exit_value_tests.ll 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114
  1. ; Test that we can evaluate the exit values of various expression types. Since
  2. ; these loops all have predictable exit values we can replace the use outside
  3. ; of the loop with a closed-form computation, making the loop dead.
  4. ;
  5. ; RUN: opt < %s -indvars -loop-deletion -simplifycfg | \
  6. ; RUN: llvm-dis | not grep br
  7. define i32 @polynomial_constant() {
  8. ; <label>:0
  9. br label %Loop
  10. Loop: ; preds = %Loop, %0
  11. %A1 = phi i32 [ 0, %0 ], [ %A2, %Loop ] ; <i32> [#uses=3]
  12. %B1 = phi i32 [ 0, %0 ], [ %B2, %Loop ] ; <i32> [#uses=1]
  13. %A2 = add i32 %A1, 1 ; <i32> [#uses=1]
  14. %B2 = add i32 %B1, %A1 ; <i32> [#uses=2]
  15. %C = icmp eq i32 %A1, 1000 ; <i1> [#uses=1]
  16. br i1 %C, label %Out, label %Loop
  17. Out: ; preds = %Loop
  18. ret i32 %B2
  19. }
  20. define i32 @NSquare(i32 %N) {
  21. ; <label>:0
  22. br label %Loop
  23. Loop: ; preds = %Loop, %0
  24. %X = phi i32 [ 0, %0 ], [ %X2, %Loop ] ; <i32> [#uses=4]
  25. %X2 = add i32 %X, 1 ; <i32> [#uses=1]
  26. %c = icmp eq i32 %X, %N ; <i1> [#uses=1]
  27. br i1 %c, label %Out, label %Loop
  28. Out: ; preds = %Loop
  29. %Y = mul i32 %X, %X ; <i32> [#uses=1]
  30. ret i32 %Y
  31. }
  32. define i32 @NSquareOver2(i32 %N) {
  33. ; <label>:0
  34. br label %Loop
  35. Loop: ; preds = %Loop, %0
  36. %X = phi i32 [ 0, %0 ], [ %X2, %Loop ] ; <i32> [#uses=3]
  37. %Y = phi i32 [ 15, %0 ], [ %Y2, %Loop ] ; <i32> [#uses=1]
  38. %Y2 = add i32 %Y, %X ; <i32> [#uses=2]
  39. %X2 = add i32 %X, 1 ; <i32> [#uses=1]
  40. %c = icmp eq i32 %X, %N ; <i1> [#uses=1]
  41. br i1 %c, label %Out, label %Loop
  42. Out: ; preds = %Loop
  43. ret i32 %Y2
  44. }
  45. define i32 @strength_reduced() {
  46. ; <label>:0
  47. br label %Loop
  48. Loop: ; preds = %Loop, %0
  49. %A1 = phi i32 [ 0, %0 ], [ %A2, %Loop ] ; <i32> [#uses=3]
  50. %B1 = phi i32 [ 0, %0 ], [ %B2, %Loop ] ; <i32> [#uses=1]
  51. %A2 = add i32 %A1, 1 ; <i32> [#uses=1]
  52. %B2 = add i32 %B1, %A1 ; <i32> [#uses=2]
  53. %C = icmp eq i32 %A1, 1000 ; <i1> [#uses=1]
  54. br i1 %C, label %Out, label %Loop
  55. Out: ; preds = %Loop
  56. ret i32 %B2
  57. }
  58. define i32 @chrec_equals() {
  59. entry:
  60. br label %no_exit
  61. no_exit: ; preds = %no_exit, %entry
  62. %i0 = phi i32 [ 0, %entry ], [ %i1, %no_exit ] ; <i32> [#uses=3]
  63. %ISq = mul i32 %i0, %i0 ; <i32> [#uses=1]
  64. %i1 = add i32 %i0, 1 ; <i32> [#uses=2]
  65. %tmp.1 = icmp ne i32 %ISq, 10000 ; <i1> [#uses=1]
  66. br i1 %tmp.1, label %no_exit, label %loopexit
  67. loopexit: ; preds = %no_exit
  68. ret i32 %i1
  69. }
  70. define i16 @cast_chrec_test() {
  71. ; <label>:0
  72. br label %Loop
  73. Loop: ; preds = %Loop, %0
  74. %A1 = phi i32 [ 0, %0 ], [ %A2, %Loop ] ; <i32> [#uses=2]
  75. %B1 = trunc i32 %A1 to i16 ; <i16> [#uses=2]
  76. %A2 = add i32 %A1, 1 ; <i32> [#uses=1]
  77. %C = icmp eq i16 %B1, 1000 ; <i1> [#uses=1]
  78. br i1 %C, label %Out, label %Loop
  79. Out: ; preds = %Loop
  80. ret i16 %B1
  81. }
  82. define i32 @linear_div_fold() {
  83. entry:
  84. br label %loop
  85. loop: ; preds = %loop, %entry
  86. %i = phi i32 [ 4, %entry ], [ %i.next, %loop ] ; <i32> [#uses=3]
  87. %i.next = add i32 %i, 8 ; <i32> [#uses=1]
  88. %RV = udiv i32 %i, 2 ; <i32> [#uses=1]
  89. %c = icmp ne i32 %i, 68 ; <i1> [#uses=1]
  90. br i1 %c, label %loop, label %loopexit
  91. loopexit: ; preds = %loop
  92. ret i32 %RV
  93. }