| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552 |
- //===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines layout properties related to datatype size/offset/alignment
- // information. It uses lazy annotations to cache information about how
- // structure types are laid out and used.
- //
- // This structure should be created once, filled in if the defaults are not
- // correct and then passed around by const&. None of the members functions
- // require modification to the object.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_IR_DATALAYOUT_H
- #define LLVM_IR_DATALAYOUT_H
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Type.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/DataTypes.h"
- // This needs to be outside of the namespace, to avoid conflict with llvm-c
- // decl.
- typedef struct LLVMOpaqueTargetData *LLVMTargetDataRef;
- namespace llvm {
- class Value;
- class Type;
- class IntegerType;
- class StructType;
- class StructLayout;
- class Triple;
- class GlobalVariable;
- class LLVMContext;
- template<typename T>
- class ArrayRef;
- /// Enum used to categorize the alignment types stored by LayoutAlignElem
- enum AlignTypeEnum {
- INVALID_ALIGN = 0,
- INTEGER_ALIGN = 'i',
- VECTOR_ALIGN = 'v',
- FLOAT_ALIGN = 'f',
- AGGREGATE_ALIGN = 'a'
- };
- // FIXME: Currently the DataLayout string carries a "preferred alignment"
- // for types. As the DataLayout is module/global, this should likely be
- // sunk down to an FTTI element that is queried rather than a global
- // preference.
- /// \brief Layout alignment element.
- ///
- /// Stores the alignment data associated with a given alignment type (integer,
- /// vector, float) and type bit width.
- ///
- /// \note The unusual order of elements in the structure attempts to reduce
- /// padding and make the structure slightly more cache friendly.
- struct LayoutAlignElem {
- /// \brief Alignment type from \c AlignTypeEnum
- unsigned AlignType : 8;
- unsigned TypeBitWidth : 24;
- unsigned ABIAlign : 16;
- unsigned PrefAlign : 16;
- static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
- unsigned pref_align, uint32_t bit_width);
- bool operator==(const LayoutAlignElem &rhs) const;
- };
- /// \brief Layout pointer alignment element.
- ///
- /// Stores the alignment data associated with a given pointer and address space.
- ///
- /// \note The unusual order of elements in the structure attempts to reduce
- /// padding and make the structure slightly more cache friendly.
- struct PointerAlignElem {
- unsigned ABIAlign;
- unsigned PrefAlign;
- uint32_t TypeByteWidth;
- uint32_t AddressSpace;
- /// Initializer
- static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
- unsigned PrefAlign, uint32_t TypeByteWidth);
- bool operator==(const PointerAlignElem &rhs) const;
- };
- /// \brief A parsed version of the target data layout string in and methods for
- /// querying it.
- ///
- /// The target data layout string is specified *by the target* - a frontend
- /// generating LLVM IR is required to generate the right target data for the
- /// target being codegen'd to.
- class DataLayout {
- private:
- /// Defaults to false.
- bool BigEndian;
- unsigned StackNaturalAlign;
- enum ManglingModeT {
- MM_None,
- MM_ELF,
- MM_MachO,
- MM_WinCOFF,
- MM_WinCOFFX86,
- MM_Mips
- };
- ManglingModeT ManglingMode;
- SmallVector<unsigned char, 8> LegalIntWidths;
- /// \brief Primitive type alignment data.
- SmallVector<LayoutAlignElem, 16> Alignments;
- /// \brief The string representation used to create this DataLayout
- std::string StringRepresentation;
- typedef SmallVector<PointerAlignElem, 8> PointersTy;
- PointersTy Pointers;
- PointersTy::const_iterator
- findPointerLowerBound(uint32_t AddressSpace) const {
- return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
- }
- PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
- /// This member is a signal that a requested alignment type and bit width were
- /// not found in the SmallVector.
- static const LayoutAlignElem InvalidAlignmentElem;
- /// This member is a signal that a requested pointer type and bit width were
- /// not found in the DenseSet.
- static const PointerAlignElem InvalidPointerElem;
- // The StructType -> StructLayout map.
- mutable void *LayoutMap;
- void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
- unsigned pref_align, uint32_t bit_width);
- unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
- bool ABIAlign, Type *Ty) const;
- void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
- unsigned PrefAlign, uint32_t TypeByteWidth);
- /// Internal helper method that returns requested alignment for type.
- unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
- /// \brief Valid alignment predicate.
- ///
- /// Predicate that tests a LayoutAlignElem reference returned by get() against
- /// InvalidAlignmentElem.
- bool validAlignment(const LayoutAlignElem &align) const {
- return &align != &InvalidAlignmentElem;
- }
- /// \brief Valid pointer predicate.
- ///
- /// Predicate that tests a PointerAlignElem reference returned by get()
- /// against \c InvalidPointerElem.
- bool validPointer(const PointerAlignElem &align) const {
- return &align != &InvalidPointerElem;
- }
- /// Parses a target data specification string. Assert if the string is
- /// malformed.
- void parseSpecifier(StringRef LayoutDescription);
- // Free all internal data structures.
- void clear();
- public:
- /// Constructs a DataLayout from a specification string. See reset().
- explicit DataLayout(StringRef LayoutDescription) : LayoutMap(nullptr) {
- reset(LayoutDescription);
- }
- /// Initialize target data from properties stored in the module.
- explicit DataLayout(const Module *M);
- void init(const Module *M);
- DataLayout(const DataLayout &DL) : LayoutMap(nullptr) { *this = DL; }
- DataLayout &operator=(const DataLayout &DL) {
- clear();
- StringRepresentation = DL.StringRepresentation;
- BigEndian = DL.isBigEndian();
- StackNaturalAlign = DL.StackNaturalAlign;
- ManglingMode = DL.ManglingMode;
- LegalIntWidths = DL.LegalIntWidths;
- Alignments = DL.Alignments;
- Pointers = DL.Pointers;
- return *this;
- }
- bool operator==(const DataLayout &Other) const;
- bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
- ~DataLayout(); // Not virtual, do not subclass this class
- /// Parse a data layout string (with fallback to default values).
- void reset(StringRef LayoutDescription);
- /// Layout endianness...
- bool isLittleEndian() const { return !BigEndian; }
- bool isBigEndian() const { return BigEndian; }
- /// \brief Returns the string representation of the DataLayout.
- ///
- /// This representation is in the same format accepted by the string
- /// constructor above. This should not be used to compare two DataLayout as
- /// different string can represent the same layout.
- const std::string &getStringRepresentation() const {
- return StringRepresentation;
- }
- /// \brief Test if the DataLayout was constructed from an empty string.
- bool isDefault() const { return StringRepresentation.empty(); }
- /// \brief Returns true if the specified type is known to be a native integer
- /// type supported by the CPU.
- ///
- /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
- /// on any known one. This returns false if the integer width is not legal.
- ///
- /// The width is specified in bits.
- bool isLegalInteger(unsigned Width) const {
- for (unsigned LegalIntWidth : LegalIntWidths)
- if (LegalIntWidth == Width)
- return true;
- return false;
- }
- bool isIllegalInteger(unsigned Width) const { return !isLegalInteger(Width); }
- /// Returns true if the given alignment exceeds the natural stack alignment.
- bool exceedsNaturalStackAlignment(unsigned Align) const {
- return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
- }
- unsigned getStackAlignment() const { return StackNaturalAlign; }
- bool hasMicrosoftFastStdCallMangling() const {
- return ManglingMode == MM_WinCOFFX86;
- }
- bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
- const char *getLinkerPrivateGlobalPrefix() const {
- if (ManglingMode == MM_MachO)
- return "l";
- return "";
- }
- char getGlobalPrefix() const {
- switch (ManglingMode) {
- case MM_None:
- case MM_ELF:
- case MM_Mips:
- case MM_WinCOFF:
- return '\0';
- case MM_MachO:
- case MM_WinCOFFX86:
- return '_';
- }
- llvm_unreachable("invalid mangling mode");
- }
- const char *getPrivateGlobalPrefix() const {
- switch (ManglingMode) {
- case MM_None:
- return "";
- case MM_ELF:
- return ".L";
- case MM_Mips:
- return "$";
- case MM_MachO:
- case MM_WinCOFF:
- case MM_WinCOFFX86:
- return "L";
- }
- llvm_unreachable("invalid mangling mode");
- }
- static const char *getManglingComponent(const Triple &T);
- /// \brief Returns true if the specified type fits in a native integer type
- /// supported by the CPU.
- ///
- /// For example, if the CPU only supports i32 as a native integer type, then
- /// i27 fits in a legal integer type but i45 does not.
- bool fitsInLegalInteger(unsigned Width) const {
- for (unsigned LegalIntWidth : LegalIntWidths)
- if (Width <= LegalIntWidth)
- return true;
- return false;
- }
- /// Layout pointer alignment
- /// FIXME: The defaults need to be removed once all of
- /// the backends/clients are updated.
- unsigned getPointerABIAlignment(unsigned AS = 0) const;
- /// Return target's alignment for stack-based pointers
- /// FIXME: The defaults need to be removed once all of
- /// the backends/clients are updated.
- unsigned getPointerPrefAlignment(unsigned AS = 0) const;
- /// Layout pointer size
- /// FIXME: The defaults need to be removed once all of
- /// the backends/clients are updated.
- unsigned getPointerSize(unsigned AS = 0) const;
- /// Layout pointer size, in bits
- /// FIXME: The defaults need to be removed once all of
- /// the backends/clients are updated.
- unsigned getPointerSizeInBits(unsigned AS = 0) const {
- return getPointerSize(AS) * 8;
- }
- /// Layout pointer size, in bits, based on the type. If this function is
- /// called with a pointer type, then the type size of the pointer is returned.
- /// If this function is called with a vector of pointers, then the type size
- /// of the pointer is returned. This should only be called with a pointer or
- /// vector of pointers.
- unsigned getPointerTypeSizeInBits(Type *) const;
- unsigned getPointerTypeSize(Type *Ty) const {
- return getPointerTypeSizeInBits(Ty) / 8;
- }
- /// Size examples:
- ///
- /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
- /// ---- ---------- --------------- ---------------
- /// i1 1 8 8
- /// i8 8 8 8
- /// i19 19 24 32
- /// i32 32 32 32
- /// i100 100 104 128
- /// i128 128 128 128
- /// Float 32 32 32
- /// Double 64 64 64
- /// X86_FP80 80 80 96
- ///
- /// [*] The alloc size depends on the alignment, and thus on the target.
- /// These values are for x86-32 linux.
- /// \brief Returns the number of bits necessary to hold the specified type.
- ///
- /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
- /// have a size (Type::isSized() must return true).
- uint64_t getTypeSizeInBits(Type *Ty) const;
- /// \brief Returns the maximum number of bytes that may be overwritten by
- /// storing the specified type.
- ///
- /// For example, returns 5 for i36 and 10 for x86_fp80.
- uint64_t getTypeStoreSize(Type *Ty) const {
- return (getTypeSizeInBits(Ty) + 7) / 8;
- }
- /// \brief Returns the maximum number of bits that may be overwritten by
- /// storing the specified type; always a multiple of 8.
- ///
- /// For example, returns 40 for i36 and 80 for x86_fp80.
- uint64_t getTypeStoreSizeInBits(Type *Ty) const {
- return 8 * getTypeStoreSize(Ty);
- }
- /// \brief Returns the offset in bytes between successive objects of the
- /// specified type, including alignment padding.
- ///
- /// This is the amount that alloca reserves for this type. For example,
- /// returns 12 or 16 for x86_fp80, depending on alignment.
- uint64_t getTypeAllocSize(Type *Ty) const {
- // Round up to the next alignment boundary.
- return RoundUpToAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
- }
- /// \brief Returns the offset in bits between successive objects of the
- /// specified type, including alignment padding; always a multiple of 8.
- ///
- /// This is the amount that alloca reserves for this type. For example,
- /// returns 96 or 128 for x86_fp80, depending on alignment.
- uint64_t getTypeAllocSizeInBits(Type *Ty) const {
- return 8 * getTypeAllocSize(Ty);
- }
- /// \brief Returns the minimum ABI-required alignment for the specified type.
- unsigned getABITypeAlignment(Type *Ty) const;
- /// \brief Returns the minimum ABI-required alignment for an integer type of
- /// the specified bitwidth.
- unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
- /// \brief Returns the preferred stack/global alignment for the specified
- /// type.
- ///
- /// This is always at least as good as the ABI alignment.
- unsigned getPrefTypeAlignment(Type *Ty) const;
- /// \brief Returns the preferred alignment for the specified type, returned as
- /// log2 of the value (a shift amount).
- unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
- /// \brief Returns an integer type with size at least as big as that of a
- /// pointer in the given address space.
- IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
- /// \brief Returns an integer (vector of integer) type with size at least as
- /// big as that of a pointer of the given pointer (vector of pointer) type.
- Type *getIntPtrType(Type *) const;
- /// \brief Returns the smallest integer type with size at least as big as
- /// Width bits.
- Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
- /// \brief Returns the largest legal integer type, or null if none are set.
- Type *getLargestLegalIntType(LLVMContext &C) const {
- unsigned LargestSize = getLargestLegalIntTypeSize();
- return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
- }
- /// \brief Returns the size of largest legal integer type size, or 0 if none
- /// are set.
- unsigned getLargestLegalIntTypeSize() const;
- /// \brief Returns the offset from the beginning of the type for the specified
- /// indices.
- ///
- /// This is used to implement getelementptr.
- uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
- /// \brief Returns a StructLayout object, indicating the alignment of the
- /// struct, its size, and the offsets of its fields.
- ///
- /// Note that this information is lazily cached.
- const StructLayout *getStructLayout(StructType *Ty) const;
- /// \brief Returns the preferred alignment of the specified global.
- ///
- /// This includes an explicitly requested alignment (if the global has one).
- unsigned getPreferredAlignment(const GlobalVariable *GV) const;
- /// \brief Returns the preferred alignment of the specified global, returned
- /// in log form.
- ///
- /// This includes an explicitly requested alignment (if the global has one).
- unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
- };
- inline DataLayout *unwrap(LLVMTargetDataRef P) {
- return reinterpret_cast<DataLayout *>(P);
- }
- inline LLVMTargetDataRef wrap(const DataLayout *P) {
- return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
- }
- /// Used to lazily calculate structure layout information for a target machine,
- /// based on the DataLayout structure.
- class StructLayout {
- uint64_t StructSize;
- unsigned StructAlignment;
- unsigned NumElements;
- uint64_t MemberOffsets[1]; // variable sized array!
- public:
- uint64_t getSizeInBytes() const { return StructSize; }
- uint64_t getSizeInBits() const { return 8 * StructSize; }
- unsigned getAlignment() const { return StructAlignment; }
- /// \brief Given a valid byte offset into the structure, returns the structure
- /// index that contains it.
- unsigned getElementContainingOffset(uint64_t Offset) const;
- uint64_t getElementOffset(unsigned Idx) const {
- assert(Idx < NumElements && "Invalid element idx!");
- return MemberOffsets[Idx];
- }
- uint64_t getElementOffsetInBits(unsigned Idx) const {
- return getElementOffset(Idx) * 8;
- }
- private:
- friend class DataLayout; // Only DataLayout can create this class
- StructLayout(StructType *ST, const DataLayout &DL);
- };
- // The implementation of this method is provided inline as it is particularly
- // well suited to constant folding when called on a specific Type subclass.
- inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
- assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
- switch (Ty->getTypeID()) {
- case Type::LabelTyID:
- return getPointerSizeInBits(0);
- case Type::PointerTyID:
- return getPointerSizeInBits(Ty->getPointerAddressSpace());
- case Type::ArrayTyID: {
- ArrayType *ATy = cast<ArrayType>(Ty);
- return ATy->getNumElements() *
- getTypeAllocSizeInBits(ATy->getElementType());
- }
- case Type::StructTyID:
- // Get the layout annotation... which is lazily created on demand.
- return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
- case Type::IntegerTyID:
- return Ty->getIntegerBitWidth();
- case Type::HalfTyID:
- return 16;
- case Type::FloatTyID:
- return 32;
- case Type::DoubleTyID:
- case Type::X86_MMXTyID:
- return 64;
- case Type::PPC_FP128TyID:
- case Type::FP128TyID:
- return 128;
- // In memory objects this is always aligned to a higher boundary, but
- // only 80 bits contain information.
- case Type::X86_FP80TyID:
- return 80;
- case Type::VectorTyID: {
- VectorType *VTy = cast<VectorType>(Ty);
- // HLSL Change Begins.
- // HLSL vector use aligned size.
- return VTy->getNumElements() * getTypeAllocSizeInBits(VTy->getElementType());
- // HLSL Change Ends.
- }
- default:
- llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
- }
- }
- } // End llvm namespace
- #endif
|