmentOp(Opcode))
  920. Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
  921. StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
  922. const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
  923. if (UO && UO->getOpcode() == UO_Minus) {
  924. CheckName = "negate_overflow";
  925. StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
  926. DynamicData.push_back(Info.RHS);
  927. } else {
  928. if (BinaryOperator::isShiftOp(Opcode)) {
  929. // Shift LHS negative or too large, or RHS out of bounds.
  930. CheckName = "shift_out_of_bounds";
  931. const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
  932. StaticData.push_back(
  933. CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
  934. StaticData.push_back(
  935. CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
  936. } else if (Opcode == BO_Div || Opcode == BO_Rem) {
  937. // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
  938. CheckName = "divrem_overflow";
  939. StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
  940. } else {
  941. // Arithmetic overflow (+, -, *).
  942. switch (Opcode) {
  943. case BO_Add: CheckName = "add_overflow"; break;
  944. case BO_Sub: CheckName = "sub_overflow"; break;
  945. case BO_Mul: CheckName = "mul_overflow"; break;
  946. default: llvm_unreachable("unexpected opcode for bin op check");
  947. }
  948. StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
  949. }
  950. DynamicData.push_back(Info.LHS);
  951. DynamicData.push_back(Info.RHS);
  952. }
  953. CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
  954. }
  955. //===----------------------------------------------------------------------===//
  956. // Visitor Methods
  957. //===----------------------------------------------------------------------===//
  958. Value *ScalarExprEmitter::VisitExpr(Expr *E) {
  959. CGF.ErrorUnsupported(E, "scalar expression");
  960. if (E->getType()->isVoidType())
  961. return nullptr;
  962. return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
  963. }
  964. Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
  965. // Vector Mask Case
  966. if (E->getNumSubExprs() == 2 ||
  967. (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
  968. Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
  969. Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
  970. Value *Mask;
  971. llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
  972. unsigned LHSElts = LTy->getNumElements();
  973. if (E->getNumSubExprs() == 3) {
  974. Mask = CGF.EmitScalarExpr(E->getExpr(2));
  975. // Shuffle LHS & RHS into one input vector.
  976. SmallVector<llvm::Constant*, 32> concat;
  977. for (unsigned i = 0; i != LHSElts; ++i) {
  978. concat.push_back(Builder.getInt32(2*i));
  979. concat.push_back(Builder.getInt32(2*i+1));
  980. }
  981. Value* CV = llvm::ConstantVector::get(concat);
  982. LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
  983. LHSElts *= 2;
  984. } else {
  985. Mask = RHS;
  986. }
  987. llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
  988. llvm::Constant* EltMask;
  989. EltMask = llvm::ConstantInt::get(MTy->getElementType(),
  990. llvm::NextPowerOf2(LHSElts-1)-1);
  991. // Mask off the high bits of each shuffle index.
  992. Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
  993. EltMask);
  994. Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
  995. // newv = undef
  996. // mask = mask & maskbits
  997. // for each elt
  998. // n = extract mask i
  999. // x = extract val n
  1000. // newv = insert newv, x, i
  1001. llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
  1002. MTy->getNumElements());
  1003. Value* NewV = llvm::UndefValue::get(RTy);
  1004. for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
  1005. Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
  1006. Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
  1007. Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
  1008. NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
  1009. }
  1010. return NewV;
  1011. }
  1012. Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
  1013. Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
  1014. SmallVector<llvm::Constant*, 32> indices;
  1015. for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
  1016. llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
  1017. // Check for -1 and output it as undef in the IR.
  1018. if (Idx.isSigned() && Idx.isAllOnesValue())
  1019. indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
  1020. else
  1021. indices.push_back(Builder.getInt32(Idx.getZExtValue()));
  1022. }
  1023. Value *SV = llvm::ConstantVector::get(indices);
  1024. return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
  1025. }
  1026. Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
  1027. QualType SrcType = E->getSrcExpr()->getType(),
  1028. DstType = E->getType();
  1029. Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
  1030. SrcType = CGF.getContext().getCanonicalType(SrcType);
  1031. DstType = CGF.getContext().getCanonicalType(DstType);
  1032. if (SrcType == DstType) return Src;
  1033. assert(SrcType->isVectorType() &&
  1034. "ConvertVector source type must be a vector");
  1035. assert(DstType->isVectorType() &&
  1036. "ConvertVector destination type must be a vector");
  1037. llvm::Type *SrcTy = Src->getType();
  1038. llvm::Type *DstTy = ConvertType(DstType);
  1039. // Ignore conversions like int -> uint.
  1040. if (SrcTy == DstTy)
  1041. return Src;
  1042. QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
  1043. DstEltType = DstType->getAs<VectorType>()->getElementType();
  1044. assert(SrcTy->isVectorTy() &&
  1045. "ConvertVector source IR type must be a vector");
  1046. assert(DstTy->isVectorTy() &&
  1047. "ConvertVector destination IR type must be a vector");
  1048. llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
  1049. *DstEltTy = DstTy->getVectorElementType();
  1050. if (DstEltType->isBooleanType()) {
  1051. assert((SrcEltTy->isFloatingPointTy() ||
  1052. isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
  1053. llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
  1054. if (SrcEltTy->isFloatingPointTy()) {
  1055. return Builder.CreateFCmpUNE(Src, Zero, "tobool");
  1056. } else {
  1057. return Builder.CreateICmpNE(Src, Zero, "tobool");
  1058. }
  1059. }
  1060. // We have the arithmetic types: real int/float.
  1061. Value *Res = nullptr;
  1062. if (isa<llvm::IntegerType>(SrcEltTy)) {
  1063. bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
  1064. if (isa<llvm::IntegerType>(DstEltTy))
  1065. Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
  1066. else if (InputSigned)
  1067. Res = Builder.CreateSIToFP(Src, DstTy, "conv");
  1068. else
  1069. Res = Builder.CreateUIToFP(Src, DstTy, "conv");
  1070. } else if (isa<llvm::IntegerType>(DstEltTy)) {
  1071. assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
  1072. if (DstEltType->isSignedIntegerOrEnumerationType())
  1073. Res = Builder.CreateFPToSI(Src, DstTy, "conv");
  1074. else
  1075. Res = Builder.CreateFPToUI(Src, DstTy, "conv");
  1076. } else {
  1077. assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
  1078. "Unknown real conversion");
  1079. if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
  1080. Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
  1081. else
  1082. Res = Builder.CreateFPExt(Src, DstTy, "conv");
  1083. }
  1084. return Res;
  1085. }
  1086. Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
  1087. llvm::APSInt Value;
  1088. if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
  1089. if (E->isArrow())
  1090. CGF.EmitScalarExpr(E->getBase());
  1091. else
  1092. EmitLValue(E->getBase());
  1093. return Builder.getInt(Value);
  1094. }
  1095. return EmitLoadOfLValue(E);
  1096. }
  1097. Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
  1098. TestAndClearIgnoreResultAssign();
  1099. // Emit subscript expressions in rvalue context's. For most cases, this just
  1100. // loads the lvalue formed by the subscript expr. However, we have to be
  1101. // careful, because the base of a vector subscript is occasionally an rvalue,
  1102. // so we can't get it as an lvalue.
  1103. if (!E->getBase()->getType()->isVectorType())
  1104. return EmitLoadOfLValue(E);
  1105. // Handle the vector case. The base must be a vector, the index must be an
  1106. // integer value.
  1107. Value *Base = Visit(E->getBase());
  1108. Value *Idx = Visit(E->getIdx());
  1109. QualType IdxTy = E->getIdx()->getType();
  1110. if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
  1111. CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
  1112. return Builder.CreateExtractElement(Base, Idx, "vecext");
  1113. }
  1114. static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
  1115. unsigned Off, llvm::Type *I32Ty) {
  1116. int MV = SVI->getMaskValue(Idx);
  1117. if (MV == -1)
  1118. return llvm::UndefValue::get(I32Ty);
  1119. return llvm::ConstantInt::get(I32Ty, Off+MV);
  1120. }
  1121. static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
  1122. if (C->getBitWidth() != 32) {
  1123. assert(llvm::ConstantInt::isValueValidForType(I32Ty,
  1124. C->getZExtValue()) &&
  1125. "Index operand too large for shufflevector mask!");
  1126. return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
  1127. }
  1128. return C;
  1129. }
  1130. Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
  1131. bool Ignore = TestAndClearIgnoreResultAssign();
  1132. (void)Ignore;
  1133. assert (Ignore == false && "init list ignored");
  1134. unsigned NumInitElements = E->getNumInits();
  1135. if (E->hadArrayRangeDesignator())
  1136. CGF.ErrorUnsupported(E, "GNU array range designator extension");
  1137. llvm::VectorType *VType =
  1138. dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
  1139. if (!VType) {
  1140. // HLSL Change Begins
  1141. if (hlsl::IsHLSLMatType(E->getType())) {
  1142. // init function for matrix
  1143. return CGF.CGM.getHLSLRuntime().EmitHLSLInitListExpr(CGF, E, /*DestPtr*/nullptr);
  1144. }
  1145. // HLSL Change Ends
  1146. if (NumInitElements == 0) {
  1147. // C++11 value-initialization for the scalar.
  1148. return EmitNullValue(E->getType());
  1149. }
  1150. // We have a scalar in braces. Just use the first element.
  1151. return Visit(E->getInit(0));
  1152. }
  1153. else {
  1154. if (hlsl::IsHLSLVecType(E->getType())) {
  1155. return CGF.CGM.getHLSLRuntime().EmitHLSLInitListExpr(CGF, E, /*DestPtr*/nullptr);
  1156. }
  1157. }
  1158. unsigned ResElts = VType->getNumElements();
  1159. // HLSL Note - Matrix swizzle members emit - Consider handling matrix swizzles here
  1160. // Loop over initializers collecting the Value for each, and remembering
  1161. // whether the source was swizzle (ExtVectorElementExpr). This will allow
  1162. // us to fold the shuffle for the swizzle into the shuffle for the vector
  1163. // initializer, since LLVM optimizers generally do not want to touch
  1164. // shuffles.
  1165. unsigned CurIdx = 0;
  1166. bool VIsUndefShuffle = false;
  1167. llvm::Value *V = llvm::UndefValue::get(VType);
  1168. for (unsigned i = 0; i != NumInitElements; ++i) {
  1169. Expr *IE = E->getInit(i);
  1170. Value *Init = Visit(IE);
  1171. SmallVector<llvm::Constant*, 16> Args;
  1172. llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
  1173. // Handle scalar elements. If the scalar initializer is actually one
  1174. // element of a different vector of the same width, use shuffle instead of
  1175. // extract+insert.
  1176. if (!VVT) {
  1177. if (isa<ExtVectorElementExpr>(IE)) {
  1178. llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
  1179. if (EI->getVectorOperandType()->getNumElements() == ResElts) {
  1180. llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
  1181. Value *LHS = nullptr, *RHS = nullptr;
  1182. if (CurIdx == 0) {
  1183. // insert into undef -> shuffle (src, undef)
  1184. // shufflemask must use an i32
  1185. Args.push_back(getAsInt32(C, CGF.Int32Ty));
  1186. Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
  1187. LHS = EI->getVectorOperand();
  1188. RHS = V;
  1189. VIsUndefShuffle = true;
  1190. } else if (VIsUndefShuffle) {
  1191. // insert into undefshuffle && size match -> shuffle (v, src)
  1192. llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
  1193. for (unsigned j = 0; j != CurIdx; ++j)
  1194. Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
  1195. Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
  1196. Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
  1197. LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
  1198. RHS = EI->getVectorOperand();
  1199. VIsUndefShuffle = false;
  1200. }
  1201. if (!Args.empty()) {
  1202. llvm::Constant *Mask = llvm::ConstantVector::get(Args);
  1203. V = Builder.CreateShuffleVector(LHS, RHS, Mask);
  1204. ++CurIdx;
  1205. continue;
  1206. }
  1207. }
  1208. }
  1209. V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
  1210. "vecinit");
  1211. VIsUndefShuffle = false;
  1212. ++CurIdx;
  1213. continue;
  1214. }
  1215. unsigned InitElts = VVT->getNumElements();
  1216. // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
  1217. // input is the same width as the vector being constructed, generate an
  1218. // optimized shuffle of the swizzle input into the result.
  1219. unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
  1220. if (isa<ExtVectorElementExpr>(IE)) {
  1221. llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
  1222. Value *SVOp = SVI->getOperand(0);
  1223. llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
  1224. if (OpTy->getNumElements() == ResElts) {
  1225. for (unsigned j = 0; j != CurIdx; ++j) {
  1226. // If the current vector initializer is a shuffle with undef, merge
  1227. // this shuffle directly into it.
  1228. if (VIsUndefShuffle) {
  1229. Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
  1230. CGF.Int32Ty));
  1231. } else {
  1232. Args.push_back(Builder.getInt32(j));
  1233. }
  1234. }
  1235. for (unsigned j = 0, je = InitElts; j != je; ++j)
  1236. Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
  1237. Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
  1238. if (VIsUndefShuffle)
  1239. V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
  1240. Init = SVOp;
  1241. }
  1242. }
  1243. // Extend init to result vector length, and then shuffle its contribution
  1244. // to the vector initializer into V.
  1245. if (Args.empty()) {
  1246. for (unsigned j = 0; j != InitElts; ++j)
  1247. Args.push_back(Builder.getInt32(j));
  1248. Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
  1249. llvm::Constant *Mask = llvm::ConstantVector::get(Args);
  1250. Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
  1251. Mask, "vext");
  1252. Args.clear();
  1253. for (unsigned j = 0; j != CurIdx; ++j)
  1254. Args.push_back(Builder.getInt32(j));
  1255. for (unsigned j = 0; j != InitElts; ++j)
  1256. Args.push_back(Builder.getInt32(j+Offset));
  1257. Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
  1258. }
  1259. // If V is undef, make sure it ends up on the RHS of the shuffle to aid
  1260. // merging subsequent shuffles into this one.
  1261. if (CurIdx == 0)
  1262. std::swap(V, Init);
  1263. llvm::Constant *Mask = llvm::ConstantVector::get(Args);
  1264. V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
  1265. VIsUndefShuffle = isa<llvm::UndefValue>(Init);
  1266. CurIdx += InitElts;
  1267. }
  1268. // FIXME: evaluate codegen vs. shuffling against constant null vector.
  1269. // Emit remaining default initializers.
  1270. llvm::Type *EltTy = VType->getElementType();
  1271. // Emit remaining default initializers
  1272. for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
  1273. Value *Idx = Builder.getInt32(CurIdx);
  1274. llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
  1275. V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
  1276. }
  1277. return V;
  1278. }
  1279. static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
  1280. const Expr *E = CE->getSubExpr();
  1281. if (CE->getCastKind() == CK_UncheckedDerivedToBase)
  1282. return false;
  1283. if (isa<CXXThisExpr>(E)) {
  1284. // We always assume that 'this' is never null.
  1285. return false;
  1286. }
  1287. if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
  1288. // And that glvalue casts are never null.
  1289. if (ICE->getValueKind() != VK_RValue)
  1290. return false;
  1291. }
  1292. return true;
  1293. }
  1294. // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
  1295. // have to handle a more broad range of conversions than explicit casts, as they
  1296. // handle things like function to ptr-to-function decay etc.
  1297. Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
  1298. Expr *E = CE->getSubExpr();
  1299. QualType DestTy = CE->getType();
  1300. CastKind Kind = CE->getCastKind();
  1301. // HLSL Change Begins
  1302. if (hlsl::IsHLSLMatType(E->getType()) || hlsl::IsHLSLMatType(CE->getType())) {
  1303. llvm::Value *V = CGF.EmitScalarExpr(E);
  1304. llvm::Type *RetTy = CGF.ConvertType(DestTy);
  1305. if (V->getType() == RetTy)
  1306. return V;
  1307. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(CGF, CE, RetTy, { V });
  1308. }
  1309. // HLSL Change Ends
  1310. if (!DestTy->isVoidType())
  1311. TestAndClearIgnoreResultAssign();
  1312. // Since almost all cast kinds apply to scalars, this switch doesn't have
  1313. // a default case, so the compiler will warn on a missing case. The cases
  1314. // are in the same order as in the CastKind enum.
  1315. switch (Kind) {
  1316. case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
  1317. case CK_BuiltinFnToFnPtr:
  1318. llvm_unreachable("builtin functions are handled elsewhere");
  1319. case CK_LValueBitCast:
  1320. case CK_ObjCObjectLValueCast: {
  1321. Value *V = EmitLValue(E).getAddress();
  1322. V = Builder.CreateBitCast(V,
  1323. ConvertType(CGF.getContext().getPointerType(DestTy)));
  1324. return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
  1325. CE->getExprLoc());
  1326. }
  1327. case CK_CPointerToObjCPointerCast:
  1328. case CK_BlockPointerToObjCPointerCast:
  1329. case CK_AnyPointerToBlockPointerCast:
  1330. case CK_BitCast: {
  1331. Value *Src = Visit(const_cast<Expr*>(E));
  1332. llvm::Type *SrcTy = Src->getType();
  1333. llvm::Type *DstTy = ConvertType(DestTy);
  1334. if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
  1335. SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
  1336. llvm_unreachable("wrong cast for pointers in different address spaces"
  1337. "(must be an address space cast)!");
  1338. }
  1339. if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
  1340. if (auto PT = DestTy->getAs<PointerType>())
  1341. CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
  1342. /*MayBeNull=*/true,
  1343. CodeGenFunction::CFITCK_UnrelatedCast,
  1344. CE->getLocStart());
  1345. }
  1346. return Builder.CreateBitCast(Src, DstTy);
  1347. }
  1348. case CK_AddressSpaceConversion: {
  1349. Value *Src = Visit(const_cast<Expr*>(E));
  1350. return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
  1351. }
  1352. case CK_AtomicToNonAtomic:
  1353. case CK_NonAtomicToAtomic:
  1354. case CK_NoOp:
  1355. case CK_UserDefinedConversion:
  1356. return Visit(const_cast<Expr*>(E));
  1357. case CK_BaseToDerived: {
  1358. const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
  1359. assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
  1360. llvm::Value *V = Visit(E);
  1361. llvm::Value *Derived =
  1362. CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
  1363. CE->path_begin(), CE->path_end(),
  1364. ShouldNullCheckClassCastValue(CE));
  1365. // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
  1366. // performed and the object is not of the derived type.
  1367. if (CGF.sanitizePerformTypeCheck())
  1368. CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
  1369. Derived, DestTy->getPointeeType());
  1370. if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
  1371. CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
  1372. /*MayBeNull=*/true,
  1373. CodeGenFunction::CFITCK_DerivedCast,
  1374. CE->getLocStart());
  1375. return Derived;
  1376. }
  1377. case CK_UncheckedDerivedToBase:
  1378. case CK_DerivedToBase: {
  1379. const CXXRecordDecl *DerivedClassDecl =
  1380. E->getType()->getPointeeCXXRecordDecl();
  1381. assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
  1382. return CGF.GetAddressOfBaseClass(
  1383. Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(),
  1384. ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
  1385. }
  1386. case CK_Dynamic: {
  1387. Value *V = Visit(const_cast<Expr*>(E));
  1388. const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
  1389. return CGF.EmitDynamicCast(V, DCE);
  1390. }
  1391. case CK_ArrayToPointerDecay: {
  1392. assert(E->getType()->isArrayType() &&
  1393. "Array to pointer decay must have array source type!");
  1394. Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
  1395. // Note that VLA pointers are always decayed, so we don't need to do
  1396. // anything here.
  1397. if (!E->getType()->isVariableArrayType()) {
  1398. assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
  1399. llvm::Type *NewTy = ConvertType(E->getType());
  1400. V = CGF.Builder.CreatePointerCast(
  1401. V, NewTy->getPointerTo(V->getType()->getPointerAddressSpace()));
  1402. assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) &&
  1403. "Expected pointer to array");
  1404. V = Builder.CreateStructGEP(NewTy, V, 0, "arraydecay");
  1405. }
  1406. // Make sure the array decay ends up being the right type. This matters if
  1407. // the array type was of an incomplete type.
  1408. return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
  1409. }
  1410. case CK_FunctionToPointerDecay:
  1411. return EmitLValue(E).getAddress();
  1412. case CK_NullToPointer:
  1413. if (MustVisitNullValue(E))
  1414. (void) Visit(E);
  1415. return llvm::ConstantPointerNull::get(
  1416. cast<llvm::PointerType>(ConvertType(DestTy)));
  1417. case CK_NullToMemberPointer: {
  1418. if (MustVisitNullValue(E))
  1419. (void) Visit(E);
  1420. const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
  1421. return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
  1422. }
  1423. case CK_ReinterpretMemberPointer:
  1424. case CK_BaseToDerivedMemberPointer:
  1425. case CK_DerivedToBaseMemberPointer: {
  1426. Value *Src = Visit(E);
  1427. // Note that the AST doesn't distinguish between checked and
  1428. // unchecked member pointer conversions, so we always have to
  1429. // implement checked conversions here. This is inefficient when
  1430. // actual control flow may be required in order to perform the
  1431. // check, which it is for data member pointers (but not member
  1432. // function pointers on Itanium and ARM).
  1433. return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
  1434. }
  1435. case CK_ARCProduceObject:
  1436. return CGF.EmitARCRetainScalarExpr(E);
  1437. case CK_ARCConsumeObject:
  1438. return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
  1439. case CK_ARCReclaimReturnedObject: {
  1440. llvm::Value *value = Visit(E);
  1441. value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
  1442. return CGF.EmitObjCConsumeObject(E->getType(), value);
  1443. }
  1444. case CK_ARCExtendBlockObject:
  1445. return CGF.EmitARCExtendBlockObject(E);
  1446. case CK_CopyAndAutoreleaseBlockObject:
  1447. return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
  1448. case CK_FloatingRealToComplex:
  1449. case CK_FloatingComplexCast:
  1450. case CK_IntegralRealToComplex:
  1451. case CK_IntegralComplexCast:
  1452. case CK_IntegralComplexToFloatingComplex:
  1453. case CK_FloatingComplexToIntegralComplex:
  1454. case CK_ConstructorConversion:
  1455. case CK_ToUnion:
  1456. llvm_unreachable("scalar cast to non-scalar value");
  1457. case CK_LValueToRValue:
  1458. assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
  1459. assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
  1460. return Visit(const_cast<Expr*>(E));
  1461. case CK_IntegralToPointer: {
  1462. Value *Src = Visit(const_cast<Expr*>(E));
  1463. // First, convert to the correct width so that we control the kind of
  1464. // extension.
  1465. llvm::Type *MiddleTy = CGF.IntPtrTy;
  1466. bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
  1467. llvm::Value* IntResult =
  1468. Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
  1469. return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
  1470. }
  1471. case CK_PointerToIntegral:
  1472. assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
  1473. return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
  1474. case CK_ToVoid: {
  1475. CGF.EmitIgnoredExpr(E);
  1476. return nullptr;
  1477. }
  1478. case CK_VectorSplat: {
  1479. llvm::Type *DstTy = ConvertType(DestTy);
  1480. Value *Elt = Visit(const_cast<Expr*>(E));
  1481. Elt = EmitScalarConversion(Elt, E->getType(),
  1482. DestTy->getAs<VectorType>()->getElementType());
  1483. // Splat the element across to all elements
  1484. unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
  1485. return Builder.CreateVectorSplat(NumElements, Elt, "splat");
  1486. }
  1487. case CK_IntegralCast:
  1488. case CK_IntegralToFloating:
  1489. case CK_FloatingToIntegral:
  1490. case CK_FloatingCast:
  1491. return EmitScalarConversion(Visit(E), E->getType(), DestTy);
  1492. case CK_IntegralToBoolean:
  1493. return EmitIntToBoolConversion(Visit(E));
  1494. case CK_PointerToBoolean:
  1495. return EmitPointerToBoolConversion(Visit(E));
  1496. case CK_FloatingToBoolean:
  1497. return EmitFloatToBoolConversion(Visit(E));
  1498. case CK_MemberPointerToBoolean: {
  1499. llvm::Value *MemPtr = Visit(E);
  1500. const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
  1501. return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
  1502. }
  1503. case CK_FloatingComplexToReal:
  1504. case CK_IntegralComplexToReal:
  1505. return CGF.EmitComplexExpr(E, false, true).first;
  1506. case CK_FloatingComplexToBoolean:
  1507. case CK_IntegralComplexToBoolean: {
  1508. CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
  1509. // TODO: kill this function off, inline appropriate case here
  1510. return EmitComplexToScalarConversion(V, E->getType(), DestTy);
  1511. }
  1512. case CK_ZeroToOCLEvent: {
  1513. assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
  1514. return llvm::Constant::getNullValue(ConvertType(DestTy));
  1515. }
  1516. // HLSL Change Starts
  1517. case CK_HLSLMatrixTruncationCast:
  1518. case CK_HLSLVectorTruncationCast: {
  1519. // must be vector
  1520. llvm::Value *val = Visit(E);
  1521. if (const ExtVectorType *extVecTy =
  1522. hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(),
  1523. CE->getType())) {
  1524. uint32_t vecSize = extVecTy->getNumElements();
  1525. SmallVector<llvm::Constant *, 4> Mask;
  1526. for (unsigned i = 0; i != vecSize; ++i)
  1527. Mask.push_back(Builder.getInt32(i));
  1528. llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
  1529. return Builder.CreateShuffleVector(
  1530. val, llvm::UndefValue::get(val->getType()), MaskV);
  1531. } else if (E->getType()->isScalarType()) {
  1532. return Builder.CreateExtractElement(val, (uint64_t)0);
  1533. }
  1534. }
  1535. case CK_HLSLCC_FloatingToIntegral:
  1536. case CK_HLSLCC_FloatingCast: {
  1537. return EmitScalarConversion(Visit(E), E->getType(), DestTy);
  1538. }
  1539. case CK_HLSLVectorToMatrixCast:
  1540. case CK_HLSLMatrixToVectorCast: {
  1541. llvm::Value *val = Visit(E);
  1542. llvm::Type *RetTy = CGF.ConvertType(DestTy);
  1543. val = CGF.CGM.getHLSLRuntime().EmitHLSLMatrixLoad(CGF, val, E->getType());
  1544. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(CGF, CE, RetTy, { val });
  1545. }
  1546. case CK_HLSLCC_IntegralCast:
  1547. case CK_HLSLCC_IntegralToFloating: {
  1548. return EmitScalarConversion(Visit(E), E->getType(), DestTy);
  1549. }
  1550. case CK_HLSLMatrixSplat: {
  1551. llvm::Type *DstTy = ConvertType(DestTy);
  1552. Value *Elt = Visit(const_cast<Expr *>(E));
  1553. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(CGF, CE, DstTy, { Elt });
  1554. }
  1555. case CK_HLSLVectorSplat: {
  1556. llvm::Type *DstTy = ConvertType(DestTy);
  1557. Value *Elt = Visit(const_cast<Expr *>(E));
  1558. const ExtVectorType *extVecTy = hlsl::ConvertHLSLVecMatTypeToExtVectorType(
  1559. CGF.getContext(), CE->getType());
  1560. Elt = EmitScalarConversion(Elt, E->getType(), extVecTy->getElementType());
  1561. // Splat the element across to all elements
  1562. unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
  1563. return Builder.CreateVectorSplat(NumElements, Elt, "splat");
  1564. }
  1565. case CK_HLSLVectorToScalarCast:
  1566. case CK_HLSLMatrixToScalarCast: {
  1567. return Builder.CreateExtractElement(Visit(E), (uint64_t)0);
  1568. }
  1569. case CK_FlatConversion: {
  1570. llvm::Value *val = Visit(E);
  1571. llvm::Value *elem = Builder.CreateExtractValue(val, (uint64_t)0);
  1572. return EmitScalarConversion(elem, E->getType(), DestTy);
  1573. }
  1574. case CK_HLSLCC_IntegralToBoolean:
  1575. return EmitIntToBoolConversion(Visit(E));
  1576. case CK_HLSLCC_FloatingToBoolean:
  1577. return EmitFloatToBoolConversion(Visit(E));
  1578. // HLSL Change Ends
  1579. }
  1580. llvm_unreachable("unknown scalar cast");
  1581. }
  1582. Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
  1583. CodeGenFunction::StmtExprEvaluation eval(CGF);
  1584. llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
  1585. !E->getType()->isVoidType());
  1586. if (!RetAlloca)
  1587. return nullptr;
  1588. return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
  1589. E->getExprLoc());
  1590. }
  1591. //===----------------------------------------------------------------------===//
  1592. // Unary Operators
  1593. //===----------------------------------------------------------------------===//
  1594. static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
  1595. llvm::Value *InVal, bool IsInc) {
  1596. BinOpInfo BinOp;
  1597. BinOp.LHS = InVal;
  1598. BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
  1599. BinOp.Ty = E->getType();
  1600. BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
  1601. BinOp.FPContractable = false;
  1602. BinOp.E = E;
  1603. return BinOp;
  1604. }
  1605. llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
  1606. const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
  1607. llvm::Value *Amount =
  1608. llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
  1609. StringRef Name = IsInc ? "inc" : "dec";
  1610. switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
  1611. case LangOptions::SOB_Defined:
  1612. return Builder.CreateAdd(InVal, Amount, Name);
  1613. case LangOptions::SOB_Undefined:
  1614. if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
  1615. return Builder.CreateNSWAdd(InVal, Amount, Name);
  1616. // Fall through.
  1617. case LangOptions::SOB_Trapping:
  1618. return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
  1619. }
  1620. llvm_unreachable("Unknown SignedOverflowBehaviorTy");
  1621. }
  1622. llvm::Value *
  1623. ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
  1624. bool isInc, bool isPre) {
  1625. QualType type = E->getSubExpr()->getType();
  1626. llvm::PHINode *atomicPHI = nullptr;
  1627. llvm::Value *value;
  1628. llvm::Value *input;
  1629. int amount = (isInc ? 1 : -1);
  1630. if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
  1631. type = atomicTy->getValueType();
  1632. if (isInc && type->isBooleanType()) {
  1633. llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
  1634. if (isPre) {
  1635. Builder.Insert(new llvm::StoreInst(True,
  1636. LV.getAddress(), LV.isVolatileQualified(),
  1637. LV.getAlignment().getQuantity(),
  1638. llvm::SequentiallyConsistent));
  1639. return Builder.getTrue();
  1640. }
  1641. // For atomic bool increment, we just store true and return it for
  1642. // preincrement, do an atomic swap with true for postincrement
  1643. return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
  1644. LV.getAddress(), True, llvm::SequentiallyConsistent);
  1645. }
  1646. // Special case for atomic increment / decrement on integers, emit
  1647. // atomicrmw instructions. We skip this if we want to be doing overflow
  1648. // checking, and fall into the slow path with the atomic cmpxchg loop.
  1649. if (!type->isBooleanType() && type->isIntegerType() &&
  1650. !(type->isUnsignedIntegerType() &&
  1651. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
  1652. CGF.getLangOpts().getSignedOverflowBehavior() !=
  1653. LangOptions::SOB_Trapping) {
  1654. llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
  1655. llvm::AtomicRMWInst::Sub;
  1656. llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
  1657. llvm::Instruction::Sub;
  1658. llvm::Value *amt = CGF.EmitToMemory(
  1659. llvm::ConstantInt::get(ConvertType(type), 1, true), type);
  1660. llvm::Value *old = Builder.CreateAtomicRMW(aop,
  1661. LV.getAddress(), amt, llvm::SequentiallyConsistent);
  1662. return isPre ? Builder.CreateBinOp(op, old, amt) : old;
  1663. }
  1664. value = EmitLoadOfLValue(LV, E->getExprLoc());
  1665. input = value;
  1666. // For every other atomic operation, we need to emit a load-op-cmpxchg loop
  1667. llvm::BasicBlock *startBB = Builder.GetInsertBlock();
  1668. llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
  1669. value = CGF.EmitToMemory(value, type);
  1670. Builder.CreateBr(opBB);
  1671. Builder.SetInsertPoint(opBB);
  1672. atomicPHI = Builder.CreatePHI(value->getType(), 2);
  1673. atomicPHI->addIncoming(value, startBB);
  1674. value = atomicPHI;
  1675. } else {
  1676. value = EmitLoadOfLValue(LV, E->getExprLoc());
  1677. input = value;
  1678. }
  1679. // Special case of integer increment that we have to check first: bool++.
  1680. // Due to promotion rules, we get:
  1681. // bool++ -> bool = bool + 1
  1682. // -> bool = (int)bool + 1
  1683. // -> bool = ((int)bool + 1 != 0)
  1684. // An interesting aspect of this is that increment is always true.
  1685. // Decrement does not have this property.
  1686. if (isInc && type->isBooleanType()) {
  1687. value = Builder.getTrue();
  1688. // Most common case by far: integer increment.
  1689. } else if (type->isIntegerType()) {
  1690. // Note that signed integer inc/dec with width less than int can't
  1691. // overflow because of promotion rules; we're just eliding a few steps here.
  1692. bool CanOverflow = value->getType()->getIntegerBitWidth() >=
  1693. CGF.IntTy->getIntegerBitWidth();
  1694. if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
  1695. value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
  1696. } else if (CanOverflow && type->isUnsignedIntegerType() &&
  1697. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
  1698. value =
  1699. EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
  1700. } else {
  1701. llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
  1702. value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
  1703. }
  1704. // Next most common: pointer increment.
  1705. } else if (const PointerType *ptr = type->getAs<PointerType>()) {
  1706. QualType type = ptr->getPointeeType();
  1707. // VLA types don't have constant size.
  1708. if (const VariableArrayType *vla
  1709. = CGF.getContext().getAsVariableArrayType(type)) {
  1710. llvm::Value *numElts = CGF.getVLASize(vla).first;
  1711. if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
  1712. if (CGF.getLangOpts().isSignedOverflowDefined())
  1713. value = Builder.CreateGEP(value, numElts, "vla.inc");
  1714. else
  1715. value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
  1716. // Arithmetic on function pointers (!) is just +-1.
  1717. } else if (type->isFunctionType()) {
  1718. llvm::Value *amt = Builder.getInt32(amount);
  1719. value = CGF.EmitCastToVoidPtr(value);
  1720. if (CGF.getLangOpts().isSignedOverflowDefined())
  1721. value = Builder.CreateGEP(value, amt, "incdec.funcptr");
  1722. else
  1723. value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
  1724. value = Builder.CreateBitCast(value, input->getType());
  1725. // For everything else, we can just do a simple increment.
  1726. } else {
  1727. llvm::Value *amt = Builder.getInt32(amount);
  1728. if (CGF.getLangOpts().isSignedOverflowDefined())
  1729. value = Builder.CreateGEP(value, amt, "incdec.ptr");
  1730. else
  1731. value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
  1732. }
  1733. // Vector increment/decrement.
  1734. } else if (type->isVectorType() ||
  1735. hlsl::IsHLSLVecType(type)) { // HLSL Change
  1736. if (type->hasIntegerRepresentation()) {
  1737. llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
  1738. value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
  1739. } else {
  1740. value = Builder.CreateFAdd(
  1741. value,
  1742. llvm::ConstantFP::get(value->getType(), amount),
  1743. isInc ? "inc" : "dec");
  1744. }
  1745. // HLSL Change Begins
  1746. // HLSL matrix
  1747. } else if (hlsl::IsHLSLMatType(type)) {
  1748. // generate operator call
  1749. value = CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
  1750. CGF, E, value->getType(), {value});
  1751. // store updated value
  1752. CGF.CGM.getHLSLRuntime().EmitHLSLMatrixStore(CGF, value, LV.getAddress(), E->getType());
  1753. // If this is a postinc, return the value read from memory, otherwise use
  1754. // the
  1755. // updated value.
  1756. return isPre ? value : input;
  1757. // HLSL Change Ends
  1758. // Floating point.
  1759. } else if (type->isRealFloatingType()) {
  1760. // Add the inc/dec to the real part.
  1761. llvm::Value *amt;
  1762. if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
  1763. // Another special case: half FP increment should be done via float
  1764. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
  1765. value = Builder.CreateCall(
  1766. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
  1767. CGF.CGM.FloatTy),
  1768. input, "incdec.conv");
  1769. } else {
  1770. value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
  1771. }
  1772. }
  1773. if (value->getType()->isFloatTy())
  1774. amt = llvm::ConstantFP::get(VMContext,
  1775. llvm::APFloat(static_cast<float>(amount)));
  1776. else if (value->getType()->isDoubleTy())
  1777. amt = llvm::ConstantFP::get(VMContext,
  1778. llvm::APFloat(static_cast<double>(amount)));
  1779. else {
  1780. // Remaining types are either Half or LongDouble. Convert from float.
  1781. llvm::APFloat F(static_cast<float>(amount));
  1782. bool ignored;
  1783. // Don't use getFloatTypeSemantics because Half isn't
  1784. // necessarily represented using the "half" LLVM type.
  1785. F.convert(value->getType()->isHalfTy()
  1786. ? CGF.getTarget().getHalfFormat()
  1787. : CGF.getTarget().getLongDoubleFormat(),
  1788. llvm::APFloat::rmTowardZero, &ignored);
  1789. amt = llvm::ConstantFP::get(VMContext, F);
  1790. }
  1791. value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
  1792. if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
  1793. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
  1794. value = Builder.CreateCall(
  1795. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
  1796. CGF.CGM.FloatTy),
  1797. value, "incdec.conv");
  1798. } else {
  1799. value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
  1800. }
  1801. }
  1802. // Objective-C pointer types.
  1803. } else {
  1804. const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
  1805. value = CGF.EmitCastToVoidPtr(value);
  1806. CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
  1807. if (!isInc) size = -size;
  1808. llvm::Value *sizeValue =
  1809. llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
  1810. if (CGF.getLangOpts().isSignedOverflowDefined())
  1811. value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
  1812. else
  1813. value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
  1814. value = Builder.CreateBitCast(value, input->getType());
  1815. }
  1816. if (atomicPHI) {
  1817. llvm::BasicBlock *opBB = Builder.GetInsertBlock();
  1818. llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
  1819. auto Pair = CGF.EmitAtomicCompareExchange(
  1820. LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
  1821. llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
  1822. llvm::Value *success = Pair.second;
  1823. atomicPHI->addIncoming(old, opBB);
  1824. Builder.CreateCondBr(success, contBB, opBB);
  1825. Builder.SetInsertPoint(contBB);
  1826. return isPre ? value : input;
  1827. }
  1828. // Store the updated result through the lvalue.
  1829. if (LV.isBitField())
  1830. CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
  1831. else
  1832. CGF.EmitStoreThroughLValue(RValue::get(value), LV);
  1833. // If this is a postinc, return the value read from memory, otherwise use the
  1834. // updated value.
  1835. return isPre ? value : input;
  1836. }
  1837. Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
  1838. TestAndClearIgnoreResultAssign();
  1839. // Emit unary minus with EmitSub so we handle overflow cases etc.
  1840. BinOpInfo BinOp;
  1841. BinOp.RHS = Visit(E->getSubExpr());
  1842. if (BinOp.RHS->getType()->isFPOrFPVectorTy())
  1843. BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
  1844. else
  1845. BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
  1846. BinOp.Ty = E->getType();
  1847. BinOp.Opcode = BO_Sub;
  1848. BinOp.FPContractable = false;
  1849. BinOp.E = E;
  1850. return EmitSub(BinOp);
  1851. }
  1852. Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
  1853. TestAndClearIgnoreResultAssign();
  1854. Value *Op = Visit(E->getSubExpr());
  1855. return Builder.CreateNot(Op, "neg");
  1856. }
  1857. Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
  1858. // Perform vector logical not on comparison with zero vector.
  1859. if (E->getType()->isExtVectorType() ||
  1860. hlsl::IsHLSLVecType(E->getType())) { // HLSL Change
  1861. Value *Oper = Visit(E->getSubExpr());
  1862. Value *Zero = llvm::Constant::getNullValue(Oper->getType());
  1863. Value *Result;
  1864. if (Oper->getType()->isFPOrFPVectorTy())
  1865. Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
  1866. else
  1867. Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
  1868. return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
  1869. }
  1870. // Compare operand to zero.
  1871. Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
  1872. // Invert value.
  1873. // TODO: Could dynamically modify easy computations here. For example, if
  1874. // the operand is an icmp ne, turn into icmp eq.
  1875. BoolVal = Builder.CreateNot(BoolVal, "lnot");
  1876. // ZExt result to the expr type.
  1877. return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
  1878. }
  1879. Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
  1880. // Try folding the offsetof to a constant.
  1881. llvm::APSInt Value;
  1882. if (E->EvaluateAsInt(Value, CGF.getContext()))
  1883. return Builder.getInt(Value);
  1884. // Loop over the components of the offsetof to compute the value.
  1885. unsigned n = E->getNumComponents();
  1886. llvm::Type* ResultType = ConvertType(E->getType());
  1887. llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
  1888. QualType CurrentType = E->getTypeSourceInfo()->getType();
  1889. for (unsigned i = 0; i != n; ++i) {
  1890. OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
  1891. llvm::Value *Offset = nullptr;
  1892. switch (ON.getKind()) {
  1893. case OffsetOfExpr::OffsetOfNode::Array: {
  1894. // Compute the index
  1895. Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
  1896. llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
  1897. bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
  1898. Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
  1899. // Save the element type
  1900. CurrentType =
  1901. CGF.getContext().getAsArrayType(CurrentType)->getElementType();
  1902. // Compute the element size
  1903. llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
  1904. CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
  1905. // Multiply out to compute the result
  1906. Offset = Builder.CreateMul(Idx, ElemSize);
  1907. break;
  1908. }
  1909. case OffsetOfExpr::OffsetOfNode::Field: {
  1910. FieldDecl *MemberDecl = ON.getField();
  1911. RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
  1912. const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
  1913. // Compute the index of the field in its parent.
  1914. unsigned i = 0;
  1915. // FIXME: It would be nice if we didn't have to loop here!
  1916. for (RecordDecl::field_iterator Field = RD->field_begin(),
  1917. FieldEnd = RD->field_end();
  1918. Field != FieldEnd; ++Field, ++i) {
  1919. if (*Field == MemberDecl)
  1920. break;
  1921. }
  1922. assert(i < RL.getFieldCount() && "offsetof field in wrong type");
  1923. // Compute the offset to the field
  1924. int64_t OffsetInt = RL.getFieldOffset(i) /
  1925. CGF.getContext().getCharWidth();
  1926. Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
  1927. // Save the element type.
  1928. CurrentType = MemberDecl->getType();
  1929. break;
  1930. }
  1931. case OffsetOfExpr::OffsetOfNode::Identifier:
  1932. llvm_unreachable("dependent __builtin_offsetof");
  1933. case OffsetOfExpr::OffsetOfNode::Base: {
  1934. if (ON.getBase()->isVirtual()) {
  1935. CGF.ErrorUnsupported(E, "virtual base in offsetof");
  1936. continue;
  1937. }
  1938. RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
  1939. const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
  1940. // Save the element type.
  1941. CurrentType = ON.getBase()->getType();
  1942. // Compute the offset to the base.
  1943. const RecordType *BaseRT = CurrentType->getAs<RecordType>();
  1944. CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
  1945. CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
  1946. Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
  1947. break;
  1948. }
  1949. }
  1950. Result = Builder.CreateAdd(Result, Offset);
  1951. }
  1952. return Result;
  1953. }
  1954. /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
  1955. /// argument of the sizeof expression as an integer.
  1956. Value *
  1957. ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
  1958. const UnaryExprOrTypeTraitExpr *E) {
  1959. QualType TypeToSize = E->getTypeOfArgument();
  1960. if (E->getKind() == UETT_SizeOf) {
  1961. if (const VariableArrayType *VAT =
  1962. CGF.getContext().getAsVariableArrayType(TypeToSize)) {
  1963. if (E->isArgumentType()) {
  1964. // sizeof(type) - make sure to emit the VLA size.
  1965. CGF.EmitVariablyModifiedType(TypeToSize);
  1966. } else {
  1967. // C99 6.5.3.4p2: If the argument is an expression of type
  1968. // VLA, it is evaluated.
  1969. CGF.EmitIgnoredExpr(E->getArgumentExpr());
  1970. }
  1971. QualType eltType;
  1972. llvm::Value *numElts;
  1973. std::tie(numElts, eltType) = CGF.getVLASize(VAT);
  1974. llvm::Value *size = numElts;
  1975. // Scale the number of non-VLA elements by the non-VLA element size.
  1976. CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
  1977. if (!eltSize.isOne())
  1978. size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
  1979. return size;
  1980. }
  1981. } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
  1982. auto Alignment =
  1983. CGF.getContext()
  1984. .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
  1985. E->getTypeOfArgument()->getPointeeType()))
  1986. .getQuantity();
  1987. return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
  1988. }
  1989. // If this isn't sizeof(vla), the result must be constant; use the constant
  1990. // folding logic so we don't have to duplicate it here.
  1991. return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
  1992. }
  1993. Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
  1994. Expr *Op = E->getSubExpr();
  1995. if (Op->getType()->isAnyComplexType()) {
  1996. // If it's an l-value, load through the appropriate subobject l-value.
  1997. // Note that we have to ask E because Op might be an l-value that
  1998. // this won't work for, e.g. an Obj-C property.
  1999. if (E->isGLValue())
  2000. return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
  2001. E->getExprLoc()).getScalarVal();
  2002. // Otherwise, calculate and project.
  2003. return CGF.EmitComplexExpr(Op, false, true).first;
  2004. }
  2005. return Visit(Op);
  2006. }
  2007. Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
  2008. Expr *Op = E->getSubExpr();
  2009. if (Op->getType()->isAnyComplexType()) {
  2010. // If it's an l-value, load through the appropriate subobject l-value.
  2011. // Note that we have to ask E because Op might be an l-value that
  2012. // this won't work for, e.g. an Obj-C property.
  2013. if (Op->isGLValue())
  2014. return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
  2015. E->getExprLoc()).getScalarVal();
  2016. // Otherwise, calculate and project.
  2017. return CGF.EmitComplexExpr(Op, true, false).second;
  2018. }
  2019. // __imag on a scalar returns zero. Emit the subexpr to ensure side
  2020. // effects are evaluated, but not the actual value.
  2021. if (Op->isGLValue())
  2022. CGF.EmitLValue(Op);
  2023. else
  2024. CGF.EmitScalarExpr(Op, true);
  2025. return llvm::Constant::getNullValue(ConvertType(E->getType()));
  2026. }
  2027. //===----------------------------------------------------------------------===//
  2028. // Binary Operators
  2029. //===----------------------------------------------------------------------===//
  2030. BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
  2031. TestAndClearIgnoreResultAssign();
  2032. BinOpInfo Result;
  2033. Result.LHS = Visit(E->getLHS());
  2034. Result.RHS = Visit(E->getRHS());
  2035. Result.Ty = E->getType();
  2036. Result.Opcode = E->getOpcode();
  2037. Result.FPContractable = E->isFPContractable();
  2038. Result.E = E;
  2039. return Result;
  2040. }
  2041. LValue ScalarExprEmitter::EmitCompoundAssignLValue(
  2042. const CompoundAssignOperator *E,
  2043. Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
  2044. Value *&Result) {
  2045. // HLSL Change Begins
  2046. if (hlsl::IsHLSLMatType(E->getType())) {
  2047. const Expr *LHS = E->getLHS();
  2048. const Expr *RHS = E->getRHS();
  2049. LValue L = CGF.EmitLValue(LHS);
  2050. Value *LVal = L.getAddress();
  2051. Value *RVal = CGF.EmitScalarExpr(RHS);
  2052. SmallVector<Value *, 4> paramList;
  2053. Value *LdLVal =
  2054. CGF.CGM.getHLSLRuntime().EmitHLSLMatrixLoad(CGF, LVal, LHS->getType());
  2055. paramList.emplace_back(LdLVal);
  2056. paramList.emplace_back(RVal);
  2057. // Set return type to be none reference type for Result
  2058. llvm::Type *RetType = LVal->getType()->getPointerElementType();
  2059. Result = CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
  2060. CGF, E, RetType, paramList);
  2061. // store result to LVal
  2062. CGF.CGM.getHLSLRuntime().EmitHLSLMatrixStore(CGF, Result, LVal,
  2063. LHS->getType());
  2064. return L;
  2065. }
  2066. // HLSL Change Ends
  2067. QualType LHSTy = E->getLHS()->getType();
  2068. BinOpInfo OpInfo;
  2069. if (E->getComputationResultType()->isAnyComplexType())
  2070. return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
  2071. // Emit the RHS first. __block variables need to have the rhs evaluated
  2072. // first, plus this should improve codegen a little.
  2073. OpInfo.RHS = Visit(E->getRHS());
  2074. OpInfo.Ty = E->getComputationResultType();
  2075. OpInfo.Opcode = E->getOpcode();
  2076. OpInfo.FPContractable = false;
  2077. OpInfo.E = E;
  2078. // Load/convert the LHS.
  2079. LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
  2080. llvm::PHINode *atomicPHI = nullptr;
  2081. if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
  2082. QualType type = atomicTy->getValueType();
  2083. if (!type->isBooleanType() && type->isIntegerType() &&
  2084. !(type->isUnsignedIntegerType() &&
  2085. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
  2086. CGF.getLangOpts().getSignedOverflowBehavior() !=
  2087. LangOptions::SOB_Trapping) {
  2088. llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
  2089. switch (OpInfo.Opcode) {
  2090. // We don't have atomicrmw operands for *, %, /, <<, >>
  2091. case BO_MulAssign: case BO_DivAssign:
  2092. case BO_RemAssign:
  2093. case BO_ShlAssign:
  2094. case BO_ShrAssign:
  2095. break;
  2096. case BO_AddAssign:
  2097. aop = llvm::AtomicRMWInst::Add;
  2098. break;
  2099. case BO_SubAssign:
  2100. aop = llvm::AtomicRMWInst::Sub;
  2101. break;
  2102. case BO_AndAssign:
  2103. aop = llvm::AtomicRMWInst::And;
  2104. break;
  2105. case BO_XorAssign:
  2106. aop = llvm::AtomicRMWInst::Xor;
  2107. break;
  2108. case BO_OrAssign:
  2109. aop = llvm::AtomicRMWInst::Or;
  2110. break;
  2111. default:
  2112. llvm_unreachable("Invalid compound assignment type");
  2113. }
  2114. if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
  2115. llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
  2116. E->getRHS()->getType(), LHSTy), LHSTy);
  2117. Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
  2118. llvm::SequentiallyConsistent);
  2119. return LHSLV;
  2120. }
  2121. }
  2122. // FIXME: For floating point types, we should be saving and restoring the
  2123. // floating point environment in the loop.
  2124. llvm::BasicBlock *startBB = Builder.GetInsertBlock();
  2125. llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
  2126. OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
  2127. OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
  2128. Builder.CreateBr(opBB);
  2129. Builder.SetInsertPoint(opBB);
  2130. atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
  2131. atomicPHI->addIncoming(OpInfo.LHS, startBB);
  2132. OpInfo.LHS = atomicPHI;
  2133. }
  2134. else
  2135. OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
  2136. OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
  2137. E->getComputationLHSType());
  2138. // Expand the binary operator.
  2139. Result = (this->*Func)(OpInfo);
  2140. // Convert the result back to the LHS type.
  2141. Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
  2142. if (atomicPHI) {
  2143. llvm::BasicBlock *opBB = Builder.GetInsertBlock();
  2144. llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
  2145. auto Pair = CGF.EmitAtomicCompareExchange(
  2146. LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
  2147. llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
  2148. llvm::Value *success = Pair.second;
  2149. atomicPHI->addIncoming(old, opBB);
  2150. Builder.CreateCondBr(success, contBB, opBB);
  2151. Builder.SetInsertPoint(contBB);
  2152. return LHSLV;
  2153. }
  2154. // Store the result value into the LHS lvalue. Bit-fields are handled
  2155. // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
  2156. // 'An assignment expression has the value of the left operand after the
  2157. // assignment...'.
  2158. if (LHSLV.isBitField())
  2159. CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
  2160. else
  2161. CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
  2162. return LHSLV;
  2163. }
  2164. Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
  2165. Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
  2166. bool Ignore = TestAndClearIgnoreResultAssign();
  2167. Value *RHS;
  2168. LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
  2169. // If the result is clearly ignored, return now.
  2170. if (Ignore)
  2171. return nullptr;
  2172. // The result of an assignment in C is the assigned r-value.
  2173. if (!CGF.getLangOpts().CPlusPlus)
  2174. return RHS;
  2175. // If the lvalue is non-volatile, return the computed value of the assignment.
  2176. if (!LHS.isVolatileQualified())
  2177. return RHS;
  2178. // Otherwise, reload the value.
  2179. return EmitLoadOfLValue(LHS, E->getExprLoc());
  2180. }
  2181. void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
  2182. const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
  2183. SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
  2184. if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
  2185. Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
  2186. SanitizerKind::IntegerDivideByZero));
  2187. }
  2188. if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
  2189. Ops.Ty->hasSignedIntegerRepresentation()) {
  2190. llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
  2191. llvm::Value *IntMin =
  2192. Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
  2193. llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
  2194. llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
  2195. llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
  2196. llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
  2197. Checks.push_back(
  2198. std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
  2199. }
  2200. if (Checks.size() > 0)
  2201. EmitBinOpCheck(Checks, Ops);
  2202. }
  2203. Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
  2204. {
  2205. CodeGenFunction::SanitizerScope SanScope(&CGF);
  2206. if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
  2207. CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
  2208. Ops.Ty->isIntegerType()) {
  2209. llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
  2210. EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
  2211. } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
  2212. Ops.Ty->isRealFloatingType()) {
  2213. llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
  2214. llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
  2215. EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
  2216. Ops);
  2217. }
  2218. }
  2219. if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
  2220. llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
  2221. if (CGF.getLangOpts().OpenCL) {
  2222. // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
  2223. llvm::Type *ValTy = Val->getType();
  2224. if (ValTy->isFloatTy() ||
  2225. (isa<llvm::VectorType>(ValTy) &&
  2226. cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
  2227. CGF.SetFPAccuracy(Val, 2.5);
  2228. }
  2229. return Val;
  2230. }
  2231. else if (Ops.Ty->hasUnsignedIntegerRepresentation())
  2232. return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
  2233. else
  2234. return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
  2235. }
  2236. Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
  2237. // Rem in C can't be a floating point type: C99 6.5.5p2.
  2238. if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
  2239. CodeGenFunction::SanitizerScope SanScope(&CGF);
  2240. llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
  2241. if (Ops.Ty->isIntegerType())
  2242. EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
  2243. }
  2244. // HLSL Change Begins.
  2245. if (CGF.getLangOpts().HLSL) {
  2246. if (Ops.LHS->getType()->getScalarType()->isFloatingPointTy()) {
  2247. return Builder.CreateFRem(Ops.LHS, Ops.RHS, "frem");
  2248. }
  2249. }
  2250. // HLSL Change Ends.
  2251. if (Ops.Ty->hasUnsignedIntegerRepresentation())
  2252. return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
  2253. else
  2254. return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
  2255. }
  2256. Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
  2257. unsigned IID;
  2258. unsigned OpID = 0;
  2259. bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
  2260. switch (Ops.Opcode) {
  2261. case BO_Add:
  2262. case BO_AddAssign:
  2263. OpID = 1;
  2264. IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
  2265. llvm::Intrinsic::uadd_with_overflow;
  2266. break;
  2267. case BO_Sub:
  2268. case BO_SubAssign:
  2269. OpID = 2;
  2270. IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
  2271. llvm::Intrinsic::usub_with_overflow;
  2272. break;
  2273. case BO_Mul:
  2274. case BO_MulAssign:
  2275. OpID = 3;
  2276. IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
  2277. llvm::Intrinsic::umul_with_overflow;
  2278. break;
  2279. default:
  2280. llvm_unreachable("Unsupported operation for overflow detection");
  2281. }
  2282. OpID <<= 1;
  2283. if (isSigned)
  2284. OpID |= 1;
  2285. llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
  2286. llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
  2287. Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
  2288. Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
  2289. Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
  2290. // Handle overflow with llvm.trap if no custom handler has been specified.
  2291. const std::string *handlerName =
  2292. &CGF.getLangOpts().OverflowHandler;
  2293. if (handlerName->empty()) {
  2294. // If the signed-integer-overflow sanitizer is enabled, emit a call to its
  2295. // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
  2296. if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
  2297. CodeGenFunction::SanitizerScope SanScope(&CGF);
  2298. llvm::Value *NotOverflow = Builder.CreateNot(overflow);
  2299. SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
  2300. : SanitizerKind::UnsignedIntegerOverflow;
  2301. EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
  2302. } else
  2303. CGF.EmitTrapCheck(Builder.CreateNot(overflow));
  2304. return result;
  2305. }
  2306. // Branch in case of overflow.
  2307. llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
  2308. llvm::Function::iterator insertPt = initialBB;
  2309. llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
  2310. std::next(insertPt));
  2311. llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
  2312. Builder.CreateCondBr(overflow, overflowBB, continueBB);
  2313. // If an overflow handler is set, then we want to call it and then use its
  2314. // result, if it returns.
  2315. Builder.SetInsertPoint(overflowBB);
  2316. // Get the overflow handler.
  2317. llvm::Type *Int8Ty = CGF.Int8Ty;
  2318. llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
  2319. llvm::FunctionType *handlerTy =
  2320. llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
  2321. llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
  2322. // Sign extend the args to 64-bit, so that we can use the same handler for
  2323. // all types of overflow.
  2324. llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
  2325. llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
  2326. // Call the handler with the two arguments, the operation, and the size of
  2327. // the result.
  2328. llvm::Value *handlerArgs[] = {
  2329. lhs,
  2330. rhs,
  2331. Builder.getInt8(OpID),
  2332. Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
  2333. };
  2334. llvm::Value *handlerResult =
  2335. CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
  2336. // Truncate the result back to the desired size.
  2337. handlerResult = Builder.CreateTrunc(handlerResult, opTy);
  2338. Builder.CreateBr(continueBB);
  2339. Builder.SetInsertPoint(continueBB);
  2340. llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
  2341. phi->addIncoming(result, initialBB);
  2342. phi->addIncoming(handlerResult, overflowBB);
  2343. return phi;
  2344. }
  2345. /// Emit pointer + index arithmetic.
  2346. static Value *emitPointerArithmetic(CodeGenFunction &CGF,
  2347. const BinOpInfo &op,
  2348. bool isSubtraction) {
  2349. // Must have binary (not unary) expr here. Unary pointer
  2350. // increment/decrement doesn't use this path.
  2351. const BinaryOperator *expr = cast<BinaryOperator>(op.E);
  2352. Value *pointer = op.LHS;
  2353. Expr *pointerOperand = expr->getLHS();
  2354. Value *index = op.RHS;
  2355. Expr *indexOperand = expr->getRHS();
  2356. // In a subtraction, the LHS is always the pointer.
  2357. if (!isSubtraction && !pointer->getType()->isPointerTy()) {
  2358. std::swap(pointer, index);
  2359. std::swap(pointerOperand, indexOperand);
  2360. }
  2361. unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
  2362. if (width != CGF.PointerWidthInBits) {
  2363. // Zero-extend or sign-extend the pointer value according to
  2364. // whether the index is signed or not.
  2365. bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
  2366. index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
  2367. "idx.ext");
  2368. }
  2369. // If this is subtraction, negate the index.
  2370. if (isSubtraction)
  2371. index = CGF.Builder.CreateNeg(index, "idx.neg");
  2372. if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
  2373. CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
  2374. /*Accessed*/ false);
  2375. const PointerType *pointerType
  2376. = pointerOperand->getType()->getAs<PointerType>();
  2377. if (!pointerType) {
  2378. QualType objectType = pointerOperand->getType()
  2379. ->castAs<ObjCObjectPointerType>()
  2380. ->getPointeeType();
  2381. llvm::Value *objectSize
  2382. = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
  2383. index = CGF.Builder.CreateMul(index, objectSize);
  2384. Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
  2385. result = CGF.Builder.CreateGEP(result, index, "add.ptr");
  2386. return CGF.Builder.CreateBitCast(result, pointer->getType());
  2387. }
  2388. QualType elementType = pointerType->getPointeeType();
  2389. if (const VariableArrayType *vla
  2390. = CGF.getContext().getAsVariableArrayType(elementType)) {
  2391. // The element count here is the total number of non-VLA elements.
  2392. llvm::Value *numElements = CGF.getVLASize(vla).first;
  2393. // Effectively, the multiply by the VLA size is part of the GEP.
  2394. // GEP indexes are signed, and scaling an index isn't permitted to
  2395. // signed-overflow, so we use the same semantics for our explicit
  2396. // multiply. We suppress this if overflow is not undefined behavior.
  2397. if (CGF.getLangOpts().isSignedOverflowDefined()) {
  2398. index = CGF.Builder.CreateMul(index, numElements, "vla.index");
  2399. pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
  2400. } else {
  2401. index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
  2402. pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
  2403. }
  2404. return pointer;
  2405. }
  2406. // Explicitly handle GNU void* and function pointer arithmetic extensions. The
  2407. // GNU void* casts amount to no-ops since our void* type is i8*, but this is
  2408. // future proof.
  2409. if (elementType->isVoidType() || elementType->isFunctionType()) {
  2410. Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
  2411. result = CGF.Builder.CreateGEP(result, index, "add.ptr");
  2412. return CGF.Builder.CreateBitCast(result, pointer->getType());
  2413. }
  2414. if (CGF.getLangOpts().isSignedOverflowDefined())
  2415. return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
  2416. return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
  2417. }
  2418. // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
  2419. // Addend. Use negMul and negAdd to negate the first operand of the Mul or
  2420. // the add operand respectively. This allows fmuladd to represent a*b-c, or
  2421. // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
  2422. // efficient operations.
  2423. static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
  2424. const CodeGenFunction &CGF, CGBuilderTy &Builder,
  2425. bool negMul, bool negAdd) {
  2426. assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
  2427. Value *MulOp0 = MulOp->getOperand(0);
  2428. Value *MulOp1 = MulOp->getOperand(1);
  2429. if (negMul) {
  2430. MulOp0 =
  2431. Builder.CreateFSub(
  2432. llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
  2433. "neg");
  2434. } else if (negAdd) {
  2435. Addend =
  2436. Builder.CreateFSub(
  2437. llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
  2438. "neg");
  2439. }
  2440. Value *FMulAdd = Builder.CreateCall(
  2441. CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
  2442. {MulOp0, MulOp1, Addend});
  2443. MulOp->eraseFromParent();
  2444. return FMulAdd;
  2445. }
  2446. // Check whether it would be legal to emit an fmuladd intrinsic call to
  2447. // represent op and if so, build the fmuladd.
  2448. //
  2449. // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
  2450. // Does NOT check the type of the operation - it's assumed that this function
  2451. // will be called from contexts where it's known that the type is contractable.
  2452. static Value* tryEmitFMulAdd(const BinOpInfo &op,
  2453. const CodeGenFunction &CGF, CGBuilderTy &Builder,
  2454. bool isSub=false) {
  2455. assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
  2456. op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
  2457. "Only fadd/fsub can be the root of an fmuladd.");
  2458. // Check whether this op is marked as fusable.
  2459. if (!op.FPContractable)
  2460. return nullptr;
  2461. // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
  2462. // either disabled, or handled entirely by the LLVM backend).
  2463. if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
  2464. return nullptr;
  2465. // We have a potentially fusable op. Look for a mul on one of the operands.
  2466. if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
  2467. if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
  2468. assert(LHSBinOp->getNumUses() == 0 &&
  2469. "Operations with multiple uses shouldn't be contracted.");
  2470. return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
  2471. }
  2472. } else if (llvm::BinaryOperator* RHSBinOp =
  2473. dyn_cast<llvm::BinaryOperator>(op.RHS)) {
  2474. if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
  2475. assert(RHSBinOp->getNumUses() == 0 &&
  2476. "Operations with multiple uses shouldn't be contracted.");
  2477. return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
  2478. }
  2479. }
  2480. return nullptr;
  2481. }
  2482. Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
  2483. if (op.LHS->getType()->isPointerTy() ||
  2484. op.RHS->getType()->isPointerTy())
  2485. return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
  2486. if (op.Ty->isSignedIntegerOrEnumerationType()) {
  2487. switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
  2488. case LangOptions::SOB_Defined:
  2489. return Builder.CreateAdd(op.LHS, op.RHS, "add");
  2490. case LangOptions::SOB_Undefined:
  2491. if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
  2492. return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
  2493. // Fall through.
  2494. case LangOptions::SOB_Trapping:
  2495. return EmitOverflowCheckedBinOp(op);
  2496. }
  2497. }
  2498. if (op.Ty->isUnsignedIntegerType() &&
  2499. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
  2500. return EmitOverflowCheckedBinOp(op);
  2501. if (op.LHS->getType()->isFPOrFPVectorTy()) {
  2502. // Try to form an fmuladd.
  2503. if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
  2504. return FMulAdd;
  2505. return Builder.CreateFAdd(op.LHS, op.RHS, "add");
  2506. }
  2507. return Builder.CreateAdd(op.LHS, op.RHS, "add");
  2508. }
  2509. Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
  2510. // The LHS is always a pointer if either side is.
  2511. if (!op.LHS->getType()->isPointerTy()) {
  2512. if (op.Ty->isSignedIntegerOrEnumerationType()) {
  2513. switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
  2514. case LangOptions::SOB_Defined:
  2515. return Builder.CreateSub(op.LHS, op.RHS, "sub");
  2516. case LangOptions::SOB_Undefined:
  2517. if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
  2518. return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
  2519. // Fall through.
  2520. case LangOptions::SOB_Trapping:
  2521. return EmitOverflowCheckedBinOp(op);
  2522. }
  2523. }
  2524. if (op.Ty->isUnsignedIntegerType() &&
  2525. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
  2526. return EmitOverflowCheckedBinOp(op);
  2527. if (op.LHS->getType()->isFPOrFPVectorTy()) {
  2528. // Try to form an fmuladd.
  2529. if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
  2530. return FMulAdd;
  2531. return Builder.CreateFSub(op.LHS, op.RHS, "sub");
  2532. }
  2533. return Builder.CreateSub(op.LHS, op.RHS, "sub");
  2534. }
  2535. // If the RHS is not a pointer, then we have normal pointer
  2536. // arithmetic.
  2537. if (!op.RHS->getType()->isPointerTy())
  2538. return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
  2539. // Otherwise, this is a pointer subtraction.
  2540. // Do the raw subtraction part.
  2541. llvm::Value *LHS
  2542. = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
  2543. llvm::Value *RHS
  2544. = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
  2545. Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
  2546. // Okay, figure out the element size.
  2547. const BinaryOperator *expr = cast<BinaryOperator>(op.E);
  2548. QualType elementType = expr->getLHS()->getType()->getPointeeType();
  2549. llvm::Value *divisor = nullptr;
  2550. // For a variable-length array, this is going to be non-constant.
  2551. if (const VariableArrayType *vla
  2552. = CGF.getContext().getAsVariableArrayType(elementType)) {
  2553. llvm::Value *numElements;
  2554. std::tie(numElements, elementType) = CGF.getVLASize(vla);
  2555. divisor = numElements;
  2556. // Scale the number of non-VLA elements by the non-VLA element size.
  2557. CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
  2558. if (!eltSize.isOne())
  2559. divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
  2560. // For everything elese, we can just compute it, safe in the
  2561. // assumption that Sema won't let anything through that we can't
  2562. // safely compute the size of.
  2563. } else {
  2564. CharUnits elementSize;
  2565. // Handle GCC extension for pointer arithmetic on void* and
  2566. // function pointer types.
  2567. if (elementType->isVoidType() || elementType->isFunctionType())
  2568. elementSize = CharUnits::One();
  2569. else
  2570. elementSize = CGF.getContext().getTypeSizeInChars(elementType);
  2571. // Don't even emit the divide for element size of 1.
  2572. if (elementSize.isOne())
  2573. return diffInChars;
  2574. divisor = CGF.CGM.getSize(elementSize);
  2575. }
  2576. // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
  2577. // pointer difference in C is only defined in the case where both operands
  2578. // are pointing to elements of an array.
  2579. return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
  2580. }
  2581. Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
  2582. llvm::IntegerType *Ty;
  2583. if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
  2584. Ty = cast<llvm::IntegerType>(VT->getElementType());
  2585. else
  2586. Ty = cast<llvm::IntegerType>(LHS->getType());
  2587. return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
  2588. }
  2589. Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
  2590. // LLVM requires the LHS and RHS to be the same type: promote or truncate the
  2591. // RHS to the same size as the LHS.
  2592. Value *RHS = Ops.RHS;
  2593. if (Ops.LHS->getType() != RHS->getType())
  2594. RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
  2595. bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
  2596. Ops.Ty->hasSignedIntegerRepresentation();
  2597. bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
  2598. // OpenCL 6.3j: shift values are effectively % word size of LHS.
  2599. if (CGF.getLangOpts().OpenCL)
  2600. RHS =
  2601. Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
  2602. else if ((SanitizeBase || SanitizeExponent) &&
  2603. isa<llvm::IntegerType>(Ops.LHS->getType())) {
  2604. CodeGenFunction::SanitizerScope SanScope(&CGF);
  2605. SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
  2606. llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
  2607. llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
  2608. if (SanitizeExponent) {
  2609. Checks.push_back(
  2610. std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
  2611. }
  2612. if (SanitizeBase) {
  2613. // Check whether we are shifting any non-zero bits off the top of the
  2614. // integer. We only emit this check if exponent is valid - otherwise
  2615. // instructions below will have undefined behavior themselves.
  2616. llvm::BasicBlock *Orig = Builder.GetInsertBlock();
  2617. llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
  2618. llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
  2619. Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
  2620. CGF.EmitBlock(CheckShiftBase);
  2621. llvm::Value *BitsShiftedOff =
  2622. Builder.CreateLShr(Ops.LHS,
  2623. Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
  2624. /*NUW*/true, /*NSW*/true),
  2625. "shl.check");
  2626. if (CGF.getLangOpts().CPlusPlus) {
  2627. // In C99, we are not permitted to shift a 1 bit into the sign bit.
  2628. // Under C++11's rules, shifting a 1 bit into the sign bit is
  2629. // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
  2630. // define signed left shifts, so we use the C99 and C++11 rules there).
  2631. llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
  2632. BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
  2633. }
  2634. llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
  2635. llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
  2636. CGF.EmitBlock(Cont);
  2637. llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
  2638. BaseCheck->addIncoming(Builder.getTrue(), Orig);
  2639. BaseCheck->addIncoming(ValidBase, CheckShiftBase);
  2640. Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
  2641. }
  2642. assert(!Checks.empty());
  2643. EmitBinOpCheck(Checks, Ops);
  2644. }
  2645. return Builder.CreateShl(Ops.LHS, RHS, "shl");
  2646. }
  2647. Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
  2648. // LLVM requires the LHS and RHS to be the same type: promote or truncate the
  2649. // RHS to the same size as the LHS.
  2650. Value *RHS = Ops.RHS;
  2651. if (Ops.LHS->getType() != RHS->getType())
  2652. RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
  2653. // OpenCL 6.3j: shift values are effectively % word size of LHS.
  2654. if (CGF.getLangOpts().OpenCL)
  2655. RHS =
  2656. Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
  2657. else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
  2658. isa<llvm::IntegerType>(Ops.LHS->getType())) {
  2659. CodeGenFunction::SanitizerScope SanScope(&CGF);
  2660. llvm::Value *Valid =
  2661. Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
  2662. EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
  2663. }
  2664. if (Ops.Ty->hasUnsignedIntegerRepresentation())
  2665. return Builder.CreateLShr(Ops.LHS, RHS, "shr");
  2666. // HLSL Change Begin - check unsigned for vector.
  2667. if (hlsl::IsHLSLVecType(Ops.Ty)) {
  2668. if (hlsl::GetHLSLVecElementType(Ops.Ty)->hasUnsignedIntegerRepresentation())
  2669. return Builder.CreateLShr(Ops.LHS, RHS, "shr");
  2670. }
  2671. // HLSL Change End.
  2672. return Builder.CreateAShr(Ops.LHS, RHS, "shr");
  2673. }
  2674. enum IntrinsicType { VCMPEQ, VCMPGT };
  2675. #if 0 // HLSL Change - remove platform intrinsics
  2676. // return corresponding comparison intrinsic for given vector type
  2677. static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
  2678. BuiltinType::Kind ElemKind) {
  2679. llvm_unreachable("HLSL Does not support altivec vectors");
  2680. return llvm::Intrinsic::not_intrinsic; // HLSL Change - remove platform intrinsics
  2681. switch (ElemKind) {
  2682. default: llvm_unreachable("unexpected element type");
  2683. case BuiltinType::Char_U:
  2684. case BuiltinType::UChar:
  2685. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
  2686. llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
  2687. case BuiltinType::Char_S:
  2688. case BuiltinType::SChar:
  2689. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
  2690. llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
  2691. case BuiltinType::UShort:
  2692. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
  2693. llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
  2694. case BuiltinType::Short:
  2695. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
  2696. llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
  2697. case BuiltinType::UInt:
  2698. case BuiltinType::ULong:
  2699. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
  2700. llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
  2701. case BuiltinType::Int:
  2702. case BuiltinType::Long:
  2703. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
  2704. llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
  2705. case BuiltinType::Float:
  2706. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
  2707. llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
  2708. }
  2709. }
  2710. #endif // HLSL Change - remove platform intrinsics
  2711. Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
  2712. unsigned SICmpOpc, unsigned FCmpOpc) {
  2713. TestAndClearIgnoreResultAssign();
  2714. Value *Result;
  2715. QualType LHSTy = E->getLHS()->getType();
  2716. QualType RHSTy = E->getRHS()->getType();
  2717. if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
  2718. assert(E->getOpcode() == BO_EQ ||
  2719. E->getOpcode() == BO_NE);
  2720. Value *LHS = CGF.EmitScalarExpr(E->getLHS());
  2721. Value *RHS = CGF.EmitScalarExpr(E->getRHS());
  2722. Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
  2723. CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
  2724. } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
  2725. Value *LHS = Visit(E->getLHS());
  2726. Value *RHS = Visit(E->getRHS());
  2727. // HLSL Change Begins
  2728. if (hlsl::IsHLSLMatType(LHSTy) && hlsl::IsHLSLMatType(RHSTy)) {
  2729. llvm::Type *RetTy = CGF.ConvertType(E->getType());
  2730. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(CGF, E, RetTy,
  2731. {LHS, RHS});
  2732. }
  2733. // HLSL Change Ends
  2734. // If AltiVec, the comparison results in a numeric type, so we use
  2735. // intrinsics comparing vectors and giving 0 or 1 as a result
  2736. if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
  2737. llvm_unreachable("HLSL Does not support altivec vectors");
  2738. #if 0 // HLSL Change - remove platform intrinsics
  2739. // constants for mapping CR6 register bits to predicate result
  2740. enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
  2741. llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
  2742. // in several cases vector arguments order will be reversed
  2743. Value *FirstVecArg = LHS,
  2744. *SecondVecArg = RHS;
  2745. QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
  2746. const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
  2747. BuiltinType::Kind ElementKind = BTy->getKind();
  2748. switch(E->getOpcode()) {
  2749. default: llvm_unreachable("is not a comparison operation");
  2750. case BO_EQ:
  2751. CR6 = CR6_LT;
  2752. ID = GetIntrinsic(VCMPEQ, ElementKind);
  2753. break;
  2754. case BO_NE:
  2755. CR6 = CR6_EQ;
  2756. ID = GetIntrinsic(VCMPEQ, ElementKind);
  2757. break;
  2758. case BO_LT:
  2759. CR6 = CR6_LT;
  2760. ID = GetIntrinsic(VCMPGT, ElementKind);
  2761. std::swap(FirstVecArg, SecondVecArg);
  2762. break;
  2763. case BO_GT:
  2764. CR6 = CR6_LT;
  2765. ID = GetIntrinsic(VCMPGT, ElementKind);
  2766. break;
  2767. case BO_LE:
  2768. if (ElementKind == BuiltinType::Float) {
  2769. CR6 = CR6_LT;
  2770. ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
  2771. std::swap(FirstVecArg, SecondVecArg);
  2772. }
  2773. else {
  2774. CR6 = CR6_EQ;
  2775. ID = GetIntrinsic(VCMPGT, ElementKind);
  2776. }
  2777. break;
  2778. case BO_GE:
  2779. if (ElementKind == BuiltinType::Float) {
  2780. CR6 = CR6_LT;
  2781. ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
  2782. }
  2783. else {
  2784. CR6 = CR6_EQ;
  2785. ID = GetIntrinsic(VCMPGT, ElementKind);
  2786. std::swap(FirstVecArg, SecondVecArg);
  2787. }
  2788. break;
  2789. }
  2790. Value *CR6Param = Builder.getInt32(CR6);
  2791. llvm::Function *F = CGF.CGM.getIntrinsic(ID);
  2792. Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
  2793. return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
  2794. #endif // HLSL Change - remove platform intrinsics
  2795. }
  2796. if (LHS->getType()->isFPOrFPVectorTy()) {
  2797. Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
  2798. LHS, RHS, "cmp");
  2799. } else if (LHSTy->hasSignedIntegerRepresentation()) {
  2800. Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
  2801. LHS, RHS, "cmp");
  2802. } else {
  2803. // Unsigned integers and pointers.
  2804. Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
  2805. LHS, RHS, "cmp");
  2806. }
  2807. // If this is a vector comparison, sign extend the result to the appropriate
  2808. // vector integer type and return it (don't convert to bool).
  2809. if (LHSTy->isVectorType())
  2810. return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
  2811. // HLSL Change Starts
  2812. if (const ExtVectorType *vecTy = hlsl::ConvertHLSLVecMatTypeToExtVectorType(
  2813. CGF.getContext(), LHSTy)) {
  2814. // Return Result directly when E is already a vector.
  2815. if (hlsl::IsHLSLVecType(E->getType()))
  2816. return Result;
  2817. QualType bVecTy = CGF.getContext().getExtVectorType(
  2818. E->getType(), vecTy->getNumElements());
  2819. return Builder.CreateSExt(Result, ConvertType(bVecTy), "sext");
  2820. }
  2821. // HLSL Change Ends
  2822. } else {
  2823. // Complex Comparison: can only be an equality comparison.
  2824. CodeGenFunction::ComplexPairTy LHS, RHS;
  2825. QualType CETy;
  2826. if (auto *CTy = LHSTy->getAs<ComplexType>()) {
  2827. LHS = CGF.EmitComplexExpr(E->getLHS());
  2828. CETy = CTy->getElementType();
  2829. } else {
  2830. LHS.first = Visit(E->getLHS());
  2831. LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
  2832. CETy = LHSTy;
  2833. }
  2834. if (auto *CTy = RHSTy->getAs<ComplexType>()) {
  2835. RHS = CGF.EmitComplexExpr(E->getRHS());
  2836. assert(CGF.getContext().hasSameUnqualifiedType(CETy,
  2837. CTy->getElementType()) &&
  2838. "The element types must always match.");
  2839. (void)CTy;
  2840. } else {
  2841. RHS.first = Visit(E->getRHS());
  2842. RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
  2843. assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
  2844. "The element types must always match.");
  2845. }
  2846. Value *ResultR, *ResultI;
  2847. if (CETy->isRealFloatingType()) {
  2848. ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
  2849. LHS.first, RHS.first, "cmp.r");
  2850. ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
  2851. LHS.second, RHS.second, "cmp.i");
  2852. } else {
  2853. // Complex comparisons can only be equality comparisons. As such, signed
  2854. // and unsigned opcodes are the same.
  2855. ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
  2856. LHS.first, RHS.first, "cmp.r");
  2857. ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
  2858. LHS.second, RHS.second, "cmp.i");
  2859. }
  2860. if (E->getOpcode() == BO_EQ) {
  2861. Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
  2862. } else {
  2863. assert(E->getOpcode() == BO_NE &&
  2864. "Complex comparison other than == or != ?");
  2865. Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
  2866. }
  2867. }
  2868. return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
  2869. }
  2870. Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
  2871. bool Ignore = TestAndClearIgnoreResultAssign();
  2872. Value *RHS;
  2873. LValue LHS;
  2874. switch (E->getLHS()->getType().getObjCLifetime()) {
  2875. case Qualifiers::OCL_Strong:
  2876. std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
  2877. break;
  2878. case Qualifiers::OCL_Autoreleasing:
  2879. std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
  2880. break;
  2881. case Qualifiers::OCL_Weak:
  2882. RHS = Visit(E->getRHS());
  2883. LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
  2884. RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
  2885. break;
  2886. // No reason to do any of these differently.
  2887. case Qualifiers::OCL_None:
  2888. case Qualifiers::OCL_ExplicitNone:
  2889. // __block variables need to have the rhs evaluated first, plus
  2890. // this should improve codegen just a little.
  2891. RHS = Visit(E->getRHS());
  2892. LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
  2893. // Store the value into the LHS. Bit-fields are handled specially
  2894. // because the result is altered by the store, i.e., [C99 6.5.16p1]
  2895. // 'An assignment expression has the value of the left operand after
  2896. // the assignment...'.
  2897. if (LHS.isBitField())
  2898. CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
  2899. else
  2900. CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
  2901. }
  2902. // If the result is clearly ignored, return now.
  2903. if (Ignore)
  2904. return nullptr;
  2905. // The result of an assignment in C is the assigned r-value.
  2906. if (!CGF.getLangOpts().CPlusPlus)
  2907. return RHS;
  2908. // If the lvalue is non-volatile, return the computed value of the assignment.
  2909. if (!LHS.isVolatileQualified())
  2910. return RHS;
  2911. // Otherwise, reload the value.
  2912. return EmitLoadOfLValue(LHS, E->getExprLoc());
  2913. }
  2914. Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
  2915. // Perform vector logical and on comparisons with zero vectors.
  2916. if (E->getType()->isVectorType()) {
  2917. CGF.incrementProfileCounter(E);
  2918. Value *LHS = Visit(E->getLHS());
  2919. Value *RHS = Visit(E->getRHS());
  2920. Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
  2921. if (LHS->getType()->isFPOrFPVectorTy()) {
  2922. LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
  2923. RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
  2924. } else {
  2925. LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
  2926. RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
  2927. }
  2928. Value *And = Builder.CreateAnd(LHS, RHS);
  2929. return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
  2930. }
  2931. llvm::Type *ResTy = ConvertType(E->getType());
  2932. // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
  2933. // If we have 1 && X, just emit X without inserting the control flow.
  2934. bool LHSCondVal;
  2935. if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
  2936. if (LHSCondVal) { // If we have 1 && X, just emit X.
  2937. CGF.incrementProfileCounter(E);
  2938. Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
  2939. // ZExt result to int or bool.
  2940. return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
  2941. }
  2942. // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
  2943. if (!CGF.ContainsLabel(E->getRHS())) {
  2944. // HLSL Change Begins.
  2945. if (CGF.getLangOpts().HLSL) {
  2946. // HLSL does not short circuit.
  2947. Visit(E->getRHS());
  2948. }
  2949. // HLSL Change Ends.
  2950. return llvm::Constant::getNullValue(ResTy);
  2951. }
  2952. }
  2953. // HLSL Change Begins.
  2954. if (CGF.getLangOpts().HLSL) {
  2955. // HLSL does not short circuit.
  2956. Value *LHS = Visit(E->getLHS());
  2957. Value *RHS = Visit(E->getRHS());
  2958. if (ResTy->isVectorTy()) {
  2959. Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
  2960. if (LHS->getType()->isFPOrFPVectorTy()) {
  2961. LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
  2962. RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
  2963. } else {
  2964. LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
  2965. RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
  2966. }
  2967. }
  2968. Value *And = Builder.CreateAnd(LHS, RHS);
  2969. return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
  2970. }
  2971. // HLSL Change Ends.
  2972. llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
  2973. llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
  2974. CodeGenFunction::ConditionalEvaluation eval(CGF);
  2975. // Branch on the LHS first. If it is false, go to the failure (cont) block.
  2976. CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
  2977. CGF.getProfileCount(E->getRHS()));
  2978. // Any edges into the ContBlock are now from an (indeterminate number of)
  2979. // edges from this first condition. All of these values will be false. Start
  2980. // setting up the PHI node in the Cont Block for this.
  2981. llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
  2982. "", ContBlock);
  2983. for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
  2984. PI != PE; ++PI)
  2985. PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
  2986. eval.begin(CGF);
  2987. CGF.EmitBlock(RHSBlock);
  2988. CGF.incrementProfileCounter(E);
  2989. Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
  2990. eval.end(CGF);
  2991. // Reaquire the RHS block, as there may be subblocks inserted.
  2992. RHSBlock = Builder.GetInsertBlock();
  2993. // Emit an unconditional branch from this block to ContBlock.
  2994. {
  2995. // There is no need to emit line number for unconditional branch.
  2996. auto NL = ApplyDebugLocation::CreateEmpty(CGF);
  2997. CGF.EmitBlock(ContBlock);
  2998. }
  2999. // Insert an entry into the phi node for the edge with the value of RHSCond.
  3000. PN->addIncoming(RHSCond, RHSBlock);
  3001. // ZExt result to int.
  3002. return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
  3003. }
  3004. Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
  3005. // Perform vector logical or on comparisons with zero vectors.
  3006. if (E->getType()->isVectorType()) {
  3007. CGF.incrementProfileCounter(E);
  3008. Value *LHS = Visit(E->getLHS());
  3009. Value *RHS = Visit(E->getRHS());
  3010. Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
  3011. if (LHS->getType()->isFPOrFPVectorTy()) {
  3012. LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
  3013. RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
  3014. } else {
  3015. LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
  3016. RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
  3017. }
  3018. Value *Or = Builder.CreateOr(LHS, RHS);
  3019. return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
  3020. }
  3021. llvm::Type *ResTy = ConvertType(E->getType());
  3022. // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
  3023. // If we have 0 || X, just emit X without inserting the control flow.
  3024. bool LHSCondVal;
  3025. if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
  3026. if (!LHSCondVal) { // If we have 0 || X, just emit X.
  3027. CGF.incrementProfileCounter(E);
  3028. Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
  3029. // ZExt result to int or bool.
  3030. return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
  3031. }
  3032. // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
  3033. if (!CGF.ContainsLabel(E->getRHS())) {
  3034. // HLSL Change Begins.
  3035. if (CGF.getLangOpts().HLSL) {
  3036. // HLSL does not short circuit.
  3037. Visit(E->getRHS());
  3038. }
  3039. // HLSL Change Ends.
  3040. return llvm::ConstantInt::get(ResTy, 1);
  3041. }
  3042. }
  3043. // HLSL Change Begins.
  3044. if (CGF.getLangOpts().HLSL) {
  3045. // HLSL does not short circuit.
  3046. Value *LHS = Visit(E->getLHS());
  3047. Value *RHS = Visit(E->getRHS());
  3048. if (ResTy->isVectorTy()) {
  3049. Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
  3050. if (LHS->getType()->isFPOrFPVectorTy()) {
  3051. LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
  3052. RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
  3053. } else {
  3054. LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
  3055. RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
  3056. }
  3057. }
  3058. Value *Or = Builder.CreateOr(LHS, RHS);
  3059. return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
  3060. }
  3061. // HLSL Change Ends.
  3062. llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
  3063. llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
  3064. CodeGenFunction::ConditionalEvaluation eval(CGF);
  3065. // Branch on the LHS first. If it is true, go to the success (cont) block.
  3066. CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
  3067. CGF.getCurrentProfileCount() -
  3068. CGF.getProfileCount(E->getRHS()));
  3069. // Any edges into the ContBlock are now from an (indeterminate number of)
  3070. // edges from this first condition. All of these values will be true. Start
  3071. // setting up the PHI node in the Cont Block for this.
  3072. llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
  3073. "", ContBlock);
  3074. for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
  3075. PI != PE; ++PI)
  3076. PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
  3077. eval.begin(CGF);
  3078. // Emit the RHS condition as a bool value.
  3079. CGF.EmitBlock(RHSBlock);
  3080. CGF.incrementProfileCounter(E);
  3081. Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
  3082. eval.end(CGF);
  3083. // Reaquire the RHS block, as there may be subblocks inserted.
  3084. RHSBlock = Builder.GetInsertBlock();
  3085. // Emit an unconditional branch from this block to ContBlock. Insert an entry
  3086. // into the phi node for the edge with the value of RHSCond.
  3087. CGF.EmitBlock(ContBlock);
  3088. PN->addIncoming(RHSCond, RHSBlock);
  3089. // ZExt result to int.
  3090. return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
  3091. }
  3092. Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
  3093. CGF.EmitIgnoredExpr(E->getLHS());
  3094. CGF.EnsureInsertPoint();
  3095. return Visit(E->getRHS());
  3096. }
  3097. //===----------------------------------------------------------------------===//
  3098. // Other Operators
  3099. //===----------------------------------------------------------------------===//
  3100. /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
  3101. /// expression is cheap enough and side-effect-free enough to evaluate
  3102. /// unconditionally instead of conditionally. This is used to convert control
  3103. /// flow into selects in some cases.
  3104. static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
  3105. CodeGenFunction &CGF) {
  3106. // Anything that is an integer or floating point constant is fine.
  3107. return E->IgnoreParens()->isEvaluatable(CGF.getContext());
  3108. // Even non-volatile automatic variables can't be evaluated unconditionally.
  3109. // Referencing a thread_local may cause non-trivial initialization work to
  3110. // occur. If we're inside a lambda and one of the variables is from the scope
  3111. // outside the lambda, that function may have returned already. Reading its
  3112. // locals is a bad idea. Also, these reads may introduce races there didn't
  3113. // exist in the source-level program.
  3114. }
  3115. Value *ScalarExprEmitter::
  3116. VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
  3117. TestAndClearIgnoreResultAssign();
  3118. // Bind the common expression if necessary.
  3119. CodeGenFunction::OpaqueValueMapping binding(CGF, E);
  3120. Expr *condExpr = E->getCond();
  3121. Expr *lhsExpr = E->getTrueExpr();
  3122. Expr *rhsExpr = E->getFalseExpr();
  3123. // If the condition constant folds and can be elided, try to avoid emitting
  3124. // the condition and the dead arm.
  3125. bool CondExprBool;
  3126. if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
  3127. Expr *live = lhsExpr, *dead = rhsExpr;
  3128. if (!CondExprBool) std::swap(live, dead);
  3129. // If the dead side doesn't have labels we need, just emit the Live part.
  3130. if (!CGF.ContainsLabel(dead)) {
  3131. if (CondExprBool)
  3132. CGF.incrementProfileCounter(E);
  3133. Value *Result = Visit(live);
  3134. // If the live part is a throw expression, it acts like it has a void
  3135. // type, so evaluating it returns a null Value*. However, a conditional
  3136. // with non-void type must return a non-null Value*.
  3137. if (!Result && !E->getType()->isVoidType())
  3138. Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
  3139. return Result;
  3140. }
  3141. }
  3142. // OpenCL: If the condition is a vector, we can treat this condition like
  3143. // the select function.
  3144. if (CGF.getLangOpts().OpenCL
  3145. && condExpr->getType()->isVectorType()) {
  3146. CGF.incrementProfileCounter(E);
  3147. llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
  3148. llvm::Value *LHS = Visit(lhsExpr);
  3149. llvm::Value *RHS = Visit(rhsExpr);
  3150. llvm::Type *condType = ConvertType(condExpr->getType());
  3151. llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
  3152. unsigned numElem = vecTy->getNumElements();
  3153. llvm::Type *elemType = vecTy->getElementType();
  3154. llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
  3155. llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
  3156. llvm::Value *tmp = Builder.CreateSExt(TestMSB,
  3157. llvm::VectorType::get(elemType,
  3158. numElem),
  3159. "sext");
  3160. llvm::Value *tmp2 = Builder.CreateNot(tmp);
  3161. // Cast float to int to perform ANDs if necessary.
  3162. llvm::Value *RHSTmp = RHS;
  3163. llvm::Value *LHSTmp = LHS;
  3164. bool wasCast = false;
  3165. llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
  3166. if (rhsVTy->getElementType()->isFloatingPointTy()) {
  3167. RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
  3168. LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
  3169. wasCast = true;
  3170. }
  3171. llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
  3172. llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
  3173. llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
  3174. if (wasCast)
  3175. tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
  3176. return tmp5;
  3177. }
  3178. // HLSL Change Starts
  3179. if (CGF.getLangOpts().HLSL && hlsl::IsHLSLVecType(E->getType())) {
  3180. llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
  3181. llvm::Value *LHS = Visit(lhsExpr);
  3182. llvm::Value *RHS = Visit(rhsExpr);
  3183. if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(CondV->getType())) {
  3184. llvm::VectorType *ResultVT = cast<llvm::VectorType>(LHS->getType());
  3185. llvm::Value *result = llvm::UndefValue::get(ResultVT);
  3186. for (unsigned i = 0; i < VT->getNumElements(); i++) {
  3187. llvm::Value *EltCond = Builder.CreateExtractElement(CondV, i);
  3188. llvm::Value *EltL = Builder.CreateExtractElement(LHS, i);
  3189. llvm::Value *EltR = Builder.CreateExtractElement(RHS, i);
  3190. llvm::Value *EltSelect = Builder.CreateSelect(EltCond, EltL, EltR);
  3191. result = Builder.CreateInsertElement(result, EltSelect, i);
  3192. }
  3193. return result;
  3194. } else {
  3195. return Builder.CreateSelect(CondV, LHS, RHS);
  3196. }
  3197. }
  3198. if (CGF.getLangOpts().HLSL && hlsl::IsHLSLMatType(E->getType())) {
  3199. llvm::Value *Cond = CGF.EmitScalarExpr(condExpr);
  3200. llvm::Value *LHS = Visit(lhsExpr);
  3201. llvm::Value *RHS = Visit(rhsExpr);
  3202. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
  3203. CGF, E, LHS->getType(), {Cond, LHS, RHS});
  3204. }
  3205. // HLSL Change Ends
  3206. // If this is a really simple expression (like x ? 4 : 5), emit this as a
  3207. // select instead of as control flow. We can only do this if it is cheap and
  3208. // safe to evaluate the LHS and RHS unconditionally.
  3209. if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
  3210. isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
  3211. CGF.incrementProfileCounter(E);
  3212. llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
  3213. llvm::Value *LHS = Visit(lhsExpr);
  3214. llvm::Value *RHS = Visit(rhsExpr);
  3215. if (!LHS) {
  3216. // If the conditional has void type, make sure we return a null Value*.
  3217. assert(!RHS && "LHS and RHS types must match");
  3218. return nullptr;
  3219. }
  3220. return Builder.CreateSelect(CondV, LHS, RHS, "cond");
  3221. }
  3222. llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
  3223. llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
  3224. llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
  3225. CodeGenFunction::ConditionalEvaluation eval(CGF);
  3226. CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
  3227. CGF.getProfileCount(lhsExpr));
  3228. CGF.EmitBlock(LHSBlock);
  3229. CGF.incrementProfileCounter(E);
  3230. eval.begin(CGF);
  3231. Value *LHS = Visit(lhsExpr);
  3232. eval.end(CGF);
  3233. LHSBlock = Builder.GetInsertBlock();
  3234. Builder.CreateBr(ContBlock);
  3235. CGF.EmitBlock(RHSBlock);
  3236. eval.begin(CGF);
  3237. Value *RHS = Visit(rhsExpr);
  3238. eval.end(CGF);
  3239. RHSBlock = Builder.GetInsertBlock();
  3240. CGF.EmitBlock(ContBlock);
  3241. // If the LHS or RHS is a throw expression, it will be legitimately null.
  3242. if (!LHS)
  3243. return RHS;
  3244. if (!RHS)
  3245. return LHS;
  3246. // Create a PHI node for the real part.
  3247. llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
  3248. PN->addIncoming(LHS, LHSBlock);
  3249. PN->addIncoming(RHS, RHSBlock);
  3250. return PN;
  3251. }
  3252. Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
  3253. return Visit(E->getChosenSubExpr());
  3254. }
  3255. Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
  3256. QualType Ty = VE->getType();
  3257. if (Ty->isVariablyModifiedType())
  3258. CGF.EmitVariablyModifiedType(Ty);
  3259. llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
  3260. llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
  3261. llvm::Type *ArgTy = ConvertType(VE->getType());
  3262. // If EmitVAArg fails, we fall back to the LLVM instruction.
  3263. if (!ArgPtr)
  3264. return Builder.CreateVAArg(ArgValue, ArgTy);
  3265. // FIXME Volatility.
  3266. llvm::Value *Val = Builder.CreateLoad(ArgPtr);
  3267. // If EmitVAArg promoted the type, we must truncate it.
  3268. if (ArgTy != Val->getType()) {
  3269. if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
  3270. Val = Builder.CreateIntToPtr(Val, ArgTy);
  3271. else
  3272. Val = Builder.CreateTrunc(Val, ArgTy);
  3273. }
  3274. return Val;
  3275. }
  3276. Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
  3277. return CGF.EmitBlockLiteral(block);
  3278. }
  3279. Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
  3280. Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
  3281. llvm::Type *DstTy = ConvertType(E->getType());
  3282. // Going from vec4->vec3 or vec3->vec4 is a special case and requires
  3283. // a shuffle vector instead of a bitcast.
  3284. llvm::Type *SrcTy = Src->getType();
  3285. if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
  3286. unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
  3287. unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
  3288. if ((numElementsDst == 3 && numElementsSrc == 4)
  3289. || (numElementsDst == 4 && numElementsSrc == 3)) {
  3290. // In the case of going from int4->float3, a bitcast is needed before
  3291. // doing a shuffle.
  3292. llvm::Type *srcElemTy =
  3293. cast<llvm::VectorType>(SrcTy)->getElementType();
  3294. llvm::Type *dstElemTy =
  3295. cast<llvm::VectorType>(DstTy)->getElementType();
  3296. if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
  3297. || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
  3298. // Create a float type of the same size as the source or destination.
  3299. llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
  3300. numElementsSrc);
  3301. Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
  3302. }
  3303. llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
  3304. SmallVector<llvm::Constant*, 3> Args;
  3305. Args.push_back(Builder.getInt32(0));
  3306. Args.push_back(Builder.getInt32(1));
  3307. Args.push_back(Builder.getInt32(2));
  3308. if (numElementsDst == 4)
  3309. Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
  3310. llvm::Constant *Mask = llvm::ConstantVector::get(Args);
  3311. return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
  3312. }
  3313. }
  3314. return Builder.CreateBitCast(Src, DstTy, "astype");
  3315. }
  3316. Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
  3317. return CGF.EmitAtomicExpr(E).getScalarVal();
  3318. }
  3319. //===----------------------------------------------------------------------===//
  3320. // Entry Point into this File
  3321. //===----------------------------------------------------------------------===//
  3322. /// EmitScalarExpr - Emit the computation of the specified expression of scalar
  3323. /// type, ignoring the result.
  3324. Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
  3325. assert(E && hasScalarEvaluationKind(E->getType()) &&
  3326. "Invalid scalar expression to emit");
  3327. return ScalarExprEmitter(*this, IgnoreResultAssign)
  3328. .Visit(const_cast<Expr *>(E));
  3329. }
  3330. /// EmitScalarConversion - Emit a conversion from the specified type to the
  3331. /// specified destination type, both of which are LLVM scalar types.
  3332. Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
  3333. QualType DstTy) {
  3334. assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
  3335. "Invalid scalar expression to emit");
  3336. return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
  3337. }
  3338. /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
  3339. /// type to the specified destination type, where the destination type is an
  3340. /// LLVM scalar type.
  3341. Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
  3342. QualType SrcTy,
  3343. QualType DstTy) {
  3344. assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
  3345. "Invalid complex -> scalar conversion");
  3346. return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
  3347. DstTy);
  3348. }
  3349. llvm::Value *CodeGenFunction::
  3350. EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
  3351. bool isInc, bool isPre) {
  3352. return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
  3353. }
  3354. LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
  3355. llvm::Value *V;
  3356. // object->isa or (*object).isa
  3357. // Generate code as for: *(Class*)object
  3358. // build Class* type
  3359. llvm::Type *ClassPtrTy = ConvertType(E->getType());
  3360. Expr *BaseExpr = E->getBase();
  3361. if (BaseExpr->isRValue()) {
  3362. V = CreateMemTemp(E->getType(), "resval");
  3363. llvm::Value *Src = EmitScalarExpr(BaseExpr);
  3364. Builder.CreateStore(Src, V);
  3365. V = ScalarExprEmitter(*this).EmitLoadOfLValue(
  3366. MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
  3367. } else {
  3368. if (E->isArrow())
  3369. V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
  3370. else
  3371. V = EmitLValue(BaseExpr).getAddress();
  3372. }
  3373. // build Class* type
  3374. ClassPtrTy = ClassPtrTy->getPointerTo();
  3375. V = Builder.CreateBitCast(V, ClassPtrTy);
  3376. return MakeNaturalAlignAddrLValue(V, E->getType());
  3377. }
  3378. LValue CodeGenFunction::EmitCompoundAssignmentLValue(
  3379. const CompoundAssignOperator *E) {
  3380. ScalarExprEmitter Scalar(*this);
  3381. Value *Result = nullptr;
  3382. switch (E->getOpcode()) {
  3383. #define COMPOUND_OP(Op) \
  3384. case BO_##Op##Assign: \
  3385. return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
  3386. Result)
  3387. COMPOUND_OP(Mul);
  3388. COMPOUND_OP(Div);
  3389. COMPOUND_OP(Rem);
  3390. COMPOUND_OP(Add);
  3391. COMPOUND_OP(Sub);
  3392. COMPOUND_OP(Shl);
  3393. COMPOUND_OP(Shr);
  3394. COMPOUND_OP(And);
  3395. COMPOUND_OP(Xor);
  3396. COMPOUND_OP(Or);
  3397. #undef COMPOUND_OP
  3398. case BO_PtrMemD:
  3399. case BO_PtrMemI:
  3400. case BO_Mul:
  3401. case BO_Div:
  3402. case BO_Rem:
  3403. case BO_Add:
  3404. case BO_Sub:
  3405. case BO_Shl:
  3406. case BO_Shr:
  3407. case BO_LT:
  3408. case BO_GT:
  3409. case BO_LE:
  3410. case BO_GE:
  3411. case BO_EQ:
  3412. case BO_NE:
  3413. case BO_And:
  3414. case BO_Xor:
  3415. case BO_Or:
  3416. case BO_LAnd:
  3417. case BO_LOr:
  3418. case BO_Assign:
  3419. case BO_Comma:
  3420. llvm_unreachable("Not valid compound assignment operators");
  3421. }
  3422. llvm_unreachable("Unhandled compound assignment operator");
  3423. }