| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525 |
- //===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass implements a simple loop reroller.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallBitVector.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AliasSetTracker.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpander.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- using namespace llvm;
- #define DEBUG_TYPE "loop-reroll"
- STATISTIC(NumRerolledLoops, "Number of rerolled loops");
- #if 0 // HLSL Change Starts - option pending
- static cl::opt<unsigned>
- MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
- cl::desc("The maximum increment for loop rerolling"));
- static cl::opt<unsigned>
- NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
- cl::Hidden,
- cl::desc("The maximum number of failures to tolerate"
- " during fuzzy matching. (default: 400)"));
- #else
- static const unsigned MaxInc = 2048;
- static const unsigned NumToleratedFailedMatches = 400;
- #endif // HLSL Change Ends
- // This loop re-rolling transformation aims to transform loops like this:
- //
- // int foo(int a);
- // void bar(int *x) {
- // for (int i = 0; i < 500; i += 3) {
- // foo(i);
- // foo(i+1);
- // foo(i+2);
- // }
- // }
- //
- // into a loop like this:
- //
- // void bar(int *x) {
- // for (int i = 0; i < 500; ++i)
- // foo(i);
- // }
- //
- // It does this by looking for loops that, besides the latch code, are composed
- // of isomorphic DAGs of instructions, with each DAG rooted at some increment
- // to the induction variable, and where each DAG is isomorphic to the DAG
- // rooted at the induction variable (excepting the sub-DAGs which root the
- // other induction-variable increments). In other words, we're looking for loop
- // bodies of the form:
- //
- // %iv = phi [ (preheader, ...), (body, %iv.next) ]
- // f(%iv)
- // %iv.1 = add %iv, 1 <-- a root increment
- // f(%iv.1)
- // %iv.2 = add %iv, 2 <-- a root increment
- // f(%iv.2)
- // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
- // f(%iv.scale_m_1)
- // ...
- // %iv.next = add %iv, scale
- // %cmp = icmp(%iv, ...)
- // br %cmp, header, exit
- //
- // where each f(i) is a set of instructions that, collectively, are a function
- // only of i (and other loop-invariant values).
- //
- // As a special case, we can also reroll loops like this:
- //
- // int foo(int);
- // void bar(int *x) {
- // for (int i = 0; i < 500; ++i) {
- // x[3*i] = foo(0);
- // x[3*i+1] = foo(0);
- // x[3*i+2] = foo(0);
- // }
- // }
- //
- // into this:
- //
- // void bar(int *x) {
- // for (int i = 0; i < 1500; ++i)
- // x[i] = foo(0);
- // }
- //
- // in which case, we're looking for inputs like this:
- //
- // %iv = phi [ (preheader, ...), (body, %iv.next) ]
- // %scaled.iv = mul %iv, scale
- // f(%scaled.iv)
- // %scaled.iv.1 = add %scaled.iv, 1
- // f(%scaled.iv.1)
- // %scaled.iv.2 = add %scaled.iv, 2
- // f(%scaled.iv.2)
- // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
- // f(%scaled.iv.scale_m_1)
- // ...
- // %iv.next = add %iv, 1
- // %cmp = icmp(%iv, ...)
- // br %cmp, header, exit
- namespace {
- enum IterationLimits {
- /// The maximum number of iterations that we'll try and reroll. This
- /// has to be less than 25 in order to fit into a SmallBitVector.
- IL_MaxRerollIterations = 16,
- /// The bitvector index used by loop induction variables and other
- /// instructions that belong to all iterations.
- IL_All,
- IL_End
- };
- class LoopReroll : public LoopPass {
- public:
- static char ID; // Pass ID, replacement for typeid
- LoopReroll() : LoopPass(ID) {
- initializeLoopRerollPass(*PassRegistry::getPassRegistry());
- }
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AliasAnalysis>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addRequired<ScalarEvolution>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- }
- protected:
- AliasAnalysis *AA;
- LoopInfo *LI;
- ScalarEvolution *SE;
- TargetLibraryInfo *TLI;
- DominatorTree *DT;
- typedef SmallVector<Instruction *, 16> SmallInstructionVector;
- typedef SmallSet<Instruction *, 16> SmallInstructionSet;
- // A chain of isomorphic instructions, indentified by a single-use PHI,
- // representing a reduction. Only the last value may be used outside the
- // loop.
- struct SimpleLoopReduction {
- SimpleLoopReduction(Instruction *P, Loop *L)
- : Valid(false), Instructions(1, P) {
- assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
- add(L);
- }
- bool valid() const {
- return Valid;
- }
- Instruction *getPHI() const {
- assert(Valid && "Using invalid reduction");
- return Instructions.front();
- }
- Instruction *getReducedValue() const {
- assert(Valid && "Using invalid reduction");
- return Instructions.back();
- }
- Instruction *get(size_t i) const {
- assert(Valid && "Using invalid reduction");
- return Instructions[i+1];
- }
- Instruction *operator [] (size_t i) const { return get(i); }
- // The size, ignoring the initial PHI.
- size_t size() const {
- assert(Valid && "Using invalid reduction");
- return Instructions.size()-1;
- }
- typedef SmallInstructionVector::iterator iterator;
- typedef SmallInstructionVector::const_iterator const_iterator;
- iterator begin() {
- assert(Valid && "Using invalid reduction");
- return std::next(Instructions.begin());
- }
- const_iterator begin() const {
- assert(Valid && "Using invalid reduction");
- return std::next(Instructions.begin());
- }
- iterator end() { return Instructions.end(); }
- const_iterator end() const { return Instructions.end(); }
- protected:
- bool Valid;
- SmallInstructionVector Instructions;
- void add(Loop *L);
- };
- // The set of all reductions, and state tracking of possible reductions
- // during loop instruction processing.
- struct ReductionTracker {
- typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
- // Add a new possible reduction.
- void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
- // Setup to track possible reductions corresponding to the provided
- // rerolling scale. Only reductions with a number of non-PHI instructions
- // that is divisible by the scale are considered. Three instructions sets
- // are filled in:
- // - A set of all possible instructions in eligible reductions.
- // - A set of all PHIs in eligible reductions
- // - A set of all reduced values (last instructions) in eligible
- // reductions.
- void restrictToScale(uint64_t Scale,
- SmallInstructionSet &PossibleRedSet,
- SmallInstructionSet &PossibleRedPHISet,
- SmallInstructionSet &PossibleRedLastSet) {
- PossibleRedIdx.clear();
- PossibleRedIter.clear();
- Reds.clear();
- for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
- if (PossibleReds[i].size() % Scale == 0) {
- PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
- PossibleRedPHISet.insert(PossibleReds[i].getPHI());
- PossibleRedSet.insert(PossibleReds[i].getPHI());
- PossibleRedIdx[PossibleReds[i].getPHI()] = i;
- for (Instruction *J : PossibleReds[i]) {
- PossibleRedSet.insert(J);
- PossibleRedIdx[J] = i;
- }
- }
- }
- // The functions below are used while processing the loop instructions.
- // Are the two instructions both from reductions, and furthermore, from
- // the same reduction?
- bool isPairInSame(Instruction *J1, Instruction *J2) {
- DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
- if (J1I != PossibleRedIdx.end()) {
- DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
- if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
- return true;
- }
- return false;
- }
- // The two provided instructions, the first from the base iteration, and
- // the second from iteration i, form a matched pair. If these are part of
- // a reduction, record that fact.
- void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
- if (PossibleRedIdx.count(J1)) {
- assert(PossibleRedIdx.count(J2) &&
- "Recording reduction vs. non-reduction instruction?");
- PossibleRedIter[J1] = 0;
- PossibleRedIter[J2] = i;
- int Idx = PossibleRedIdx[J1];
- assert(Idx == PossibleRedIdx[J2] &&
- "Recording pair from different reductions?");
- Reds.insert(Idx);
- }
- }
- // The functions below can be called after we've finished processing all
- // instructions in the loop, and we know which reductions were selected.
- // Is the provided instruction the PHI of a reduction selected for
- // rerolling?
- bool isSelectedPHI(Instruction *J) {
- if (!isa<PHINode>(J))
- return false;
- for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
- RI != RIE; ++RI) {
- int i = *RI;
- if (cast<Instruction>(J) == PossibleReds[i].getPHI())
- return true;
- }
- return false;
- }
- bool validateSelected();
- void replaceSelected();
- protected:
- // The vector of all possible reductions (for any scale).
- SmallReductionVector PossibleReds;
- DenseMap<Instruction *, int> PossibleRedIdx;
- DenseMap<Instruction *, int> PossibleRedIter;
- DenseSet<int> Reds;
- };
- // A DAGRootSet models an induction variable being used in a rerollable
- // loop. For example,
- //
- // x[i*3+0] = y1
- // x[i*3+1] = y2
- // x[i*3+2] = y3
- //
- // Base instruction -> i*3
- // +---+----+
- // / | \
- // ST[y1] +1 +2 <-- Roots
- // | |
- // ST[y2] ST[y3]
- //
- // There may be multiple DAGRoots, for example:
- //
- // x[i*2+0] = ... (1)
- // x[i*2+1] = ... (1)
- // x[i*2+4] = ... (2)
- // x[i*2+5] = ... (2)
- // x[(i+1234)*2+5678] = ... (3)
- // x[(i+1234)*2+5679] = ... (3)
- //
- // The loop will be rerolled by adding a new loop induction variable,
- // one for the Base instruction in each DAGRootSet.
- //
- struct DAGRootSet {
- Instruction *BaseInst;
- SmallInstructionVector Roots;
- // The instructions between IV and BaseInst (but not including BaseInst).
- SmallInstructionSet SubsumedInsts;
- };
- // The set of all DAG roots, and state tracking of all roots
- // for a particular induction variable.
- struct DAGRootTracker {
- DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
- ScalarEvolution *SE, AliasAnalysis *AA,
- TargetLibraryInfo *TLI)
- : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), IV(IV) {}
- /// Stage 1: Find all the DAG roots for the induction variable.
- bool findRoots();
- /// Stage 2: Validate if the found roots are valid.
- bool validate(ReductionTracker &Reductions);
- /// Stage 3: Assuming validate() returned true, perform the
- /// replacement.
- /// @param IterCount The maximum iteration count of L.
- void replace(const SCEV *IterCount);
- protected:
- typedef MapVector<Instruction*, SmallBitVector> UsesTy;
- bool findRootsRecursive(Instruction *IVU,
- SmallInstructionSet SubsumedInsts);
- bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
- bool collectPossibleRoots(Instruction *Base,
- std::map<int64_t,Instruction*> &Roots);
- bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
- void collectInLoopUserSet(const SmallInstructionVector &Roots,
- const SmallInstructionSet &Exclude,
- const SmallInstructionSet &Final,
- DenseSet<Instruction *> &Users);
- void collectInLoopUserSet(Instruction *Root,
- const SmallInstructionSet &Exclude,
- const SmallInstructionSet &Final,
- DenseSet<Instruction *> &Users);
- UsesTy::iterator nextInstr(int Val, UsesTy &In,
- const SmallInstructionSet &Exclude,
- UsesTy::iterator *StartI=nullptr);
- bool isBaseInst(Instruction *I);
- bool isRootInst(Instruction *I);
- bool instrDependsOn(Instruction *I,
- UsesTy::iterator Start,
- UsesTy::iterator End);
- LoopReroll *Parent;
- // Members of Parent, replicated here for brevity.
- Loop *L;
- ScalarEvolution *SE;
- AliasAnalysis *AA;
- TargetLibraryInfo *TLI;
- // The loop induction variable.
- Instruction *IV;
- // Loop step amount.
- uint64_t Inc;
- // Loop reroll count; if Inc == 1, this records the scaling applied
- // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
- // If Inc is not 1, Scale = Inc.
- uint64_t Scale;
- // The roots themselves.
- SmallVector<DAGRootSet,16> RootSets;
- // All increment instructions for IV.
- SmallInstructionVector LoopIncs;
- // Map of all instructions in the loop (in order) to the iterations
- // they are used in (or specially, IL_All for instructions
- // used in the loop increment mechanism).
- UsesTy Uses;
- };
- void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
- void collectPossibleReductions(Loop *L,
- ReductionTracker &Reductions);
- bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
- ReductionTracker &Reductions);
- };
- }
- char LoopReroll::ID = 0;
- INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
- INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
- Pass *llvm::createLoopRerollPass() {
- return new LoopReroll;
- }
- // Returns true if the provided instruction is used outside the given loop.
- // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
- // non-loop blocks to be outside the loop.
- static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
- for (User *U : I->users()) {
- if (!L->contains(cast<Instruction>(U)))
- return true;
- }
- return false;
- }
- // Collect the list of loop induction variables with respect to which it might
- // be possible to reroll the loop.
- void LoopReroll::collectPossibleIVs(Loop *L,
- SmallInstructionVector &PossibleIVs) {
- BasicBlock *Header = L->getHeader();
- for (BasicBlock::iterator I = Header->begin(),
- IE = Header->getFirstInsertionPt(); I != IE; ++I) {
- if (!isa<PHINode>(I))
- continue;
- if (!I->getType()->isIntegerTy())
- continue;
- if (const SCEVAddRecExpr *PHISCEV =
- dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) {
- if (PHISCEV->getLoop() != L)
- continue;
- if (!PHISCEV->isAffine())
- continue;
- if (const SCEVConstant *IncSCEV =
- dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) {
- if (!IncSCEV->getValue()->getValue().isStrictlyPositive())
- continue;
- if (IncSCEV->getValue()->uge(MaxInc))
- continue;
- DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " <<
- *PHISCEV << "\n");
- PossibleIVs.push_back(I);
- }
- }
- }
- }
- // Add the remainder of the reduction-variable chain to the instruction vector
- // (the initial PHINode has already been added). If successful, the object is
- // marked as valid.
- void LoopReroll::SimpleLoopReduction::add(Loop *L) {
- assert(!Valid && "Cannot add to an already-valid chain");
- // The reduction variable must be a chain of single-use instructions
- // (including the PHI), except for the last value (which is used by the PHI
- // and also outside the loop).
- Instruction *C = Instructions.front();
- if (C->user_empty())
- return;
- do {
- C = cast<Instruction>(*C->user_begin());
- if (C->hasOneUse()) {
- if (!C->isBinaryOp())
- return;
- if (!(isa<PHINode>(Instructions.back()) ||
- C->isSameOperationAs(Instructions.back())))
- return;
- Instructions.push_back(C);
- }
- } while (C->hasOneUse());
- if (Instructions.size() < 2 ||
- !C->isSameOperationAs(Instructions.back()) ||
- C->use_empty())
- return;
- // C is now the (potential) last instruction in the reduction chain.
- for (User *U : C->users()) {
- // The only in-loop user can be the initial PHI.
- if (L->contains(cast<Instruction>(U)))
- if (cast<Instruction>(U) != Instructions.front())
- return;
- }
- Instructions.push_back(C);
- Valid = true;
- }
- // Collect the vector of possible reduction variables.
- void LoopReroll::collectPossibleReductions(Loop *L,
- ReductionTracker &Reductions) {
- BasicBlock *Header = L->getHeader();
- for (BasicBlock::iterator I = Header->begin(),
- IE = Header->getFirstInsertionPt(); I != IE; ++I) {
- if (!isa<PHINode>(I))
- continue;
- if (!I->getType()->isSingleValueType())
- continue;
- SimpleLoopReduction SLR(I, L);
- if (!SLR.valid())
- continue;
- DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
- SLR.size() << " chained instructions)\n");
- Reductions.addSLR(SLR);
- }
- }
- // Collect the set of all users of the provided root instruction. This set of
- // users contains not only the direct users of the root instruction, but also
- // all users of those users, and so on. There are two exceptions:
- //
- // 1. Instructions in the set of excluded instructions are never added to the
- // use set (even if they are users). This is used, for example, to exclude
- // including root increments in the use set of the primary IV.
- //
- // 2. Instructions in the set of final instructions are added to the use set
- // if they are users, but their users are not added. This is used, for
- // example, to prevent a reduction update from forcing all later reduction
- // updates into the use set.
- void LoopReroll::DAGRootTracker::collectInLoopUserSet(
- Instruction *Root, const SmallInstructionSet &Exclude,
- const SmallInstructionSet &Final,
- DenseSet<Instruction *> &Users) {
- SmallInstructionVector Queue(1, Root);
- while (!Queue.empty()) {
- Instruction *I = Queue.pop_back_val();
- if (!Users.insert(I).second)
- continue;
- if (!Final.count(I))
- for (Use &U : I->uses()) {
- Instruction *User = cast<Instruction>(U.getUser());
- if (PHINode *PN = dyn_cast<PHINode>(User)) {
- // Ignore "wrap-around" uses to PHIs of this loop's header.
- if (PN->getIncomingBlock(U) == L->getHeader())
- continue;
- }
- if (L->contains(User) && !Exclude.count(User)) {
- Queue.push_back(User);
- }
- }
- // We also want to collect single-user "feeder" values.
- for (User::op_iterator OI = I->op_begin(),
- OIE = I->op_end(); OI != OIE; ++OI) {
- if (Instruction *Op = dyn_cast<Instruction>(*OI))
- if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
- !Final.count(Op))
- Queue.push_back(Op);
- }
- }
- }
- // Collect all of the users of all of the provided root instructions (combined
- // into a single set).
- void LoopReroll::DAGRootTracker::collectInLoopUserSet(
- const SmallInstructionVector &Roots,
- const SmallInstructionSet &Exclude,
- const SmallInstructionSet &Final,
- DenseSet<Instruction *> &Users) {
- for (SmallInstructionVector::const_iterator I = Roots.begin(),
- IE = Roots.end(); I != IE; ++I)
- collectInLoopUserSet(*I, Exclude, Final, Users);
- }
- static bool isSimpleLoadStore(Instruction *I) {
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return LI->isSimple();
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return SI->isSimple();
- if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
- return !MI->isVolatile();
- return false;
- }
- /// Return true if IVU is a "simple" arithmetic operation.
- /// This is used for narrowing the search space for DAGRoots; only arithmetic
- /// and GEPs can be part of a DAGRoot.
- static bool isSimpleArithmeticOp(User *IVU) {
- if (Instruction *I = dyn_cast<Instruction>(IVU)) {
- switch (I->getOpcode()) {
- default: return false;
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::Shl:
- case Instruction::AShr:
- case Instruction::LShr:
- case Instruction::GetElementPtr:
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- return true;
- }
- }
- return false;
- }
- static bool isLoopIncrement(User *U, Instruction *IV) {
- BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
- if (!BO || BO->getOpcode() != Instruction::Add)
- return false;
- for (auto *UU : BO->users()) {
- PHINode *PN = dyn_cast<PHINode>(UU);
- if (PN && PN == IV)
- return true;
- }
- return false;
- }
- bool LoopReroll::DAGRootTracker::
- collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
- SmallInstructionVector BaseUsers;
- for (auto *I : Base->users()) {
- ConstantInt *CI = nullptr;
- if (isLoopIncrement(I, IV)) {
- LoopIncs.push_back(cast<Instruction>(I));
- continue;
- }
- // The root nodes must be either GEPs, ORs or ADDs.
- if (auto *BO = dyn_cast<BinaryOperator>(I)) {
- if (BO->getOpcode() == Instruction::Add ||
- BO->getOpcode() == Instruction::Or)
- CI = dyn_cast<ConstantInt>(BO->getOperand(1));
- } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
- Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
- CI = dyn_cast<ConstantInt>(LastOperand);
- }
- if (!CI) {
- if (Instruction *II = dyn_cast<Instruction>(I)) {
- BaseUsers.push_back(II);
- continue;
- } else {
- DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I << "\n");
- return false;
- }
- }
- int64_t V = CI->getValue().getSExtValue();
- if (Roots.find(V) != Roots.end())
- // No duplicates, please.
- return false;
- // FIXME: Add support for negative values.
- if (V < 0) {
- DEBUG(dbgs() << "LRR: Aborting due to negative value: " << V << "\n");
- return false;
- }
- Roots[V] = cast<Instruction>(I);
- }
- if (Roots.empty())
- return false;
- // If we found non-loop-inc, non-root users of Base, assume they are
- // for the zeroth root index. This is because "add %a, 0" gets optimized
- // away.
- if (BaseUsers.size()) {
- if (Roots.find(0) != Roots.end()) {
- DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
- return false;
- }
- Roots[0] = Base;
- }
- // Calculate the number of users of the base, or lowest indexed, iteration.
- unsigned NumBaseUses = BaseUsers.size();
- if (NumBaseUses == 0)
- NumBaseUses = Roots.begin()->second->getNumUses();
-
- // Check that every node has the same number of users.
- for (auto &KV : Roots) {
- if (KV.first == 0)
- continue;
- if (KV.second->getNumUses() != NumBaseUses) {
- DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
- << "#Base=" << NumBaseUses << ", #Root=" <<
- KV.second->getNumUses() << "\n");
- return false;
- }
- }
- return true;
- }
- bool LoopReroll::DAGRootTracker::
- findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
- // Does the user look like it could be part of a root set?
- // All its users must be simple arithmetic ops.
- if (I->getNumUses() > IL_MaxRerollIterations)
- return false;
- if ((I->getOpcode() == Instruction::Mul ||
- I->getOpcode() == Instruction::PHI) &&
- I != IV &&
- findRootsBase(I, SubsumedInsts))
- return true;
- SubsumedInsts.insert(I);
- for (User *V : I->users()) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (std::find(LoopIncs.begin(), LoopIncs.end(), I) != LoopIncs.end())
- continue;
- if (!I || !isSimpleArithmeticOp(I) ||
- !findRootsRecursive(I, SubsumedInsts))
- return false;
- }
- return true;
- }
- bool LoopReroll::DAGRootTracker::
- findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
- // The base instruction needs to be a multiply so
- // that we can erase it.
- if (IVU->getOpcode() != Instruction::Mul &&
- IVU->getOpcode() != Instruction::PHI)
- return false;
- std::map<int64_t, Instruction*> V;
- if (!collectPossibleRoots(IVU, V))
- return false;
- // If we didn't get a root for index zero, then IVU must be
- // subsumed.
- if (V.find(0) == V.end())
- SubsumedInsts.insert(IVU);
- // Partition the vector into monotonically increasing indexes.
- DAGRootSet DRS;
- DRS.BaseInst = nullptr;
- for (auto &KV : V) {
- if (!DRS.BaseInst) {
- DRS.BaseInst = KV.second;
- DRS.SubsumedInsts = SubsumedInsts;
- } else if (DRS.Roots.empty()) {
- DRS.Roots.push_back(KV.second);
- } else if (V.find(KV.first - 1) != V.end()) {
- DRS.Roots.push_back(KV.second);
- } else {
- // Linear sequence terminated.
- RootSets.push_back(DRS);
- DRS.BaseInst = KV.second;
- DRS.SubsumedInsts = SubsumedInsts;
- DRS.Roots.clear();
- }
- }
- RootSets.push_back(DRS);
- return true;
- }
- bool LoopReroll::DAGRootTracker::findRoots() {
- const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(IV));
- Inc = cast<SCEVConstant>(RealIVSCEV->getOperand(1))->
- getValue()->getZExtValue();
- assert(RootSets.empty() && "Unclean state!");
- if (Inc == 1) {
- for (auto *IVU : IV->users()) {
- if (isLoopIncrement(IVU, IV))
- LoopIncs.push_back(cast<Instruction>(IVU));
- }
- if (!findRootsRecursive(IV, SmallInstructionSet()))
- return false;
- LoopIncs.push_back(IV);
- } else {
- if (!findRootsBase(IV, SmallInstructionSet()))
- return false;
- }
- // Ensure all sets have the same size.
- if (RootSets.empty()) {
- DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
- return false;
- }
- for (auto &V : RootSets) {
- if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
- DEBUG(dbgs()
- << "LRR: Aborting because not all root sets have the same size\n");
- return false;
- }
- }
- // And ensure all loop iterations are consecutive. We rely on std::map
- // providing ordered traversal.
- for (auto &V : RootSets) {
- const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(V.BaseInst));
- if (!ADR)
- return false;
- // Consider a DAGRootSet with N-1 roots (so N different values including
- // BaseInst).
- // Define d = Roots[0] - BaseInst, which should be the same as
- // Roots[I] - Roots[I-1] for all I in [1..N).
- // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
- // loop iteration J.
- //
- // Now, For the loop iterations to be consecutive:
- // D = d * N
- unsigned N = V.Roots.size() + 1;
- const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(V.Roots[0]), ADR);
- const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
- if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) {
- DEBUG(dbgs() << "LRR: Aborting because iterations are not consecutive\n");
- return false;
- }
- }
- Scale = RootSets[0].Roots.size() + 1;
- if (Scale > IL_MaxRerollIterations) {
- DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
- << "#Found=" << Scale << ", #Max=" << IL_MaxRerollIterations
- << "\n");
- return false;
- }
- DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale << "\n");
- return true;
- }
- bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
- // Populate the MapVector with all instructions in the block, in order first,
- // so we can iterate over the contents later in perfect order.
- for (auto &I : *L->getHeader()) {
- Uses[&I].resize(IL_End);
- }
- SmallInstructionSet Exclude;
- for (auto &DRS : RootSets) {
- Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
- Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
- Exclude.insert(DRS.BaseInst);
- }
- Exclude.insert(LoopIncs.begin(), LoopIncs.end());
- for (auto &DRS : RootSets) {
- DenseSet<Instruction*> VBase;
- collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
- for (auto *I : VBase) {
- Uses[I].set(0);
- }
- unsigned Idx = 1;
- for (auto *Root : DRS.Roots) {
- DenseSet<Instruction*> V;
- collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
- // While we're here, check the use sets are the same size.
- if (V.size() != VBase.size()) {
- DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
- return false;
- }
- for (auto *I : V) {
- Uses[I].set(Idx);
- }
- ++Idx;
- }
- // Make sure our subsumed instructions are remembered too.
- for (auto *I : DRS.SubsumedInsts) {
- Uses[I].set(IL_All);
- }
- }
- // Make sure the loop increments are also accounted for.
- Exclude.clear();
- for (auto &DRS : RootSets) {
- Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
- Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
- Exclude.insert(DRS.BaseInst);
- }
- DenseSet<Instruction*> V;
- collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
- for (auto *I : V) {
- Uses[I].set(IL_All);
- }
- return true;
- }
- /// Get the next instruction in "In" that is a member of set Val.
- /// Start searching from StartI, and do not return anything in Exclude.
- /// If StartI is not given, start from In.begin().
- LoopReroll::DAGRootTracker::UsesTy::iterator
- LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
- const SmallInstructionSet &Exclude,
- UsesTy::iterator *StartI) {
- UsesTy::iterator I = StartI ? *StartI : In.begin();
- while (I != In.end() && (I->second.test(Val) == 0 ||
- Exclude.count(I->first) != 0))
- ++I;
- return I;
- }
- bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
- for (auto &DRS : RootSets) {
- if (DRS.BaseInst == I)
- return true;
- }
- return false;
- }
- bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
- for (auto &DRS : RootSets) {
- if (std::find(DRS.Roots.begin(), DRS.Roots.end(), I) != DRS.Roots.end())
- return true;
- }
- return false;
- }
- /// Return true if instruction I depends on any instruction between
- /// Start and End.
- bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
- UsesTy::iterator Start,
- UsesTy::iterator End) {
- for (auto *U : I->users()) {
- for (auto It = Start; It != End; ++It)
- if (U == It->first)
- return true;
- }
- return false;
- }
- bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
- // We now need to check for equivalence of the use graph of each root with
- // that of the primary induction variable (excluding the roots). Our goal
- // here is not to solve the full graph isomorphism problem, but rather to
- // catch common cases without a lot of work. As a result, we will assume
- // that the relative order of the instructions in each unrolled iteration
- // is the same (although we will not make an assumption about how the
- // different iterations are intermixed). Note that while the order must be
- // the same, the instructions may not be in the same basic block.
- // An array of just the possible reductions for this scale factor. When we
- // collect the set of all users of some root instructions, these reduction
- // instructions are treated as 'final' (their uses are not considered).
- // This is important because we don't want the root use set to search down
- // the reduction chain.
- SmallInstructionSet PossibleRedSet;
- SmallInstructionSet PossibleRedLastSet;
- SmallInstructionSet PossibleRedPHISet;
- Reductions.restrictToScale(Scale, PossibleRedSet,
- PossibleRedPHISet, PossibleRedLastSet);
- // Populate "Uses" with where each instruction is used.
- if (!collectUsedInstructions(PossibleRedSet))
- return false;
- // Make sure we mark the reduction PHIs as used in all iterations.
- for (auto *I : PossibleRedPHISet) {
- Uses[I].set(IL_All);
- }
- // Make sure all instructions in the loop are in one and only one
- // set.
- for (auto &KV : Uses) {
- if (KV.second.count() != 1) {
- DEBUG(dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
- << *KV.first << " (#uses=" << KV.second.count() << ")\n");
- return false;
- }
- }
- DEBUG(
- for (auto &KV : Uses) {
- dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
- }
- );
- for (unsigned Iter = 1; Iter < Scale; ++Iter) {
- // In addition to regular aliasing information, we need to look for
- // instructions from later (future) iterations that have side effects
- // preventing us from reordering them past other instructions with side
- // effects.
- bool FutureSideEffects = false;
- AliasSetTracker AST(*AA);
- // The map between instructions in f(%iv.(i+1)) and f(%iv).
- DenseMap<Value *, Value *> BaseMap;
- // Compare iteration Iter to the base.
- SmallInstructionSet Visited;
- auto BaseIt = nextInstr(0, Uses, Visited);
- auto RootIt = nextInstr(Iter, Uses, Visited);
- auto LastRootIt = Uses.begin();
- while (BaseIt != Uses.end() && RootIt != Uses.end()) {
- Instruction *BaseInst = BaseIt->first;
- Instruction *RootInst = RootIt->first;
- // Skip over the IV or root instructions; only match their users.
- bool Continue = false;
- if (isBaseInst(BaseInst)) {
- Visited.insert(BaseInst);
- BaseIt = nextInstr(0, Uses, Visited);
- Continue = true;
- }
- if (isRootInst(RootInst)) {
- LastRootIt = RootIt;
- Visited.insert(RootInst);
- RootIt = nextInstr(Iter, Uses, Visited);
- Continue = true;
- }
- if (Continue) continue;
- if (!BaseInst->isSameOperationAs(RootInst)) {
- // Last chance saloon. We don't try and solve the full isomorphism
- // problem, but try and at least catch the case where two instructions
- // *of different types* are round the wrong way. We won't be able to
- // efficiently tell, given two ADD instructions, which way around we
- // should match them, but given an ADD and a SUB, we can at least infer
- // which one is which.
- //
- // This should allow us to deal with a greater subset of the isomorphism
- // problem. It does however change a linear algorithm into a quadratic
- // one, so limit the number of probes we do.
- auto TryIt = RootIt;
- unsigned N = NumToleratedFailedMatches;
- while (TryIt != Uses.end() &&
- !BaseInst->isSameOperationAs(TryIt->first) &&
- N--) {
- ++TryIt;
- TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
- }
- if (TryIt == Uses.end() || TryIt == RootIt ||
- instrDependsOn(TryIt->first, RootIt, TryIt)) {
- DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
- " vs. " << *RootInst << "\n");
- return false;
- }
-
- RootIt = TryIt;
- RootInst = TryIt->first;
- }
- // All instructions between the last root and this root
- // may belong to some other iteration. If they belong to a
- // future iteration, then they're dangerous to alias with.
- //
- // Note that because we allow a limited amount of flexibility in the order
- // that we visit nodes, LastRootIt might be *before* RootIt, in which
- // case we've already checked this set of instructions so we shouldn't
- // do anything.
- for (; LastRootIt < RootIt; ++LastRootIt) {
- Instruction *I = LastRootIt->first;
- if (LastRootIt->second.find_first() < (int)Iter)
- continue;
- if (I->mayWriteToMemory())
- AST.add(I);
- // Note: This is specifically guarded by a check on isa<PHINode>,
- // which while a valid (somewhat arbitrary) micro-optimization, is
- // needed because otherwise isSafeToSpeculativelyExecute returns
- // false on PHI nodes.
- if (!isa<PHINode>(I) && !isSimpleLoadStore(I) &&
- !isSafeToSpeculativelyExecute(I))
- // Intervening instructions cause side effects.
- FutureSideEffects = true;
- }
- // Make sure that this instruction, which is in the use set of this
- // root instruction, does not also belong to the base set or the set of
- // some other root instruction.
- if (RootIt->second.count() > 1) {
- DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
- " vs. " << *RootInst << " (prev. case overlap)\n");
- return false;
- }
- // Make sure that we don't alias with any instruction in the alias set
- // tracker. If we do, then we depend on a future iteration, and we
- // can't reroll.
- if (RootInst->mayReadFromMemory())
- for (auto &K : AST) {
- if (K.aliasesUnknownInst(RootInst, *AA)) {
- DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
- " vs. " << *RootInst << " (depends on future store)\n");
- return false;
- }
- }
- // If we've past an instruction from a future iteration that may have
- // side effects, and this instruction might also, then we can't reorder
- // them, and this matching fails. As an exception, we allow the alias
- // set tracker to handle regular (simple) load/store dependencies.
- if (FutureSideEffects && ((!isSimpleLoadStore(BaseInst) &&
- !isSafeToSpeculativelyExecute(BaseInst)) ||
- (!isSimpleLoadStore(RootInst) &&
- !isSafeToSpeculativelyExecute(RootInst)))) {
- DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
- " vs. " << *RootInst <<
- " (side effects prevent reordering)\n");
- return false;
- }
- // For instructions that are part of a reduction, if the operation is
- // associative, then don't bother matching the operands (because we
- // already know that the instructions are isomorphic, and the order
- // within the iteration does not matter). For non-associative reductions,
- // we do need to match the operands, because we need to reject
- // out-of-order instructions within an iteration!
- // For example (assume floating-point addition), we need to reject this:
- // x += a[i]; x += b[i];
- // x += a[i+1]; x += b[i+1];
- // x += b[i+2]; x += a[i+2];
- bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
- if (!(InReduction && BaseInst->isAssociative())) {
- bool Swapped = false, SomeOpMatched = false;
- for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
- Value *Op2 = RootInst->getOperand(j);
- // If this is part of a reduction (and the operation is not
- // associatve), then we match all operands, but not those that are
- // part of the reduction.
- if (InReduction)
- if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
- if (Reductions.isPairInSame(RootInst, Op2I))
- continue;
- DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
- if (BMI != BaseMap.end()) {
- Op2 = BMI->second;
- } else {
- for (auto &DRS : RootSets) {
- if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
- Op2 = DRS.BaseInst;
- break;
- }
- }
- }
- if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
- // If we've not already decided to swap the matched operands, and
- // we've not already matched our first operand (note that we could
- // have skipped matching the first operand because it is part of a
- // reduction above), and the instruction is commutative, then try
- // the swapped match.
- if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
- BaseInst->getOperand(!j) == Op2) {
- Swapped = true;
- } else {
- DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
- << " vs. " << *RootInst << " (operand " << j << ")\n");
- return false;
- }
- }
- SomeOpMatched = true;
- }
- }
- if ((!PossibleRedLastSet.count(BaseInst) &&
- hasUsesOutsideLoop(BaseInst, L)) ||
- (!PossibleRedLastSet.count(RootInst) &&
- hasUsesOutsideLoop(RootInst, L))) {
- DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
- " vs. " << *RootInst << " (uses outside loop)\n");
- return false;
- }
- Reductions.recordPair(BaseInst, RootInst, Iter);
- BaseMap.insert(std::make_pair(RootInst, BaseInst));
- LastRootIt = RootIt;
- Visited.insert(BaseInst);
- Visited.insert(RootInst);
- BaseIt = nextInstr(0, Uses, Visited);
- RootIt = nextInstr(Iter, Uses, Visited);
- }
- assert (BaseIt == Uses.end() && RootIt == Uses.end() &&
- "Mismatched set sizes!");
- }
- DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
- *IV << "\n");
- return true;
- }
- void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) {
- BasicBlock *Header = L->getHeader();
- // Remove instructions associated with non-base iterations.
- for (BasicBlock::reverse_iterator J = Header->rbegin();
- J != Header->rend();) {
- unsigned I = Uses[&*J].find_first();
- if (I > 0 && I < IL_All) {
- Instruction *D = &*J;
- DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
- D->eraseFromParent();
- continue;
- }
- ++J;
- }
- const DataLayout &DL = Header->getModule()->getDataLayout();
- // We need to create a new induction variable for each different BaseInst.
- for (auto &DRS : RootSets) {
- // Insert the new induction variable.
- const SCEVAddRecExpr *RealIVSCEV =
- cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
- const SCEV *Start = RealIVSCEV->getStart();
- const SCEVAddRecExpr *H = cast<SCEVAddRecExpr>
- (SE->getAddRecExpr(Start,
- SE->getConstant(RealIVSCEV->getType(), 1),
- L, SCEV::FlagAnyWrap));
- { // Limit the lifetime of SCEVExpander.
- SCEVExpander Expander(*SE, DL, "reroll");
- Value *NewIV = Expander.expandCodeFor(H, IV->getType(), Header->begin());
- for (auto &KV : Uses) {
- if (KV.second.find_first() == 0)
- KV.first->replaceUsesOfWith(DRS.BaseInst, NewIV);
- }
- if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
- // FIXME: Why do we need this check?
- if (Uses[BI].find_first() == IL_All) {
- const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
- // Iteration count SCEV minus 1
- const SCEV *ICMinus1SCEV =
- SE->getMinusSCEV(ICSCEV, SE->getConstant(ICSCEV->getType(), 1));
- Value *ICMinus1; // Iteration count minus 1
- if (isa<SCEVConstant>(ICMinus1SCEV)) {
- ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(), BI);
- } else {
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!Preheader)
- Preheader = InsertPreheaderForLoop(L, Parent);
- ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(),
- Preheader->getTerminator());
- }
- Value *Cond =
- new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinus1, "exitcond");
- BI->setCondition(Cond);
- if (BI->getSuccessor(1) != Header)
- BI->swapSuccessors();
- }
- }
- }
- }
- SimplifyInstructionsInBlock(Header, TLI);
- DeleteDeadPHIs(Header, TLI);
- }
- // Validate the selected reductions. All iterations must have an isomorphic
- // part of the reduction chain and, for non-associative reductions, the chain
- // entries must appear in order.
- bool LoopReroll::ReductionTracker::validateSelected() {
- // For a non-associative reduction, the chain entries must appear in order.
- for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
- RI != RIE; ++RI) {
- int i = *RI;
- int PrevIter = 0, BaseCount = 0, Count = 0;
- for (Instruction *J : PossibleReds[i]) {
- // Note that all instructions in the chain must have been found because
- // all instructions in the function must have been assigned to some
- // iteration.
- int Iter = PossibleRedIter[J];
- if (Iter != PrevIter && Iter != PrevIter + 1 &&
- !PossibleReds[i].getReducedValue()->isAssociative()) {
- DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
- J << "\n");
- return false;
- }
- if (Iter != PrevIter) {
- if (Count != BaseCount) {
- DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
- " reduction use count " << Count <<
- " is not equal to the base use count " <<
- BaseCount << "\n");
- return false;
- }
- Count = 0;
- }
- ++Count;
- if (Iter == 0)
- ++BaseCount;
- PrevIter = Iter;
- }
- }
- return true;
- }
- // For all selected reductions, remove all parts except those in the first
- // iteration (and the PHI). Replace outside uses of the reduced value with uses
- // of the first-iteration reduced value (in other words, reroll the selected
- // reductions).
- void LoopReroll::ReductionTracker::replaceSelected() {
- // Fixup reductions to refer to the last instruction associated with the
- // first iteration (not the last).
- for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
- RI != RIE; ++RI) {
- int i = *RI;
- int j = 0;
- for (int e = PossibleReds[i].size(); j != e; ++j)
- if (PossibleRedIter[PossibleReds[i][j]] != 0) {
- --j;
- break;
- }
- // Replace users with the new end-of-chain value.
- SmallInstructionVector Users;
- for (User *U : PossibleReds[i].getReducedValue()->users()) {
- Users.push_back(cast<Instruction>(U));
- }
- for (SmallInstructionVector::iterator J = Users.begin(),
- JE = Users.end(); J != JE; ++J)
- (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
- PossibleReds[i][j]);
- }
- }
- // Reroll the provided loop with respect to the provided induction variable.
- // Generally, we're looking for a loop like this:
- //
- // %iv = phi [ (preheader, ...), (body, %iv.next) ]
- // f(%iv)
- // %iv.1 = add %iv, 1 <-- a root increment
- // f(%iv.1)
- // %iv.2 = add %iv, 2 <-- a root increment
- // f(%iv.2)
- // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
- // f(%iv.scale_m_1)
- // ...
- // %iv.next = add %iv, scale
- // %cmp = icmp(%iv, ...)
- // br %cmp, header, exit
- //
- // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
- // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
- // be intermixed with eachother. The restriction imposed by this algorithm is
- // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
- // etc. be the same.
- //
- // First, we collect the use set of %iv, excluding the other increment roots.
- // This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
- // times, having collected the use set of f(%iv.(i+1)), during which we:
- // - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
- // the next unmatched instruction in f(%iv.(i+1)).
- // - Ensure that both matched instructions don't have any external users
- // (with the exception of last-in-chain reduction instructions).
- // - Track the (aliasing) write set, and other side effects, of all
- // instructions that belong to future iterations that come before the matched
- // instructions. If the matched instructions read from that write set, then
- // f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
- // f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
- // if any of these future instructions had side effects (could not be
- // speculatively executed), and so do the matched instructions, when we
- // cannot reorder those side-effect-producing instructions, and rerolling
- // fails.
- //
- // Finally, we make sure that all loop instructions are either loop increment
- // roots, belong to simple latch code, parts of validated reductions, part of
- // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
- // have been validated), then we reroll the loop.
- bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
- const SCEV *IterCount,
- ReductionTracker &Reductions) {
- DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI);
- if (!DAGRoots.findRoots())
- return false;
- DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
- *IV << "\n");
-
- if (!DAGRoots.validate(Reductions))
- return false;
- if (!Reductions.validateSelected())
- return false;
- // At this point, we've validated the rerolling, and we're committed to
- // making changes!
- Reductions.replaceSelected();
- DAGRoots.replace(IterCount);
- ++NumRerolledLoops;
- return true;
- }
- bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
- if (skipOptnoneFunction(L))
- return false;
- AA = &getAnalysis<AliasAnalysis>();
- LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- SE = &getAnalysis<ScalarEvolution>();
- TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- BasicBlock *Header = L->getHeader();
- DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
- "] Loop %" << Header->getName() << " (" <<
- L->getNumBlocks() << " block(s))\n");
- bool Changed = false;
- // For now, we'll handle only single BB loops.
- if (L->getNumBlocks() > 1)
- return Changed;
- if (!SE->hasLoopInvariantBackedgeTakenCount(L))
- return Changed;
- const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
- const SCEV *IterCount =
- SE->getAddExpr(LIBETC, SE->getConstant(LIBETC->getType(), 1));
- DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
- // First, we need to find the induction variable with respect to which we can
- // reroll (there may be several possible options).
- SmallInstructionVector PossibleIVs;
- collectPossibleIVs(L, PossibleIVs);
- if (PossibleIVs.empty()) {
- DEBUG(dbgs() << "LRR: No possible IVs found\n");
- return Changed;
- }
- ReductionTracker Reductions;
- collectPossibleReductions(L, Reductions);
- // For each possible IV, collect the associated possible set of 'root' nodes
- // (i+1, i+2, etc.).
- for (SmallInstructionVector::iterator I = PossibleIVs.begin(),
- IE = PossibleIVs.end(); I != IE; ++I)
- if (reroll(*I, L, Header, IterCount, Reductions)) {
- Changed = true;
- break;
- }
- return Changed;
- }
|