DxilContainerAssembler.cpp 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515
  1. ///////////////////////////////////////////////////////////////////////////////
  2. // //
  3. // DxilContainerAssembler.cpp //
  4. // Copyright (C) Microsoft Corporation. All rights reserved. //
  5. // This file is distributed under the University of Illinois Open Source //
  6. // License. See LICENSE.TXT for details. //
  7. // //
  8. // Provides support for serializing a module into DXIL container structures. //
  9. // //
  10. ///////////////////////////////////////////////////////////////////////////////
  11. #include "llvm/ADT/MapVector.h"
  12. #include "llvm/ADT/SetVector.h"
  13. #include "llvm/IR/Module.h"
  14. #include "llvm/IR/DebugInfo.h"
  15. #include "llvm/Bitcode/ReaderWriter.h"
  16. #include "llvm/Support/MD5.h"
  17. #include "dxc/HLSL/DxilContainer.h"
  18. #include "dxc/HLSL/DxilModule.h"
  19. #include "dxc/HLSL/DxilShaderModel.h"
  20. #include "dxc/HLSL/DxilRootSignature.h"
  21. #include "dxc/HLSL/DxilUtil.h"
  22. #include "dxc/HLSL/DxilFunctionProps.h"
  23. #include "dxc/HLSL/DxilOperations.h"
  24. #include "dxc/Support/Global.h"
  25. #include "dxc/Support/Unicode.h"
  26. #include "dxc/Support/WinIncludes.h"
  27. #include "dxc/Support/FileIOHelper.h"
  28. #include "dxc/Support/dxcapi.impl.h"
  29. #include "dxc/HLSL/DxilPipelineStateValidation.h"
  30. #include "dxc/HLSL/DxilRuntimeReflection.h"
  31. #include <algorithm>
  32. #include <functional>
  33. using namespace llvm;
  34. using namespace hlsl;
  35. using namespace hlsl::RDAT;
  36. static DxilProgramSigSemantic KindToSystemValue(Semantic::Kind kind, DXIL::TessellatorDomain domain) {
  37. switch (kind) {
  38. case Semantic::Kind::Arbitrary: return DxilProgramSigSemantic::Undefined;
  39. case Semantic::Kind::VertexID: return DxilProgramSigSemantic::VertexID;
  40. case Semantic::Kind::InstanceID: return DxilProgramSigSemantic::InstanceID;
  41. case Semantic::Kind::Position: return DxilProgramSigSemantic::Position;
  42. case Semantic::Kind::Coverage: return DxilProgramSigSemantic::Coverage;
  43. case Semantic::Kind::InnerCoverage: return DxilProgramSigSemantic::InnerCoverage;
  44. case Semantic::Kind::PrimitiveID: return DxilProgramSigSemantic::PrimitiveID;
  45. case Semantic::Kind::SampleIndex: return DxilProgramSigSemantic::SampleIndex;
  46. case Semantic::Kind::IsFrontFace: return DxilProgramSigSemantic::IsFrontFace;
  47. case Semantic::Kind::RenderTargetArrayIndex: return DxilProgramSigSemantic::RenderTargetArrayIndex;
  48. case Semantic::Kind::ViewPortArrayIndex: return DxilProgramSigSemantic::ViewPortArrayIndex;
  49. case Semantic::Kind::ClipDistance: return DxilProgramSigSemantic::ClipDistance;
  50. case Semantic::Kind::CullDistance: return DxilProgramSigSemantic::CullDistance;
  51. case Semantic::Kind::Barycentrics: return DxilProgramSigSemantic::Barycentrics;
  52. case Semantic::Kind::TessFactor: {
  53. switch (domain) {
  54. case DXIL::TessellatorDomain::IsoLine:
  55. // Will bu updated to DetailTessFactor in next row.
  56. return DxilProgramSigSemantic::FinalLineDensityTessfactor;
  57. case DXIL::TessellatorDomain::Tri:
  58. return DxilProgramSigSemantic::FinalTriEdgeTessfactor;
  59. case DXIL::TessellatorDomain::Quad:
  60. return DxilProgramSigSemantic::FinalQuadEdgeTessfactor;
  61. default:
  62. // No other valid TesselatorDomain options.
  63. return DxilProgramSigSemantic::Undefined;
  64. }
  65. }
  66. case Semantic::Kind::InsideTessFactor: {
  67. switch (domain) {
  68. case DXIL::TessellatorDomain::IsoLine:
  69. DXASSERT(0, "invalid semantic");
  70. return DxilProgramSigSemantic::Undefined;
  71. case DXIL::TessellatorDomain::Tri:
  72. return DxilProgramSigSemantic::FinalTriInsideTessfactor;
  73. case DXIL::TessellatorDomain::Quad:
  74. return DxilProgramSigSemantic::FinalQuadInsideTessfactor;
  75. default:
  76. // No other valid DxilProgramSigSemantic options.
  77. return DxilProgramSigSemantic::Undefined;
  78. }
  79. }
  80. case Semantic::Kind::Invalid:
  81. return DxilProgramSigSemantic::Undefined;
  82. case Semantic::Kind::Target: return DxilProgramSigSemantic::Target;
  83. case Semantic::Kind::Depth: return DxilProgramSigSemantic::Depth;
  84. case Semantic::Kind::DepthLessEqual: return DxilProgramSigSemantic::DepthLE;
  85. case Semantic::Kind::DepthGreaterEqual: return DxilProgramSigSemantic::DepthGE;
  86. case Semantic::Kind::StencilRef:
  87. __fallthrough;
  88. default:
  89. DXASSERT(kind == Semantic::Kind::StencilRef, "else Invalid or switch is missing a case");
  90. return DxilProgramSigSemantic::StencilRef;
  91. }
  92. // TODO: Final_* values need mappings
  93. }
  94. static DxilProgramSigCompType CompTypeToSigCompType(hlsl::CompType value) {
  95. switch (value.GetKind()) {
  96. case CompType::Kind::I32: return DxilProgramSigCompType::SInt32;
  97. case CompType::Kind::U32: return DxilProgramSigCompType::UInt32;
  98. case CompType::Kind::F32: return DxilProgramSigCompType::Float32;
  99. case CompType::Kind::I16: return DxilProgramSigCompType::SInt16;
  100. case CompType::Kind::I64: return DxilProgramSigCompType::SInt64;
  101. case CompType::Kind::U16: return DxilProgramSigCompType::UInt16;
  102. case CompType::Kind::U64: return DxilProgramSigCompType::UInt64;
  103. case CompType::Kind::F16: return DxilProgramSigCompType::Float16;
  104. case CompType::Kind::F64: return DxilProgramSigCompType::Float64;
  105. case CompType::Kind::Invalid: __fallthrough;
  106. case CompType::Kind::I1: __fallthrough;
  107. default:
  108. return DxilProgramSigCompType::Unknown;
  109. }
  110. }
  111. static DxilProgramSigMinPrecision CompTypeToSigMinPrecision(hlsl::CompType value) {
  112. switch (value.GetKind()) {
  113. case CompType::Kind::I32: return DxilProgramSigMinPrecision::Default;
  114. case CompType::Kind::U32: return DxilProgramSigMinPrecision::Default;
  115. case CompType::Kind::F32: return DxilProgramSigMinPrecision::Default;
  116. case CompType::Kind::I1: return DxilProgramSigMinPrecision::Default;
  117. case CompType::Kind::U64: __fallthrough;
  118. case CompType::Kind::I64: __fallthrough;
  119. case CompType::Kind::F64: return DxilProgramSigMinPrecision::Default;
  120. case CompType::Kind::I16: return DxilProgramSigMinPrecision::SInt16;
  121. case CompType::Kind::U16: return DxilProgramSigMinPrecision::UInt16;
  122. case CompType::Kind::F16: return DxilProgramSigMinPrecision::Float16; // Float2_8 is not supported in DXIL.
  123. case CompType::Kind::Invalid: __fallthrough;
  124. default:
  125. return DxilProgramSigMinPrecision::Default;
  126. }
  127. }
  128. template <typename T>
  129. struct sort_second {
  130. bool operator()(const T &a, const T &b) {
  131. return std::less<decltype(a.second)>()(a.second, b.second);
  132. }
  133. };
  134. struct sort_sig {
  135. bool operator()(const DxilProgramSignatureElement &a,
  136. const DxilProgramSignatureElement &b) {
  137. return (a.Stream < b.Stream) ||
  138. ((a.Stream == b.Stream) && (a.Register < b.Register)) ||
  139. ((a.Stream == b.Stream) && (a.Register == b.Register) &&
  140. (a.SemanticName < b.SemanticName));
  141. }
  142. };
  143. class DxilProgramSignatureWriter : public DxilPartWriter {
  144. private:
  145. const DxilSignature &m_signature;
  146. DXIL::TessellatorDomain m_domain;
  147. bool m_isInput;
  148. bool m_useMinPrecision;
  149. size_t m_fixedSize;
  150. typedef std::pair<const char *, uint32_t> NameOffsetPair;
  151. typedef llvm::SmallMapVector<const char *, uint32_t, 8> NameOffsetMap;
  152. uint32_t m_lastOffset;
  153. NameOffsetMap m_semanticNameOffsets;
  154. unsigned m_paramCount;
  155. const char *GetSemanticName(const hlsl::DxilSignatureElement *pElement) {
  156. DXASSERT_NOMSG(pElement != nullptr);
  157. DXASSERT(pElement->GetName() != nullptr, "else sig is malformed");
  158. return pElement->GetName();
  159. }
  160. uint32_t GetSemanticOffset(const hlsl::DxilSignatureElement *pElement) {
  161. const char *pName = GetSemanticName(pElement);
  162. NameOffsetMap::iterator nameOffset = m_semanticNameOffsets.find(pName);
  163. uint32_t result;
  164. if (nameOffset == m_semanticNameOffsets.end()) {
  165. result = m_lastOffset;
  166. m_semanticNameOffsets.insert(NameOffsetPair(pName, result));
  167. m_lastOffset += strlen(pName) + 1;
  168. }
  169. else {
  170. result = nameOffset->second;
  171. }
  172. return result;
  173. }
  174. void write(std::vector<DxilProgramSignatureElement> &orderedSig,
  175. const hlsl::DxilSignatureElement *pElement) {
  176. const std::vector<unsigned> &indexVec = pElement->GetSemanticIndexVec();
  177. unsigned eltCount = pElement->GetSemanticIndexVec().size();
  178. unsigned eltRows = 1;
  179. if (eltCount)
  180. eltRows = pElement->GetRows() / eltCount;
  181. DXASSERT_NOMSG(eltRows == 1);
  182. DxilProgramSignatureElement sig;
  183. memset(&sig, 0, sizeof(DxilProgramSignatureElement));
  184. sig.Stream = pElement->GetOutputStream();
  185. sig.SemanticName = GetSemanticOffset(pElement);
  186. sig.SystemValue = KindToSystemValue(pElement->GetKind(), m_domain);
  187. sig.CompType = CompTypeToSigCompType(pElement->GetCompType());
  188. sig.Register = pElement->GetStartRow();
  189. sig.Mask = pElement->GetColsAsMask();
  190. // Only mark exist channel write for output.
  191. // All channel not used for input.
  192. if (!m_isInput)
  193. sig.NeverWrites_Mask = ~(sig.Mask);
  194. else
  195. sig.AlwaysReads_Mask = 0;
  196. sig.MinPrecision = m_useMinPrecision
  197. ? CompTypeToSigMinPrecision(pElement->GetCompType())
  198. : DxilProgramSigMinPrecision::Default;
  199. for (unsigned i = 0; i < eltCount; ++i) {
  200. sig.SemanticIndex = indexVec[i];
  201. orderedSig.emplace_back(sig);
  202. if (pElement->IsAllocated())
  203. sig.Register += eltRows;
  204. if (sig.SystemValue == DxilProgramSigSemantic::FinalLineDensityTessfactor)
  205. sig.SystemValue = DxilProgramSigSemantic::FinalLineDetailTessfactor;
  206. }
  207. }
  208. void calcSizes() {
  209. // Calculate size for signature elements.
  210. const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
  211. uint32_t result = sizeof(DxilProgramSignature);
  212. m_paramCount = 0;
  213. for (size_t i = 0; i < elements.size(); ++i) {
  214. DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
  215. if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
  216. continue;
  217. unsigned semanticCount = elements[i]->GetSemanticIndexVec().size();
  218. result += semanticCount * sizeof(DxilProgramSignatureElement);
  219. m_paramCount += semanticCount;
  220. }
  221. m_fixedSize = result;
  222. m_lastOffset = m_fixedSize;
  223. // Calculate size for semantic strings.
  224. for (size_t i = 0; i < elements.size(); ++i) {
  225. GetSemanticOffset(elements[i].get());
  226. }
  227. }
  228. public:
  229. DxilProgramSignatureWriter(const DxilSignature &signature,
  230. DXIL::TessellatorDomain domain, bool isInput, bool UseMinPrecision)
  231. : m_signature(signature), m_domain(domain), m_isInput(isInput), m_useMinPrecision(UseMinPrecision) {
  232. calcSizes();
  233. }
  234. uint32_t size() const override {
  235. return m_lastOffset;
  236. }
  237. void write(AbstractMemoryStream *pStream) override {
  238. UINT64 startPos = pStream->GetPosition();
  239. const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
  240. DxilProgramSignature programSig;
  241. programSig.ParamCount = m_paramCount;
  242. programSig.ParamOffset = sizeof(DxilProgramSignature);
  243. IFT(WriteStreamValue(pStream, programSig));
  244. // Write structures in register order.
  245. std::vector<DxilProgramSignatureElement> orderedSig;
  246. for (size_t i = 0; i < elements.size(); ++i) {
  247. DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
  248. if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
  249. continue;
  250. write(orderedSig, elements[i].get());
  251. }
  252. std::sort(orderedSig.begin(), orderedSig.end(), sort_sig());
  253. for (size_t i = 0; i < orderedSig.size(); ++i) {
  254. DxilProgramSignatureElement &sigElt = orderedSig[i];
  255. IFT(WriteStreamValue(pStream, sigElt));
  256. }
  257. // Write strings in the offset order.
  258. std::vector<NameOffsetPair> ordered;
  259. ordered.assign(m_semanticNameOffsets.begin(), m_semanticNameOffsets.end());
  260. std::sort(ordered.begin(), ordered.end(), sort_second<NameOffsetPair>());
  261. for (size_t i = 0; i < ordered.size(); ++i) {
  262. const char *pName = ordered[i].first;
  263. ULONG cbWritten;
  264. UINT64 offsetPos = pStream->GetPosition();
  265. DXASSERT_LOCALVAR(offsetPos, offsetPos - startPos == ordered[i].second, "else str offset is incorrect");
  266. IFT(pStream->Write(pName, strlen(pName) + 1, &cbWritten));
  267. }
  268. // Verify we wrote the bytes we though we would.
  269. UINT64 endPos = pStream->GetPosition();
  270. DXASSERT_LOCALVAR(endPos - startPos, endPos - startPos == size(), "else size is incorrect");
  271. }
  272. };
  273. DxilPartWriter *hlsl::NewProgramSignatureWriter(const DxilModule &M, DXIL::SignatureKind Kind) {
  274. DXIL::TessellatorDomain domain = DXIL::TessellatorDomain::Undefined;
  275. if (M.GetShaderModel()->IsHS() || M.GetShaderModel()->IsDS())
  276. domain = M.GetTessellatorDomain();
  277. switch (Kind) {
  278. case DXIL::SignatureKind::Input:
  279. return new DxilProgramSignatureWriter(
  280. M.GetInputSignature(), domain, true,
  281. M.GetUseMinPrecision());
  282. case DXIL::SignatureKind::Output:
  283. return new DxilProgramSignatureWriter(
  284. M.GetOutputSignature(), domain, false,
  285. M.GetUseMinPrecision());
  286. case DXIL::SignatureKind::PatchConstant:
  287. return new DxilProgramSignatureWriter(
  288. M.GetPatchConstantSignature(), domain,
  289. /*IsInput*/ M.GetShaderModel()->IsDS(),
  290. /*UseMinPrecision*/M.GetUseMinPrecision());
  291. case DXIL::SignatureKind::Invalid:
  292. return nullptr;
  293. }
  294. return nullptr;
  295. }
  296. class DxilProgramRootSignatureWriter : public DxilPartWriter {
  297. private:
  298. const RootSignatureHandle &m_Sig;
  299. public:
  300. DxilProgramRootSignatureWriter(const RootSignatureHandle &S) : m_Sig(S) {}
  301. uint32_t size() const {
  302. return m_Sig.GetSerializedSize();
  303. }
  304. void write(AbstractMemoryStream *pStream) {
  305. ULONG cbWritten;
  306. IFT(pStream->Write(m_Sig.GetSerializedBytes(), size(), &cbWritten));
  307. }
  308. };
  309. DxilPartWriter *hlsl::NewRootSignatureWriter(const RootSignatureHandle &S) {
  310. return new DxilProgramRootSignatureWriter(S);
  311. }
  312. class DxilFeatureInfoWriter : public DxilPartWriter {
  313. private:
  314. // Only save the shader properties after create class for it.
  315. DxilShaderFeatureInfo featureInfo;
  316. public:
  317. DxilFeatureInfoWriter(const DxilModule &M) {
  318. featureInfo.FeatureFlags = M.m_ShaderFlags.GetFeatureInfo();
  319. }
  320. uint32_t size() const override {
  321. return sizeof(DxilShaderFeatureInfo);
  322. }
  323. void write(AbstractMemoryStream *pStream) override {
  324. IFT(WriteStreamValue(pStream, featureInfo.FeatureFlags));
  325. }
  326. };
  327. DxilPartWriter *hlsl::NewFeatureInfoWriter(const DxilModule &M) {
  328. return new DxilFeatureInfoWriter(M);
  329. }
  330. class DxilPSVWriter : public DxilPartWriter {
  331. private:
  332. const DxilModule &m_Module;
  333. PSVInitInfo m_PSVInitInfo;
  334. DxilPipelineStateValidation m_PSV;
  335. uint32_t m_PSVBufferSize;
  336. SmallVector<char, 512> m_PSVBuffer;
  337. SmallVector<char, 256> m_StringBuffer;
  338. SmallVector<uint32_t, 8> m_SemanticIndexBuffer;
  339. std::vector<PSVSignatureElement0> m_SigInputElements;
  340. std::vector<PSVSignatureElement0> m_SigOutputElements;
  341. std::vector<PSVSignatureElement0> m_SigPatchConstantElements;
  342. void SetPSVSigElement(PSVSignatureElement0 &E, const DxilSignatureElement &SE) {
  343. memset(&E, 0, sizeof(PSVSignatureElement0));
  344. if (SE.GetKind() == DXIL::SemanticKind::Arbitrary && strlen(SE.GetName()) > 0) {
  345. E.SemanticName = (uint32_t)m_StringBuffer.size();
  346. StringRef Name(SE.GetName());
  347. m_StringBuffer.append(Name.size()+1, '\0');
  348. memcpy(m_StringBuffer.data() + E.SemanticName, Name.data(), Name.size());
  349. } else {
  350. // m_StringBuffer always starts with '\0' so offset 0 is empty string:
  351. E.SemanticName = 0;
  352. }
  353. // Search index buffer for matching semantic index sequence
  354. DXASSERT_NOMSG(SE.GetRows() == SE.GetSemanticIndexVec().size());
  355. auto &SemIdx = SE.GetSemanticIndexVec();
  356. bool match = false;
  357. for (uint32_t offset = 0; offset + SE.GetRows() - 1 < m_SemanticIndexBuffer.size(); offset++) {
  358. match = true;
  359. for (uint32_t row = 0; row < SE.GetRows(); row++) {
  360. if ((uint32_t)SemIdx[row] != m_SemanticIndexBuffer[offset + row]) {
  361. match = false;
  362. break;
  363. }
  364. }
  365. if (match) {
  366. E.SemanticIndexes = offset;
  367. break;
  368. }
  369. }
  370. if (!match) {
  371. E.SemanticIndexes = m_SemanticIndexBuffer.size();
  372. for (uint32_t row = 0; row < SemIdx.size(); row++) {
  373. m_SemanticIndexBuffer.push_back((uint32_t)SemIdx[row]);
  374. }
  375. }
  376. DXASSERT_NOMSG(SE.GetRows() <= 32);
  377. E.Rows = (uint8_t)SE.GetRows();
  378. DXASSERT_NOMSG(SE.GetCols() <= 4);
  379. E.ColsAndStart = (uint8_t)SE.GetCols() & 0xF;
  380. if (SE.IsAllocated()) {
  381. DXASSERT_NOMSG(SE.GetStartCol() < 4);
  382. DXASSERT_NOMSG(SE.GetStartRow() < 32);
  383. E.ColsAndStart |= 0x40 | (SE.GetStartCol() << 4);
  384. E.StartRow = (uint8_t)SE.GetStartRow();
  385. }
  386. E.SemanticKind = (uint8_t)SE.GetKind();
  387. E.ComponentType = (uint8_t)CompTypeToSigCompType(SE.GetCompType());
  388. E.InterpolationMode = (uint8_t)SE.GetInterpolationMode()->GetKind();
  389. DXASSERT_NOMSG(SE.GetOutputStream() < 4);
  390. E.DynamicMaskAndStream = (uint8_t)((SE.GetOutputStream() & 0x3) << 4);
  391. E.DynamicMaskAndStream |= (SE.GetDynIdxCompMask()) & 0xF;
  392. }
  393. const uint32_t *CopyViewIDState(const uint32_t *pSrc, uint32_t InputScalars, uint32_t OutputScalars, PSVComponentMask ViewIDMask, PSVDependencyTable IOTable) {
  394. unsigned MaskDwords = PSVComputeMaskDwordsFromVectors(PSVALIGN4(OutputScalars) / 4);
  395. if (ViewIDMask.IsValid()) {
  396. DXASSERT_NOMSG(!IOTable.Table || ViewIDMask.NumVectors == IOTable.OutputVectors);
  397. memcpy(ViewIDMask.Mask, pSrc, 4 * MaskDwords);
  398. pSrc += MaskDwords;
  399. }
  400. if (IOTable.IsValid() && IOTable.InputVectors && IOTable.OutputVectors) {
  401. DXASSERT_NOMSG((InputScalars <= IOTable.InputVectors * 4) && (IOTable.InputVectors * 4 - InputScalars < 4));
  402. DXASSERT_NOMSG((OutputScalars <= IOTable.OutputVectors * 4) && (IOTable.OutputVectors * 4 - OutputScalars < 4));
  403. memcpy(IOTable.Table, pSrc, 4 * MaskDwords * InputScalars);
  404. pSrc += MaskDwords * InputScalars;
  405. }
  406. return pSrc;
  407. }
  408. public:
  409. DxilPSVWriter(const DxilModule &module, uint32_t PSVVersion = 0)
  410. : m_Module(module),
  411. m_PSVInitInfo(PSVVersion)
  412. {
  413. unsigned ValMajor, ValMinor;
  414. m_Module.GetValidatorVersion(ValMajor, ValMinor);
  415. // Allow PSVVersion to be upgraded
  416. if (m_PSVInitInfo.PSVVersion < 1 && (ValMajor > 1 || (ValMajor == 1 && ValMinor >= 1)))
  417. m_PSVInitInfo.PSVVersion = 1;
  418. const ShaderModel *SM = m_Module.GetShaderModel();
  419. UINT uCBuffers = m_Module.GetCBuffers().size();
  420. UINT uSamplers = m_Module.GetSamplers().size();
  421. UINT uSRVs = m_Module.GetSRVs().size();
  422. UINT uUAVs = m_Module.GetUAVs().size();
  423. m_PSVInitInfo.ResourceCount = uCBuffers + uSamplers + uSRVs + uUAVs;
  424. // TODO: for >= 6.2 version, create more efficient structure
  425. if (m_PSVInitInfo.PSVVersion > 0) {
  426. m_PSVInitInfo.ShaderStage = (PSVShaderKind)SM->GetKind();
  427. // Copy Dxil Signatures
  428. m_StringBuffer.push_back('\0'); // For empty semantic name (system value)
  429. m_PSVInitInfo.SigInputElements = m_Module.GetInputSignature().GetElements().size();
  430. m_SigInputElements.resize(m_PSVInitInfo.SigInputElements);
  431. m_PSVInitInfo.SigOutputElements = m_Module.GetOutputSignature().GetElements().size();
  432. m_SigOutputElements.resize(m_PSVInitInfo.SigOutputElements);
  433. m_PSVInitInfo.SigPatchConstantElements = m_Module.GetPatchConstantSignature().GetElements().size();
  434. m_SigPatchConstantElements.resize(m_PSVInitInfo.SigPatchConstantElements);
  435. uint32_t i = 0;
  436. for (auto &SE : m_Module.GetInputSignature().GetElements()) {
  437. SetPSVSigElement(m_SigInputElements[i++], *(SE.get()));
  438. }
  439. i = 0;
  440. for (auto &SE : m_Module.GetOutputSignature().GetElements()) {
  441. SetPSVSigElement(m_SigOutputElements[i++], *(SE.get()));
  442. }
  443. i = 0;
  444. for (auto &SE : m_Module.GetPatchConstantSignature().GetElements()) {
  445. SetPSVSigElement(m_SigPatchConstantElements[i++], *(SE.get()));
  446. }
  447. // Set String and SemanticInput Tables
  448. m_PSVInitInfo.StringTable.Table = m_StringBuffer.data();
  449. m_PSVInitInfo.StringTable.Size = m_StringBuffer.size();
  450. m_PSVInitInfo.SemanticIndexTable.Table = m_SemanticIndexBuffer.data();
  451. m_PSVInitInfo.SemanticIndexTable.Entries = m_SemanticIndexBuffer.size();
  452. // Set up ViewID and signature dependency info
  453. m_PSVInitInfo.UsesViewID = m_Module.m_ShaderFlags.GetViewID() ? true : false;
  454. m_PSVInitInfo.SigInputVectors = m_Module.GetInputSignature().NumVectorsUsed(0);
  455. for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
  456. m_PSVInitInfo.SigOutputVectors[streamIndex] = m_Module.GetOutputSignature().NumVectorsUsed(streamIndex);
  457. }
  458. m_PSVInitInfo.SigPatchConstantVectors = 0;
  459. if (SM->IsHS()) {
  460. m_PSVInitInfo.SigPatchConstantVectors = m_Module.GetPatchConstantSignature().NumVectorsUsed(0);
  461. }
  462. if (SM->IsDS()) {
  463. m_PSVInitInfo.SigPatchConstantVectors = m_Module.GetPatchConstantSignature().NumVectorsUsed(0);
  464. }
  465. }
  466. if (!m_PSV.InitNew(m_PSVInitInfo, nullptr, &m_PSVBufferSize)) {
  467. DXASSERT(false, "PSV InitNew failed computing size!");
  468. }
  469. }
  470. uint32_t size() const override {
  471. return m_PSVBufferSize;
  472. }
  473. void write(AbstractMemoryStream *pStream) override {
  474. m_PSVBuffer.resize(m_PSVBufferSize);
  475. if (!m_PSV.InitNew(m_PSVInitInfo, m_PSVBuffer.data(), &m_PSVBufferSize)) {
  476. DXASSERT(false, "PSV InitNew failed!");
  477. }
  478. DXASSERT_NOMSG(m_PSVBuffer.size() == m_PSVBufferSize);
  479. // Set DxilRuntimInfo
  480. PSVRuntimeInfo0* pInfo = m_PSV.GetPSVRuntimeInfo0();
  481. PSVRuntimeInfo1* pInfo1 = m_PSV.GetPSVRuntimeInfo1();
  482. const ShaderModel* SM = m_Module.GetShaderModel();
  483. pInfo->MinimumExpectedWaveLaneCount = 0;
  484. pInfo->MaximumExpectedWaveLaneCount = (UINT)-1;
  485. switch (SM->GetKind()) {
  486. case ShaderModel::Kind::Vertex: {
  487. pInfo->VS.OutputPositionPresent = 0;
  488. const DxilSignature &S = m_Module.GetOutputSignature();
  489. for (auto &&E : S.GetElements()) {
  490. if (E->GetKind() == Semantic::Kind::Position) {
  491. // Ideally, we might check never writes mask here,
  492. // but this is not yet part of the signature element in Dxil
  493. pInfo->VS.OutputPositionPresent = 1;
  494. break;
  495. }
  496. }
  497. break;
  498. }
  499. case ShaderModel::Kind::Hull: {
  500. pInfo->HS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
  501. pInfo->HS.OutputControlPointCount = (UINT)m_Module.GetOutputControlPointCount();
  502. pInfo->HS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
  503. pInfo->HS.TessellatorOutputPrimitive = (UINT)m_Module.GetTessellatorOutputPrimitive();
  504. break;
  505. }
  506. case ShaderModel::Kind::Domain: {
  507. pInfo->DS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
  508. pInfo->DS.OutputPositionPresent = 0;
  509. const DxilSignature &S = m_Module.GetOutputSignature();
  510. for (auto &&E : S.GetElements()) {
  511. if (E->GetKind() == Semantic::Kind::Position) {
  512. // Ideally, we might check never writes mask here,
  513. // but this is not yet part of the signature element in Dxil
  514. pInfo->DS.OutputPositionPresent = 1;
  515. break;
  516. }
  517. }
  518. pInfo->DS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
  519. break;
  520. }
  521. case ShaderModel::Kind::Geometry: {
  522. pInfo->GS.InputPrimitive = (UINT)m_Module.GetInputPrimitive();
  523. // NOTE: For OutputTopology, pick one from a used stream, or if none
  524. // are used, use stream 0, and set OutputStreamMask to 1.
  525. pInfo->GS.OutputTopology = (UINT)m_Module.GetStreamPrimitiveTopology();
  526. pInfo->GS.OutputStreamMask = m_Module.GetActiveStreamMask();
  527. if (pInfo->GS.OutputStreamMask == 0) {
  528. pInfo->GS.OutputStreamMask = 1; // This is what runtime expects.
  529. }
  530. pInfo->GS.OutputPositionPresent = 0;
  531. const DxilSignature &S = m_Module.GetOutputSignature();
  532. for (auto &&E : S.GetElements()) {
  533. if (E->GetKind() == Semantic::Kind::Position) {
  534. // Ideally, we might check never writes mask here,
  535. // but this is not yet part of the signature element in Dxil
  536. pInfo->GS.OutputPositionPresent = 1;
  537. break;
  538. }
  539. }
  540. break;
  541. }
  542. case ShaderModel::Kind::Pixel: {
  543. pInfo->PS.DepthOutput = 0;
  544. pInfo->PS.SampleFrequency = 0;
  545. {
  546. const DxilSignature &S = m_Module.GetInputSignature();
  547. for (auto &&E : S.GetElements()) {
  548. if (E->GetInterpolationMode()->IsAnySample() ||
  549. E->GetKind() == Semantic::Kind::SampleIndex) {
  550. pInfo->PS.SampleFrequency = 1;
  551. }
  552. }
  553. }
  554. {
  555. const DxilSignature &S = m_Module.GetOutputSignature();
  556. for (auto &&E : S.GetElements()) {
  557. if (E->IsAnyDepth()) {
  558. pInfo->PS.DepthOutput = 1;
  559. break;
  560. }
  561. }
  562. }
  563. break;
  564. }
  565. case ShaderModel::Kind::Compute:
  566. case ShaderModel::Kind::Library:
  567. case ShaderModel::Kind::Invalid:
  568. // Compute, Library, and Invalide not relevant to PSVRuntimeInfo0
  569. break;
  570. }
  571. // Set resource binding information
  572. UINT uResIndex = 0;
  573. for (auto &&R : m_Module.GetCBuffers()) {
  574. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  575. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  576. DXASSERT_NOMSG(pBindInfo);
  577. pBindInfo->ResType = (UINT)PSVResourceType::CBV;
  578. pBindInfo->Space = R->GetSpaceID();
  579. pBindInfo->LowerBound = R->GetLowerBound();
  580. pBindInfo->UpperBound = R->GetUpperBound();
  581. uResIndex++;
  582. }
  583. for (auto &&R : m_Module.GetSamplers()) {
  584. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  585. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  586. DXASSERT_NOMSG(pBindInfo);
  587. pBindInfo->ResType = (UINT)PSVResourceType::Sampler;
  588. pBindInfo->Space = R->GetSpaceID();
  589. pBindInfo->LowerBound = R->GetLowerBound();
  590. pBindInfo->UpperBound = R->GetUpperBound();
  591. uResIndex++;
  592. }
  593. for (auto &&R : m_Module.GetSRVs()) {
  594. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  595. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  596. DXASSERT_NOMSG(pBindInfo);
  597. if (R->IsStructuredBuffer()) {
  598. pBindInfo->ResType = (UINT)PSVResourceType::SRVStructured;
  599. } else if (R->IsRawBuffer()) {
  600. pBindInfo->ResType = (UINT)PSVResourceType::SRVRaw;
  601. } else {
  602. pBindInfo->ResType = (UINT)PSVResourceType::SRVTyped;
  603. }
  604. pBindInfo->Space = R->GetSpaceID();
  605. pBindInfo->LowerBound = R->GetLowerBound();
  606. pBindInfo->UpperBound = R->GetUpperBound();
  607. uResIndex++;
  608. }
  609. for (auto &&R : m_Module.GetUAVs()) {
  610. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  611. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  612. DXASSERT_NOMSG(pBindInfo);
  613. if (R->IsStructuredBuffer()) {
  614. if (R->HasCounter())
  615. pBindInfo->ResType = (UINT)PSVResourceType::UAVStructuredWithCounter;
  616. else
  617. pBindInfo->ResType = (UINT)PSVResourceType::UAVStructured;
  618. } else if (R->IsRawBuffer()) {
  619. pBindInfo->ResType = (UINT)PSVResourceType::UAVRaw;
  620. } else {
  621. pBindInfo->ResType = (UINT)PSVResourceType::UAVTyped;
  622. }
  623. pBindInfo->Space = R->GetSpaceID();
  624. pBindInfo->LowerBound = R->GetLowerBound();
  625. pBindInfo->UpperBound = R->GetUpperBound();
  626. uResIndex++;
  627. }
  628. DXASSERT_NOMSG(uResIndex == m_PSVInitInfo.ResourceCount);
  629. if (m_PSVInitInfo.PSVVersion > 0) {
  630. DXASSERT_NOMSG(pInfo1);
  631. // Write MaxVertexCount
  632. if (SM->IsGS()) {
  633. DXASSERT_NOMSG(m_Module.GetMaxVertexCount() <= 1024);
  634. pInfo1->MaxVertexCount = (uint16_t)m_Module.GetMaxVertexCount();
  635. }
  636. // Write Dxil Signature Elements
  637. for (unsigned i = 0; i < m_PSV.GetSigInputElements(); i++) {
  638. PSVSignatureElement0 *pInputElement = m_PSV.GetInputElement0(i);
  639. DXASSERT_NOMSG(pInputElement);
  640. memcpy(pInputElement, &m_SigInputElements[i], sizeof(PSVSignatureElement0));
  641. }
  642. for (unsigned i = 0; i < m_PSV.GetSigOutputElements(); i++) {
  643. PSVSignatureElement0 *pOutputElement = m_PSV.GetOutputElement0(i);
  644. DXASSERT_NOMSG(pOutputElement);
  645. memcpy(pOutputElement, &m_SigOutputElements[i], sizeof(PSVSignatureElement0));
  646. }
  647. for (unsigned i = 0; i < m_PSV.GetSigPatchConstantElements(); i++) {
  648. PSVSignatureElement0 *pPatchConstantElement = m_PSV.GetPatchConstantElement0(i);
  649. DXASSERT_NOMSG(pPatchConstantElement);
  650. memcpy(pPatchConstantElement, &m_SigPatchConstantElements[i], sizeof(PSVSignatureElement0));
  651. }
  652. // Gather ViewID dependency information
  653. auto &viewState = m_Module.GetViewIdState().GetSerialized();
  654. if (!viewState.empty()) {
  655. const uint32_t *pSrc = viewState.data();
  656. const uint32_t InputScalars = *(pSrc++);
  657. uint32_t OutputScalars[4];
  658. for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
  659. OutputScalars[streamIndex] = *(pSrc++);
  660. pSrc = CopyViewIDState(pSrc, InputScalars, OutputScalars[streamIndex], m_PSV.GetViewIDOutputMask(streamIndex), m_PSV.GetInputToOutputTable(streamIndex));
  661. if (!SM->IsGS())
  662. break;
  663. }
  664. if (SM->IsHS()) {
  665. const uint32_t PCScalars = *(pSrc++);
  666. pSrc = CopyViewIDState(pSrc, InputScalars, PCScalars, m_PSV.GetViewIDPCOutputMask(), m_PSV.GetInputToPCOutputTable());
  667. } else if (SM->IsDS()) {
  668. const uint32_t PCScalars = *(pSrc++);
  669. pSrc = CopyViewIDState(pSrc, PCScalars, OutputScalars[0], PSVComponentMask(), m_PSV.GetPCInputToOutputTable());
  670. }
  671. DXASSERT_NOMSG(viewState.data() + viewState.size() == pSrc);
  672. }
  673. }
  674. ULONG cbWritten;
  675. IFT(pStream->Write(m_PSVBuffer.data(), m_PSVBufferSize, &cbWritten));
  676. DXASSERT_NOMSG(cbWritten == m_PSVBufferSize);
  677. }
  678. };
  679. // Size-checked writer
  680. // on overrun: throw buffer_overrun{};
  681. // on overlap: throw buffer_overlap{};
  682. class CheckedWriter {
  683. char *Ptr;
  684. size_t Size;
  685. size_t Offset;
  686. public:
  687. class exception : public std::exception {};
  688. class buffer_overrun : public exception {
  689. public:
  690. buffer_overrun() noexcept {}
  691. virtual const char * what() const noexcept override {
  692. return ("buffer_overrun");
  693. }
  694. };
  695. class buffer_overlap : public exception {
  696. public:
  697. buffer_overlap() noexcept {}
  698. virtual const char * what() const noexcept override {
  699. return ("buffer_overlap");
  700. }
  701. };
  702. CheckedWriter(void *ptr, size_t size) :
  703. Ptr(reinterpret_cast<char*>(ptr)), Size(size), Offset(0) {}
  704. size_t GetOffset() const { return Offset; }
  705. void Reset(size_t offset = 0) {
  706. if (offset >= Size) throw buffer_overrun{};
  707. Offset = offset;
  708. }
  709. // offset is absolute, ensure offset is >= current offset
  710. void Advance(size_t offset = 0) {
  711. if (offset < Offset) throw buffer_overlap{};
  712. if (offset >= Size) throw buffer_overrun{};
  713. Offset = offset;
  714. }
  715. void CheckBounds(size_t size) const {
  716. assert(Offset <= Size && "otherwise, offset larger than size");
  717. if (size > Size - Offset)
  718. throw buffer_overrun{};
  719. }
  720. template <typename T>
  721. T *Cast(size_t size = 0) {
  722. if (0 == size) size = sizeof(T);
  723. CheckBounds(size);
  724. return reinterpret_cast<T*>(Ptr + Offset);
  725. }
  726. // Map and Write advance Offset:
  727. template <typename T>
  728. T &Map() {
  729. const size_t size = sizeof(T);
  730. T * p = Cast<T>(size);
  731. Offset += size;
  732. return *p;
  733. }
  734. template <typename T>
  735. T *MapArray(size_t count = 1) {
  736. const size_t size = sizeof(T) * count;
  737. T *p = Cast<T>(size);
  738. Offset += size;
  739. return p;
  740. }
  741. template <typename T>
  742. void Write(const T &obj) {
  743. const size_t size = sizeof(T);
  744. *Cast<T>(size) = obj;
  745. Offset += size;
  746. }
  747. template <typename T>
  748. void WriteArray(const T *pArray, size_t count = 1) {
  749. const size_t size = sizeof(T) * count;
  750. memcpy(Cast<T>(size), pArray, size);
  751. Offset += size;
  752. }
  753. };
  754. // Like DXIL container, RDAT itself is a mini container that contains multiple RDAT parts
  755. class RDATPart {
  756. public:
  757. virtual uint32_t GetPartSize() const { return 0; }
  758. virtual void Write(void *ptr) {}
  759. virtual RuntimeDataPartType GetType() const { return RuntimeDataPartType::Invalid; }
  760. virtual ~RDATPart() {}
  761. };
  762. // Most RDAT parts are tables each containing a list of structures of same type.
  763. // Exceptions are string table and index table because each string or list of
  764. // indicies can be of different sizes.
  765. template <class T>
  766. class RDATTable : public RDATPart {
  767. protected:
  768. std::vector<T> m_rows;
  769. public:
  770. virtual void Insert(T *data) {}
  771. virtual ~RDATTable() {}
  772. void Insert(const T &data) {
  773. m_rows.push_back(data);
  774. }
  775. void Write(void *ptr) {
  776. char *pCur = (char*)ptr;
  777. RuntimeDataTableHeader &header = *reinterpret_cast<RuntimeDataTableHeader*>(pCur);
  778. header.RecordCount = m_rows.size();
  779. header.RecordStride = sizeof(T);
  780. pCur += sizeof(RuntimeDataTableHeader);
  781. memcpy(pCur, m_rows.data(), header.RecordCount * header.RecordStride);
  782. };
  783. uint32_t GetPartSize() const {
  784. if (m_rows.empty())
  785. return 0;
  786. return sizeof(RuntimeDataTableHeader) + m_rows.size() * sizeof(T);
  787. }
  788. };
  789. // Resource table will contain a list of RuntimeDataResourceInfo in order of
  790. // CBuffer, Sampler, SRV, and UAV resource classes.
  791. class ResourceTable : public RDATTable<RuntimeDataResourceInfo> {
  792. public:
  793. RuntimeDataPartType GetType() const { return RuntimeDataPartType::ResourceTable; }
  794. };
  795. class FunctionTable : public RDATTable<RuntimeDataFunctionInfo> {
  796. public:
  797. RuntimeDataPartType GetType() const { return RuntimeDataPartType::FunctionTable; }
  798. };
  799. class StringBufferPart : public RDATPart {
  800. private:
  801. StringMap<uint32_t> m_StringMap;
  802. SmallVector<char, 256> m_StringBuffer;
  803. uint32_t curIndex;
  804. public:
  805. StringBufferPart() : m_StringMap(), m_StringBuffer(), curIndex(0) {
  806. // Always start string table with null so empty/null strings have offset of zero
  807. m_StringBuffer.push_back('\0');
  808. }
  809. // returns the offset of the name inserted
  810. uint32_t Insert(StringRef name) {
  811. if (name.empty())
  812. return 0;
  813. // Don't add duplicate strings
  814. auto found = m_StringMap.find(name);
  815. if (found != m_StringMap.end())
  816. return found->second;
  817. uint32_t prevIndex = (uint32_t)m_StringBuffer.size();
  818. m_StringMap[name] = prevIndex;
  819. m_StringBuffer.reserve(m_StringBuffer.size() + name.size() + 1);
  820. m_StringBuffer.append(name.begin(), name.end());
  821. m_StringBuffer.push_back('\0');
  822. return prevIndex;
  823. }
  824. RuntimeDataPartType GetType() const { return RuntimeDataPartType::StringBuffer; }
  825. uint32_t GetPartSize() const { return m_StringBuffer.size(); }
  826. void Write(void *ptr) { memcpy(ptr, m_StringBuffer.data(), m_StringBuffer.size()); }
  827. };
  828. struct IndexArraysPart : public RDATPart {
  829. private:
  830. std::vector<uint32_t> m_IndexBuffer;
  831. // Use m_IndexSet with CmpIndices to avoid duplicate index arrays
  832. struct CmpIndices {
  833. const IndexArraysPart &Table;
  834. CmpIndices(const IndexArraysPart &table) : Table(table) {}
  835. bool operator()(uint32_t left, uint32_t right) const {
  836. const uint32_t *pLeft = Table.m_IndexBuffer.data() + left;
  837. const uint32_t *pRight = Table.m_IndexBuffer.data() + right;
  838. if (*pLeft != *pRight)
  839. return (*pLeft < *pRight);
  840. uint32_t count = *pLeft;
  841. for (unsigned i = 0; i < count; i++) {
  842. ++pLeft; ++pRight;
  843. if (*pLeft != *pRight)
  844. return (*pLeft < *pRight);
  845. }
  846. return false;
  847. }
  848. };
  849. std::set<uint32_t, CmpIndices> m_IndexSet;
  850. public:
  851. IndexArraysPart() : m_IndexBuffer(), m_IndexSet(*this) {}
  852. template <class iterator>
  853. uint32_t AddIndex(iterator begin, iterator end) {
  854. uint32_t newOffset = m_IndexBuffer.size();
  855. m_IndexBuffer.push_back(0); // Size: update after insertion
  856. m_IndexBuffer.insert(m_IndexBuffer.end(), begin, end);
  857. m_IndexBuffer[newOffset] = (m_IndexBuffer.size() - newOffset) - 1;
  858. // Check for duplicate, return new offset if not duplicate
  859. auto insertResult = m_IndexSet.insert(newOffset);
  860. if (insertResult.second)
  861. return newOffset;
  862. // Otherwise it was a duplicate, so chop off the size and return the original
  863. m_IndexBuffer.resize(newOffset);
  864. return *insertResult.first;
  865. }
  866. RuntimeDataPartType GetType() const { return RuntimeDataPartType::IndexArrays; }
  867. uint32_t GetPartSize() const {
  868. return sizeof(uint32_t) * m_IndexBuffer.size();
  869. }
  870. void Write(void *ptr) {
  871. memcpy(ptr, m_IndexBuffer.data(), m_IndexBuffer.size() * sizeof(uint32_t));
  872. }
  873. };
  874. using namespace DXIL;
  875. class DxilRDATWriter : public DxilPartWriter {
  876. private:
  877. const DxilModule &m_Module;
  878. SmallVector<char, 1024> m_RDATBuffer;
  879. std::vector<std::unique_ptr<RDATPart>> m_Parts;
  880. typedef llvm::SmallSetVector<uint32_t, 8> Indices;
  881. typedef std::unordered_map<const llvm::Function *, Indices> FunctionIndexMap;
  882. FunctionIndexMap m_FuncToResNameOffset; // list of resources used
  883. FunctionIndexMap m_FuncToDependencies; // list of unresolved functions used
  884. struct ShaderCompatInfo {
  885. ShaderCompatInfo()
  886. : minMajor(6), minMinor(0),
  887. mask(((unsigned)1 << (unsigned)DXIL::ShaderKind::Invalid) - 1)
  888. {}
  889. unsigned minMajor, minMinor, mask;
  890. };
  891. typedef std::unordered_map<const llvm::Function*, ShaderCompatInfo> FunctionShaderCompatMap;
  892. FunctionShaderCompatMap m_FuncToShaderCompat;
  893. void UpdateFunctionToShaderCompat(const llvm::Function* dxilFunc) {
  894. for (const auto &user : dxilFunc->users()) {
  895. if (const llvm::Instruction *I = dyn_cast<const llvm::Instruction>(user)) {
  896. // Find calling function
  897. const llvm::Function *F = cast<const llvm::Function>(I->getParent()->getParent());
  898. // Insert or lookup info
  899. ShaderCompatInfo &info = m_FuncToShaderCompat[F];
  900. OpCode opcode = OP::GetDxilOpFuncCallInst(I);
  901. unsigned major, minor, mask;
  902. // bWithTranslation = true for library modules
  903. OP::GetMinShaderModelAndMask(opcode, /*bWithTranslation*/true, major, minor, mask);
  904. if (major > info.minMajor) {
  905. info.minMajor = major;
  906. info.minMinor = minor;
  907. } else if (minor > info.minMinor) {
  908. info.minMinor = minor;
  909. }
  910. info.mask &= mask;
  911. }
  912. }
  913. }
  914. const llvm::Function *FindUsingFunction(const llvm::Value *User) {
  915. if (const llvm::Instruction *I = dyn_cast<const llvm::Instruction>(User)) {
  916. // Instruction should be inside a basic block, which is in a function
  917. return cast<const llvm::Function>(I->getParent()->getParent());
  918. }
  919. // User can be either instruction, constant, or operator. But User is an
  920. // operator only if constant is a scalar value, not resource pointer.
  921. const llvm::Constant *CU = cast<const llvm::Constant>(User);
  922. if (!CU->user_empty())
  923. return FindUsingFunction(*CU->user_begin());
  924. else
  925. return nullptr;
  926. }
  927. void UpdateFunctionToResourceInfo(const DxilResourceBase *resource,
  928. uint32_t offset) {
  929. Constant *var = resource->GetGlobalSymbol();
  930. if (var) {
  931. for (auto user : var->users()) {
  932. // Find the function.
  933. const llvm::Function *F = FindUsingFunction(user);
  934. if (!F)
  935. continue;
  936. if (m_FuncToResNameOffset.find(F) == m_FuncToResNameOffset.end()) {
  937. m_FuncToResNameOffset[F] = Indices();
  938. }
  939. m_FuncToResNameOffset[F].insert(offset);
  940. }
  941. }
  942. }
  943. void InsertToResourceTable(DxilResourceBase &resource,
  944. ResourceClass resourceClass,
  945. ResourceTable &resourceTable,
  946. StringBufferPart &stringBufferPart,
  947. uint32_t &resourceIndex) {
  948. uint32_t stringIndex = stringBufferPart.Insert(resource.GetGlobalName());
  949. UpdateFunctionToResourceInfo(&resource, resourceIndex++);
  950. RuntimeDataResourceInfo info = {};
  951. info.ID = resource.GetID();
  952. info.Class = static_cast<uint32_t>(resourceClass);
  953. info.Kind = static_cast<uint32_t>(resource.GetKind());
  954. info.Space = resource.GetSpaceID();
  955. info.LowerBound = resource.GetLowerBound();
  956. info.UpperBound = resource.GetUpperBound();
  957. info.Name = stringIndex;
  958. info.Flags = 0;
  959. if (ResourceClass::UAV == resourceClass) {
  960. DxilResource *pRes = static_cast<DxilResource*>(&resource);
  961. if (pRes->HasCounter())
  962. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVCounter);
  963. if (pRes->IsGloballyCoherent())
  964. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVGloballyCoherent);
  965. if (pRes->IsROV())
  966. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVRasterizerOrderedView);
  967. // TODO: add dynamic index flag
  968. }
  969. resourceTable.Insert(info);
  970. }
  971. void UpdateResourceInfo(StringBufferPart &stringBufferPart) {
  972. // Try to allocate string table for resources. String table is a sequence
  973. // of strings delimited by \0
  974. m_Parts.emplace_back(llvm::make_unique<ResourceTable>());
  975. ResourceTable &resourceTable = *reinterpret_cast<ResourceTable*>(m_Parts.back().get());
  976. uint32_t resourceIndex = 0;
  977. for (auto &resource : m_Module.GetCBuffers()) {
  978. InsertToResourceTable(*resource.get(), ResourceClass::CBuffer, resourceTable, stringBufferPart,
  979. resourceIndex);
  980. }
  981. for (auto &resource : m_Module.GetSamplers()) {
  982. InsertToResourceTable(*resource.get(), ResourceClass::Sampler, resourceTable, stringBufferPart,
  983. resourceIndex);
  984. }
  985. for (auto &resource : m_Module.GetSRVs()) {
  986. InsertToResourceTable(*resource.get(), ResourceClass::SRV, resourceTable, stringBufferPart,
  987. resourceIndex);
  988. }
  989. for (auto &resource : m_Module.GetUAVs()) {
  990. InsertToResourceTable(*resource.get(), ResourceClass::UAV, resourceTable, stringBufferPart,
  991. resourceIndex);
  992. }
  993. }
  994. void UpdateFunctionDependency(llvm::Function *F, StringBufferPart &stringBufferPart) {
  995. for (const auto &user : F->users()) {
  996. const llvm::Function *userFunction = FindUsingFunction(user);
  997. uint32_t index = stringBufferPart.Insert(F->getName());
  998. if (m_FuncToDependencies.find(userFunction) ==
  999. m_FuncToDependencies.end()) {
  1000. m_FuncToDependencies[userFunction] =
  1001. Indices();
  1002. }
  1003. m_FuncToDependencies[userFunction].insert(index);
  1004. }
  1005. }
  1006. void UpdateFunctionInfo(StringBufferPart &stringBufferPart) {
  1007. m_Parts.emplace_back(llvm::make_unique<FunctionTable>());
  1008. FunctionTable &functionTable = *reinterpret_cast<FunctionTable*>(m_Parts.back().get());
  1009. m_Parts.emplace_back(llvm::make_unique<IndexArraysPart>());
  1010. IndexArraysPart &indexArraysPart = *reinterpret_cast<IndexArraysPart*>(m_Parts.back().get());
  1011. for (auto &function : m_Module.GetModule()->getFunctionList()) {
  1012. if (function.isDeclaration() && !function.isIntrinsic()) {
  1013. if (OP::IsDxilOpFunc(&function)) {
  1014. // update min shader model and shader stage mask per function
  1015. UpdateFunctionToShaderCompat(&function);
  1016. } else {
  1017. // collect unresolved dependencies per function
  1018. UpdateFunctionDependency(&function, stringBufferPart);
  1019. }
  1020. }
  1021. }
  1022. for (auto &function : m_Module.GetModule()->getFunctionList()) {
  1023. if (!function.isDeclaration()) {
  1024. StringRef mangled = function.getName();
  1025. StringRef unmangled = hlsl::dxilutil::DemangleFunctionName(function.getName());
  1026. uint32_t mangledIndex = stringBufferPart.Insert(mangled);
  1027. uint32_t unmangledIndex = stringBufferPart.Insert(unmangled);
  1028. // Update resource Index
  1029. uint32_t resourceIndex = UINT_MAX;
  1030. uint32_t functionDependencies = UINT_MAX;
  1031. uint32_t payloadSizeInBytes = 0;
  1032. uint32_t attrSizeInBytes = 0;
  1033. uint32_t shaderKind = static_cast<uint32_t>(DXIL::ShaderKind::Library);
  1034. if (m_FuncToResNameOffset.find(&function) != m_FuncToResNameOffset.end())
  1035. resourceIndex =
  1036. indexArraysPart.AddIndex(m_FuncToResNameOffset[&function].begin(),
  1037. m_FuncToResNameOffset[&function].end());
  1038. if (m_FuncToDependencies.find(&function) != m_FuncToDependencies.end())
  1039. functionDependencies =
  1040. indexArraysPart.AddIndex(m_FuncToDependencies[&function].begin(),
  1041. m_FuncToDependencies[&function].end());
  1042. if (m_Module.HasDxilFunctionProps(&function)) {
  1043. auto props = m_Module.GetDxilFunctionProps(&function);
  1044. if (props.IsClosestHit() || props.IsAnyHit()) {
  1045. payloadSizeInBytes = props.ShaderProps.Ray.payloadSizeInBytes;
  1046. attrSizeInBytes = props.ShaderProps.Ray.attributeSizeInBytes;
  1047. }
  1048. else if (props.IsMiss()) {
  1049. payloadSizeInBytes = props.ShaderProps.Ray.payloadSizeInBytes;
  1050. }
  1051. else if (props.IsCallable()) {
  1052. payloadSizeInBytes = props.ShaderProps.Ray.paramSizeInBytes;
  1053. }
  1054. shaderKind = (uint32_t)props.shaderKind;
  1055. }
  1056. ShaderFlags flags = ShaderFlags::CollectShaderFlags(&function, &m_Module);
  1057. RuntimeDataFunctionInfo info = {};
  1058. info.Name = mangledIndex;
  1059. info.UnmangledName = unmangledIndex;
  1060. info.ShaderKind = shaderKind;
  1061. info.Resources = resourceIndex;
  1062. info.FunctionDependencies = functionDependencies;
  1063. info.PayloadSizeInBytes = payloadSizeInBytes;
  1064. info.AttributeSizeInBytes = attrSizeInBytes;
  1065. uint64_t featureFlags = flags.GetFeatureInfo();
  1066. info.FeatureInfo1 = featureFlags & 0xffffffff;
  1067. info.FeatureInfo2 = (featureFlags >> 32) & 0xffffffff;
  1068. // Init min target 6.0
  1069. unsigned minMajor = 6, minMinor = 0;
  1070. // Increase min target based on feature flags:
  1071. if (flags.GetUseNativeLowPrecision() && flags.GetLowPrecisionPresent()) {
  1072. minMinor = 2;
  1073. } else if (flags.GetBarycentrics() || flags.GetViewID()) {
  1074. minMinor = 1;
  1075. }
  1076. if ((DXIL::ShaderKind)shaderKind == DXIL::ShaderKind::Library) {
  1077. // Init mask to all kinds for library functions
  1078. info.ShaderStageFlag = ((unsigned)1 << (unsigned)DXIL::ShaderKind::Invalid) - 1;
  1079. } else {
  1080. // Init mask to current kind for shader functions
  1081. info.ShaderStageFlag = (unsigned)1 << shaderKind;
  1082. }
  1083. auto it = m_FuncToShaderCompat.find(&function);
  1084. if (it != m_FuncToShaderCompat.end()) {
  1085. auto &compatInfo = it->second;
  1086. if (compatInfo.minMajor > minMajor) {
  1087. minMajor = compatInfo.minMajor;
  1088. minMinor = compatInfo.minMinor;
  1089. } else if (compatInfo.minMinor > minMinor) {
  1090. minMinor = compatInfo.minMinor;
  1091. }
  1092. info.ShaderStageFlag &= compatInfo.mask;
  1093. }
  1094. info.MinShaderTarget = EncodeVersion((DXIL::ShaderKind)shaderKind, minMajor, minMinor);
  1095. functionTable.Insert(info);
  1096. }
  1097. }
  1098. }
  1099. public:
  1100. DxilRDATWriter(const DxilModule &module, uint32_t InfoVersion = 0)
  1101. : m_Module(module), m_RDATBuffer(), m_Parts(), m_FuncToResNameOffset() {
  1102. // It's important to keep the order of this update
  1103. m_Parts.emplace_back(llvm::make_unique<StringBufferPart>());
  1104. StringBufferPart &stringBufferPart = *reinterpret_cast<StringBufferPart*>(m_Parts.back().get());
  1105. UpdateResourceInfo(stringBufferPart);
  1106. UpdateFunctionInfo(stringBufferPart);
  1107. // Delete any empty parts:
  1108. std::vector<std::unique_ptr<RDATPart>>::iterator it = m_Parts.begin();
  1109. while (it != m_Parts.end()) {
  1110. if (it->get()->GetPartSize() == 0) {
  1111. it = m_Parts.erase(it);
  1112. }
  1113. else
  1114. it++;
  1115. }
  1116. }
  1117. uint32_t size() const override {
  1118. // header + offset array
  1119. uint32_t total = sizeof(RuntimeDataHeader) + m_Parts.size() * sizeof(uint32_t);
  1120. // For each part: part header + part size
  1121. for (auto &part : m_Parts)
  1122. total += sizeof(RuntimeDataPartHeader) + PSVALIGN4(part->GetPartSize());
  1123. return total;
  1124. }
  1125. void write(AbstractMemoryStream *pStream) override {
  1126. try {
  1127. m_RDATBuffer.resize(size(), 0);
  1128. CheckedWriter W(m_RDATBuffer.data(), m_RDATBuffer.size());
  1129. // write RDAT header
  1130. RuntimeDataHeader &header = W.Map<RuntimeDataHeader>();
  1131. header.Version = RDAT_Version_0;
  1132. header.PartCount = m_Parts.size();
  1133. // map offsets
  1134. uint32_t *offsets = W.MapArray<uint32_t>(header.PartCount);
  1135. // write parts
  1136. unsigned i = 0;
  1137. for (auto &part : m_Parts) {
  1138. offsets[i++] = W.GetOffset();
  1139. RuntimeDataPartHeader &partHeader = W.Map<RuntimeDataPartHeader>();
  1140. partHeader.Type = part->GetType();
  1141. partHeader.Size = PSVALIGN4(part->GetPartSize());
  1142. DXASSERT(partHeader.Size, "otherwise, failed to remove empty part");
  1143. char *bytes = W.MapArray<char>(partHeader.Size);
  1144. part->Write(bytes);
  1145. }
  1146. }
  1147. catch (CheckedWriter::exception e) {
  1148. throw hlsl::Exception(DXC_E_GENERAL_INTERNAL_ERROR, e.what());
  1149. }
  1150. ULONG cbWritten;
  1151. IFT(pStream->Write(m_RDATBuffer.data(), m_RDATBuffer.size(), &cbWritten));
  1152. DXASSERT_NOMSG(cbWritten == m_RDATBuffer.size());
  1153. }
  1154. };
  1155. DxilPartWriter *hlsl::NewPSVWriter(const DxilModule &M, uint32_t PSVVersion) {
  1156. return new DxilPSVWriter(M, PSVVersion);
  1157. }
  1158. DxilPartWriter *hlsl::NewRDATWriter(const DxilModule &M, uint32_t InfoVersion) {
  1159. return new DxilRDATWriter(M, InfoVersion);
  1160. }
  1161. class DxilContainerWriter_impl : public DxilContainerWriter {
  1162. private:
  1163. class DxilPart {
  1164. public:
  1165. DxilPartHeader Header;
  1166. WriteFn Write;
  1167. DxilPart(uint32_t fourCC, uint32_t size, WriteFn write) : Write(write) {
  1168. Header.PartFourCC = fourCC;
  1169. Header.PartSize = size;
  1170. }
  1171. };
  1172. llvm::SmallVector<DxilPart, 8> m_Parts;
  1173. public:
  1174. void AddPart(uint32_t FourCC, uint32_t Size, WriteFn Write) override {
  1175. m_Parts.emplace_back(FourCC, Size, Write);
  1176. }
  1177. uint32_t size() const override {
  1178. uint32_t partSize = 0;
  1179. for (auto &part : m_Parts) {
  1180. partSize += part.Header.PartSize;
  1181. }
  1182. return (uint32_t)GetDxilContainerSizeFromParts((uint32_t)m_Parts.size(), partSize);
  1183. }
  1184. void write(AbstractMemoryStream *pStream) override {
  1185. DxilContainerHeader header;
  1186. const uint32_t PartCount = (uint32_t)m_Parts.size();
  1187. uint32_t containerSizeInBytes = size();
  1188. InitDxilContainer(&header, PartCount, containerSizeInBytes);
  1189. IFT(pStream->Reserve(header.ContainerSizeInBytes));
  1190. IFT(WriteStreamValue(pStream, header));
  1191. uint32_t offset = sizeof(header) + (uint32_t)GetOffsetTableSize(PartCount);
  1192. for (auto &&part : m_Parts) {
  1193. IFT(WriteStreamValue(pStream, offset));
  1194. offset += sizeof(DxilPartHeader) + part.Header.PartSize;
  1195. }
  1196. for (auto &&part : m_Parts) {
  1197. IFT(WriteStreamValue(pStream, part.Header));
  1198. size_t start = pStream->GetPosition();
  1199. part.Write(pStream);
  1200. DXASSERT_LOCALVAR(start, pStream->GetPosition() - start == (size_t)part.Header.PartSize, "out of bound");
  1201. }
  1202. DXASSERT(containerSizeInBytes == (uint32_t)pStream->GetPosition(), "else stream size is incorrect");
  1203. }
  1204. };
  1205. DxilContainerWriter *hlsl::NewDxilContainerWriter() {
  1206. return new DxilContainerWriter_impl();
  1207. }
  1208. static bool HasDebugInfo(const Module &M) {
  1209. for (Module::const_named_metadata_iterator NMI = M.named_metadata_begin(),
  1210. NME = M.named_metadata_end();
  1211. NMI != NME; ++NMI) {
  1212. if (NMI->getName().startswith("llvm.dbg.")) {
  1213. return true;
  1214. }
  1215. }
  1216. return false;
  1217. }
  1218. static void GetPaddedProgramPartSize(AbstractMemoryStream *pStream,
  1219. uint32_t &bitcodeInUInt32,
  1220. uint32_t &bitcodePaddingBytes) {
  1221. bitcodeInUInt32 = pStream->GetPtrSize();
  1222. bitcodePaddingBytes = (bitcodeInUInt32 % 4);
  1223. bitcodeInUInt32 = (bitcodeInUInt32 / 4) + (bitcodePaddingBytes ? 1 : 0);
  1224. }
  1225. static void WriteProgramPart(const ShaderModel *pModel,
  1226. AbstractMemoryStream *pModuleBitcode,
  1227. AbstractMemoryStream *pStream) {
  1228. DXASSERT(pModel != nullptr, "else generation should have failed");
  1229. DxilProgramHeader programHeader;
  1230. uint32_t shaderVersion =
  1231. EncodeVersion(pModel->GetKind(), pModel->GetMajor(), pModel->GetMinor());
  1232. unsigned dxilMajor, dxilMinor;
  1233. pModel->GetDxilVersion(dxilMajor, dxilMinor);
  1234. uint32_t dxilVersion = DXIL::MakeDxilVersion(dxilMajor, dxilMinor);
  1235. InitProgramHeader(programHeader, shaderVersion, dxilVersion, pModuleBitcode->GetPtrSize());
  1236. uint32_t programInUInt32, programPaddingBytes;
  1237. GetPaddedProgramPartSize(pModuleBitcode, programInUInt32,
  1238. programPaddingBytes);
  1239. ULONG cbWritten;
  1240. IFT(WriteStreamValue(pStream, programHeader));
  1241. IFT(pStream->Write(pModuleBitcode->GetPtr(), pModuleBitcode->GetPtrSize(),
  1242. &cbWritten));
  1243. if (programPaddingBytes) {
  1244. uint32_t paddingValue = 0;
  1245. IFT(pStream->Write(&paddingValue, programPaddingBytes, &cbWritten));
  1246. }
  1247. }
  1248. void hlsl::SerializeDxilContainerForModule(DxilModule *pModule,
  1249. AbstractMemoryStream *pModuleBitcode,
  1250. AbstractMemoryStream *pFinalStream,
  1251. SerializeDxilFlags Flags) {
  1252. // TODO: add a flag to update the module and remove information that is not part
  1253. // of DXIL proper and is used only to assemble the container.
  1254. DXASSERT_NOMSG(pModule != nullptr);
  1255. DXASSERT_NOMSG(pModuleBitcode != nullptr);
  1256. DXASSERT_NOMSG(pFinalStream != nullptr);
  1257. unsigned ValMajor, ValMinor;
  1258. pModule->GetValidatorVersion(ValMajor, ValMinor);
  1259. if (ValMajor == 1 && ValMinor == 0)
  1260. Flags &= ~SerializeDxilFlags::IncludeDebugNamePart;
  1261. DxilContainerWriter_impl writer;
  1262. // Write the feature part.
  1263. DxilFeatureInfoWriter featureInfoWriter(*pModule);
  1264. writer.AddPart(DFCC_FeatureInfo, featureInfoWriter.size(), [&](AbstractMemoryStream *pStream) {
  1265. featureInfoWriter.write(pStream);
  1266. });
  1267. std::unique_ptr<DxilProgramSignatureWriter> pInputSigWriter = nullptr;
  1268. std::unique_ptr<DxilProgramSignatureWriter> pOutputSigWriter = nullptr;
  1269. std::unique_ptr<DxilProgramSignatureWriter> pPatchConstantSigWriter = nullptr;
  1270. if (!pModule->GetShaderModel()->IsLib()) {
  1271. DXIL::TessellatorDomain domain = DXIL::TessellatorDomain::Undefined;
  1272. if (pModule->GetShaderModel()->IsHS() || pModule->GetShaderModel()->IsDS())
  1273. domain = pModule->GetTessellatorDomain();
  1274. pInputSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1275. pModule->GetInputSignature(), domain,
  1276. /*IsInput*/ true,
  1277. /*UseMinPrecision*/ pModule->GetUseMinPrecision());
  1278. pOutputSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1279. pModule->GetOutputSignature(), domain,
  1280. /*IsInput*/ false,
  1281. /*UseMinPrecision*/ pModule->GetUseMinPrecision());
  1282. // Write the input and output signature parts.
  1283. writer.AddPart(DFCC_InputSignature, pInputSigWriter->size(),
  1284. [&](AbstractMemoryStream *pStream) {
  1285. pInputSigWriter->write(pStream);
  1286. });
  1287. writer.AddPart(DFCC_OutputSignature, pOutputSigWriter->size(),
  1288. [&](AbstractMemoryStream *pStream) {
  1289. pOutputSigWriter->write(pStream);
  1290. });
  1291. pPatchConstantSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1292. pModule->GetPatchConstantSignature(), domain,
  1293. /*IsInput*/ pModule->GetShaderModel()->IsDS(),
  1294. /*UseMinPrecision*/ pModule->GetUseMinPrecision());
  1295. if (pModule->GetPatchConstantSignature().GetElements().size()) {
  1296. writer.AddPart(DFCC_PatchConstantSignature,
  1297. pPatchConstantSigWriter->size(),
  1298. [&](AbstractMemoryStream *pStream) {
  1299. pPatchConstantSigWriter->write(pStream);
  1300. });
  1301. }
  1302. }
  1303. // Write the DxilPipelineStateValidation (PSV0) part.
  1304. std::unique_ptr<DxilRDATWriter> pRDATWriter = nullptr;
  1305. std::unique_ptr<DxilPSVWriter> pPSVWriter = nullptr;
  1306. unsigned int major, minor;
  1307. pModule->GetDxilVersion(major, minor);
  1308. if (pModule->GetShaderModel()->IsLib()) {
  1309. pRDATWriter = llvm::make_unique<DxilRDATWriter>(*pModule);
  1310. writer.AddPart(
  1311. DFCC_RuntimeData, pRDATWriter->size(),
  1312. [&](AbstractMemoryStream *pStream) { pRDATWriter->write(pStream); });
  1313. } else if (!pModule->GetShaderModel()->IsLib()) {
  1314. pPSVWriter = llvm::make_unique<DxilPSVWriter>(*pModule);
  1315. writer.AddPart(
  1316. DFCC_PipelineStateValidation, pPSVWriter->size(),
  1317. [&](AbstractMemoryStream *pStream) { pPSVWriter->write(pStream); });
  1318. }
  1319. // Write the root signature (RTS0) part.
  1320. DxilProgramRootSignatureWriter rootSigWriter(pModule->GetRootSignature());
  1321. CComPtr<AbstractMemoryStream> pInputProgramStream = pModuleBitcode;
  1322. if (!pModule->GetRootSignature().IsEmpty()) {
  1323. writer.AddPart(
  1324. DFCC_RootSignature, rootSigWriter.size(),
  1325. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  1326. pModule->StripRootSignatureFromMetadata();
  1327. pInputProgramStream.Release();
  1328. IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pInputProgramStream));
  1329. raw_stream_ostream outStream(pInputProgramStream.p);
  1330. WriteBitcodeToFile(pModule->GetModule(), outStream, true);
  1331. }
  1332. // If we have debug information present, serialize it to a debug part, then use the stripped version as the canonical program version.
  1333. CComPtr<AbstractMemoryStream> pProgramStream = pInputProgramStream;
  1334. const uint32_t DebugInfoNameHashLen = 32; // 32 chars of MD5
  1335. const uint32_t DebugInfoNameSuffix = 4; // '.lld'
  1336. const uint32_t DebugInfoNameNullAndPad = 4; // '\0\0\0\0'
  1337. CComPtr<AbstractMemoryStream> pHashStream;
  1338. if (HasDebugInfo(*pModule->GetModule())) {
  1339. uint32_t debugInUInt32, debugPaddingBytes;
  1340. GetPaddedProgramPartSize(pInputProgramStream, debugInUInt32, debugPaddingBytes);
  1341. if (Flags & SerializeDxilFlags::IncludeDebugInfoPart) {
  1342. writer.AddPart(DFCC_ShaderDebugInfoDXIL, debugInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
  1343. WriteProgramPart(pModule->GetShaderModel(), pInputProgramStream, pStream);
  1344. });
  1345. }
  1346. pProgramStream.Release();
  1347. llvm::StripDebugInfo(*pModule->GetModule());
  1348. pModule->StripDebugRelatedCode();
  1349. IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pProgramStream));
  1350. raw_stream_ostream outStream(pProgramStream.p);
  1351. WriteBitcodeToFile(pModule->GetModule(), outStream, true);
  1352. if (Flags & SerializeDxilFlags::IncludeDebugNamePart) {
  1353. // If the debug name should be specific to the sources, base the name on the debug
  1354. // bitcode, which will include the source references, line numbers, etc. Otherwise,
  1355. // do it exclusively on the target shader bitcode.
  1356. pHashStream = (int)(Flags & SerializeDxilFlags::DebugNameDependOnSource)
  1357. ? CComPtr<AbstractMemoryStream>(pModuleBitcode)
  1358. : CComPtr<AbstractMemoryStream>(pProgramStream);
  1359. const uint32_t DebugInfoContentLen =
  1360. sizeof(DxilShaderDebugName) + DebugInfoNameHashLen +
  1361. DebugInfoNameSuffix + DebugInfoNameNullAndPad;
  1362. writer.AddPart(DFCC_ShaderDebugName, DebugInfoContentLen, [&](AbstractMemoryStream *pStream) {
  1363. DxilShaderDebugName NameContent;
  1364. NameContent.Flags = 0;
  1365. NameContent.NameLength = DebugInfoNameHashLen + DebugInfoNameSuffix;
  1366. IFT(WriteStreamValue(pStream, NameContent));
  1367. ArrayRef<uint8_t> Data((uint8_t *)pHashStream->GetPtr(), pHashStream->GetPtrSize());
  1368. llvm::MD5 md5;
  1369. llvm::MD5::MD5Result md5Result;
  1370. SmallString<32> Hash;
  1371. md5.update(Data);
  1372. md5.final(md5Result);
  1373. md5.stringifyResult(md5Result, Hash);
  1374. ULONG cbWritten;
  1375. IFT(pStream->Write(Hash.data(), Hash.size(), &cbWritten));
  1376. const char SuffixAndPad[] = ".lld\0\0\0";
  1377. IFT(pStream->Write(SuffixAndPad, _countof(SuffixAndPad), &cbWritten));
  1378. });
  1379. }
  1380. }
  1381. // Compute padded bitcode size.
  1382. uint32_t programInUInt32, programPaddingBytes;
  1383. GetPaddedProgramPartSize(pProgramStream, programInUInt32, programPaddingBytes);
  1384. // Write the program part.
  1385. writer.AddPart(DFCC_DXIL, programInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
  1386. WriteProgramPart(pModule->GetShaderModel(), pProgramStream, pStream);
  1387. });
  1388. writer.write(pFinalStream);
  1389. }
  1390. void hlsl::SerializeDxilContainerForRootSignature(hlsl::RootSignatureHandle *pRootSigHandle,
  1391. AbstractMemoryStream *pFinalStream) {
  1392. DXASSERT_NOMSG(pRootSigHandle != nullptr);
  1393. DXASSERT_NOMSG(pFinalStream != nullptr);
  1394. DxilContainerWriter_impl writer;
  1395. // Write the root signature (RTS0) part.
  1396. DxilProgramRootSignatureWriter rootSigWriter(*pRootSigHandle);
  1397. if (!pRootSigHandle->IsEmpty()) {
  1398. writer.AddPart(
  1399. DFCC_RootSignature, rootSigWriter.size(),
  1400. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  1401. }
  1402. writer.write(pFinalStream);
  1403. }