| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477 |
- //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the Expr constant evaluator.
- //
- // Constant expression evaluation produces four main results:
- //
- // * A success/failure flag indicating whether constant folding was successful.
- // This is the 'bool' return value used by most of the code in this file. A
- // 'false' return value indicates that constant folding has failed, and any
- // appropriate diagnostic has already been produced.
- //
- // * An evaluated result, valid only if constant folding has not failed.
- //
- // * A flag indicating if evaluation encountered (unevaluated) side-effects.
- // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
- // where it is possible to determine the evaluated result regardless.
- //
- // * A set of notes indicating why the evaluation was not a constant expression
- // (under the C++11 / C++1y rules only, at the moment), or, if folding failed
- // too, why the expression could not be folded.
- //
- // If we are checking for a potential constant expression, failure to constant
- // fold a potential constant sub-expression will be indicated by a 'false'
- // return value (the expression could not be folded) and no diagnostic (the
- // expression is not necessarily non-constant).
- //
- //===----------------------------------------------------------------------===//
- #include "clang/AST/APValue.h"
- #include "clang/AST/ASTContext.h"
- #include "clang/AST/ASTDiagnostic.h"
- #include "clang/AST/CharUnits.h"
- #include "clang/AST/Expr.h"
- #include "clang/AST/RecordLayout.h"
- #include "clang/AST/StmtVisitor.h"
- #include "clang/AST/TypeLoc.h"
- #include "clang/Basic/Builtins.h"
- #include "clang/Basic/TargetInfo.h"
- #include "llvm/ADT/SmallString.h"
- #include "llvm/Support/raw_ostream.h"
- #include <cstring>
- #include <functional>
- #include "llvm/Support/OacrIgnoreCond.h" // HLSL Change - constant evaluator is language-dependant
- #include "dxc/HlslIntrinsicOp.h" // HLSL Change
- using namespace clang;
- using llvm::APSInt;
- using llvm::APFloat;
- static bool IsGlobalLValue(APValue::LValueBase B);
- // HLSL Change Starts - reuse code from CallExpr::getBuiltinCallee
- static const FunctionDecl *GetCallExprFunction(const CallExpr *CE) {
- const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE->getCallee());
- if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
- return 0;
- const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
- if (!DRE)
- return 0;
- const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
- if (!FDecl)
- return 0;
- if (!FDecl->getIdentifier())
- return 0;
- return FDecl;
- }
- // Returns true if the given InitListExpr is for constructing a HLSL vector
- // with the matching number of initializers and each initializer has the
- // matching element type.
- static bool IsHLSLVecInitList(const Expr* expr) {
- if (const auto* initExpr = dyn_cast<InitListExpr>(expr)) {
- const QualType vecType = initExpr->getType();
- if (!hlsl::IsHLSLVecType(vecType))
- return false;
- const uint32_t size = hlsl::GetHLSLVecSize(vecType);
- const QualType elemType = hlsl::GetHLSLVecElementType(vecType).getCanonicalType();
- if (initExpr->getNumInits() != size)
- return false;
- for (uint32_t i = 0; i < size; ++i)
- if (initExpr->getInit(i)->getType().getCanonicalType() != elemType)
- return false;
- return true;
- }
- return false;
- }
- // HLSL Change Ends
- namespace {
- struct LValue;
- struct CallStackFrame;
- struct EvalInfo;
- static QualType getType(APValue::LValueBase B) {
- if (!B) return QualType();
- if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
- return D->getType();
- const Expr *Base = B.get<const Expr*>();
- // For a materialized temporary, the type of the temporary we materialized
- // may not be the type of the expression.
- if (const MaterializeTemporaryExpr *MTE =
- dyn_cast<MaterializeTemporaryExpr>(Base)) {
- SmallVector<const Expr *, 2> CommaLHSs;
- SmallVector<SubobjectAdjustment, 2> Adjustments;
- const Expr *Temp = MTE->GetTemporaryExpr();
- const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
- Adjustments);
- // Keep any cv-qualifiers from the reference if we generated a temporary
- // for it.
- if (Inner != Temp)
- return Inner->getType();
- }
- return Base->getType();
- }
- /// Get an LValue path entry, which is known to not be an array index, as a
- /// field or base class.
- static
- APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
- APValue::BaseOrMemberType Value;
- Value.setFromOpaqueValue(E.BaseOrMember);
- return Value;
- }
- /// Get an LValue path entry, which is known to not be an array index, as a
- /// field declaration.
- static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
- return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
- }
- /// Get an LValue path entry, which is known to not be an array index, as a
- /// base class declaration.
- static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
- return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
- }
- /// Determine whether this LValue path entry for a base class names a virtual
- /// base class.
- static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
- return getAsBaseOrMember(E).getInt();
- }
- /// Find the path length and type of the most-derived subobject in the given
- /// path, and find the size of the containing array, if any.
- static
- unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
- ArrayRef<APValue::LValuePathEntry> Path,
- uint64_t &ArraySize, QualType &Type) {
- unsigned MostDerivedLength = 0;
- Type = Base;
- for (unsigned I = 0, N = Path.size(); I != N; ++I) {
- if (Type->isArrayType()) {
- const ConstantArrayType *CAT =
- cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
- Type = CAT->getElementType();
- ArraySize = CAT->getSize().getZExtValue();
- MostDerivedLength = I + 1;
- } else if (Type->isAnyComplexType()) {
- const ComplexType *CT = Type->castAs<ComplexType>();
- Type = CT->getElementType();
- ArraySize = 2;
- MostDerivedLength = I + 1;
- } else if (const FieldDecl *FD = getAsField(Path[I])) {
- Type = FD->getType();
- ArraySize = 0;
- MostDerivedLength = I + 1;
- } else {
- // Path[I] describes a base class.
- ArraySize = 0;
- }
- }
- return MostDerivedLength;
- }
- // The order of this enum is important for diagnostics.
- enum CheckSubobjectKind {
- CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
- CSK_This, CSK_Real, CSK_Imag
- };
- /// A path from a glvalue to a subobject of that glvalue.
- struct SubobjectDesignator {
- /// True if the subobject was named in a manner not supported by C++11. Such
- /// lvalues can still be folded, but they are not core constant expressions
- /// and we cannot perform lvalue-to-rvalue conversions on them.
- bool Invalid : 1;
- /// Is this a pointer one past the end of an object?
- bool IsOnePastTheEnd : 1;
- /// The length of the path to the most-derived object of which this is a
- /// subobject.
- unsigned MostDerivedPathLength : 30;
- /// The size of the array of which the most-derived object is an element, or
- /// 0 if the most-derived object is not an array element.
- uint64_t MostDerivedArraySize;
- /// The type of the most derived object referred to by this address.
- QualType MostDerivedType;
- typedef APValue::LValuePathEntry PathEntry;
- /// The entries on the path from the glvalue to the designated subobject.
- SmallVector<PathEntry, 8> Entries;
- SubobjectDesignator() : Invalid(true) {}
- explicit SubobjectDesignator(QualType T)
- : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
- MostDerivedArraySize(0), MostDerivedType(T) {}
- SubobjectDesignator(ASTContext &Ctx, const APValue &V)
- : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
- MostDerivedPathLength(0), MostDerivedArraySize(0) {
- if (!Invalid) {
- IsOnePastTheEnd = V.isLValueOnePastTheEnd();
- ArrayRef<PathEntry> VEntries = V.getLValuePath();
- Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
- if (V.getLValueBase())
- MostDerivedPathLength =
- findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
- V.getLValuePath(), MostDerivedArraySize,
- MostDerivedType);
- }
- }
- void setInvalid() {
- Invalid = true;
- Entries.clear();
- }
- /// Determine whether this is a one-past-the-end pointer.
- bool isOnePastTheEnd() const {
- assert(!Invalid);
- if (IsOnePastTheEnd)
- return true;
- if (MostDerivedArraySize &&
- Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
- return true;
- return false;
- }
- /// Check that this refers to a valid subobject.
- bool isValidSubobject() const {
- if (Invalid)
- return false;
- return !isOnePastTheEnd();
- }
- /// Check that this refers to a valid subobject, and if not, produce a
- /// relevant diagnostic and set the designator as invalid.
- bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
- /// Update this designator to refer to the first element within this array.
- void addArrayUnchecked(const ConstantArrayType *CAT) {
- PathEntry Entry;
- Entry.ArrayIndex = 0;
- Entries.push_back(Entry);
- // This is a most-derived object.
- MostDerivedType = CAT->getElementType();
- MostDerivedArraySize = CAT->getSize().getZExtValue();
- MostDerivedPathLength = Entries.size();
- }
- /// Update this designator to refer to the given base or member of this
- /// object.
- void addDeclUnchecked(const Decl *D, bool Virtual = false) {
- PathEntry Entry;
- APValue::BaseOrMemberType Value(D, Virtual);
- Entry.BaseOrMember = Value.getOpaqueValue();
- Entries.push_back(Entry);
- // If this isn't a base class, it's a new most-derived object.
- if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
- MostDerivedType = FD->getType();
- MostDerivedArraySize = 0;
- MostDerivedPathLength = Entries.size();
- }
- }
- /// Update this designator to refer to the given complex component.
- void addComplexUnchecked(QualType EltTy, bool Imag) {
- PathEntry Entry;
- Entry.ArrayIndex = Imag;
- Entries.push_back(Entry);
- // This is technically a most-derived object, though in practice this
- // is unlikely to matter.
- MostDerivedType = EltTy;
- MostDerivedArraySize = 2;
- MostDerivedPathLength = Entries.size();
- }
- void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
- /// Add N to the address of this subobject.
- void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
- if (Invalid) return;
- if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
- Entries.back().ArrayIndex += N;
- if (Entries.back().ArrayIndex > MostDerivedArraySize) {
- diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
- setInvalid();
- }
- return;
- }
- // [expr.add]p4: For the purposes of these operators, a pointer to a
- // nonarray object behaves the same as a pointer to the first element of
- // an array of length one with the type of the object as its element type.
- if (IsOnePastTheEnd && N == (uint64_t)-1)
- IsOnePastTheEnd = false;
- else if (!IsOnePastTheEnd && N == 1)
- IsOnePastTheEnd = true;
- else if (N != 0) {
- diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
- setInvalid();
- }
- }
- };
- /// A stack frame in the constexpr call stack.
- struct CallStackFrame {
- EvalInfo &Info;
- /// Parent - The caller of this stack frame.
- CallStackFrame *Caller;
- /// CallLoc - The location of the call expression for this call.
- SourceLocation CallLoc;
- /// Callee - The function which was called.
- const FunctionDecl *Callee;
- /// Index - The call index of this call.
- unsigned Index;
- /// This - The binding for the this pointer in this call, if any.
- const LValue *This;
- /// Arguments - Parameter bindings for this function call, indexed by
- /// parameters' function scope indices.
- APValue *Arguments;
- // Note that we intentionally use std::map here so that references to
- // values are stable.
- typedef std::map<const void*, APValue> MapTy;
- typedef MapTy::const_iterator temp_iterator;
- /// Temporaries - Temporary lvalues materialized within this stack frame.
- MapTy Temporaries;
- CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
- const FunctionDecl *Callee, const LValue *This,
- APValue *Arguments);
- ~CallStackFrame();
- APValue *getTemporary(const void *Key) {
- MapTy::iterator I = Temporaries.find(Key);
- return I == Temporaries.end() ? nullptr : &I->second;
- }
- APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
- };
- /// Temporarily override 'this'.
- class ThisOverrideRAII {
- public:
- ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
- : Frame(Frame), OldThis(Frame.This) {
- if (Enable)
- Frame.This = NewThis;
- }
- ~ThisOverrideRAII() {
- Frame.This = OldThis;
- }
- private:
- CallStackFrame &Frame;
- const LValue *OldThis;
- };
- /// A partial diagnostic which we might know in advance that we are not going
- /// to emit.
- class OptionalDiagnostic {
- PartialDiagnostic *Diag;
- public:
- explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr)
- : Diag(Diag) {}
- template<typename T>
- OptionalDiagnostic &operator<<(const T &v) {
- if (Diag)
- *Diag << v;
- return *this;
- }
- OptionalDiagnostic &operator<<(const APSInt &I) {
- if (Diag) {
- SmallVector<char, 32> Buffer;
- I.toString(Buffer);
- *Diag << StringRef(Buffer.data(), Buffer.size());
- }
- return *this;
- }
- OptionalDiagnostic &operator<<(const APFloat &F) {
- if (Diag) {
- // FIXME: Force the precision of the source value down so we don't
- // print digits which are usually useless (we don't really care here if
- // we truncate a digit by accident in edge cases). Ideally,
- // APFloat::toString would automatically print the shortest
- // representation which rounds to the correct value, but it's a bit
- // tricky to implement.
- unsigned precision =
- llvm::APFloat::semanticsPrecision(F.getSemantics());
- precision = (precision * 59 + 195) / 196;
- SmallVector<char, 32> Buffer;
- F.toString(Buffer, precision);
- *Diag << StringRef(Buffer.data(), Buffer.size());
- }
- return *this;
- }
- };
- /// A cleanup, and a flag indicating whether it is lifetime-extended.
- class Cleanup {
- llvm::PointerIntPair<APValue*, 1, bool> Value;
- public:
- Cleanup(APValue *Val, bool IsLifetimeExtended)
- : Value(Val, IsLifetimeExtended) {}
- bool isLifetimeExtended() const { return Value.getInt(); }
- void endLifetime() {
- *Value.getPointer() = APValue();
- }
- };
- /// EvalInfo - This is a private struct used by the evaluator to capture
- /// information about a subexpression as it is folded. It retains information
- /// about the AST context, but also maintains information about the folded
- /// expression.
- ///
- /// If an expression could be evaluated, it is still possible it is not a C
- /// "integer constant expression" or constant expression. If not, this struct
- /// captures information about how and why not.
- ///
- /// One bit of information passed *into* the request for constant folding
- /// indicates whether the subexpression is "evaluated" or not according to C
- /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
- /// evaluate the expression regardless of what the RHS is, but C only allows
- /// certain things in certain situations.
- struct EvalInfo {
- ASTContext &Ctx;
- /// EvalStatus - Contains information about the evaluation.
- Expr::EvalStatus &EvalStatus;
- /// CurrentCall - The top of the constexpr call stack.
- CallStackFrame *CurrentCall;
- /// CallStackDepth - The number of calls in the call stack right now.
- unsigned CallStackDepth;
- /// NextCallIndex - The next call index to assign.
- unsigned NextCallIndex;
- /// StepsLeft - The remaining number of evaluation steps we're permitted
- /// to perform. This is essentially a limit for the number of statements
- /// we will evaluate.
- unsigned StepsLeft;
- /// BottomFrame - The frame in which evaluation started. This must be
- /// initialized after CurrentCall and CallStackDepth.
- CallStackFrame BottomFrame;
- /// A stack of values whose lifetimes end at the end of some surrounding
- /// evaluation frame.
- llvm::SmallVector<Cleanup, 16> CleanupStack;
- /// EvaluatingDecl - This is the declaration whose initializer is being
- /// evaluated, if any.
- APValue::LValueBase EvaluatingDecl;
- /// EvaluatingDeclValue - This is the value being constructed for the
- /// declaration whose initializer is being evaluated, if any.
- APValue *EvaluatingDeclValue;
- /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
- /// notes attached to it will also be stored, otherwise they will not be.
- bool HasActiveDiagnostic;
- enum EvaluationMode {
- /// Evaluate as a constant expression. Stop if we find that the expression
- /// is not a constant expression.
- EM_ConstantExpression,
- /// Evaluate as a potential constant expression. Keep going if we hit a
- /// construct that we can't evaluate yet (because we don't yet know the
- /// value of something) but stop if we hit something that could never be
- /// a constant expression.
- EM_PotentialConstantExpression,
- /// Fold the expression to a constant. Stop if we hit a side-effect that
- /// we can't model.
- EM_ConstantFold,
- /// Evaluate the expression looking for integer overflow and similar
- /// issues. Don't worry about side-effects, and try to visit all
- /// subexpressions.
- EM_EvaluateForOverflow,
- /// Evaluate in any way we know how. Don't worry about side-effects that
- /// can't be modeled.
- EM_IgnoreSideEffects,
- /// Evaluate as a constant expression. Stop if we find that the expression
- /// is not a constant expression. Some expressions can be retried in the
- /// optimizer if we don't constant fold them here, but in an unevaluated
- /// context we try to fold them immediately since the optimizer never
- /// gets a chance to look at it.
- EM_ConstantExpressionUnevaluated,
- /// Evaluate as a potential constant expression. Keep going if we hit a
- /// construct that we can't evaluate yet (because we don't yet know the
- /// value of something) but stop if we hit something that could never be
- /// a constant expression. Some expressions can be retried in the
- /// optimizer if we don't constant fold them here, but in an unevaluated
- /// context we try to fold them immediately since the optimizer never
- /// gets a chance to look at it.
- EM_PotentialConstantExpressionUnevaluated
- } EvalMode;
- /// Are we checking whether the expression is a potential constant
- /// expression?
- bool checkingPotentialConstantExpression() const {
- return EvalMode == EM_PotentialConstantExpression ||
- EvalMode == EM_PotentialConstantExpressionUnevaluated;
- }
- /// Are we checking an expression for overflow?
- // FIXME: We should check for any kind of undefined or suspicious behavior
- // in such constructs, not just overflow.
- bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; }
- EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
- : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
- CallStackDepth(0), NextCallIndex(1),
- StepsLeft(getLangOpts().ConstexprStepLimit),
- BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
- EvaluatingDecl((const ValueDecl *)nullptr),
- EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
- EvalMode(Mode) {}
- void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
- EvaluatingDecl = Base;
- EvaluatingDeclValue = &Value;
- }
- const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
- bool CheckCallLimit(SourceLocation Loc) {
- // Don't perform any constexpr calls (other than the call we're checking)
- // when checking a potential constant expression.
- if (checkingPotentialConstantExpression() && CallStackDepth > 1)
- return false;
- if (NextCallIndex == 0) {
- // NextCallIndex has wrapped around.
- Diag(Loc, diag::note_constexpr_call_limit_exceeded);
- return false;
- }
- if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
- return true;
- Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
- << getLangOpts().ConstexprCallDepth;
- return false;
- }
- CallStackFrame *getCallFrame(unsigned CallIndex) {
- assert(CallIndex && "no call index in getCallFrame");
- // We will eventually hit BottomFrame, which has Index 1, so Frame can't
- // be null in this loop.
- CallStackFrame *Frame = CurrentCall;
- while (Frame->Index > CallIndex)
- Frame = Frame->Caller;
- return (Frame->Index == CallIndex) ? Frame : nullptr;
- }
- bool nextStep(const Stmt *S) {
- if (!StepsLeft) {
- Diag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
- return false;
- }
- --StepsLeft;
- return true;
- }
- private:
- /// Add a diagnostic to the diagnostics list.
- PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
- PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
- EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
- return EvalStatus.Diag->back().second;
- }
- /// Add notes containing a call stack to the current point of evaluation.
- void addCallStack(unsigned Limit);
- public:
- /// Diagnose that the evaluation cannot be folded.
- OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
- = diag::note_invalid_subexpr_in_const_expr,
- unsigned ExtraNotes = 0) {
- if (EvalStatus.Diag) {
- // If we have a prior diagnostic, it will be noting that the expression
- // isn't a constant expression. This diagnostic is more important,
- // unless we require this evaluation to produce a constant expression.
- //
- // FIXME: We might want to show both diagnostics to the user in
- // EM_ConstantFold mode.
- if (!EvalStatus.Diag->empty()) {
- switch (EvalMode) {
- case EM_ConstantFold:
- case EM_IgnoreSideEffects:
- case EM_EvaluateForOverflow:
- if (!EvalStatus.HasSideEffects)
- break;
- // We've had side-effects; we want the diagnostic from them, not
- // some later problem.
- case EM_ConstantExpression:
- case EM_PotentialConstantExpression:
- case EM_ConstantExpressionUnevaluated:
- case EM_PotentialConstantExpressionUnevaluated:
- HasActiveDiagnostic = false;
- return OptionalDiagnostic();
- }
- }
- unsigned CallStackNotes = CallStackDepth - 1;
- unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
- if (Limit)
- CallStackNotes = std::min(CallStackNotes, Limit + 1);
- if (checkingPotentialConstantExpression())
- CallStackNotes = 0;
- HasActiveDiagnostic = true;
- EvalStatus.Diag->clear();
- EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
- addDiag(Loc, DiagId);
- if (!checkingPotentialConstantExpression())
- addCallStack(Limit);
- return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
- }
- HasActiveDiagnostic = false;
- return OptionalDiagnostic();
- }
- OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
- = diag::note_invalid_subexpr_in_const_expr,
- unsigned ExtraNotes = 0) {
- if (EvalStatus.Diag)
- return Diag(E->getExprLoc(), DiagId, ExtraNotes);
- HasActiveDiagnostic = false;
- return OptionalDiagnostic();
- }
- /// Diagnose that the evaluation does not produce a C++11 core constant
- /// expression.
- ///
- /// FIXME: Stop evaluating if we're in EM_ConstantExpression or
- /// EM_PotentialConstantExpression mode and we produce one of these.
- template<typename LocArg>
- OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
- = diag::note_invalid_subexpr_in_const_expr,
- unsigned ExtraNotes = 0) {
- // Don't override a previous diagnostic. Don't bother collecting
- // diagnostics if we're evaluating for overflow.
- if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
- HasActiveDiagnostic = false;
- return OptionalDiagnostic();
- }
- return Diag(Loc, DiagId, ExtraNotes);
- }
- /// Add a note to a prior diagnostic.
- OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
- if (!HasActiveDiagnostic)
- return OptionalDiagnostic();
- return OptionalDiagnostic(&addDiag(Loc, DiagId));
- }
- /// Add a stack of notes to a prior diagnostic.
- void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
- if (HasActiveDiagnostic) {
- EvalStatus.Diag->insert(EvalStatus.Diag->end(),
- Diags.begin(), Diags.end());
- }
- }
- /// Should we continue evaluation after encountering a side-effect that we
- /// couldn't model?
- bool keepEvaluatingAfterSideEffect() {
- switch (EvalMode) {
- case EM_PotentialConstantExpression:
- case EM_PotentialConstantExpressionUnevaluated:
- case EM_EvaluateForOverflow:
- case EM_IgnoreSideEffects:
- return true;
- case EM_ConstantExpression:
- case EM_ConstantExpressionUnevaluated:
- case EM_ConstantFold:
- return false;
- }
- llvm_unreachable("Missed EvalMode case");
- }
- /// Note that we have had a side-effect, and determine whether we should
- /// keep evaluating.
- bool noteSideEffect() {
- EvalStatus.HasSideEffects = true;
- return keepEvaluatingAfterSideEffect();
- }
- /// Should we continue evaluation as much as possible after encountering a
- /// construct which can't be reduced to a value?
- bool keepEvaluatingAfterFailure() {
- if (!StepsLeft)
- return false;
- switch (EvalMode) {
- case EM_PotentialConstantExpression:
- case EM_PotentialConstantExpressionUnevaluated:
- case EM_EvaluateForOverflow:
- return true;
- case EM_ConstantExpression:
- case EM_ConstantExpressionUnevaluated:
- case EM_ConstantFold:
- case EM_IgnoreSideEffects:
- return false;
- }
- llvm_unreachable("Missed EvalMode case");
- }
- };
- /// Object used to treat all foldable expressions as constant expressions.
- struct FoldConstant {
- EvalInfo &Info;
- bool Enabled;
- bool HadNoPriorDiags;
- EvalInfo::EvaluationMode OldMode;
- explicit FoldConstant(EvalInfo &Info, bool Enabled)
- : Info(Info),
- Enabled(Enabled),
- HadNoPriorDiags(Info.EvalStatus.Diag &&
- Info.EvalStatus.Diag->empty() &&
- !Info.EvalStatus.HasSideEffects),
- OldMode(Info.EvalMode) {
- if (Enabled &&
- (Info.EvalMode == EvalInfo::EM_ConstantExpression ||
- Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated))
- Info.EvalMode = EvalInfo::EM_ConstantFold;
- }
- void keepDiagnostics() { Enabled = false; }
- ~FoldConstant() {
- if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
- !Info.EvalStatus.HasSideEffects)
- Info.EvalStatus.Diag->clear();
- Info.EvalMode = OldMode;
- }
- };
- /// RAII object used to suppress diagnostics and side-effects from a
- /// speculative evaluation.
- class SpeculativeEvaluationRAII {
- EvalInfo &Info;
- Expr::EvalStatus Old;
- public:
- SpeculativeEvaluationRAII(EvalInfo &Info,
- SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
- : Info(Info), Old(Info.EvalStatus) {
- Info.EvalStatus.Diag = NewDiag;
- // If we're speculatively evaluating, we may have skipped over some
- // evaluations and missed out a side effect.
- Info.EvalStatus.HasSideEffects = true;
- }
- ~SpeculativeEvaluationRAII() {
- Info.EvalStatus = Old;
- }
- };
- /// RAII object wrapping a full-expression or block scope, and handling
- /// the ending of the lifetime of temporaries created within it.
- template<bool IsFullExpression>
- class ScopeRAII {
- EvalInfo &Info;
- unsigned OldStackSize;
- public:
- ScopeRAII(EvalInfo &Info)
- : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
- ~ScopeRAII() {
- // Body moved to a static method to encourage the compiler to inline away
- // instances of this class.
- cleanup(Info, OldStackSize);
- }
- private:
- static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
- unsigned NewEnd = OldStackSize;
- for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
- I != N; ++I) {
- if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
- // Full-expression cleanup of a lifetime-extended temporary: nothing
- // to do, just move this cleanup to the right place in the stack.
- std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
- ++NewEnd;
- } else {
- // End the lifetime of the object.
- Info.CleanupStack[I].endLifetime();
- }
- }
- Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
- Info.CleanupStack.end());
- }
- };
- typedef ScopeRAII<false> BlockScopeRAII;
- typedef ScopeRAII<true> FullExpressionRAII;
- }
- bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
- CheckSubobjectKind CSK) {
- if (Invalid)
- return false;
- if (isOnePastTheEnd()) {
- Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
- << CSK;
- setInvalid();
- return false;
- }
- return true;
- }
- void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
- const Expr *E, uint64_t N) {
- if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
- Info.CCEDiag(E, diag::note_constexpr_array_index)
- << static_cast<int>(N) << /*array*/ 0
- << static_cast<unsigned>(MostDerivedArraySize);
- else
- Info.CCEDiag(E, diag::note_constexpr_array_index)
- << static_cast<int>(N) << /*non-array*/ 1;
- setInvalid();
- }
- CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
- const FunctionDecl *Callee, const LValue *This,
- APValue *Arguments)
- : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
- Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
- Info.CurrentCall = this;
- ++Info.CallStackDepth;
- }
- CallStackFrame::~CallStackFrame() {
- assert(Info.CurrentCall == this && "calls retired out of order");
- --Info.CallStackDepth;
- Info.CurrentCall = Caller;
- }
- APValue &CallStackFrame::createTemporary(const void *Key,
- bool IsLifetimeExtended) {
- APValue &Result = Temporaries[Key];
- assert(Result.isUninit() && "temporary created multiple times");
- Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
- return Result;
- }
- static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
- void EvalInfo::addCallStack(unsigned Limit) {
- // Determine which calls to skip, if any.
- unsigned ActiveCalls = CallStackDepth - 1;
- unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
- if (Limit && Limit < ActiveCalls) {
- SkipStart = Limit / 2 + Limit % 2;
- SkipEnd = ActiveCalls - Limit / 2;
- }
- // Walk the call stack and add the diagnostics.
- unsigned CallIdx = 0;
- for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
- Frame = Frame->Caller, ++CallIdx) {
- // Skip this call?
- if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
- if (CallIdx == SkipStart) {
- // Note that we're skipping calls.
- addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
- << unsigned(ActiveCalls - Limit);
- }
- continue;
- }
- SmallVector<char, 128> Buffer;
- llvm::raw_svector_ostream Out(Buffer);
- describeCall(Frame, Out);
- addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
- }
- }
- namespace {
- struct ComplexValue {
- private:
- bool IsInt;
- public:
- APSInt IntReal, IntImag;
- APFloat FloatReal, FloatImag;
- ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
- void makeComplexFloat() { IsInt = false; }
- bool isComplexFloat() const { return !IsInt; }
- APFloat &getComplexFloatReal() { return FloatReal; }
- APFloat &getComplexFloatImag() { return FloatImag; }
- void makeComplexInt() { IsInt = true; }
- bool isComplexInt() const { return IsInt; }
- APSInt &getComplexIntReal() { return IntReal; }
- APSInt &getComplexIntImag() { return IntImag; }
- void moveInto(APValue &v) const {
- if (isComplexFloat())
- v = APValue(FloatReal, FloatImag);
- else
- v = APValue(IntReal, IntImag);
- }
- void setFrom(const APValue &v) {
- assert(v.isComplexFloat() || v.isComplexInt());
- if (v.isComplexFloat()) {
- makeComplexFloat();
- FloatReal = v.getComplexFloatReal();
- FloatImag = v.getComplexFloatImag();
- } else {
- makeComplexInt();
- IntReal = v.getComplexIntReal();
- IntImag = v.getComplexIntImag();
- }
- }
- };
- struct LValue {
- APValue::LValueBase Base;
- CharUnits Offset;
- unsigned CallIndex;
- SubobjectDesignator Designator;
- const APValue::LValueBase getLValueBase() const { return Base; }
- CharUnits &getLValueOffset() { return Offset; }
- const CharUnits &getLValueOffset() const { return Offset; }
- unsigned getLValueCallIndex() const { return CallIndex; }
- SubobjectDesignator &getLValueDesignator() { return Designator; }
- const SubobjectDesignator &getLValueDesignator() const { return Designator;}
- void moveInto(APValue &V) const {
- if (Designator.Invalid)
- V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
- else
- V = APValue(Base, Offset, Designator.Entries,
- Designator.IsOnePastTheEnd, CallIndex);
- }
- void setFrom(ASTContext &Ctx, const APValue &V) {
- assert(V.isLValue());
- Base = V.getLValueBase();
- Offset = V.getLValueOffset();
- CallIndex = V.getLValueCallIndex();
- Designator = SubobjectDesignator(Ctx, V);
- }
- void set(APValue::LValueBase B, unsigned I = 0) {
- Base = B;
- Offset = CharUnits::Zero();
- CallIndex = I;
- Designator = SubobjectDesignator(getType(B));
- }
- // Check that this LValue is not based on a null pointer. If it is, produce
- // a diagnostic and mark the designator as invalid.
- bool checkNullPointer(EvalInfo &Info, const Expr *E,
- CheckSubobjectKind CSK) {
- if (Designator.Invalid)
- return false;
- if (!Base) {
- Info.CCEDiag(E, diag::note_constexpr_null_subobject)
- << CSK;
- Designator.setInvalid();
- return false;
- }
- return true;
- }
- // Check this LValue refers to an object. If not, set the designator to be
- // invalid and emit a diagnostic.
- bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
- // Outside C++11, do not build a designator referring to a subobject of
- // any object: we won't use such a designator for anything.
- if (!Info.getLangOpts().CPlusPlus11)
- Designator.setInvalid();
- return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
- Designator.checkSubobject(Info, E, CSK);
- }
- void addDecl(EvalInfo &Info, const Expr *E,
- const Decl *D, bool Virtual = false) {
- if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
- Designator.addDeclUnchecked(D, Virtual);
- }
- void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
- if (checkSubobject(Info, E, CSK_ArrayToPointer))
- Designator.addArrayUnchecked(CAT);
- }
- void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
- if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
- Designator.addComplexUnchecked(EltTy, Imag);
- }
- void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
- if (N && checkNullPointer(Info, E, CSK_ArrayIndex))
- Designator.adjustIndex(Info, E, N);
- }
- };
- struct MemberPtr {
- MemberPtr() {}
- explicit MemberPtr(const ValueDecl *Decl) :
- DeclAndIsDerivedMember(Decl, false), Path() {}
- /// The member or (direct or indirect) field referred to by this member
- /// pointer, or 0 if this is a null member pointer.
- const ValueDecl *getDecl() const {
- return DeclAndIsDerivedMember.getPointer();
- }
- /// Is this actually a member of some type derived from the relevant class?
- bool isDerivedMember() const {
- return DeclAndIsDerivedMember.getInt();
- }
- /// Get the class which the declaration actually lives in.
- const CXXRecordDecl *getContainingRecord() const {
- return cast<CXXRecordDecl>(
- DeclAndIsDerivedMember.getPointer()->getDeclContext());
- }
- void moveInto(APValue &V) const {
- V = APValue(getDecl(), isDerivedMember(), Path);
- }
- void setFrom(const APValue &V) {
- assert(V.isMemberPointer());
- DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
- DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
- Path.clear();
- ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
- Path.insert(Path.end(), P.begin(), P.end());
- }
- /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
- /// whether the member is a member of some class derived from the class type
- /// of the member pointer.
- llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
- /// Path - The path of base/derived classes from the member declaration's
- /// class (exclusive) to the class type of the member pointer (inclusive).
- SmallVector<const CXXRecordDecl*, 4> Path;
- /// Perform a cast towards the class of the Decl (either up or down the
- /// hierarchy).
- bool castBack(const CXXRecordDecl *Class) {
- assert(!Path.empty());
- const CXXRecordDecl *Expected;
- if (Path.size() >= 2)
- Expected = Path[Path.size() - 2];
- else
- Expected = getContainingRecord();
- if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
- // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
- // if B does not contain the original member and is not a base or
- // derived class of the class containing the original member, the result
- // of the cast is undefined.
- // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
- // (D::*). We consider that to be a language defect.
- return false;
- }
- Path.pop_back();
- return true;
- }
- /// Perform a base-to-derived member pointer cast.
- bool castToDerived(const CXXRecordDecl *Derived) {
- if (!getDecl())
- return true;
- if (!isDerivedMember()) {
- Path.push_back(Derived);
- return true;
- }
- if (!castBack(Derived))
- return false;
- if (Path.empty())
- DeclAndIsDerivedMember.setInt(false);
- return true;
- }
- /// Perform a derived-to-base member pointer cast.
- bool castToBase(const CXXRecordDecl *Base) {
- if (!getDecl())
- return true;
- if (Path.empty())
- DeclAndIsDerivedMember.setInt(true);
- if (isDerivedMember()) {
- Path.push_back(Base);
- return true;
- }
- return castBack(Base);
- }
- };
- /// Compare two member pointers, which are assumed to be of the same type.
- static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
- if (!LHS.getDecl() || !RHS.getDecl())
- return !LHS.getDecl() && !RHS.getDecl();
- if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
- return false;
- return LHS.Path == RHS.Path;
- }
- }
- static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
- static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
- const LValue &This, const Expr *E,
- bool AllowNonLiteralTypes = false);
- static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
- static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
- static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
- EvalInfo &Info);
- static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
- static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
- static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
- EvalInfo &Info);
- static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
- static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
- static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
- //===----------------------------------------------------------------------===//
- // Misc utilities
- //===----------------------------------------------------------------------===//
- /// Produce a string describing the given constexpr call.
- static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
- unsigned ArgIndex = 0;
- bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
- !isa<CXXConstructorDecl>(Frame->Callee) &&
- cast<CXXMethodDecl>(Frame->Callee)->isInstance();
- if (!IsMemberCall)
- Out << *Frame->Callee << '(';
- if (Frame->This && IsMemberCall) {
- APValue Val;
- Frame->This->moveInto(Val);
- Val.printPretty(Out, Frame->Info.Ctx,
- Frame->This->Designator.MostDerivedType);
- // FIXME: Add parens around Val if needed.
- Out << "->" << *Frame->Callee << '(';
- IsMemberCall = false;
- }
- for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
- E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
- if (ArgIndex > (unsigned)IsMemberCall)
- Out << ", ";
- const ParmVarDecl *Param = *I;
- const APValue &Arg = Frame->Arguments[ArgIndex];
- Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
- if (ArgIndex == 0 && IsMemberCall)
- Out << "->" << *Frame->Callee << '(';
- }
- Out << ')';
- }
- /// Evaluate an expression to see if it had side-effects, and discard its
- /// result.
- /// \return \c true if the caller should keep evaluating.
- static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
- APValue Scratch;
- if (!Evaluate(Scratch, Info, E))
- // We don't need the value, but we might have skipped a side effect here.
- return Info.noteSideEffect();
- return true;
- }
- /// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
- /// return its existing value.
- static int64_t getExtValue(const APSInt &Value) {
- return Value.isSigned() ? Value.getSExtValue()
- : static_cast<int64_t>(Value.getZExtValue());
- }
- /// Should this call expression be treated as a string literal?
- static bool IsStringLiteralCall(const CallExpr *E) {
- unsigned Builtin = E->getBuiltinCallee();
- return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
- Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
- }
- static bool IsGlobalLValue(APValue::LValueBase B) {
- // C++11 [expr.const]p3 An address constant expression is a prvalue core
- // constant expression of pointer type that evaluates to...
- // ... a null pointer value, or a prvalue core constant expression of type
- // std::nullptr_t.
- if (!B) return true;
- if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
- // ... the address of an object with static storage duration,
- if (const VarDecl *VD = dyn_cast<VarDecl>(D))
- return VD->hasGlobalStorage();
- // ... the address of a function,
- return isa<FunctionDecl>(D);
- }
- const Expr *E = B.get<const Expr*>();
- switch (E->getStmtClass()) {
- default:
- return false;
- case Expr::CompoundLiteralExprClass: {
- const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
- return CLE->isFileScope() && CLE->isLValue();
- }
- case Expr::MaterializeTemporaryExprClass:
- // A materialized temporary might have been lifetime-extended to static
- // storage duration.
- return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
- // A string literal has static storage duration.
- case Expr::StringLiteralClass:
- case Expr::PredefinedExprClass:
- case Expr::ObjCStringLiteralClass:
- case Expr::ObjCEncodeExprClass:
- case Expr::CXXTypeidExprClass:
- case Expr::CXXUuidofExprClass:
- return true;
- case Expr::CallExprClass:
- return IsStringLiteralCall(cast<CallExpr>(E));
- // For GCC compatibility, &&label has static storage duration.
- case Expr::AddrLabelExprClass:
- return true;
- // A Block literal expression may be used as the initialization value for
- // Block variables at global or local static scope.
- case Expr::BlockExprClass:
- return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
- case Expr::ImplicitValueInitExprClass:
- // FIXME:
- // We can never form an lvalue with an implicit value initialization as its
- // base through expression evaluation, so these only appear in one case: the
- // implicit variable declaration we invent when checking whether a constexpr
- // constructor can produce a constant expression. We must assume that such
- // an expression might be a global lvalue.
- return true;
- }
- }
- static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
- assert(Base && "no location for a null lvalue");
- const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
- if (VD)
- Info.Note(VD->getLocation(), diag::note_declared_at);
- else
- Info.Note(Base.get<const Expr*>()->getExprLoc(),
- diag::note_constexpr_temporary_here);
- }
- /// Check that this reference or pointer core constant expression is a valid
- /// value for an address or reference constant expression. Return true if we
- /// can fold this expression, whether or not it's a constant expression.
- static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
- QualType Type, const LValue &LVal) {
- bool IsReferenceType = Type->isReferenceType();
- APValue::LValueBase Base = LVal.getLValueBase();
- const SubobjectDesignator &Designator = LVal.getLValueDesignator();
- // Check that the object is a global. Note that the fake 'this' object we
- // manufacture when checking potential constant expressions is conservatively
- // assumed to be global here.
- if (!IsGlobalLValue(Base)) {
- if (Info.getLangOpts().CPlusPlus11) {
- const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
- Info.Diag(Loc, diag::note_constexpr_non_global, 1)
- << IsReferenceType << !Designator.Entries.empty()
- << !!VD << VD;
- NoteLValueLocation(Info, Base);
- } else {
- Info.Diag(Loc);
- }
- // Don't allow references to temporaries to escape.
- return false;
- }
- assert((Info.checkingPotentialConstantExpression() ||
- LVal.getLValueCallIndex() == 0) &&
- "have call index for global lvalue");
- if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
- if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
- // Check if this is a thread-local variable.
- if (Var->getTLSKind())
- return false;
- // A dllimport variable never acts like a constant.
- if (Var->hasAttr<DLLImportAttr>())
- return false;
- }
- if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
- // __declspec(dllimport) must be handled very carefully:
- // We must never initialize an expression with the thunk in C++.
- // Doing otherwise would allow the same id-expression to yield
- // different addresses for the same function in different translation
- // units. However, this means that we must dynamically initialize the
- // expression with the contents of the import address table at runtime.
- //
- // The C language has no notion of ODR; furthermore, it has no notion of
- // dynamic initialization. This means that we are permitted to
- // perform initialization with the address of the thunk.
- if (Info.getLangOpts().CPlusPlus && FD->hasAttr<DLLImportAttr>())
- return false;
- }
- }
- // Allow address constant expressions to be past-the-end pointers. This is
- // an extension: the standard requires them to point to an object.
- if (!IsReferenceType)
- return true;
- // A reference constant expression must refer to an object.
- if (!Base) {
- // FIXME: diagnostic
- Info.CCEDiag(Loc);
- return true;
- }
- // Does this refer one past the end of some object?
- if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
- const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
- Info.Diag(Loc, diag::note_constexpr_past_end, 1)
- << !Designator.Entries.empty() << !!VD << VD;
- NoteLValueLocation(Info, Base);
- }
- return true;
- }
- /// Check that this core constant expression is of literal type, and if not,
- /// produce an appropriate diagnostic.
- static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
- const LValue *This = nullptr) {
- if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
- return true;
- // C++1y: A constant initializer for an object o [...] may also invoke
- // constexpr constructors for o and its subobjects even if those objects
- // are of non-literal class types.
- if (Info.getLangOpts().CPlusPlus14 && This &&
- Info.EvaluatingDecl == This->getLValueBase())
- return true;
- // Prvalue constant expressions must be of literal types.
- if (Info.getLangOpts().CPlusPlus11)
- Info.Diag(E, diag::note_constexpr_nonliteral)
- << E->getType();
- else
- Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- /// Check that this core constant expression value is a valid value for a
- /// constant expression. If not, report an appropriate diagnostic. Does not
- /// check that the expression is of literal type.
- static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
- QualType Type, const APValue &Value) {
- if (Value.isUninit()) {
- Info.Diag(DiagLoc, diag::note_constexpr_uninitialized)
- << true << Type;
- return false;
- }
- // We allow _Atomic(T) to be initialized from anything that T can be
- // initialized from.
- if (const AtomicType *AT = Type->getAs<AtomicType>())
- Type = AT->getValueType();
- // Core issue 1454: For a literal constant expression of array or class type,
- // each subobject of its value shall have been initialized by a constant
- // expression.
- if (Value.isArray()) {
- QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
- for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
- if (!CheckConstantExpression(Info, DiagLoc, EltTy,
- Value.getArrayInitializedElt(I)))
- return false;
- }
- if (!Value.hasArrayFiller())
- return true;
- return CheckConstantExpression(Info, DiagLoc, EltTy,
- Value.getArrayFiller());
- }
- if (Value.isUnion() && Value.getUnionField()) {
- return CheckConstantExpression(Info, DiagLoc,
- Value.getUnionField()->getType(),
- Value.getUnionValue());
- }
- if (Value.isStruct()) {
- RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
- if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
- unsigned BaseIndex = 0;
- for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
- End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
- if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
- Value.getStructBase(BaseIndex)))
- return false;
- }
- }
- for (const auto *I : RD->fields()) {
- if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
- Value.getStructField(I->getFieldIndex())))
- return false;
- }
- }
- if (Value.isLValue()) {
- LValue LVal;
- LVal.setFrom(Info.Ctx, Value);
- return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
- }
- // Everything else is fine.
- return true;
- }
- static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
- return LVal.Base.dyn_cast<const ValueDecl*>();
- }
- static bool IsLiteralLValue(const LValue &Value) {
- if (Value.CallIndex)
- return false;
- const Expr *E = Value.Base.dyn_cast<const Expr*>();
- return E && !isa<MaterializeTemporaryExpr>(E);
- }
- static bool IsWeakLValue(const LValue &Value) {
- const ValueDecl *Decl = GetLValueBaseDecl(Value);
- return Decl && Decl->isWeak();
- }
- static bool isZeroSized(const LValue &Value) {
- const ValueDecl *Decl = GetLValueBaseDecl(Value);
- if (Decl && isa<VarDecl>(Decl)) {
- QualType Ty = Decl->getType();
- if (Ty->isArrayType())
- return Ty->isIncompleteType() ||
- Decl->getASTContext().getTypeSize(Ty) == 0;
- }
- return false;
- }
- static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
- // A null base expression indicates a null pointer. These are always
- // evaluatable, and they are false unless the offset is zero.
- if (!Value.getLValueBase()) {
- Result = !Value.getLValueOffset().isZero();
- return true;
- }
- // We have a non-null base. These are generally known to be true, but if it's
- // a weak declaration it can be null at runtime.
- Result = true;
- const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
- return !Decl || !Decl->isWeak();
- }
- static bool HandleConversionToBool(const APValue &Val, bool &Result) {
- switch (Val.getKind()) {
- case APValue::Uninitialized:
- return false;
- case APValue::Int:
- Result = Val.getInt().getBoolValue();
- return true;
- case APValue::Float:
- Result = !Val.getFloat().isZero();
- return true;
- case APValue::ComplexInt:
- Result = Val.getComplexIntReal().getBoolValue() ||
- Val.getComplexIntImag().getBoolValue();
- return true;
- case APValue::ComplexFloat:
- Result = !Val.getComplexFloatReal().isZero() ||
- !Val.getComplexFloatImag().isZero();
- return true;
- case APValue::LValue:
- return EvalPointerValueAsBool(Val, Result);
- case APValue::MemberPointer:
- Result = Val.getMemberPointerDecl();
- return true;
- case APValue::Vector:
- case APValue::Array:
- case APValue::Struct:
- case APValue::Union:
- case APValue::AddrLabelDiff:
- return false;
- }
- llvm_unreachable("unknown APValue kind");
- }
- static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
- EvalInfo &Info) {
- assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
- APValue Val;
- if (!Evaluate(Val, Info, E))
- return false;
- return HandleConversionToBool(Val, Result);
- }
- template<typename T>
- static void HandleOverflow(EvalInfo &Info, const Expr *E,
- const T &SrcValue, QualType DestType) {
- Info.CCEDiag(E, diag::note_constexpr_overflow)
- << SrcValue << DestType;
- }
- static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
- QualType SrcType, const APFloat &Value,
- QualType DestType, APSInt &Result) {
- unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
- // Determine whether we are converting to unsigned or signed.
- bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
- Result = APSInt(DestWidth, !DestSigned);
- bool ignored;
- if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
- & APFloat::opInvalidOp)
- HandleOverflow(Info, E, Value, DestType);
- return true;
- }
- static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
- QualType SrcType, QualType DestType,
- APFloat &Result) {
- APFloat Value = Result;
- bool ignored;
- if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
- APFloat::rmNearestTiesToEven, &ignored)
- & APFloat::opOverflow)
- HandleOverflow(Info, E, Value, DestType);
- return true;
- }
- static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
- QualType DestType, QualType SrcType,
- APSInt &Value) {
- unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
- APSInt Result = Value;
- // Figure out if this is a truncate, extend or noop cast.
- // If the input is signed, do a sign extend, noop, or truncate.
- Result = Result.extOrTrunc(DestWidth);
- Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
- return Result;
- }
- static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
- QualType SrcType, const APSInt &Value,
- QualType DestType, APFloat &Result) {
- Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
- if (Result.convertFromAPInt(Value, Value.isSigned(),
- APFloat::rmNearestTiesToEven)
- & APFloat::opOverflow)
- HandleOverflow(Info, E, Value, DestType);
- return true;
- }
- static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
- APValue &Value, const FieldDecl *FD) {
- assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
- if (!Value.isInt()) {
- // Trying to store a pointer-cast-to-integer into a bitfield.
- // FIXME: In this case, we should provide the diagnostic for casting
- // a pointer to an integer.
- assert(Value.isLValue() && "integral value neither int nor lvalue?");
- Info.Diag(E);
- return false;
- }
- APSInt &Int = Value.getInt();
- unsigned OldBitWidth = Int.getBitWidth();
- unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
- if (NewBitWidth < OldBitWidth)
- Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
- return true;
- }
- static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
- llvm::APInt &Res) {
- APValue SVal;
- if (!Evaluate(SVal, Info, E))
- return false;
- if (SVal.isInt()) {
- Res = SVal.getInt();
- return true;
- }
- if (SVal.isFloat()) {
- Res = SVal.getFloat().bitcastToAPInt();
- return true;
- }
- if (SVal.isVector()) {
- QualType VecTy = E->getType();
- unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
- QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
- unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
- bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
- Res = llvm::APInt::getNullValue(VecSize);
- for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
- APValue &Elt = SVal.getVectorElt(i);
- llvm::APInt EltAsInt;
- if (Elt.isInt()) {
- EltAsInt = Elt.getInt();
- } else if (Elt.isFloat()) {
- EltAsInt = Elt.getFloat().bitcastToAPInt();
- } else {
- // Don't try to handle vectors of anything other than int or float
- // (not sure if it's possible to hit this case).
- Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- unsigned BaseEltSize = EltAsInt.getBitWidth();
- if (BigEndian)
- Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
- else
- Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
- }
- return true;
- }
- // Give up if the input isn't an int, float, or vector. For example, we
- // reject "(v4i16)(intptr_t)&a".
- Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- /// Perform the given integer operation, which is known to need at most BitWidth
- /// bits, and check for overflow in the original type (if that type was not an
- /// unsigned type).
- template<typename Operation>
- static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
- const APSInt &LHS, const APSInt &RHS,
- unsigned BitWidth, Operation Op) {
- if (LHS.isUnsigned())
- return Op(LHS, RHS);
- APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
- APSInt Result = Value.trunc(LHS.getBitWidth());
- if (Result.extend(BitWidth) != Value) {
- if (Info.checkingForOverflow())
- Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
- diag::warn_integer_constant_overflow)
- << Result.toString(10) << E->getType();
- else
- HandleOverflow(Info, E, Value, E->getType());
- }
- return Result;
- }
- /// Perform the given binary integer operation.
- static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
- BinaryOperatorKind Opcode, APSInt RHS,
- APSInt &Result) {
- switch (Opcode) {
- default:
- Info.Diag(E);
- return false;
- case BO_Mul:
- Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
- std::multiplies<APSInt>());
- return true;
- case BO_Add:
- Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
- std::plus<APSInt>());
- return true;
- case BO_Sub:
- Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
- std::minus<APSInt>());
- return true;
- case BO_And: Result = LHS & RHS; return true;
- case BO_Xor: Result = LHS ^ RHS; return true;
- case BO_Or: Result = LHS | RHS; return true;
- case BO_Div:
- case BO_Rem:
- if (RHS == 0) {
- Info.Diag(E, diag::note_expr_divide_by_zero);
- return false;
- }
- // Check for overflow case: INT_MIN / -1 or INT_MIN % -1.
- if (RHS.isNegative() && RHS.isAllOnesValue() &&
- LHS.isSigned() && LHS.isMinSignedValue())
- HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
- Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
- return true;
- case BO_Shl: {
- if (Info.getLangOpts().OpenCL)
- // OpenCL 6.3j: shift values are effectively % word size of LHS.
- RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
- static_cast<uint64_t>(LHS.getBitWidth() - 1)),
- RHS.isUnsigned());
- else if (RHS.isSigned() && RHS.isNegative()) {
- // During constant-folding, a negative shift is an opposite shift. Such
- // a shift is not a constant expression.
- Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
- RHS = -RHS;
- goto shift_right;
- }
- shift_left:
- // C++11 [expr.shift]p1: Shift width must be less than the bit width of
- // the shifted type.
- unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
- if (SA != RHS) {
- Info.CCEDiag(E, diag::note_constexpr_large_shift)
- << RHS << E->getType() << LHS.getBitWidth();
- } else if (LHS.isSigned()) {
- // C++11 [expr.shift]p2: A signed left shift must have a non-negative
- // operand, and must not overflow the corresponding unsigned type.
- if (LHS.isNegative())
- Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
- else if (LHS.countLeadingZeros() < SA)
- Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
- }
- Result = LHS << SA;
- return true;
- }
- case BO_Shr: {
- if (Info.getLangOpts().OpenCL)
- // OpenCL 6.3j: shift values are effectively % word size of LHS.
- RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
- static_cast<uint64_t>(LHS.getBitWidth() - 1)),
- RHS.isUnsigned());
- else if (RHS.isSigned() && RHS.isNegative()) {
- // During constant-folding, a negative shift is an opposite shift. Such a
- // shift is not a constant expression.
- Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
- RHS = -RHS;
- goto shift_left;
- }
- shift_right:
- // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
- // shifted type.
- unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
- if (SA != RHS)
- Info.CCEDiag(E, diag::note_constexpr_large_shift)
- << RHS << E->getType() << LHS.getBitWidth();
- Result = LHS >> SA;
- return true;
- }
- case BO_LT: Result = LHS < RHS; return true;
- case BO_GT: Result = LHS > RHS; return true;
- case BO_LE: Result = LHS <= RHS; return true;
- case BO_GE: Result = LHS >= RHS; return true;
- case BO_EQ: Result = LHS == RHS; return true;
- case BO_NE: Result = LHS != RHS; return true;
- }
- }
- /// Perform the given binary floating-point operation, in-place, on LHS.
- static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
- APFloat &LHS, BinaryOperatorKind Opcode,
- const APFloat &RHS) {
- switch (Opcode) {
- default:
- Info.Diag(E);
- return false;
- case BO_Mul:
- LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
- break;
- case BO_Add:
- LHS.add(RHS, APFloat::rmNearestTiesToEven);
- break;
- case BO_Sub:
- LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
- break;
- case BO_Div:
- LHS.divide(RHS, APFloat::rmNearestTiesToEven);
- break;
- }
- if (LHS.isInfinity() || LHS.isNaN())
- Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
- return true;
- }
- /// Cast an lvalue referring to a base subobject to a derived class, by
- /// truncating the lvalue's path to the given length.
- static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
- const RecordDecl *TruncatedType,
- unsigned TruncatedElements) {
- SubobjectDesignator &D = Result.Designator;
- // Check we actually point to a derived class object.
- if (TruncatedElements == D.Entries.size())
- return true;
- assert(TruncatedElements >= D.MostDerivedPathLength &&
- "not casting to a derived class");
- if (!Result.checkSubobject(Info, E, CSK_Derived))
- return false;
- // Truncate the path to the subobject, and remove any derived-to-base offsets.
- const RecordDecl *RD = TruncatedType;
- for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
- const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
- if (isVirtualBaseClass(D.Entries[I]))
- Result.Offset -= Layout.getVBaseClassOffset(Base);
- else
- Result.Offset -= Layout.getBaseClassOffset(Base);
- RD = Base;
- }
- D.Entries.resize(TruncatedElements);
- return true;
- }
- static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
- const CXXRecordDecl *Derived,
- const CXXRecordDecl *Base,
- const ASTRecordLayout *RL = nullptr) {
- if (!RL) {
- if (Derived->isInvalidDecl()) return false;
- RL = &Info.Ctx.getASTRecordLayout(Derived);
- }
- Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
- Obj.addDecl(Info, E, Base, /*Virtual*/ false);
- return true;
- }
- static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
- const CXXRecordDecl *DerivedDecl,
- const CXXBaseSpecifier *Base) {
- const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
- if (!Base->isVirtual())
- return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
- SubobjectDesignator &D = Obj.Designator;
- if (D.Invalid)
- return false;
- // Extract most-derived object and corresponding type.
- DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
- if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
- return false;
- // Find the virtual base class.
- if (DerivedDecl->isInvalidDecl()) return false;
- const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
- Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
- Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
- return true;
- }
- static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
- QualType Type, LValue &Result) {
- for (CastExpr::path_const_iterator PathI = E->path_begin(),
- PathE = E->path_end();
- PathI != PathE; ++PathI) {
- if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
- *PathI))
- return false;
- Type = (*PathI)->getType();
- }
- return true;
- }
- /// Update LVal to refer to the given field, which must be a member of the type
- /// currently described by LVal.
- static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
- const FieldDecl *FD,
- const ASTRecordLayout *RL = nullptr) {
- if (!RL) {
- if (FD->getParent()->isInvalidDecl()) return false;
- RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
- }
- unsigned I = FD->getFieldIndex();
- LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
- LVal.addDecl(Info, E, FD);
- return true;
- }
- /// Update LVal to refer to the given indirect field.
- static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
- LValue &LVal,
- const IndirectFieldDecl *IFD) {
- for (const auto *C : IFD->chain())
- if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
- return false;
- return true;
- }
- /// Get the size of the given type in char units.
- static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
- QualType Type, CharUnits &Size) {
- // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
- // extension.
- if (Type->isVoidType() || Type->isFunctionType()) {
- Size = CharUnits::One();
- return true;
- }
- if (!Type->isConstantSizeType()) {
- // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
- // FIXME: Better diagnostic.
- Info.Diag(Loc);
- return false;
- }
- Size = Info.Ctx.getTypeSizeInChars(Type);
- return true;
- }
- /// Update a pointer value to model pointer arithmetic.
- /// \param Info - Information about the ongoing evaluation.
- /// \param E - The expression being evaluated, for diagnostic purposes.
- /// \param LVal - The pointer value to be updated.
- /// \param EltTy - The pointee type represented by LVal.
- /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
- static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
- LValue &LVal, QualType EltTy,
- int64_t Adjustment) {
- CharUnits SizeOfPointee;
- if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
- return false;
- // Compute the new offset in the appropriate width.
- LVal.Offset += Adjustment * SizeOfPointee;
- LVal.adjustIndex(Info, E, Adjustment);
- return true;
- }
- /// Update an lvalue to refer to a component of a complex number.
- /// \param Info - Information about the ongoing evaluation.
- /// \param LVal - The lvalue to be updated.
- /// \param EltTy - The complex number's component type.
- /// \param Imag - False for the real component, true for the imaginary.
- static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
- LValue &LVal, QualType EltTy,
- bool Imag) {
- if (Imag) {
- CharUnits SizeOfComponent;
- if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
- return false;
- LVal.Offset += SizeOfComponent;
- }
- LVal.addComplex(Info, E, EltTy, Imag);
- return true;
- }
- /// Try to evaluate the initializer for a variable declaration.
- ///
- /// \param Info Information about the ongoing evaluation.
- /// \param E An expression to be used when printing diagnostics.
- /// \param VD The variable whose initializer should be obtained.
- /// \param Frame The frame in which the variable was created. Must be null
- /// if this variable is not local to the evaluation.
- /// \param Result Filled in with a pointer to the value of the variable.
- static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
- const VarDecl *VD, CallStackFrame *Frame,
- APValue *&Result) {
- // If this is a parameter to an active constexpr function call, perform
- // argument substitution.
- if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
- // Assume arguments of a potential constant expression are unknown
- // constant expressions.
- if (Info.checkingPotentialConstantExpression())
- return false;
- if (!Frame || !Frame->Arguments) {
- Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
- return true;
- }
- // If this is a local variable, dig out its value.
- if (Frame) {
- Result = Frame->getTemporary(VD);
- assert(Result && "missing value for local variable");
- return true;
- }
- // Dig out the initializer, and use the declaration which it's attached to.
- const Expr *Init = VD->getAnyInitializer(VD);
- if (!Init || Init->isValueDependent()) {
- // If we're checking a potential constant expression, the variable could be
- // initialized later.
- if (!Info.checkingPotentialConstantExpression())
- Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- // If we're currently evaluating the initializer of this declaration, use that
- // in-flight value.
- if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
- Result = Info.EvaluatingDeclValue;
- return true;
- }
- // Never evaluate the initializer of a weak variable. We can't be sure that
- // this is the definition which will be used.
- if (VD->isWeak()) {
- Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- // HLSL Change Begin - External variable is in cbuffer, cannot use as immediate.
- if (VD->hasExternalFormalLinkage() &&
- !isa<EnumConstantDecl>(VD))
- return false;
- // HLSL Change End.
- // Check that we can fold the initializer. In C++, we will have already done
- // this in the cases where it matters for conformance.
- SmallVector<PartialDiagnosticAt, 8> Notes;
- if (!VD->evaluateValue(Notes)) {
- Info.Diag(E, diag::note_constexpr_var_init_non_constant,
- Notes.size() + 1) << VD;
- Info.Note(VD->getLocation(), diag::note_declared_at);
- Info.addNotes(Notes);
- return false;
- } else if (!VD->checkInitIsICE()) {
- Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
- Notes.size() + 1) << VD;
- Info.Note(VD->getLocation(), diag::note_declared_at);
- Info.addNotes(Notes);
- }
- Result = VD->getEvaluatedValue();
- return true;
- }
- static bool IsConstNonVolatile(QualType T) {
- Qualifiers Quals = T.getQualifiers();
- return Quals.hasConst() && !Quals.hasVolatile();
- }
- /// Get the base index of the given base class within an APValue representing
- /// the given derived class.
- static unsigned getBaseIndex(const CXXRecordDecl *Derived,
- const CXXRecordDecl *Base) {
- Base = Base->getCanonicalDecl();
- unsigned Index = 0;
- for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
- E = Derived->bases_end(); I != E; ++I, ++Index) {
- if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
- return Index;
- }
- llvm_unreachable("base class missing from derived class's bases list");
- }
- /// Extract the value of a character from a string literal.
- static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
- uint64_t Index) {
- // FIXME: Support ObjCEncodeExpr, MakeStringConstant
- if (auto PE = dyn_cast<PredefinedExpr>(Lit))
- Lit = PE->getFunctionName();
- const StringLiteral *S = cast<StringLiteral>(Lit);
- const ConstantArrayType *CAT =
- Info.Ctx.getAsConstantArrayType(S->getType());
- assert(CAT && "string literal isn't an array");
- QualType CharType = CAT->getElementType();
- assert(CharType->isIntegerType() && "unexpected character type");
- APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
- CharType->isUnsignedIntegerType());
- if (Index < S->getLength())
- Value = S->getCodeUnit(Index);
- return Value;
- }
- // Expand a string literal into an array of characters.
- static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
- APValue &Result) {
- const StringLiteral *S = cast<StringLiteral>(Lit);
- const ConstantArrayType *CAT =
- Info.Ctx.getAsConstantArrayType(S->getType());
- assert(CAT && "string literal isn't an array");
- QualType CharType = CAT->getElementType();
- assert(CharType->isIntegerType() && "unexpected character type");
- unsigned Elts = CAT->getSize().getZExtValue();
- Result = APValue(APValue::UninitArray(),
- std::min(S->getLength(), Elts), Elts);
- APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
- CharType->isUnsignedIntegerType());
- if (Result.hasArrayFiller())
- Result.getArrayFiller() = APValue(Value);
- for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
- Value = S->getCodeUnit(I);
- Result.getArrayInitializedElt(I) = APValue(Value);
- }
- }
- // Expand an array so that it has more than Index filled elements.
- static void expandArray(APValue &Array, unsigned Index) {
- unsigned Size = Array.getArraySize();
- assert(Index < Size);
- // Always at least double the number of elements for which we store a value.
- unsigned OldElts = Array.getArrayInitializedElts();
- unsigned NewElts = std::max(Index+1, OldElts * 2);
- NewElts = std::min(Size, std::max(NewElts, 8u));
- // Copy the data across.
- APValue NewValue(APValue::UninitArray(), NewElts, Size);
- for (unsigned I = 0; I != OldElts; ++I)
- NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
- for (unsigned I = OldElts; I != NewElts; ++I)
- NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
- if (NewValue.hasArrayFiller())
- NewValue.getArrayFiller() = Array.getArrayFiller();
- Array.swap(NewValue);
- }
- /// Determine whether a type would actually be read by an lvalue-to-rvalue
- /// conversion. If it's of class type, we may assume that the copy operation
- /// is trivial. Note that this is never true for a union type with fields
- /// (because the copy always "reads" the active member) and always true for
- /// a non-class type.
- static bool isReadByLvalueToRvalueConversion(QualType T) {
- CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
- if (!RD || (RD->isUnion() && !RD->field_empty()))
- return true;
- if (RD->isEmpty())
- return false;
- for (auto *Field : RD->fields())
- if (isReadByLvalueToRvalueConversion(Field->getType()))
- return true;
- for (auto &BaseSpec : RD->bases())
- if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
- return true;
- return false;
- }
- /// Diagnose an attempt to read from any unreadable field within the specified
- /// type, which might be a class type.
- static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E,
- QualType T) {
- CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
- if (!RD)
- return false;
- if (!RD->hasMutableFields())
- return false;
- for (auto *Field : RD->fields()) {
- // If we're actually going to read this field in some way, then it can't
- // be mutable. If we're in a union, then assigning to a mutable field
- // (even an empty one) can change the active member, so that's not OK.
- // FIXME: Add core issue number for the union case.
- if (Field->isMutable() &&
- (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
- Info.Diag(E, diag::note_constexpr_ltor_mutable, 1) << Field;
- Info.Note(Field->getLocation(), diag::note_declared_at);
- return true;
- }
- if (diagnoseUnreadableFields(Info, E, Field->getType()))
- return true;
- }
- for (auto &BaseSpec : RD->bases())
- if (diagnoseUnreadableFields(Info, E, BaseSpec.getType()))
- return true;
- // All mutable fields were empty, and thus not actually read.
- return false;
- }
- /// Kinds of access we can perform on an object, for diagnostics.
- enum AccessKinds {
- AK_Read,
- AK_Assign,
- AK_Increment,
- AK_Decrement
- };
- /// A handle to a complete object (an object that is not a subobject of
- /// another object).
- struct CompleteObject {
- /// The value of the complete object.
- APValue *Value;
- /// The type of the complete object.
- QualType Type;
- CompleteObject() : Value(nullptr) {}
- CompleteObject(APValue *Value, QualType Type)
- : Value(Value), Type(Type) {
- assert(Value && "missing value for complete object");
- }
- explicit operator bool() const { return Value; }
- };
- /// Find the designated sub-object of an rvalue.
- template<typename SubobjectHandler>
- typename SubobjectHandler::result_type
- findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
- const SubobjectDesignator &Sub, SubobjectHandler &handler) {
- if (Sub.Invalid)
- // A diagnostic will have already been produced.
- return handler.failed();
- if (Sub.isOnePastTheEnd()) {
- if (Info.getLangOpts().CPlusPlus11)
- Info.Diag(E, diag::note_constexpr_access_past_end)
- << handler.AccessKind;
- else
- Info.Diag(E);
- return handler.failed();
- }
- APValue *O = Obj.Value;
- QualType ObjType = Obj.Type;
- const FieldDecl *LastField = nullptr;
- // Walk the designator's path to find the subobject.
- for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
- if (O->isUninit()) {
- if (!Info.checkingPotentialConstantExpression())
- Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
- return handler.failed();
- }
- if (I == N) {
- // If we are reading an object of class type, there may still be more
- // things we need to check: if there are any mutable subobjects, we
- // cannot perform this read. (This only happens when performing a trivial
- // copy or assignment.)
- if (ObjType->isRecordType() && handler.AccessKind == AK_Read &&
- diagnoseUnreadableFields(Info, E, ObjType))
- return handler.failed();
- if (!handler.found(*O, ObjType))
- return false;
- // If we modified a bit-field, truncate it to the right width.
- if (handler.AccessKind != AK_Read &&
- LastField && LastField->isBitField() &&
- !truncateBitfieldValue(Info, E, *O, LastField))
- return false;
- return true;
- }
- LastField = nullptr;
- if (ObjType->isArrayType()) {
- // Next subobject is an array element.
- const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
- assert(CAT && "vla in literal type?");
- uint64_t Index = Sub.Entries[I].ArrayIndex;
- if (CAT->getSize().ule(Index)) {
- // Note, it should not be possible to form a pointer with a valid
- // designator which points more than one past the end of the array.
- if (Info.getLangOpts().CPlusPlus11)
- Info.Diag(E, diag::note_constexpr_access_past_end)
- << handler.AccessKind;
- else
- Info.Diag(E);
- return handler.failed();
- }
- ObjType = CAT->getElementType();
- // An array object is represented as either an Array APValue or as an
- // LValue which refers to a string literal.
- if (O->isLValue()) {
- assert(I == N - 1 && "extracting subobject of character?");
- assert(!O->hasLValuePath() || O->getLValuePath().empty());
- if (handler.AccessKind != AK_Read)
- expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
- *O);
- else
- return handler.foundString(*O, ObjType, Index);
- }
- if (O->getArrayInitializedElts() > Index)
- O = &O->getArrayInitializedElt(Index);
- else if (handler.AccessKind != AK_Read) {
- expandArray(*O, Index);
- O = &O->getArrayInitializedElt(Index);
- } else
- O = &O->getArrayFiller();
- } else if (ObjType->isAnyComplexType()) {
- // Next subobject is a complex number.
- uint64_t Index = Sub.Entries[I].ArrayIndex;
- if (Index > 1) {
- if (Info.getLangOpts().CPlusPlus11)
- Info.Diag(E, diag::note_constexpr_access_past_end)
- << handler.AccessKind;
- else
- Info.Diag(E);
- return handler.failed();
- }
- bool WasConstQualified = ObjType.isConstQualified();
- ObjType = ObjType->castAs<ComplexType>()->getElementType();
- if (WasConstQualified)
- ObjType.addConst();
- assert(I == N - 1 && "extracting subobject of scalar?");
- if (O->isComplexInt()) {
- return handler.found(Index ? O->getComplexIntImag()
- : O->getComplexIntReal(), ObjType);
- } else {
- assert(O->isComplexFloat());
- return handler.found(Index ? O->getComplexFloatImag()
- : O->getComplexFloatReal(), ObjType);
- }
- } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
- if (Field->isMutable() && handler.AccessKind == AK_Read) {
- Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
- << Field;
- Info.Note(Field->getLocation(), diag::note_declared_at);
- return handler.failed();
- }
- // Next subobject is a class, struct or union field.
- RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
- if (RD->isUnion()) {
- const FieldDecl *UnionField = O->getUnionField();
- if (!UnionField ||
- UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
- Info.Diag(E, diag::note_constexpr_access_inactive_union_member)
- << handler.AccessKind << Field << !UnionField << UnionField;
- return handler.failed();
- }
- O = &O->getUnionValue();
- } else
- O = &O->getStructField(Field->getFieldIndex());
- bool WasConstQualified = ObjType.isConstQualified();
- ObjType = Field->getType();
- if (WasConstQualified && !Field->isMutable())
- ObjType.addConst();
- if (ObjType.isVolatileQualified()) {
- if (Info.getLangOpts().CPlusPlus) {
- // FIXME: Include a description of the path to the volatile subobject.
- Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
- << handler.AccessKind << 2 << Field;
- Info.Note(Field->getLocation(), diag::note_declared_at);
- } else {
- Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
- }
- return handler.failed();
- }
- LastField = Field;
- } else {
- // Next subobject is a base class.
- const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
- const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
- O = &O->getStructBase(getBaseIndex(Derived, Base));
- bool WasConstQualified = ObjType.isConstQualified();
- ObjType = Info.Ctx.getRecordType(Base);
- if (WasConstQualified)
- ObjType.addConst();
- }
- }
- }
- namespace {
- struct ExtractSubobjectHandler {
- EvalInfo &Info;
- APValue &Result;
- static const AccessKinds AccessKind = AK_Read;
- typedef bool result_type;
- bool failed() { return false; }
- bool found(APValue &Subobj, QualType SubobjType) {
- Result = Subobj;
- return true;
- }
- bool found(APSInt &Value, QualType SubobjType) {
- Result = APValue(Value);
- return true;
- }
- bool found(APFloat &Value, QualType SubobjType) {
- Result = APValue(Value);
- return true;
- }
- bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
- Result = APValue(extractStringLiteralCharacter(
- Info, Subobj.getLValueBase().get<const Expr *>(), Character));
- return true;
- }
- };
- } // end anonymous namespace
- const AccessKinds ExtractSubobjectHandler::AccessKind;
- /// Extract the designated sub-object of an rvalue.
- static bool extractSubobject(EvalInfo &Info, const Expr *E,
- const CompleteObject &Obj,
- const SubobjectDesignator &Sub,
- APValue &Result) {
- ExtractSubobjectHandler Handler = { Info, Result };
- return findSubobject(Info, E, Obj, Sub, Handler);
- }
- namespace {
- struct ModifySubobjectHandler {
- EvalInfo &Info;
- APValue &NewVal;
- const Expr *E;
- typedef bool result_type;
- static const AccessKinds AccessKind = AK_Assign;
- bool checkConst(QualType QT) {
- // Assigning to a const object has undefined behavior.
- if (QT.isConstQualified()) {
- Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
- return false;
- }
- return true;
- }
- bool failed() { return false; }
- bool found(APValue &Subobj, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- // We've been given ownership of NewVal, so just swap it in.
- Subobj.swap(NewVal);
- return true;
- }
- bool found(APSInt &Value, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- if (!NewVal.isInt()) {
- // Maybe trying to write a cast pointer value into a complex?
- Info.Diag(E);
- return false;
- }
- Value = NewVal.getInt();
- return true;
- }
- bool found(APFloat &Value, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- Value = NewVal.getFloat();
- return true;
- }
- bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
- llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
- }
- };
- } // end anonymous namespace
- const AccessKinds ModifySubobjectHandler::AccessKind;
- /// Update the designated sub-object of an rvalue to the given value.
- static bool modifySubobject(EvalInfo &Info, const Expr *E,
- const CompleteObject &Obj,
- const SubobjectDesignator &Sub,
- APValue &NewVal) {
- ModifySubobjectHandler Handler = { Info, NewVal, E };
- return findSubobject(Info, E, Obj, Sub, Handler);
- }
- /// Find the position where two subobject designators diverge, or equivalently
- /// the length of the common initial subsequence.
- static unsigned FindDesignatorMismatch(QualType ObjType,
- const SubobjectDesignator &A,
- const SubobjectDesignator &B,
- bool &WasArrayIndex) {
- unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
- for (/**/; I != N; ++I) {
- if (!ObjType.isNull() &&
- (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
- // Next subobject is an array element.
- if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
- WasArrayIndex = true;
- return I;
- }
- if (ObjType->isAnyComplexType())
- ObjType = ObjType->castAs<ComplexType>()->getElementType();
- else
- ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
- } else {
- if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
- WasArrayIndex = false;
- return I;
- }
- if (const FieldDecl *FD = getAsField(A.Entries[I]))
- // Next subobject is a field.
- ObjType = FD->getType();
- else
- // Next subobject is a base class.
- ObjType = QualType();
- }
- }
- WasArrayIndex = false;
- return I;
- }
- /// Determine whether the given subobject designators refer to elements of the
- /// same array object.
- static bool AreElementsOfSameArray(QualType ObjType,
- const SubobjectDesignator &A,
- const SubobjectDesignator &B) {
- if (A.Entries.size() != B.Entries.size())
- return false;
- bool IsArray = A.MostDerivedArraySize != 0;
- if (IsArray && A.MostDerivedPathLength != A.Entries.size())
- // A is a subobject of the array element.
- return false;
- // If A (and B) designates an array element, the last entry will be the array
- // index. That doesn't have to match. Otherwise, we're in the 'implicit array
- // of length 1' case, and the entire path must match.
- bool WasArrayIndex;
- unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
- return CommonLength >= A.Entries.size() - IsArray;
- }
- /// Find the complete object to which an LValue refers.
- static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
- AccessKinds AK, const LValue &LVal,
- QualType LValType) {
- if (!LVal.Base) {
- Info.Diag(E, diag::note_constexpr_access_null) << AK;
- return CompleteObject();
- }
- CallStackFrame *Frame = nullptr;
- if (LVal.CallIndex) {
- Frame = Info.getCallFrame(LVal.CallIndex);
- if (!Frame) {
- Info.Diag(E, diag::note_constexpr_lifetime_ended, 1)
- << AK << LVal.Base.is<const ValueDecl*>();
- NoteLValueLocation(Info, LVal.Base);
- return CompleteObject();
- }
- }
- // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
- // is not a constant expression (even if the object is non-volatile). We also
- // apply this rule to C++98, in order to conform to the expected 'volatile'
- // semantics.
- if (LValType.isVolatileQualified()) {
- if (Info.getLangOpts().CPlusPlus)
- Info.Diag(E, diag::note_constexpr_access_volatile_type)
- << AK << LValType;
- else
- Info.Diag(E);
- return CompleteObject();
- }
- // Compute value storage location and type of base object.
- APValue *BaseVal = nullptr;
- QualType BaseType = getType(LVal.Base);
- if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
- // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
- // In C++11, constexpr, non-volatile variables initialized with constant
- // expressions are constant expressions too. Inside constexpr functions,
- // parameters are constant expressions even if they're non-const.
- // In C++1y, objects local to a constant expression (those with a Frame) are
- // both readable and writable inside constant expressions.
- // In C, such things can also be folded, although they are not ICEs.
- const VarDecl *VD = dyn_cast<VarDecl>(D);
- if (VD) {
- if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
- VD = VDef;
- }
- if (!VD || VD->isInvalidDecl()) {
- Info.Diag(E);
- return CompleteObject();
- }
- // Accesses of volatile-qualified objects are not allowed.
- if (BaseType.isVolatileQualified()) {
- if (Info.getLangOpts().CPlusPlus) {
- Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
- << AK << 1 << VD;
- Info.Note(VD->getLocation(), diag::note_declared_at);
- } else {
- Info.Diag(E);
- }
- return CompleteObject();
- }
- // Unless we're looking at a local variable or argument in a constexpr call,
- // the variable we're reading must be const.
- if (!Frame) {
- if (Info.getLangOpts().CPlusPlus14 &&
- VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
- // OK, we can read and modify an object if we're in the process of
- // evaluating its initializer, because its lifetime began in this
- // evaluation.
- } else if (AK != AK_Read) {
- // All the remaining cases only permit reading.
- Info.Diag(E, diag::note_constexpr_modify_global);
- return CompleteObject();
- } else if (VD->isConstexpr()) {
- // OK, we can read this variable.
- } else if (BaseType->isIntegralOrEnumerationType()) {
- if (!BaseType.isConstQualified()) {
- if (Info.getLangOpts().CPlusPlus) {
- Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
- Info.Note(VD->getLocation(), diag::note_declared_at);
- } else {
- Info.Diag(E);
- }
- return CompleteObject();
- }
- } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
- // We support folding of const floating-point types, in order to make
- // static const data members of such types (supported as an extension)
- // more useful.
- if (Info.getLangOpts().CPlusPlus11) {
- Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
- Info.Note(VD->getLocation(), diag::note_declared_at);
- } else {
- Info.CCEDiag(E);
- }
- } else {
- // FIXME: Allow folding of values of any literal type in all languages.
- if (Info.getLangOpts().CPlusPlus11) {
- Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
- Info.Note(VD->getLocation(), diag::note_declared_at);
- } else {
- Info.Diag(E);
- }
- return CompleteObject();
- }
- }
- if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
- return CompleteObject();
- } else {
- const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
- if (!Frame) {
- if (const MaterializeTemporaryExpr *MTE =
- dyn_cast<MaterializeTemporaryExpr>(Base)) {
- assert(MTE->getStorageDuration() == SD_Static &&
- "should have a frame for a non-global materialized temporary");
- // Per C++1y [expr.const]p2:
- // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
- // - a [...] glvalue of integral or enumeration type that refers to
- // a non-volatile const object [...]
- // [...]
- // - a [...] glvalue of literal type that refers to a non-volatile
- // object whose lifetime began within the evaluation of e.
- //
- // C++11 misses the 'began within the evaluation of e' check and
- // instead allows all temporaries, including things like:
- // int &&r = 1;
- // int x = ++r;
- // constexpr int k = r;
- // Therefore we use the C++1y rules in C++11 too.
- const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
- const ValueDecl *ED = MTE->getExtendingDecl();
- if (!(BaseType.isConstQualified() &&
- BaseType->isIntegralOrEnumerationType()) &&
- !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
- Info.Diag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
- Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
- return CompleteObject();
- }
- BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
- assert(BaseVal && "got reference to unevaluated temporary");
- } else {
- Info.Diag(E);
- return CompleteObject();
- }
- } else {
- BaseVal = Frame->getTemporary(Base);
- assert(BaseVal && "missing value for temporary");
- }
- // Volatile temporary objects cannot be accessed in constant expressions.
- if (BaseType.isVolatileQualified()) {
- if (Info.getLangOpts().CPlusPlus) {
- Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
- << AK << 0;
- Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
- } else {
- Info.Diag(E);
- }
- return CompleteObject();
- }
- }
- // During the construction of an object, it is not yet 'const'.
- // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
- // and this doesn't do quite the right thing for const subobjects of the
- // object under construction.
- if (LVal.getLValueBase() == Info.EvaluatingDecl) {
- BaseType = Info.Ctx.getCanonicalType(BaseType);
- BaseType.removeLocalConst();
- }
- // In C++1y, we can't safely access any mutable state when we might be
- // evaluating after an unmodeled side effect or an evaluation failure.
- //
- // FIXME: Not all local state is mutable. Allow local constant subobjects
- // to be read here (but take care with 'mutable' fields).
- if (Frame && Info.getLangOpts().CPlusPlus14 &&
- (Info.EvalStatus.HasSideEffects || Info.keepEvaluatingAfterFailure()))
- return CompleteObject();
- return CompleteObject(BaseVal, BaseType);
- }
- /// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
- /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
- /// glvalue referred to by an entity of reference type.
- ///
- /// \param Info - Information about the ongoing evaluation.
- /// \param Conv - The expression for which we are performing the conversion.
- /// Used for diagnostics.
- /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
- /// case of a non-class type).
- /// \param LVal - The glvalue on which we are attempting to perform this action.
- /// \param RVal - The produced value will be placed here.
- static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
- QualType Type,
- const LValue &LVal, APValue &RVal) {
- if (LVal.Designator.Invalid)
- return false;
- // Check for special cases where there is no existing APValue to look at.
- const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
- if (!LVal.Designator.Invalid && Base && !LVal.CallIndex &&
- !Type.isVolatileQualified()) {
- if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
- // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
- // initializer until now for such expressions. Such an expression can't be
- // an ICE in C, so this only matters for fold.
- assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
- if (Type.isVolatileQualified()) {
- Info.Diag(Conv);
- return false;
- }
- APValue Lit;
- if (!Evaluate(Lit, Info, CLE->getInitializer()))
- return false;
- CompleteObject LitObj(&Lit, Base->getType());
- return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
- } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
- // We represent a string literal array as an lvalue pointing at the
- // corresponding expression, rather than building an array of chars.
- // FIXME: Support ObjCEncodeExpr, MakeStringConstant
- APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
- CompleteObject StrObj(&Str, Base->getType());
- return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
- }
- }
- CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
- return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
- }
- /// Perform an assignment of Val to LVal. Takes ownership of Val.
- static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
- QualType LValType, APValue &Val) {
- if (LVal.Designator.Invalid)
- return false;
- if (!Info.getLangOpts().CPlusPlus14) {
- Info.Diag(E);
- return false;
- }
- CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
- return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
- }
- static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
- return T->isSignedIntegerType() &&
- Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
- }
- namespace {
- struct CompoundAssignSubobjectHandler {
- EvalInfo &Info;
- const Expr *E;
- QualType PromotedLHSType;
- BinaryOperatorKind Opcode;
- const APValue &RHS;
- static const AccessKinds AccessKind = AK_Assign;
- typedef bool result_type;
- bool checkConst(QualType QT) {
- // Assigning to a const object has undefined behavior.
- if (QT.isConstQualified()) {
- Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
- return false;
- }
- return true;
- }
- bool failed() { return false; }
- bool found(APValue &Subobj, QualType SubobjType) {
- switch (Subobj.getKind()) {
- case APValue::Int:
- return found(Subobj.getInt(), SubobjType);
- case APValue::Float:
- return found(Subobj.getFloat(), SubobjType);
- case APValue::ComplexInt:
- case APValue::ComplexFloat:
- // FIXME: Implement complex compound assignment.
- Info.Diag(E);
- return false;
- case APValue::LValue:
- return foundPointer(Subobj, SubobjType);
- default:
- // FIXME: can this happen?
- Info.Diag(E);
- return false;
- }
- }
- bool found(APSInt &Value, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- if (!SubobjType->isIntegerType() || !RHS.isInt()) {
- // We don't support compound assignment on integer-cast-to-pointer
- // values.
- Info.Diag(E);
- return false;
- }
- APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
- SubobjType, Value);
- if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
- return false;
- Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
- return true;
- }
- bool found(APFloat &Value, QualType SubobjType) {
- return checkConst(SubobjType) &&
- HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
- Value) &&
- handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
- HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
- }
- bool foundPointer(APValue &Subobj, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- QualType PointeeType;
- if (const PointerType *PT = SubobjType->getAs<PointerType>())
- PointeeType = PT->getPointeeType();
- if (PointeeType.isNull() || !RHS.isInt() ||
- (Opcode != BO_Add && Opcode != BO_Sub)) {
- Info.Diag(E);
- return false;
- }
- int64_t Offset = getExtValue(RHS.getInt());
- if (Opcode == BO_Sub)
- Offset = -Offset;
- LValue LVal;
- LVal.setFrom(Info.Ctx, Subobj);
- if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
- return false;
- LVal.moveInto(Subobj);
- return true;
- }
- bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
- llvm_unreachable("shouldn't encounter string elements here");
- }
- };
- } // end anonymous namespace
- const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
- /// Perform a compound assignment of LVal <op>= RVal.
- static bool handleCompoundAssignment(
- EvalInfo &Info, const Expr *E,
- const LValue &LVal, QualType LValType, QualType PromotedLValType,
- BinaryOperatorKind Opcode, const APValue &RVal) {
- if (LVal.Designator.Invalid)
- return false;
- if (!Info.getLangOpts().CPlusPlus14) {
- Info.Diag(E);
- return false;
- }
- CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
- CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
- RVal };
- return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
- }
- namespace {
- struct IncDecSubobjectHandler {
- EvalInfo &Info;
- const Expr *E;
- AccessKinds AccessKind;
- APValue *Old;
- typedef bool result_type;
- bool checkConst(QualType QT) {
- // Assigning to a const object has undefined behavior.
- if (QT.isConstQualified()) {
- Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
- return false;
- }
- return true;
- }
- bool failed() { return false; }
- bool found(APValue &Subobj, QualType SubobjType) {
- // Stash the old value. Also clear Old, so we don't clobber it later
- // if we're post-incrementing a complex.
- if (Old) {
- *Old = Subobj;
- Old = nullptr;
- }
- switch (Subobj.getKind()) {
- case APValue::Int:
- return found(Subobj.getInt(), SubobjType);
- case APValue::Float:
- return found(Subobj.getFloat(), SubobjType);
- case APValue::ComplexInt:
- return found(Subobj.getComplexIntReal(),
- SubobjType->castAs<ComplexType>()->getElementType()
- .withCVRQualifiers(SubobjType.getCVRQualifiers()));
- case APValue::ComplexFloat:
- return found(Subobj.getComplexFloatReal(),
- SubobjType->castAs<ComplexType>()->getElementType()
- .withCVRQualifiers(SubobjType.getCVRQualifiers()));
- case APValue::LValue:
- return foundPointer(Subobj, SubobjType);
- default:
- // FIXME: can this happen?
- Info.Diag(E);
- return false;
- }
- }
- bool found(APSInt &Value, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- if (!SubobjType->isIntegerType()) {
- // We don't support increment / decrement on integer-cast-to-pointer
- // values.
- Info.Diag(E);
- return false;
- }
- if (Old) *Old = APValue(Value);
- // bool arithmetic promotes to int, and the conversion back to bool
- // doesn't reduce mod 2^n, so special-case it.
- if (SubobjType->isBooleanType()) {
- if (AccessKind == AK_Increment)
- Value = 1;
- else
- Value = !Value;
- return true;
- }
- bool WasNegative = Value.isNegative();
- if (AccessKind == AK_Increment) {
- ++Value;
- if (!WasNegative && Value.isNegative() &&
- isOverflowingIntegerType(Info.Ctx, SubobjType)) {
- APSInt ActualValue(Value, /*IsUnsigned*/true);
- HandleOverflow(Info, E, ActualValue, SubobjType);
- }
- } else {
- --Value;
- if (WasNegative && !Value.isNegative() &&
- isOverflowingIntegerType(Info.Ctx, SubobjType)) {
- unsigned BitWidth = Value.getBitWidth();
- APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
- ActualValue.setBit(BitWidth);
- HandleOverflow(Info, E, ActualValue, SubobjType);
- }
- }
- return true;
- }
- bool found(APFloat &Value, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- if (Old) *Old = APValue(Value);
- APFloat One(Value.getSemantics(), 1);
- if (AccessKind == AK_Increment)
- Value.add(One, APFloat::rmNearestTiesToEven);
- else
- Value.subtract(One, APFloat::rmNearestTiesToEven);
- return true;
- }
- bool foundPointer(APValue &Subobj, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- QualType PointeeType;
- if (const PointerType *PT = SubobjType->getAs<PointerType>())
- PointeeType = PT->getPointeeType();
- else {
- Info.Diag(E);
- return false;
- }
- LValue LVal;
- LVal.setFrom(Info.Ctx, Subobj);
- if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
- AccessKind == AK_Increment ? 1 : -1))
- return false;
- LVal.moveInto(Subobj);
- return true;
- }
- bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
- llvm_unreachable("shouldn't encounter string elements here");
- }
- };
- } // end anonymous namespace
- /// Perform an increment or decrement on LVal.
- static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
- QualType LValType, bool IsIncrement, APValue *Old) {
- if (LVal.Designator.Invalid)
- return false;
- if (!Info.getLangOpts().CPlusPlus14) {
- Info.Diag(E);
- return false;
- }
- AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
- CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
- IncDecSubobjectHandler Handler = { Info, E, AK, Old };
- return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
- }
- /// Build an lvalue for the object argument of a member function call.
- static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
- LValue &This) {
- if (Object->getType()->isPointerType())
- return EvaluatePointer(Object, This, Info);
- if (Object->isGLValue())
- return EvaluateLValue(Object, This, Info);
- if (Object->getType()->isLiteralType(Info.Ctx))
- return EvaluateTemporary(Object, This, Info);
- Info.Diag(Object, diag::note_constexpr_nonliteral) << Object->getType();
- return false;
- }
- /// HandleMemberPointerAccess - Evaluate a member access operation and build an
- /// lvalue referring to the result.
- ///
- /// \param Info - Information about the ongoing evaluation.
- /// \param LV - An lvalue referring to the base of the member pointer.
- /// \param RHS - The member pointer expression.
- /// \param IncludeMember - Specifies whether the member itself is included in
- /// the resulting LValue subobject designator. This is not possible when
- /// creating a bound member function.
- /// \return The field or method declaration to which the member pointer refers,
- /// or 0 if evaluation fails.
- static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
- QualType LVType,
- LValue &LV,
- const Expr *RHS,
- bool IncludeMember = true) {
- MemberPtr MemPtr;
- if (!EvaluateMemberPointer(RHS, MemPtr, Info))
- return nullptr;
- // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
- // member value, the behavior is undefined.
- if (!MemPtr.getDecl()) {
- // FIXME: Specific diagnostic.
- Info.Diag(RHS);
- return nullptr;
- }
- if (MemPtr.isDerivedMember()) {
- // This is a member of some derived class. Truncate LV appropriately.
- // The end of the derived-to-base path for the base object must match the
- // derived-to-base path for the member pointer.
- if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
- LV.Designator.Entries.size()) {
- Info.Diag(RHS);
- return nullptr;
- }
- unsigned PathLengthToMember =
- LV.Designator.Entries.size() - MemPtr.Path.size();
- for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
- const CXXRecordDecl *LVDecl = getAsBaseClass(
- LV.Designator.Entries[PathLengthToMember + I]);
- const CXXRecordDecl *MPDecl = MemPtr.Path[I];
- if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
- Info.Diag(RHS);
- return nullptr;
- }
- }
- // Truncate the lvalue to the appropriate derived class.
- if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
- PathLengthToMember))
- return nullptr;
- } else if (!MemPtr.Path.empty()) {
- // Extend the LValue path with the member pointer's path.
- LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
- MemPtr.Path.size() + IncludeMember);
- // Walk down to the appropriate base class.
- if (const PointerType *PT = LVType->getAs<PointerType>())
- LVType = PT->getPointeeType();
- const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
- assert(RD && "member pointer access on non-class-type expression");
- // The first class in the path is that of the lvalue.
- for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
- const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
- if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
- return nullptr;
- RD = Base;
- }
- // Finally cast to the class containing the member.
- if (!HandleLValueDirectBase(Info, RHS, LV, RD,
- MemPtr.getContainingRecord()))
- return nullptr;
- }
- // Add the member. Note that we cannot build bound member functions here.
- if (IncludeMember) {
- if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
- if (!HandleLValueMember(Info, RHS, LV, FD))
- return nullptr;
- } else if (const IndirectFieldDecl *IFD =
- dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
- if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
- return nullptr;
- } else {
- llvm_unreachable("can't construct reference to bound member function");
- }
- }
- return MemPtr.getDecl();
- }
- static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
- const BinaryOperator *BO,
- LValue &LV,
- bool IncludeMember = true) {
- assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
- if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
- if (Info.keepEvaluatingAfterFailure()) {
- MemberPtr MemPtr;
- EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
- }
- return nullptr;
- }
- return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
- BO->getRHS(), IncludeMember);
- }
- /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
- /// the provided lvalue, which currently refers to the base object.
- static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
- LValue &Result) {
- SubobjectDesignator &D = Result.Designator;
- if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
- return false;
- QualType TargetQT = E->getType();
- if (const PointerType *PT = TargetQT->getAs<PointerType>())
- TargetQT = PT->getPointeeType();
- // Check this cast lands within the final derived-to-base subobject path.
- if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
- Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
- << D.MostDerivedType << TargetQT;
- return false;
- }
- // Check the type of the final cast. We don't need to check the path,
- // since a cast can only be formed if the path is unique.
- unsigned NewEntriesSize = D.Entries.size() - E->path_size();
- const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
- const CXXRecordDecl *FinalType;
- if (NewEntriesSize == D.MostDerivedPathLength)
- FinalType = D.MostDerivedType->getAsCXXRecordDecl();
- else
- FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
- if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
- Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
- << D.MostDerivedType << TargetQT;
- return false;
- }
- // Truncate the lvalue to the appropriate derived class.
- return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
- }
- namespace {
- enum EvalStmtResult {
- /// Evaluation failed.
- ESR_Failed,
- /// Hit a 'return' statement.
- ESR_Returned,
- /// Evaluation succeeded.
- ESR_Succeeded,
- /// Hit a 'continue' statement.
- ESR_Continue,
- /// Hit a 'break' statement.
- ESR_Break,
- /// Still scanning for 'case' or 'default' statement.
- ESR_CaseNotFound
- };
- }
- static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
- if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
- // We don't need to evaluate the initializer for a static local.
- if (!VD->hasLocalStorage())
- return true;
- LValue Result;
- Result.set(VD, Info.CurrentCall->Index);
- APValue &Val = Info.CurrentCall->createTemporary(VD, true);
- const Expr *InitE = VD->getInit();
- if (!InitE) {
- Info.Diag(D->getLocStart(), diag::note_constexpr_uninitialized)
- << false << VD->getType();
- Val = APValue();
- return false;
- }
- if (InitE->isValueDependent())
- return false;
- if (!EvaluateInPlace(Val, Info, Result, InitE)) {
- // Wipe out any partially-computed value, to allow tracking that this
- // evaluation failed.
- Val = APValue();
- return false;
- }
- }
- return true;
- }
- /// Evaluate a condition (either a variable declaration or an expression).
- static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
- const Expr *Cond, bool &Result) {
- FullExpressionRAII Scope(Info);
- if (CondDecl && !EvaluateDecl(Info, CondDecl))
- return false;
- return EvaluateAsBooleanCondition(Cond, Result, Info);
- }
- static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
- const Stmt *S,
- const SwitchCase *SC = nullptr);
- /// Evaluate the body of a loop, and translate the result as appropriate.
- static EvalStmtResult EvaluateLoopBody(APValue &Result, EvalInfo &Info,
- const Stmt *Body,
- const SwitchCase *Case = nullptr) {
- BlockScopeRAII Scope(Info);
- switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
- case ESR_Break:
- return ESR_Succeeded;
- case ESR_Succeeded:
- case ESR_Continue:
- return ESR_Continue;
- case ESR_Failed:
- case ESR_Returned:
- case ESR_CaseNotFound:
- return ESR;
- }
- llvm_unreachable("Invalid EvalStmtResult!");
- }
- /// Evaluate a switch statement.
- static EvalStmtResult EvaluateSwitch(APValue &Result, EvalInfo &Info,
- const SwitchStmt *SS) {
- BlockScopeRAII Scope(Info);
- // Evaluate the switch condition.
- APSInt Value;
- {
- FullExpressionRAII Scope(Info);
- if (SS->getConditionVariable() &&
- !EvaluateDecl(Info, SS->getConditionVariable()))
- return ESR_Failed;
- if (!EvaluateInteger(SS->getCond(), Value, Info))
- return ESR_Failed;
- }
- // Find the switch case corresponding to the value of the condition.
- // FIXME: Cache this lookup.
- const SwitchCase *Found = nullptr;
- for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
- SC = SC->getNextSwitchCase()) {
- if (isa<DefaultStmt>(SC)) {
- Found = SC;
- continue;
- }
- const CaseStmt *CS = cast<CaseStmt>(SC);
- APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
- APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
- : LHS;
- if (LHS <= Value && Value <= RHS) {
- Found = SC;
- break;
- }
- }
- if (!Found)
- return ESR_Succeeded;
- // Search the switch body for the switch case and evaluate it from there.
- switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
- case ESR_Break:
- return ESR_Succeeded;
- case ESR_Succeeded:
- case ESR_Continue:
- case ESR_Failed:
- case ESR_Returned:
- return ESR;
- case ESR_CaseNotFound:
- // This can only happen if the switch case is nested within a statement
- // expression. We have no intention of supporting that.
- Info.Diag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
- return ESR_Failed;
- }
- llvm_unreachable("Invalid EvalStmtResult!");
- }
- // Evaluate a statement.
- static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
- const Stmt *S, const SwitchCase *Case) {
- if (!Info.nextStep(S))
- return ESR_Failed;
- // If we're hunting down a 'case' or 'default' label, recurse through
- // substatements until we hit the label.
- if (Case) {
- // FIXME: We don't start the lifetime of objects whose initialization we
- // jump over. However, such objects must be of class type with a trivial
- // default constructor that initialize all subobjects, so must be empty,
- // so this almost never matters.
- switch (S->getStmtClass()) {
- case Stmt::CompoundStmtClass:
- // FIXME: Precompute which substatement of a compound statement we
- // would jump to, and go straight there rather than performing a
- // linear scan each time.
- case Stmt::LabelStmtClass:
- case Stmt::AttributedStmtClass:
- case Stmt::DoStmtClass:
- break;
- case Stmt::CaseStmtClass:
- case Stmt::DefaultStmtClass:
- if (Case == S)
- Case = nullptr;
- break;
- case Stmt::IfStmtClass: {
- // FIXME: Precompute which side of an 'if' we would jump to, and go
- // straight there rather than scanning both sides.
- const IfStmt *IS = cast<IfStmt>(S);
- // Wrap the evaluation in a block scope, in case it's a DeclStmt
- // preceded by our switch label.
- BlockScopeRAII Scope(Info);
- EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
- if (ESR != ESR_CaseNotFound || !IS->getElse())
- return ESR;
- return EvaluateStmt(Result, Info, IS->getElse(), Case);
- }
- case Stmt::WhileStmtClass: {
- EvalStmtResult ESR =
- EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
- if (ESR != ESR_Continue)
- return ESR;
- break;
- }
- case Stmt::ForStmtClass: {
- const ForStmt *FS = cast<ForStmt>(S);
- EvalStmtResult ESR =
- EvaluateLoopBody(Result, Info, FS->getBody(), Case);
- if (ESR != ESR_Continue)
- return ESR;
- if (FS->getInc()) {
- FullExpressionRAII IncScope(Info);
- if (!EvaluateIgnoredValue(Info, FS->getInc()))
- return ESR_Failed;
- }
- break;
- }
- case Stmt::DeclStmtClass:
- // FIXME: If the variable has initialization that can't be jumped over,
- // bail out of any immediately-surrounding compound-statement too.
- default:
- return ESR_CaseNotFound;
- }
- }
- switch (S->getStmtClass()) {
- default:
- if (const Expr *E = dyn_cast<Expr>(S)) {
- // Don't bother evaluating beyond an expression-statement which couldn't
- // be evaluated.
- FullExpressionRAII Scope(Info);
- if (!EvaluateIgnoredValue(Info, E))
- return ESR_Failed;
- return ESR_Succeeded;
- }
- Info.Diag(S->getLocStart());
- return ESR_Failed;
- case Stmt::NullStmtClass:
- return ESR_Succeeded;
- case Stmt::DeclStmtClass: {
- const DeclStmt *DS = cast<DeclStmt>(S);
- for (const auto *DclIt : DS->decls()) {
- // Each declaration initialization is its own full-expression.
- // FIXME: This isn't quite right; if we're performing aggregate
- // initialization, each braced subexpression is its own full-expression.
- FullExpressionRAII Scope(Info);
- if (!EvaluateDecl(Info, DclIt) && !Info.keepEvaluatingAfterFailure())
- return ESR_Failed;
- }
- return ESR_Succeeded;
- }
- case Stmt::ReturnStmtClass: {
- const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
- FullExpressionRAII Scope(Info);
- if (RetExpr && !Evaluate(Result, Info, RetExpr))
- return ESR_Failed;
- return ESR_Returned;
- }
- case Stmt::CompoundStmtClass: {
- BlockScopeRAII Scope(Info);
- const CompoundStmt *CS = cast<CompoundStmt>(S);
- for (const auto *BI : CS->body()) {
- EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
- if (ESR == ESR_Succeeded)
- Case = nullptr;
- else if (ESR != ESR_CaseNotFound)
- return ESR;
- }
- return Case ? ESR_CaseNotFound : ESR_Succeeded;
- }
- case Stmt::IfStmtClass: {
- const IfStmt *IS = cast<IfStmt>(S);
- // Evaluate the condition, as either a var decl or as an expression.
- BlockScopeRAII Scope(Info);
- bool Cond;
- if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
- return ESR_Failed;
- if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
- EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
- if (ESR != ESR_Succeeded)
- return ESR;
- }
- return ESR_Succeeded;
- }
- case Stmt::WhileStmtClass: {
- const WhileStmt *WS = cast<WhileStmt>(S);
- while (true) {
- BlockScopeRAII Scope(Info);
- bool Continue;
- if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
- Continue))
- return ESR_Failed;
- if (!Continue)
- break;
- EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
- if (ESR != ESR_Continue)
- return ESR;
- }
- return ESR_Succeeded;
- }
- case Stmt::DoStmtClass: {
- const DoStmt *DS = cast<DoStmt>(S);
- bool Continue;
- do {
- EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
- if (ESR != ESR_Continue)
- return ESR;
- Case = nullptr;
- FullExpressionRAII CondScope(Info);
- if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
- return ESR_Failed;
- } while (Continue);
- return ESR_Succeeded;
- }
- case Stmt::ForStmtClass: {
- const ForStmt *FS = cast<ForStmt>(S);
- BlockScopeRAII Scope(Info);
- if (FS->getInit()) {
- EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
- if (ESR != ESR_Succeeded)
- return ESR;
- }
- while (true) {
- BlockScopeRAII Scope(Info);
- bool Continue = true;
- if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
- FS->getCond(), Continue))
- return ESR_Failed;
- if (!Continue)
- break;
- EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
- if (ESR != ESR_Continue)
- return ESR;
- if (FS->getInc()) {
- FullExpressionRAII IncScope(Info);
- if (!EvaluateIgnoredValue(Info, FS->getInc()))
- return ESR_Failed;
- }
- }
- return ESR_Succeeded;
- }
- case Stmt::CXXForRangeStmtClass: {
- const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
- BlockScopeRAII Scope(Info);
- // Initialize the __range variable.
- EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
- if (ESR != ESR_Succeeded)
- return ESR;
- // Create the __begin and __end iterators.
- ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt());
- if (ESR != ESR_Succeeded)
- return ESR;
- while (true) {
- // Condition: __begin != __end.
- {
- bool Continue = true;
- FullExpressionRAII CondExpr(Info);
- if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
- return ESR_Failed;
- if (!Continue)
- break;
- }
- // User's variable declaration, initialized by *__begin.
- BlockScopeRAII InnerScope(Info);
- ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
- if (ESR != ESR_Succeeded)
- return ESR;
- // Loop body.
- ESR = EvaluateLoopBody(Result, Info, FS->getBody());
- if (ESR != ESR_Continue)
- return ESR;
- // Increment: ++__begin
- if (!EvaluateIgnoredValue(Info, FS->getInc()))
- return ESR_Failed;
- }
- return ESR_Succeeded;
- }
- case Stmt::SwitchStmtClass:
- return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
- case Stmt::ContinueStmtClass:
- return ESR_Continue;
- case Stmt::BreakStmtClass:
- return ESR_Break;
- case Stmt::LabelStmtClass:
- return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
- case Stmt::AttributedStmtClass:
- // As a general principle, C++11 attributes can be ignored without
- // any semantic impact.
- return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
- Case);
- case Stmt::CaseStmtClass:
- case Stmt::DefaultStmtClass:
- return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
- }
- }
- /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
- /// default constructor. If so, we'll fold it whether or not it's marked as
- /// constexpr. If it is marked as constexpr, we will never implicitly define it,
- /// so we need special handling.
- static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
- const CXXConstructorDecl *CD,
- bool IsValueInitialization) {
- if (!CD->isTrivial() || !CD->isDefaultConstructor())
- return false;
- // Value-initialization does not call a trivial default constructor, so such a
- // call is a core constant expression whether or not the constructor is
- // constexpr.
- if (!CD->isConstexpr() && !IsValueInitialization) {
- if (Info.getLangOpts().CPlusPlus11) {
- // FIXME: If DiagDecl is an implicitly-declared special member function,
- // we should be much more explicit about why it's not constexpr.
- Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
- << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
- Info.Note(CD->getLocation(), diag::note_declared_at);
- } else {
- Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
- }
- }
- return true;
- }
- /// CheckConstexprFunction - Check that a function can be called in a constant
- /// expression.
- static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
- const FunctionDecl *Declaration,
- const FunctionDecl *Definition) {
- // Potential constant expressions can contain calls to declared, but not yet
- // defined, constexpr functions.
- if (Info.checkingPotentialConstantExpression() && !Definition &&
- Declaration->isConstexpr())
- return false;
- // Bail out with no diagnostic if the function declaration itself is invalid.
- // We will have produced a relevant diagnostic while parsing it.
- if (Declaration->isInvalidDecl())
- return false;
- // Can we evaluate this function call?
- if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
- return true;
- if (Info.getLangOpts().CPlusPlus11) {
- const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
- // FIXME: If DiagDecl is an implicitly-declared special member function, we
- // should be much more explicit about why it's not constexpr.
- Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
- << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
- << DiagDecl;
- Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
- } else {
- Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
- }
- return false;
- }
- /// Determine if a class has any fields that might need to be copied by a
- /// trivial copy or move operation.
- static bool hasFields(const CXXRecordDecl *RD) {
- if (!RD || RD->isEmpty())
- return false;
- for (auto *FD : RD->fields()) {
- if (FD->isUnnamedBitfield())
- continue;
- return true;
- }
- for (auto &Base : RD->bases())
- if (hasFields(Base.getType()->getAsCXXRecordDecl()))
- return true;
- return false;
- }
- namespace {
- typedef SmallVector<APValue, 8> ArgVector;
- }
- /// EvaluateArgs - Evaluate the arguments to a function call.
- static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
- EvalInfo &Info) {
- bool Success = true;
- for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
- I != E; ++I) {
- if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
- // If we're checking for a potential constant expression, evaluate all
- // initializers even if some of them fail.
- if (!Info.keepEvaluatingAfterFailure())
- return false;
- Success = false;
- }
- }
- return Success;
- }
- // HLSL Change Starts
- /// Evaluate an HLSL intrinsic call.
- static bool HandleIntrinsicCall(SourceLocation CallLoc, unsigned opcode,
- const LValue *This, ArrayRef<const Expr *> Args,
- EvalInfo &Info, APValue &Result) {
- ArgVector ArgValues(Args.size());
- if (!EvaluateArgs(Args, ArgValues, Info))
- return false;
- if (!Info.CheckCallLimit(CallLoc))
- return false;
- switch ((hlsl::IntrinsicOp)opcode) {
- case hlsl::IntrinsicOp::IOP_asuint:
- assert(Args.size() == 1 && "else call should be invalid");
- if (ArgValues[0].isInt()) {
- Result = ArgValues[0];
- }
- else if (ArgValues[0].isFloat()) {
- const bool isUnsignedTrue = true;
- Result = APValue(APSInt(ArgValues[0].getFloat().bitcastToAPInt(), isUnsignedTrue));
- }
- else {
- // TODO: consider a better error message here
- Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- return true;
- case hlsl::IntrinsicOp::IOP_max:
- assert(Args.size() == 2 && "else call should be invalid");
- assert(ArgValues[0].getKind() == ArgValues[1].getKind() && "else call is invalid");
- if (ArgValues[0].isInt()) {
- Result = ArgValues[0].getInt() > ArgValues[1].getInt() ? ArgValues[0] : ArgValues[1];
- }
- else if (ArgValues[0].isFloat()) {
- // TODO: handle NaNs properly
- APFloat::cmpResult r = ArgValues[0].getFloat().compare(ArgValues[1].getFloat());
- Result = (r == APFloat::cmpGreaterThan) ? ArgValues[0] : ArgValues[1];
- }
- else {
- // TODO: consider a better error message here
- Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- return true;
- default:
- Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- }
- // HLSL Change Ends
- /// Evaluate a function call.
- static bool HandleFunctionCall(SourceLocation CallLoc,
- const FunctionDecl *Callee, const LValue *This,
- ArrayRef<const Expr*> Args, const Stmt *Body,
- EvalInfo &Info, APValue &Result) {
- ArgVector ArgValues(Args.size());
- if (!EvaluateArgs(Args, ArgValues, Info))
- return false;
- if (!Info.CheckCallLimit(CallLoc))
- return false;
- CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
- // For a trivial copy or move assignment, perform an APValue copy. This is
- // essential for unions, where the operations performed by the assignment
- // operator cannot be represented as statements.
- //
- // Skip this for non-union classes with no fields; in that case, the defaulted
- // copy/move does not actually read the object.
- const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
- if (MD && MD->isDefaulted() &&
- (MD->getParent()->isUnion() ||
- (MD->isTrivial() && hasFields(MD->getParent())))) {
- assert(This &&
- (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
- LValue RHS;
- RHS.setFrom(Info.Ctx, ArgValues[0]);
- APValue RHSValue;
- if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
- RHS, RHSValue))
- return false;
- if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
- RHSValue))
- return false;
- This->moveInto(Result);
- return true;
- }
- EvalStmtResult ESR = EvaluateStmt(Result, Info, Body);
- if (ESR == ESR_Succeeded) {
- if (Callee->getReturnType()->isVoidType())
- return true;
- Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return);
- }
- return ESR == ESR_Returned;
- }
- /// Evaluate a constructor call.
- static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
- ArrayRef<const Expr*> Args,
- const CXXConstructorDecl *Definition,
- EvalInfo &Info, APValue &Result) {
- ArgVector ArgValues(Args.size());
- if (!EvaluateArgs(Args, ArgValues, Info))
- return false;
- if (!Info.CheckCallLimit(CallLoc))
- return false;
- const CXXRecordDecl *RD = Definition->getParent();
- if (RD->getNumVBases()) {
- Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
- return false;
- }
- CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
- // If it's a delegating constructor, just delegate.
- if (Definition->isDelegatingConstructor()) {
- CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
- {
- FullExpressionRAII InitScope(Info);
- if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
- return false;
- }
- return EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
- }
- // For a trivial copy or move constructor, perform an APValue copy. This is
- // essential for unions (or classes with anonymous union members), where the
- // operations performed by the constructor cannot be represented by
- // ctor-initializers.
- //
- // Skip this for empty non-union classes; we should not perform an
- // lvalue-to-rvalue conversion on them because their copy constructor does not
- // actually read them.
- if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
- (Definition->getParent()->isUnion() ||
- (Definition->isTrivial() && hasFields(Definition->getParent())))) {
- LValue RHS;
- RHS.setFrom(Info.Ctx, ArgValues[0]);
- return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
- RHS, Result);
- }
- // Reserve space for the struct members.
- if (!RD->isUnion() && Result.isUninit())
- Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
- std::distance(RD->field_begin(), RD->field_end()));
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
- // A scope for temporaries lifetime-extended by reference members.
- BlockScopeRAII LifetimeExtendedScope(Info);
- bool Success = true;
- unsigned BasesSeen = 0;
- #ifndef NDEBUG
- CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
- #endif
- for (const auto *I : Definition->inits()) {
- LValue Subobject = This;
- APValue *Value = &Result;
- // Determine the subobject to initialize.
- FieldDecl *FD = nullptr;
- if (I->isBaseInitializer()) {
- QualType BaseType(I->getBaseClass(), 0);
- #ifndef NDEBUG
- // Non-virtual base classes are initialized in the order in the class
- // definition. We have already checked for virtual base classes.
- assert(!BaseIt->isVirtual() && "virtual base for literal type");
- assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
- "base class initializers not in expected order");
- ++BaseIt;
- #endif
- if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
- BaseType->getAsCXXRecordDecl(), &Layout))
- return false;
- Value = &Result.getStructBase(BasesSeen++);
- } else if ((FD = I->getMember())) {
- if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
- return false;
- if (RD->isUnion()) {
- Result = APValue(FD);
- Value = &Result.getUnionValue();
- } else {
- Value = &Result.getStructField(FD->getFieldIndex());
- }
- } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
- // Walk the indirect field decl's chain to find the object to initialize,
- // and make sure we've initialized every step along it.
- for (auto *C : IFD->chain()) {
- FD = cast<FieldDecl>(C);
- CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
- // Switch the union field if it differs. This happens if we had
- // preceding zero-initialization, and we're now initializing a union
- // subobject other than the first.
- // FIXME: In this case, the values of the other subobjects are
- // specified, since zero-initialization sets all padding bits to zero.
- if (Value->isUninit() ||
- (Value->isUnion() && Value->getUnionField() != FD)) {
- if (CD->isUnion())
- *Value = APValue(FD);
- else
- *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
- std::distance(CD->field_begin(), CD->field_end()));
- }
- if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
- return false;
- if (CD->isUnion())
- Value = &Value->getUnionValue();
- else
- Value = &Value->getStructField(FD->getFieldIndex());
- }
- } else {
- llvm_unreachable("unknown base initializer kind");
- }
- FullExpressionRAII InitScope(Info);
- if (!EvaluateInPlace(*Value, Info, Subobject, I->getInit()) ||
- (FD && FD->isBitField() && !truncateBitfieldValue(Info, I->getInit(),
- *Value, FD))) {
- // If we're checking for a potential constant expression, evaluate all
- // initializers even if some of them fail.
- if (!Info.keepEvaluatingAfterFailure())
- return false;
- Success = false;
- }
- }
- return Success &&
- EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
- }
- //===----------------------------------------------------------------------===//
- // Generic Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- template <class Derived>
- class ExprEvaluatorBase
- : public ConstStmtVisitor<Derived, bool> {
- private:
- bool DerivedSuccess(const APValue &V, const Expr *E) {
- return static_cast<Derived*>(this)->Success(V, E);
- }
- bool DerivedZeroInitialization(const Expr *E) {
- return static_cast<Derived*>(this)->ZeroInitialization(E);
- }
- // Check whether a conditional operator with a non-constant condition is a
- // potential constant expression. If neither arm is a potential constant
- // expression, then the conditional operator is not either.
- template<typename ConditionalOperator>
- void CheckPotentialConstantConditional(const ConditionalOperator *E) {
- assert(Info.checkingPotentialConstantExpression());
- // Speculatively evaluate both arms.
- {
- SmallVector<PartialDiagnosticAt, 8> Diag;
- SpeculativeEvaluationRAII Speculate(Info, &Diag);
- StmtVisitorTy::Visit(E->getFalseExpr());
- if (Diag.empty())
- return;
- Diag.clear();
- StmtVisitorTy::Visit(E->getTrueExpr());
- if (Diag.empty())
- return;
- }
- Error(E, diag::note_constexpr_conditional_never_const);
- }
- template<typename ConditionalOperator>
- bool HandleConditionalOperator(const ConditionalOperator *E) {
- bool BoolResult;
- if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
- if (Info.checkingPotentialConstantExpression())
- CheckPotentialConstantConditional(E);
- return false;
- }
- Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
- return StmtVisitorTy::Visit(EvalExpr);
- }
- protected:
- EvalInfo &Info;
- typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
- typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
- OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
- return Info.CCEDiag(E, D);
- }
- bool ZeroInitialization(const Expr *E) { return Error(E); }
- public:
- ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
- EvalInfo &getEvalInfo() { return Info; }
- /// Report an evaluation error. This should only be called when an error is
- /// first discovered. When propagating an error, just return false.
- bool Error(const Expr *E, diag::kind D) {
- Info.Diag(E, D);
- return false;
- }
- bool Error(const Expr *E) {
- return Error(E, diag::note_invalid_subexpr_in_const_expr);
- }
- bool VisitStmt(const Stmt *) {
- llvm_unreachable("Expression evaluator should not be called on stmts");
- }
- bool VisitExpr(const Expr *E) {
- return Error(E);
- }
- bool VisitParenExpr(const ParenExpr *E)
- { return StmtVisitorTy::Visit(E->getSubExpr()); }
- bool VisitUnaryExtension(const UnaryOperator *E)
- { return StmtVisitorTy::Visit(E->getSubExpr()); }
- bool VisitUnaryPlus(const UnaryOperator *E)
- { return StmtVisitorTy::Visit(E->getSubExpr()); }
- bool VisitChooseExpr(const ChooseExpr *E)
- { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
- bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
- { return StmtVisitorTy::Visit(E->getResultExpr()); }
- bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
- { return StmtVisitorTy::Visit(E->getReplacement()); }
- bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
- { return StmtVisitorTy::Visit(E->getExpr()); }
- bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
- // The initializer may not have been parsed yet, or might be erroneous.
- if (!E->getExpr())
- return Error(E);
- return StmtVisitorTy::Visit(E->getExpr());
- }
- // We cannot create any objects for which cleanups are required, so there is
- // nothing to do here; all cleanups must come from unevaluated subexpressions.
- bool VisitExprWithCleanups(const ExprWithCleanups *E)
- { return StmtVisitorTy::Visit(E->getSubExpr()); }
- bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
- CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
- return static_cast<Derived*>(this)->VisitCastExpr(E);
- }
- bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
- CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
- return static_cast<Derived*>(this)->VisitCastExpr(E);
- }
- bool VisitBinaryOperator(const BinaryOperator *E) {
- switch (E->getOpcode()) {
- default:
- return Error(E);
- case BO_Comma:
- VisitIgnoredValue(E->getLHS());
- return StmtVisitorTy::Visit(E->getRHS());
- case BO_PtrMemD:
- case BO_PtrMemI: {
- LValue Obj;
- if (!HandleMemberPointerAccess(Info, E, Obj))
- return false;
- APValue Result;
- if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
- return false;
- return DerivedSuccess(Result, E);
- }
- }
- }
- bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
- // Evaluate and cache the common expression. We treat it as a temporary,
- // even though it's not quite the same thing.
- if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
- Info, E->getCommon()))
- return false;
- return HandleConditionalOperator(E);
- }
- bool VisitConditionalOperator(const ConditionalOperator *E) {
- bool IsBcpCall = false;
- // If the condition (ignoring parens) is a __builtin_constant_p call,
- // the result is a constant expression if it can be folded without
- // side-effects. This is an important GNU extension. See GCC PR38377
- // for discussion.
- if (const CallExpr *CallCE =
- dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
- if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
- IsBcpCall = true;
- // Always assume __builtin_constant_p(...) ? ... : ... is a potential
- // constant expression; we can't check whether it's potentially foldable.
- if (Info.checkingPotentialConstantExpression() && IsBcpCall)
- return false;
- FoldConstant Fold(Info, IsBcpCall);
- if (!HandleConditionalOperator(E)) {
- Fold.keepDiagnostics();
- return false;
- }
- return true;
- }
- bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
- if (APValue *Value = Info.CurrentCall->getTemporary(E))
- return DerivedSuccess(*Value, E);
- const Expr *Source = E->getSourceExpr();
- if (!Source)
- return Error(E);
- if (Source == E) { // sanity checking.
- assert(0 && "OpaqueValueExpr recursively refers to itself");
- return Error(E);
- }
- return StmtVisitorTy::Visit(Source);
- }
- bool VisitCallExpr(const CallExpr *E) {
- const Expr *Callee = E->getCallee()->IgnoreParens();
- QualType CalleeType = Callee->getType();
- const FunctionDecl *FD = nullptr;
- LValue *This = nullptr, ThisVal;
- auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
- bool HasQualifier = false;
- // Extract function decl and 'this' pointer from the callee.
- if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
- const ValueDecl *Member = nullptr;
- if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
- // Explicit bound member calls, such as x.f() or p->g();
- if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
- return false;
- Member = ME->getMemberDecl();
- This = &ThisVal;
- HasQualifier = ME->hasQualifier();
- } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
- // Indirect bound member calls ('.*' or '->*').
- Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
- if (!Member) return false;
- This = &ThisVal;
- } else
- return Error(Callee);
- FD = dyn_cast<FunctionDecl>(Member);
- if (!FD)
- return Error(Callee);
- } else if (CalleeType->isFunctionPointerType()) {
- LValue Call;
- if (!EvaluatePointer(Callee, Call, Info))
- return false;
- if (!Call.getLValueOffset().isZero())
- return Error(Callee);
- FD = dyn_cast_or_null<FunctionDecl>(
- Call.getLValueBase().dyn_cast<const ValueDecl*>());
- if (!FD)
- return Error(Callee);
- // Overloaded operator calls to member functions are represented as normal
- // calls with '*this' as the first argument.
- const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
- if (MD && !MD->isStatic()) {
- // FIXME: When selecting an implicit conversion for an overloaded
- // operator delete, we sometimes try to evaluate calls to conversion
- // operators without a 'this' parameter!
- if (Args.empty())
- return Error(E);
- if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
- return false;
- This = &ThisVal;
- Args = Args.slice(1);
- }
- // Don't call function pointers which have been cast to some other type.
- if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
- return Error(E);
- } else
- return Error(E);
- if (This && !This->checkSubobject(Info, E, CSK_This))
- return false;
- // HLSL Changes Start
- {
- unsigned opcode;
- StringRef group;
- if (hlsl::GetIntrinsicOp(FD, opcode, group)) {
- APValue opResult;
- if (!HandleIntrinsicCall(E->getExprLoc(), opcode, This, Args, Info,
- opResult)) {
- return false;
- }
- return DerivedSuccess(opResult, E);
- }
- }
- // HLSL Changes End
- // DR1358 allows virtual constexpr functions in some cases. Don't allow
- // calls to such functions in constant expressions.
- if (This && !HasQualifier &&
- isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
- return Error(E, diag::note_constexpr_virtual_call);
- const FunctionDecl *Definition = nullptr;
- Stmt *Body = FD->getBody(Definition);
- APValue Result;
- if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
- !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
- Info, Result))
- return false;
- return DerivedSuccess(Result, E);
- }
- bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
- return StmtVisitorTy::Visit(E->getInitializer());
- }
- bool VisitInitListExpr(const InitListExpr *E) {
- if (E->getNumInits() == 0)
- return DerivedZeroInitialization(E);
- if (Info.getLangOpts().HLSL && !E->getType()->isScalarType() && !IsHLSLVecInitList(E)) return Error(E); // HLSL Change
- if (E->getNumInits() == 1)
- return StmtVisitorTy::Visit(E->getInit(0));
- return Error(E);
- }
- bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
- return DerivedZeroInitialization(E);
- }
- bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
- return DerivedZeroInitialization(E);
- }
- bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
- return DerivedZeroInitialization(E);
- }
- /// A member expression where the object is a prvalue is itself a prvalue.
- bool VisitMemberExpr(const MemberExpr *E) {
- assert(!E->isArrow() && "missing call to bound member function?");
- APValue Val;
- if (!Evaluate(Val, Info, E->getBase()))
- return false;
- QualType BaseTy = E->getBase()->getType();
- const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
- if (!FD) return Error(E);
- assert(!FD->getType()->isReferenceType() && "prvalue reference?");
- assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
- FD->getParent()->getCanonicalDecl() && "record / field mismatch");
- CompleteObject Obj(&Val, BaseTy);
- SubobjectDesignator Designator(BaseTy);
- Designator.addDeclUnchecked(FD);
- APValue Result;
- return extractSubobject(Info, E, Obj, Designator, Result) &&
- DerivedSuccess(Result, E);
- }
- bool VisitCastExpr(const CastExpr *E) {
- // HLSL Change Begins
- if (Info.getLangOpts().HLSL) {
- const auto* subExpr = E->getSubExpr();
- if (subExpr->getStmtClass() == Stmt::InitListExprClass && !IsHLSLVecInitList(subExpr) && !subExpr->getType()->isScalarType())
- return Error(E);
- }
- // HLSL Change Ends
- switch (E->getCastKind()) {
- default:
- break;
- case CK_AtomicToNonAtomic: {
- APValue AtomicVal;
- if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
- return false;
- return DerivedSuccess(AtomicVal, E);
- }
- case CK_NoOp:
- case CK_UserDefinedConversion:
- return StmtVisitorTy::Visit(E->getSubExpr());
- case CK_LValueToRValue: {
- LValue LVal;
- if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
- return false;
- APValue RVal;
- // Note, we use the subexpression's type in order to retain cv-qualifiers.
- if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
- LVal, RVal))
- return false;
- return DerivedSuccess(RVal, E);
- }
- }
- return Error(E);
- }
- bool VisitUnaryPostInc(const UnaryOperator *UO) {
- return VisitUnaryPostIncDec(UO);
- }
- bool VisitUnaryPostDec(const UnaryOperator *UO) {
- return VisitUnaryPostIncDec(UO);
- }
- bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
- if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
- return Error(UO);
- LValue LVal;
- if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
- return false;
- APValue RVal;
- if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
- UO->isIncrementOp(), &RVal))
- return false;
- return DerivedSuccess(RVal, UO);
- }
- bool VisitStmtExpr(const StmtExpr *E) {
- // We will have checked the full-expressions inside the statement expression
- // when they were completed, and don't need to check them again now.
- if (Info.checkingForOverflow())
- return Error(E);
- BlockScopeRAII Scope(Info);
- const CompoundStmt *CS = E->getSubStmt();
- if (CS->body_empty())
- return true;
- for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
- BE = CS->body_end();
- /**/; ++BI) {
- if (BI + 1 == BE) {
- const Expr *FinalExpr = dyn_cast<Expr>(*BI);
- if (!FinalExpr) {
- Info.Diag((*BI)->getLocStart(),
- diag::note_constexpr_stmt_expr_unsupported);
- return false;
- }
- return this->Visit(FinalExpr);
- }
- APValue ReturnValue;
- EvalStmtResult ESR = EvaluateStmt(ReturnValue, Info, *BI);
- if (ESR != ESR_Succeeded) {
- // FIXME: If the statement-expression terminated due to 'return',
- // 'break', or 'continue', it would be nice to propagate that to
- // the outer statement evaluation rather than bailing out.
- if (ESR != ESR_Failed)
- Info.Diag((*BI)->getLocStart(),
- diag::note_constexpr_stmt_expr_unsupported);
- return false;
- }
- }
- llvm_unreachable("Return from function from the loop above.");
- }
- /// Visit a value which is evaluated, but whose value is ignored.
- void VisitIgnoredValue(const Expr *E) {
- EvaluateIgnoredValue(Info, E);
- }
- };
- }
- //===----------------------------------------------------------------------===//
- // Common base class for lvalue and temporary evaluation.
- //===----------------------------------------------------------------------===//
- namespace {
- template<class Derived>
- class LValueExprEvaluatorBase
- : public ExprEvaluatorBase<Derived> {
- protected:
- LValue &Result;
- typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
- typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
- bool Success(APValue::LValueBase B) {
- Result.set(B);
- return true;
- }
- public:
- LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
- ExprEvaluatorBaseTy(Info), Result(Result) {}
- bool Success(const APValue &V, const Expr *E) {
- Result.setFrom(this->Info.Ctx, V);
- return true;
- }
- bool VisitMemberExpr(const MemberExpr *E) {
- // Handle non-static data members.
- QualType BaseTy;
- if (E->isArrow()) {
- if (!EvaluatePointer(E->getBase(), Result, this->Info))
- return false;
- BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
- } else if (E->getBase()->isRValue()) {
- assert(E->getBase()->getType()->isRecordType());
- if (!EvaluateTemporary(E->getBase(), Result, this->Info))
- return false;
- BaseTy = E->getBase()->getType();
- } else {
- if (!this->Visit(E->getBase()))
- return false;
- BaseTy = E->getBase()->getType();
- }
- const ValueDecl *MD = E->getMemberDecl();
- if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
- assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
- FD->getParent()->getCanonicalDecl() && "record / field mismatch");
- (void)BaseTy;
- if (!HandleLValueMember(this->Info, E, Result, FD))
- return false;
- } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
- if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
- return false;
- } else
- return this->Error(E);
- if (MD->getType()->isReferenceType()) {
- APValue RefValue;
- if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
- RefValue))
- return false;
- return Success(RefValue, E);
- }
- return true;
- }
- bool VisitBinaryOperator(const BinaryOperator *E) {
- switch (E->getOpcode()) {
- default:
- return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
- case BO_PtrMemD:
- case BO_PtrMemI:
- return HandleMemberPointerAccess(this->Info, E, Result);
- }
- }
- bool VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase:
- if (!this->Visit(E->getSubExpr()))
- return false;
- // Now figure out the necessary offset to add to the base LV to get from
- // the derived class to the base class.
- return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
- Result);
- }
- }
- };
- }
- //===----------------------------------------------------------------------===//
- // LValue Evaluation
- //
- // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
- // function designators (in C), decl references to void objects (in C), and
- // temporaries (if building with -Wno-address-of-temporary).
- //
- // LValue evaluation produces values comprising a base expression of one of the
- // following types:
- // - Declarations
- // * VarDecl
- // * FunctionDecl
- // - Literals
- // * CompoundLiteralExpr in C
- // * StringLiteral
- // * CXXTypeidExpr
- // * PredefinedExpr
- // * ObjCStringLiteralExpr
- // * ObjCEncodeExpr
- // * AddrLabelExpr
- // * BlockExpr
- // * CallExpr for a MakeStringConstant builtin
- // - Locals and temporaries
- // * MaterializeTemporaryExpr
- // * Any Expr, with a CallIndex indicating the function in which the temporary
- // was evaluated, for cases where the MaterializeTemporaryExpr is missing
- // from the AST (FIXME).
- // * A MaterializeTemporaryExpr that has static storage duration, with no
- // CallIndex, for a lifetime-extended temporary.
- // plus an offset in bytes.
- //===----------------------------------------------------------------------===//
- namespace {
- class LValueExprEvaluator
- : public LValueExprEvaluatorBase<LValueExprEvaluator> {
- public:
- LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
- LValueExprEvaluatorBaseTy(Info, Result) {}
- bool VisitVarDecl(const Expr *E, const VarDecl *VD);
- bool VisitUnaryPreIncDec(const UnaryOperator *UO);
- bool VisitDeclRefExpr(const DeclRefExpr *E);
- bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
- bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
- bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
- bool VisitMemberExpr(const MemberExpr *E);
- bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
- bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
- bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
- bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
- bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
- bool VisitUnaryDeref(const UnaryOperator *E);
- bool VisitUnaryReal(const UnaryOperator *E);
- bool VisitUnaryImag(const UnaryOperator *E);
- bool VisitUnaryPreInc(const UnaryOperator *UO) {
- return VisitUnaryPreIncDec(UO);
- }
- bool VisitUnaryPreDec(const UnaryOperator *UO) {
- return VisitUnaryPreIncDec(UO);
- }
- bool VisitBinAssign(const BinaryOperator *BO);
- bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
- bool VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_LValueBitCast:
- this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
- if (!Visit(E->getSubExpr()))
- return false;
- Result.Designator.setInvalid();
- return true;
- case CK_BaseToDerived:
- if (!Visit(E->getSubExpr()))
- return false;
- return HandleBaseToDerivedCast(Info, E, Result);
- }
- }
- };
- } // end anonymous namespace
- /// Evaluate an expression as an lvalue. This can be legitimately called on
- /// expressions which are not glvalues, in two cases:
- /// * function designators in C, and
- /// * "extern void" objects
- static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
- assert(E->isGLValue() || E->getType()->isFunctionType() ||
- E->getType()->isVoidType());
- return LValueExprEvaluator(Info, Result).Visit(E);
- }
- bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
- if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
- return Success(FD);
- if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
- return VisitVarDecl(E, VD);
- return Error(E);
- }
- bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
- CallStackFrame *Frame = nullptr;
- if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
- Frame = Info.CurrentCall;
- if (!VD->getType()->isReferenceType()) {
- if (Frame) {
- Result.set(VD, Frame->Index);
- return true;
- }
- return Success(VD);
- }
- APValue *V;
- if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
- return false;
- if (V->isUninit()) {
- if (!Info.checkingPotentialConstantExpression())
- Info.Diag(E, diag::note_constexpr_use_uninit_reference);
- return false;
- }
- return Success(*V, E);
- }
- bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
- const MaterializeTemporaryExpr *E) {
- // Walk through the expression to find the materialized temporary itself.
- SmallVector<const Expr *, 2> CommaLHSs;
- SmallVector<SubobjectAdjustment, 2> Adjustments;
- const Expr *Inner = E->GetTemporaryExpr()->
- skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
- // If we passed any comma operators, evaluate their LHSs.
- for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
- if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
- return false;
- // A materialized temporary with static storage duration can appear within the
- // result of a constant expression evaluation, so we need to preserve its
- // value for use outside this evaluation.
- APValue *Value;
- if (E->getStorageDuration() == SD_Static) {
- Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
- *Value = APValue();
- Result.set(E);
- } else {
- Value = &Info.CurrentCall->
- createTemporary(E, E->getStorageDuration() == SD_Automatic);
- Result.set(E, Info.CurrentCall->Index);
- }
- QualType Type = Inner->getType();
- // Materialize the temporary itself.
- if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
- (E->getStorageDuration() == SD_Static &&
- !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
- *Value = APValue();
- return false;
- }
- // Adjust our lvalue to refer to the desired subobject.
- for (unsigned I = Adjustments.size(); I != 0; /**/) {
- --I;
- switch (Adjustments[I].Kind) {
- case SubobjectAdjustment::DerivedToBaseAdjustment:
- if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
- Type, Result))
- return false;
- Type = Adjustments[I].DerivedToBase.BasePath->getType();
- break;
- case SubobjectAdjustment::FieldAdjustment:
- if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
- return false;
- Type = Adjustments[I].Field->getType();
- break;
- case SubobjectAdjustment::MemberPointerAdjustment:
- if (!HandleMemberPointerAccess(this->Info, Type, Result,
- Adjustments[I].Ptr.RHS))
- return false;
- Type = Adjustments[I].Ptr.MPT->getPointeeType();
- break;
- }
- }
- return true;
- }
- bool
- LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
- assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
- // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
- // only see this when folding in C, so there's no standard to follow here.
- return Success(E);
- }
- bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
- if (!E->isPotentiallyEvaluated())
- return Success(E);
- Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
- << E->getExprOperand()->getType()
- << E->getExprOperand()->getSourceRange();
- return false;
- }
- bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
- return Success(E);
- }
- bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
- // Handle static data members.
- if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
- VisitIgnoredValue(E->getBase());
- return VisitVarDecl(E, VD);
- }
- // Handle static member functions.
- if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
- if (MD->isStatic()) {
- VisitIgnoredValue(E->getBase());
- return Success(MD);
- }
- }
- // Handle non-static data members.
- return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
- }
- bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
- // FIXME: Deal with vectors as array subscript bases.
- if (E->getBase()->getType()->isVectorType())
- return Error(E);
- if (this->getEvalInfo().Ctx.getLangOpts().HLSL) { // HLSL Change
- return Error(E); // TODO: handle arrays
- } else {
- if (!EvaluatePointer(E->getBase(), Result, Info))
- return false;
- }
- APSInt Index;
- if (!EvaluateInteger(E->getIdx(), Index, Info))
- return false;
- return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
- getExtValue(Index));
- }
- bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
- return EvaluatePointer(E->getSubExpr(), Result, Info);
- }
- bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
- if (!Visit(E->getSubExpr()))
- return false;
- // __real is a no-op on scalar lvalues.
- if (E->getSubExpr()->getType()->isAnyComplexType())
- HandleLValueComplexElement(Info, E, Result, E->getType(), false);
- return true;
- }
- bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
- assert(E->getSubExpr()->getType()->isAnyComplexType() &&
- "lvalue __imag__ on scalar?");
- if (!Visit(E->getSubExpr()))
- return false;
- HandleLValueComplexElement(Info, E, Result, E->getType(), true);
- return true;
- }
- bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
- if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
- return Error(UO);
- if (!this->Visit(UO->getSubExpr()))
- return false;
- return handleIncDec(
- this->Info, UO, Result, UO->getSubExpr()->getType(),
- UO->isIncrementOp(), nullptr);
- }
- bool LValueExprEvaluator::VisitCompoundAssignOperator(
- const CompoundAssignOperator *CAO) {
- if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
- return Error(CAO);
- APValue RHS;
- // The overall lvalue result is the result of evaluating the LHS.
- if (!this->Visit(CAO->getLHS())) {
- if (Info.keepEvaluatingAfterFailure())
- Evaluate(RHS, this->Info, CAO->getRHS());
- return false;
- }
- if (!Evaluate(RHS, this->Info, CAO->getRHS()))
- return false;
- return handleCompoundAssignment(
- this->Info, CAO,
- Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
- CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
- }
- bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
- if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
- return Error(E);
- APValue NewVal;
- if (!this->Visit(E->getLHS())) {
- if (Info.keepEvaluatingAfterFailure())
- Evaluate(NewVal, this->Info, E->getRHS());
- return false;
- }
- if (!Evaluate(NewVal, this->Info, E->getRHS()))
- return false;
- return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
- NewVal);
- }
- //===----------------------------------------------------------------------===//
- // Pointer Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class PointerExprEvaluator
- : public ExprEvaluatorBase<PointerExprEvaluator> {
- LValue &Result;
- bool Success(const Expr *E) {
- Result.set(E);
- return true;
- }
- public:
- PointerExprEvaluator(EvalInfo &info, LValue &Result)
- : ExprEvaluatorBaseTy(info), Result(Result) {}
- bool Success(const APValue &V, const Expr *E) {
- Result.setFrom(Info.Ctx, V);
- return true;
- }
- bool ZeroInitialization(const Expr *E) {
- return Success((Expr*)nullptr);
- }
- bool VisitBinaryOperator(const BinaryOperator *E);
- bool VisitCastExpr(const CastExpr* E);
- bool VisitUnaryAddrOf(const UnaryOperator *E);
- bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
- { return Success(E); }
- bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
- { return Success(E); }
- bool VisitAddrLabelExpr(const AddrLabelExpr *E)
- { return Success(E); }
- bool VisitCallExpr(const CallExpr *E);
- bool VisitBlockExpr(const BlockExpr *E) {
- if (!E->getBlockDecl()->hasCaptures())
- return Success(E);
- return Error(E);
- }
- bool VisitCXXThisExpr(const CXXThisExpr *E) {
- // Can't look at 'this' when checking a potential constant expression.
- if (Info.checkingPotentialConstantExpression())
- return false;
- if (!Info.CurrentCall->This) {
- if (Info.getLangOpts().CPlusPlus11)
- Info.Diag(E, diag::note_constexpr_this) << E->isImplicit();
- else
- Info.Diag(E);
- return false;
- }
- Result = *Info.CurrentCall->This;
- return true;
- }
- // FIXME: Missing: @protocol, @selector
- };
- } // end anonymous namespace
- static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->hasPointerRepresentation());
- return PointerExprEvaluator(Info, Result).Visit(E);
- }
- bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
- if (E->getOpcode() != BO_Add &&
- E->getOpcode() != BO_Sub)
- return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
- const Expr *PExp = E->getLHS();
- const Expr *IExp = E->getRHS();
- if (IExp->getType()->isPointerType())
- std::swap(PExp, IExp);
- bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
- if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
- return false;
- llvm::APSInt Offset;
- if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
- return false;
- int64_t AdditionalOffset = getExtValue(Offset);
- if (E->getOpcode() == BO_Sub)
- AdditionalOffset = -AdditionalOffset;
- QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
- return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
- AdditionalOffset);
- }
- bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
- return EvaluateLValue(E->getSubExpr(), Result, Info);
- }
- bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
- const Expr* SubExpr = E->getSubExpr();
- switch (E->getCastKind()) {
- default:
- break;
- case CK_BitCast:
- case CK_CPointerToObjCPointerCast:
- case CK_BlockPointerToObjCPointerCast:
- case CK_AnyPointerToBlockPointerCast:
- case CK_AddressSpaceConversion:
- if (!Visit(SubExpr))
- return false;
- // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
- // permitted in constant expressions in C++11. Bitcasts from cv void* are
- // also static_casts, but we disallow them as a resolution to DR1312.
- if (!E->getType()->isVoidPointerType()) {
- Result.Designator.setInvalid();
- if (SubExpr->getType()->isVoidPointerType())
- CCEDiag(E, diag::note_constexpr_invalid_cast)
- << 3 << SubExpr->getType();
- else
- CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
- }
- return true;
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase:
- if (!EvaluatePointer(E->getSubExpr(), Result, Info))
- return false;
- if (!Result.Base && Result.Offset.isZero())
- return true;
- // Now figure out the necessary offset to add to the base LV to get from
- // the derived class to the base class.
- return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
- castAs<PointerType>()->getPointeeType(),
- Result);
- case CK_BaseToDerived:
- if (!Visit(E->getSubExpr()))
- return false;
- if (!Result.Base && Result.Offset.isZero())
- return true;
- return HandleBaseToDerivedCast(Info, E, Result);
- case CK_NullToPointer:
- VisitIgnoredValue(E->getSubExpr());
- return ZeroInitialization(E);
- case CK_IntegralToPointer: {
- CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
- APValue Value;
- if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
- break;
- if (Value.isInt()) {
- unsigned Size = Info.Ctx.getTypeSize(E->getType());
- uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
- Result.Base = (Expr*)nullptr;
- Result.Offset = CharUnits::fromQuantity(N);
- Result.CallIndex = 0;
- Result.Designator.setInvalid();
- return true;
- } else {
- // Cast is of an lvalue, no need to change value.
- Result.setFrom(Info.Ctx, Value);
- return true;
- }
- }
- case CK_ArrayToPointerDecay:
- if (SubExpr->isGLValue()) {
- if (!EvaluateLValue(SubExpr, Result, Info))
- return false;
- } else {
- Result.set(SubExpr, Info.CurrentCall->Index);
- if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
- Info, Result, SubExpr))
- return false;
- }
- // The result is a pointer to the first element of the array.
- if (const ConstantArrayType *CAT
- = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
- Result.addArray(Info, E, CAT);
- else
- Result.Designator.setInvalid();
- return true;
- case CK_FunctionToPointerDecay:
- return EvaluateLValue(SubExpr, Result, Info);
- }
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- }
- static CharUnits GetAlignOfType(EvalInfo &Info, QualType T) {
- // C++ [expr.alignof]p3:
- // When alignof is applied to a reference type, the result is the
- // alignment of the referenced type.
- if (const ReferenceType *Ref = T->getAs<ReferenceType>())
- T = Ref->getPointeeType();
- // __alignof is defined to return the preferred alignment.
- return Info.Ctx.toCharUnitsFromBits(
- Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
- }
- static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E) {
- E = E->IgnoreParens();
- // The kinds of expressions that we have special-case logic here for
- // should be kept up to date with the special checks for those
- // expressions in Sema.
- // alignof decl is always accepted, even if it doesn't make sense: we default
- // to 1 in those cases.
- if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
- return Info.Ctx.getDeclAlign(DRE->getDecl(),
- /*RefAsPointee*/true);
- if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
- return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
- /*RefAsPointee*/true);
- return GetAlignOfType(Info, E->getType());
- }
- bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
- if (IsStringLiteralCall(E))
- return Success(E);
- switch (E->getBuiltinCallee()) {
- case Builtin::BI__builtin_addressof:
- return EvaluateLValue(E->getArg(0), Result, Info);
- case Builtin::BI__builtin_assume_aligned: {
- // We need to be very careful here because: if the pointer does not have the
- // asserted alignment, then the behavior is undefined, and undefined
- // behavior is non-constant.
- if (!EvaluatePointer(E->getArg(0), Result, Info))
- return false;
- LValue OffsetResult(Result);
- APSInt Alignment;
- if (!EvaluateInteger(E->getArg(1), Alignment, Info))
- return false;
- CharUnits Align = CharUnits::fromQuantity(getExtValue(Alignment));
- if (E->getNumArgs() > 2) {
- APSInt Offset;
- if (!EvaluateInteger(E->getArg(2), Offset, Info))
- return false;
- int64_t AdditionalOffset = -getExtValue(Offset);
- OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
- }
- // If there is a base object, then it must have the correct alignment.
- if (OffsetResult.Base) {
- CharUnits BaseAlignment;
- if (const ValueDecl *VD =
- OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
- BaseAlignment = Info.Ctx.getDeclAlign(VD);
- } else {
- BaseAlignment =
- GetAlignOfExpr(Info, OffsetResult.Base.get<const Expr*>());
- }
- if (BaseAlignment < Align) {
- Result.Designator.setInvalid();
- // FIXME: Quantities here cast to integers because the plural modifier
- // does not work on APSInts yet.
- CCEDiag(E->getArg(0),
- diag::note_constexpr_baa_insufficient_alignment) << 0
- << (int) BaseAlignment.getQuantity()
- << (unsigned) getExtValue(Alignment);
- return false;
- }
- }
- // The offset must also have the correct alignment.
- if (OffsetResult.Offset.RoundUpToAlignment(Align) != OffsetResult.Offset) {
- Result.Designator.setInvalid();
- APSInt Offset(64, false);
- Offset = OffsetResult.Offset.getQuantity();
- if (OffsetResult.Base)
- CCEDiag(E->getArg(0),
- diag::note_constexpr_baa_insufficient_alignment) << 1
- << (int) getExtValue(Offset) << (unsigned) getExtValue(Alignment);
- else
- CCEDiag(E->getArg(0),
- diag::note_constexpr_baa_value_insufficient_alignment)
- << Offset << (unsigned) getExtValue(Alignment);
- return false;
- }
- return true;
- }
- default:
- return ExprEvaluatorBaseTy::VisitCallExpr(E);
- }
- }
- //===----------------------------------------------------------------------===//
- // Member Pointer Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class MemberPointerExprEvaluator
- : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
- MemberPtr &Result;
- bool Success(const ValueDecl *D) {
- Result = MemberPtr(D);
- return true;
- }
- public:
- MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
- : ExprEvaluatorBaseTy(Info), Result(Result) {}
- bool Success(const APValue &V, const Expr *E) {
- Result.setFrom(V);
- return true;
- }
- bool ZeroInitialization(const Expr *E) {
- return Success((const ValueDecl*)nullptr);
- }
- bool VisitCastExpr(const CastExpr *E);
- bool VisitUnaryAddrOf(const UnaryOperator *E);
- };
- } // end anonymous namespace
- static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
- EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isMemberPointerType());
- return MemberPointerExprEvaluator(Info, Result).Visit(E);
- }
- bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_NullToMemberPointer:
- VisitIgnoredValue(E->getSubExpr());
- return ZeroInitialization(E);
- case CK_BaseToDerivedMemberPointer: {
- if (!Visit(E->getSubExpr()))
- return false;
- if (E->path_empty())
- return true;
- // Base-to-derived member pointer casts store the path in derived-to-base
- // order, so iterate backwards. The CXXBaseSpecifier also provides us with
- // the wrong end of the derived->base arc, so stagger the path by one class.
- typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
- for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
- PathI != PathE; ++PathI) {
- assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
- const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
- if (!Result.castToDerived(Derived))
- return Error(E);
- }
- const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
- if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
- return Error(E);
- return true;
- }
- case CK_DerivedToBaseMemberPointer:
- if (!Visit(E->getSubExpr()))
- return false;
- for (CastExpr::path_const_iterator PathI = E->path_begin(),
- PathE = E->path_end(); PathI != PathE; ++PathI) {
- assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
- const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
- if (!Result.castToBase(Base))
- return Error(E);
- }
- return true;
- }
- }
- bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
- // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
- // member can be formed.
- return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
- }
- //===----------------------------------------------------------------------===//
- // Record Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class RecordExprEvaluator
- : public ExprEvaluatorBase<RecordExprEvaluator> {
- const LValue &This;
- APValue &Result;
- public:
- RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
- : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
- bool Success(const APValue &V, const Expr *E) {
- Result = V;
- return true;
- }
- bool ZeroInitialization(const Expr *E);
- bool VisitCastExpr(const CastExpr *E);
- bool VisitInitListExpr(const InitListExpr *E);
- bool VisitCXXConstructExpr(const CXXConstructExpr *E);
- bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
- };
- }
- /// Perform zero-initialization on an object of non-union class type.
- /// C++11 [dcl.init]p5:
- /// To zero-initialize an object or reference of type T means:
- /// [...]
- /// -- if T is a (possibly cv-qualified) non-union class type,
- /// each non-static data member and each base-class subobject is
- /// zero-initialized
- static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
- const RecordDecl *RD,
- const LValue &This, APValue &Result) {
- assert(!RD->isUnion() && "Expected non-union class type");
- const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
- Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
- std::distance(RD->field_begin(), RD->field_end()));
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
- if (CD) {
- unsigned Index = 0;
- for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
- End = CD->bases_end(); I != End; ++I, ++Index) {
- const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
- LValue Subobject = This;
- if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
- return false;
- if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
- Result.getStructBase(Index)))
- return false;
- }
- }
- for (const auto *I : RD->fields()) {
- // -- if T is a reference type, no initialization is performed.
- if (I->getType()->isReferenceType())
- continue;
- LValue Subobject = This;
- if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
- return false;
- ImplicitValueInitExpr VIE(I->getType());
- if (!EvaluateInPlace(
- Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
- return false;
- }
- return true;
- }
- bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
- const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
- if (RD->isInvalidDecl()) return false;
- if (RD->isUnion()) {
- // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
- // object's first non-static named data member is zero-initialized
- RecordDecl::field_iterator I = RD->field_begin();
- if (I == RD->field_end()) {
- Result = APValue((const FieldDecl*)nullptr);
- return true;
- }
- LValue Subobject = This;
- if (!HandleLValueMember(Info, E, Subobject, *I))
- return false;
- Result = APValue(*I);
- ImplicitValueInitExpr VIE(I->getType());
- return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
- }
- if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
- Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
- return false;
- }
- return HandleClassZeroInitialization(Info, E, RD, This, Result);
- }
- bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_ConstructorConversion:
- return Visit(E->getSubExpr());
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase: {
- APValue DerivedObject;
- if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
- return false;
- if (!DerivedObject.isStruct())
- return Error(E->getSubExpr());
- // Derived-to-base rvalue conversion: just slice off the derived part.
- APValue *Value = &DerivedObject;
- const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
- for (CastExpr::path_const_iterator PathI = E->path_begin(),
- PathE = E->path_end(); PathI != PathE; ++PathI) {
- assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
- const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
- Value = &Value->getStructBase(getBaseIndex(RD, Base));
- RD = Base;
- }
- Result = *Value;
- return true;
- }
- }
- }
- bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
- if (Info.getLangOpts().HLSL) return false; // HLSL Change
- const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
- if (RD->isUnion()) {
- const FieldDecl *Field = E->getInitializedFieldInUnion();
- Result = APValue(Field);
- if (!Field)
- return true;
- // If the initializer list for a union does not contain any elements, the
- // first element of the union is value-initialized.
- // FIXME: The element should be initialized from an initializer list.
- // Is this difference ever observable for initializer lists which
- // we don't build?
- ImplicitValueInitExpr VIE(Field->getType());
- const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
- LValue Subobject = This;
- if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
- return false;
- // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
- ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
- isa<CXXDefaultInitExpr>(InitExpr));
- return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
- }
- assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
- "initializer list for class with base classes");
- Result = APValue(APValue::UninitStruct(), 0,
- std::distance(RD->field_begin(), RD->field_end()));
- unsigned ElementNo = 0;
- bool Success = true;
- for (const auto *Field : RD->fields()) {
- // Anonymous bit-fields are not considered members of the class for
- // purposes of aggregate initialization.
- if (Field->isUnnamedBitfield())
- continue;
- LValue Subobject = This;
- bool HaveInit = ElementNo < E->getNumInits();
- // FIXME: Diagnostics here should point to the end of the initializer
- // list, not the start.
- if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
- Subobject, Field, &Layout))
- return false;
- // Perform an implicit value-initialization for members beyond the end of
- // the initializer list.
- ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
- const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
- // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
- ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
- isa<CXXDefaultInitExpr>(Init));
- APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
- if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
- (Field->isBitField() && !truncateBitfieldValue(Info, Init,
- FieldVal, Field))) {
- if (!Info.keepEvaluatingAfterFailure())
- return false;
- Success = false;
- }
- }
- return Success;
- }
- bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
- const CXXConstructorDecl *FD = E->getConstructor();
- if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
- bool ZeroInit = E->requiresZeroInitialization();
- if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
- // If we've already performed zero-initialization, we're already done.
- if (!Result.isUninit())
- return true;
- // We can get here in two different ways:
- // 1) We're performing value-initialization, and should zero-initialize
- // the object, or
- // 2) We're performing default-initialization of an object with a trivial
- // constexpr default constructor, in which case we should start the
- // lifetimes of all the base subobjects (there can be no data member
- // subobjects in this case) per [basic.life]p1.
- // Either way, ZeroInitialization is appropriate.
- return ZeroInitialization(E);
- }
- const FunctionDecl *Definition = nullptr;
- FD->getBody(Definition);
- if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
- return false;
- // Avoid materializing a temporary for an elidable copy/move constructor.
- if (E->isElidable() && !ZeroInit)
- if (const MaterializeTemporaryExpr *ME
- = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
- return Visit(ME->GetTemporaryExpr());
- if (ZeroInit && !ZeroInitialization(E))
- return false;
- auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
- return HandleConstructorCall(E->getExprLoc(), This, Args,
- cast<CXXConstructorDecl>(Definition), Info,
- Result);
- }
- bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
- const CXXStdInitializerListExpr *E) {
- const ConstantArrayType *ArrayType =
- Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
- LValue Array;
- if (!EvaluateLValue(E->getSubExpr(), Array, Info))
- return false;
- // Get a pointer to the first element of the array.
- Array.addArray(Info, E, ArrayType);
- // FIXME: Perform the checks on the field types in SemaInit.
- RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
- RecordDecl::field_iterator Field = Record->field_begin();
- if (Field == Record->field_end())
- return Error(E);
- // Start pointer.
- if (!Field->getType()->isPointerType() ||
- !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
- ArrayType->getElementType()))
- return Error(E);
- // FIXME: What if the initializer_list type has base classes, etc?
- Result = APValue(APValue::UninitStruct(), 0, 2);
- Array.moveInto(Result.getStructField(0));
- if (++Field == Record->field_end())
- return Error(E);
- if (Field->getType()->isPointerType() &&
- Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
- ArrayType->getElementType())) {
- // End pointer.
- if (!HandleLValueArrayAdjustment(Info, E, Array,
- ArrayType->getElementType(),
- ArrayType->getSize().getZExtValue()))
- return false;
- Array.moveInto(Result.getStructField(1));
- } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
- // Length.
- Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
- else
- return Error(E);
- if (++Field != Record->field_end())
- return Error(E);
- return true;
- }
- static bool EvaluateRecord(const Expr *E, const LValue &This,
- APValue &Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isRecordType() &&
- "can't evaluate expression as a record rvalue");
- return RecordExprEvaluator(Info, This, Result).Visit(E);
- }
- //===----------------------------------------------------------------------===//
- // Temporary Evaluation
- //
- // Temporaries are represented in the AST as rvalues, but generally behave like
- // lvalues. The full-object of which the temporary is a subobject is implicitly
- // materialized so that a reference can bind to it.
- //===----------------------------------------------------------------------===//
- namespace {
- class TemporaryExprEvaluator
- : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
- public:
- TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
- LValueExprEvaluatorBaseTy(Info, Result) {}
- /// Visit an expression which constructs the value of this temporary.
- bool VisitConstructExpr(const Expr *E) {
- Result.set(E, Info.CurrentCall->Index);
- return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
- Info, Result, E);
- }
- bool VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_ConstructorConversion:
- return VisitConstructExpr(E->getSubExpr());
- }
- }
- bool VisitInitListExpr(const InitListExpr *E) {
- if (Info.getLangOpts().HLSL && !IsHLSLVecInitList(E)) return Error(E); // HLSL Change
- return VisitConstructExpr(E);
- }
- bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
- return VisitConstructExpr(E);
- }
- bool VisitCallExpr(const CallExpr *E) {
- return VisitConstructExpr(E);
- }
- bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
- return VisitConstructExpr(E);
- }
- };
- } // end anonymous namespace
- /// Evaluate an expression of record type as a temporary.
- static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isRecordType());
- return TemporaryExprEvaluator(Info, Result).Visit(E);
- }
- //===----------------------------------------------------------------------===//
- // Vector Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class VectorExprEvaluator
- : public ExprEvaluatorBase<VectorExprEvaluator> {
- APValue &Result;
- public:
- VectorExprEvaluator(EvalInfo &info, APValue &Result)
- : ExprEvaluatorBaseTy(info), Result(Result) {}
- bool Success(const ArrayRef<APValue> &V, const Expr *E) {
- // HLSL Change Begins.
- const VectorType *VT = nullptr;
- if (hlsl::IsHLSLVecType(E->getType())) {
- VT = hlsl::ConvertHLSLVecMatTypeToExtVectorType(getEvalInfo().Ctx,
- E->getType());
- } else
- VT = E->getType()->castAs<VectorType>();
- // HLSL Change Ends.
- assert(V.size() == VT->getNumElements());
- // FIXME: remove this APValue copy.
- Result = APValue(V.data(), V.size());
- return true;
- }
- bool Success(const APValue &V, const Expr *E) {
- assert(V.isVector());
- Result = V;
- return true;
- }
- bool ZeroInitialization(const Expr *E);
- bool VisitUnaryReal(const UnaryOperator *E)
- { return Visit(E->getSubExpr()); }
- bool VisitCastExpr(const CastExpr* E);
- bool VisitInitListExpr(const InitListExpr *E);
- bool VisitHLSLVectorElementExpr(const HLSLVectorElementExpr *E);
- bool VisitUnaryImag(const UnaryOperator *E);
- // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
- // binary comparisons, binary and/or/xor,
- // shufflevector, ExtVectorElementExpr
- };
- } // end anonymous namespace
- static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
- assert(E->isRValue() && (E->getType()->isVectorType() || hlsl::IsHLSLVecType(E->getType())) &&"not a vector rvalue"); // HLSL Change
- return VectorExprEvaluator(Info, Result).Visit(E);
- }
- bool VectorExprEvaluator::VisitHLSLVectorElementExpr(
- const HLSLVectorElementExpr *E) {
- SmallVector<APValue, 4> Elts;
- const Expr *baseExpr = E->getBase();
- // Handling cases where HLSLVectorElement access into constant vector.
- // For example: float4 a = (0.0).xxxx;
- if (Evaluate(Result, Info, baseExpr) && !Info.EvalStatus.HasSideEffects &&
- Result.getKind() == APValue::ValueKind::Vector) {
- hlsl::VectorMemberAccessPositions accessor = E->getEncodedElementAccess();
- for (uint32_t i = 0; i < accessor.Count; ++i) {
- uint32_t selector;
- accessor.GetPosition(i, &selector);
- Elts.push_back(Result.getVectorElt(selector));
- }
- return Success(Elts, E);
- }
- // TODO: Other cases may be added for other APValue::ValueKind.
- return false;
- }
- bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
- // HLSL Change Begins.
- const VectorType *VTy;
- if (Info.getLangOpts().HLSL && hlsl::IsHLSLVecType(E->getType())) {
- VTy = hlsl::ConvertHLSLVecMatTypeToExtVectorType(getEvalInfo().Ctx, E->getType());
- } else {
- VTy = E->getType()->castAs<VectorType>();
- }
- // HLSL Change Ends.
- unsigned NElts = VTy->getNumElements();
- const Expr *SE = E->getSubExpr();
- QualType SETy = SE->getType();
- switch (E->getCastKind()) {
- // HLSL Change Begins.
- case CK_HLSLCC_FloatingCast: {
- if (!Visit(SE))
- return Error(E);
- SmallVector<APValue, 4> Elts;
- for (uint32_t i = 0; i < Result.getVectorLength(); ++i) {
- APValue Elem = Result.getVectorElt(i);
- HandleFloatToFloatCast(
- Info, E, hlsl::GetHLSLVecElementType(SE->getType()),
- hlsl::GetHLSLVecElementType(E->getType()), Elem.getFloat());
- Elts.push_back(Elem);
- }
- return Success(Elts, E);
- }
- case CK_HLSLCC_IntegralToFloating: {
- if (!Visit(SE))
- return Error(E);
- SmallVector<APValue, 4> Elts;
- for (uint32_t i = 0; i < Result.getVectorLength(); ++i) {
- APFloat ElemFloat(0.0);
- HandleIntToFloatCast(Info, E, hlsl::GetHLSLVecElementType(SE->getType()),
- Result.getVectorElt(i).getInt(),
- hlsl::GetHLSLVecElementType(E->getType()),
- ElemFloat);
- Elts.push_back(APValue(ElemFloat));
- }
- return Success(Elts, E);
- }
- case CK_HLSLCC_FloatingToIntegral: {
- if (!Visit(SE))
- return Error(E);
- SmallVector<APValue, 4> Elts;
- for (uint32_t i = 0; i < Result.getVectorLength(); ++i) {
- APSInt ElemInt;
- HandleFloatToIntCast(Info, E, hlsl::GetHLSLVecElementType(SE->getType()),
- Result.getVectorElt(i).getFloat(),
- hlsl::GetHLSLVecElementType(E->getType()), ElemInt);
- Elts.push_back(APValue(ElemInt));
- }
- return Success(Elts, E);
- }
- // HLSL Change Ends.
- case CK_HLSLVectorSplat: // HLSL Change
- case CK_VectorSplat: {
- APValue Val = APValue();
- if (SETy->isIntegerType()) {
- APSInt IntResult;
- if (!EvaluateInteger(SE, IntResult, Info))
- return false;
- Val = APValue(IntResult);
- } else if (SETy->isRealFloatingType()) {
- APFloat F(0.0);
- if (!EvaluateFloat(SE, F, Info))
- return false;
- Val = APValue(F);
- } else {
- return Error(E);
- }
- // Splat and create vector APValue.
- SmallVector<APValue, 4> Elts(NElts, Val);
- return Success(Elts, E);
- }
- case CK_BitCast: {
- // Evaluate the operand into an APInt we can extract from.
- llvm::APInt SValInt;
- if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
- return false;
- // Extract the elements
- QualType EltTy = VTy->getElementType();
- unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
- bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
- SmallVector<APValue, 4> Elts;
- if (EltTy->isRealFloatingType()) {
- const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
- unsigned FloatEltSize = EltSize;
- if (&Sem == &APFloat::x87DoubleExtended)
- FloatEltSize = 80;
- for (unsigned i = 0; i < NElts; i++) {
- llvm::APInt Elt;
- if (BigEndian)
- Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
- else
- Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
- Elts.push_back(APValue(APFloat(Sem, Elt)));
- }
- } else if (EltTy->isIntegerType()) {
- for (unsigned i = 0; i < NElts; i++) {
- llvm::APInt Elt;
- if (BigEndian)
- Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
- else
- Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
- Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
- }
- } else {
- return Error(E);
- }
- return Success(Elts, E);
- }
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- }
- }
- bool
- VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
- // HLSL Change Begins.
- if (Info.getLangOpts().HLSL) {
- QualType Ty = E->getType();
- if (!hlsl::IsHLSLVecType(Ty))
- return Error(E); // HLSL Change
- unsigned vecSize = hlsl::GetHLSLVecSize(Ty);
- // TODO: support all cases.
- if (E->getNumInits() != vecSize)
- return Error(E); // HLSL Change
- }
- // HLSL Change Ends.
- const VectorType *VT = nullptr;
- // HLSL Change Begins.
- if (hlsl::IsHLSLVecType(E->getType())) {
- VT = hlsl::ConvertHLSLVecMatTypeToExtVectorType(getEvalInfo().Ctx,
- E->getType());
- } else
- VT = E->getType()->castAs<VectorType>();
- // HLSL Change Ends.
- unsigned NumInits = E->getNumInits();
- unsigned NumElements = VT->getNumElements();
- QualType EltTy = VT->getElementType();
- SmallVector<APValue, 4> Elements;
- // The number of initializers can be less than the number of
- // vector elements. For OpenCL, this can be due to nested vector
- // initialization. For GCC compatibility, missing trailing elements
- // should be initialized with zeroes.
- unsigned CountInits = 0, CountElts = 0;
- while (CountElts < NumElements) {
- // Handle nested vector initialization.
- if (CountInits < NumInits
- && (E->getInit(CountInits)->getType()->isVectorType() ||
- // HLSL Change Begins.
- (Info.getLangOpts().HLSL &&
- hlsl::IsHLSLVecType(E->getInit(CountInits)->getType())))) {
- // HLSL Change Ends.
- APValue v;
- if (!EvaluateVector(E->getInit(CountInits), v, Info))
- return Error(E);
- unsigned vlen = v.getVectorLength();
- for (unsigned j = 0; j < vlen; j++)
- Elements.push_back(v.getVectorElt(j));
- CountElts += vlen;
- } else if (EltTy->isIntegerType()) {
- llvm::APSInt sInt(32);
- if (CountInits < NumInits) {
- if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
- return false;
- } else // trailing integer zero.
- sInt = Info.Ctx.MakeIntValue(0, EltTy);
- Elements.push_back(APValue(sInt));
- CountElts++;
- } else {
- llvm::APFloat f(0.0);
- if (CountInits < NumInits) {
- if (!EvaluateFloat(E->getInit(CountInits), f, Info))
- return false;
- } else // trailing float zero.
- f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
- Elements.push_back(APValue(f));
- CountElts++;
- }
- CountInits++;
- }
- return Success(Elements, E);
- }
- bool
- VectorExprEvaluator::ZeroInitialization(const Expr *E) {
- const VectorType *VT = E->getType()->getAs<VectorType>();
- QualType EltTy = VT->getElementType();
- APValue ZeroElement;
- if (EltTy->isIntegerType())
- ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
- else
- ZeroElement =
- APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
- SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
- return Success(Elements, E);
- }
- bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
- VisitIgnoredValue(E->getSubExpr());
- return ZeroInitialization(E);
- }
- //===----------------------------------------------------------------------===//
- // Array Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class ArrayExprEvaluator
- : public ExprEvaluatorBase<ArrayExprEvaluator> {
- const LValue &This;
- APValue &Result;
- public:
- ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
- : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
- bool Success(const APValue &V, const Expr *E) {
- assert((V.isArray() || V.isLValue()) &&
- "expected array or string literal");
- Result = V;
- return true;
- }
- bool ZeroInitialization(const Expr *E) {
- const ConstantArrayType *CAT =
- Info.Ctx.getAsConstantArrayType(E->getType());
- if (!CAT)
- return Error(E);
- Result = APValue(APValue::UninitArray(), 0,
- CAT->getSize().getZExtValue());
- if (!Result.hasArrayFiller()) return true;
- // Zero-initialize all elements.
- LValue Subobject = This;
- Subobject.addArray(Info, E, CAT);
- ImplicitValueInitExpr VIE(CAT->getElementType());
- return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
- }
- bool VisitInitListExpr(const InitListExpr *E);
- bool VisitCXXConstructExpr(const CXXConstructExpr *E);
- bool VisitCXXConstructExpr(const CXXConstructExpr *E,
- const LValue &Subobject,
- APValue *Value, QualType Type);
- };
- } // end anonymous namespace
- static bool EvaluateArray(const Expr *E, const LValue &This,
- APValue &Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
- return ArrayExprEvaluator(Info, This, Result).Visit(E);
- }
- bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
- if (Info.getLangOpts().HLSL) return Error(E); // HLSL Change
- const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
- if (!CAT)
- return Error(E);
- // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
- // an appropriately-typed string literal enclosed in braces.
- if (E->isStringLiteralInit()) {
- LValue LV;
- if (!EvaluateLValue(E->getInit(0), LV, Info))
- return false;
- APValue Val;
- LV.moveInto(Val);
- return Success(Val, E);
- }
- bool Success = true;
- assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
- "zero-initialized array shouldn't have any initialized elts");
- APValue Filler;
- if (Result.isArray() && Result.hasArrayFiller())
- Filler = Result.getArrayFiller();
- unsigned NumEltsToInit = E->getNumInits();
- unsigned NumElts = CAT->getSize().getZExtValue();
- const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
- // If the initializer might depend on the array index, run it for each
- // array element. For now, just whitelist non-class value-initialization.
- if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
- NumEltsToInit = NumElts;
- Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
- // If the array was previously zero-initialized, preserve the
- // zero-initialized values.
- if (!Filler.isUninit()) {
- for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
- Result.getArrayInitializedElt(I) = Filler;
- if (Result.hasArrayFiller())
- Result.getArrayFiller() = Filler;
- }
- LValue Subobject = This;
- Subobject.addArray(Info, E, CAT);
- for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
- const Expr *Init =
- Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
- if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
- Info, Subobject, Init) ||
- !HandleLValueArrayAdjustment(Info, Init, Subobject,
- CAT->getElementType(), 1)) {
- if (!Info.keepEvaluatingAfterFailure())
- return false;
- Success = false;
- }
- }
- if (!Result.hasArrayFiller())
- return Success;
- // If we get here, we have a trivial filler, which we can just evaluate
- // once and splat over the rest of the array elements.
- assert(FillerExpr && "no array filler for incomplete init list");
- return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
- FillerExpr) && Success;
- }
- bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
- return VisitCXXConstructExpr(E, This, &Result, E->getType());
- }
- bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
- const LValue &Subobject,
- APValue *Value,
- QualType Type) {
- bool HadZeroInit = !Value->isUninit();
- if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
- unsigned N = CAT->getSize().getZExtValue();
- // Preserve the array filler if we had prior zero-initialization.
- APValue Filler =
- HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
- : APValue();
- *Value = APValue(APValue::UninitArray(), N, N);
- if (HadZeroInit)
- for (unsigned I = 0; I != N; ++I)
- Value->getArrayInitializedElt(I) = Filler;
- // Initialize the elements.
- LValue ArrayElt = Subobject;
- ArrayElt.addArray(Info, E, CAT);
- for (unsigned I = 0; I != N; ++I)
- if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
- CAT->getElementType()) ||
- !HandleLValueArrayAdjustment(Info, E, ArrayElt,
- CAT->getElementType(), 1))
- return false;
- return true;
- }
- if (!Type->isRecordType())
- return Error(E);
- const CXXConstructorDecl *FD = E->getConstructor();
- bool ZeroInit = E->requiresZeroInitialization();
- if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
- if (HadZeroInit)
- return true;
- // See RecordExprEvaluator::VisitCXXConstructExpr for explanation.
- ImplicitValueInitExpr VIE(Type);
- return EvaluateInPlace(*Value, Info, Subobject, &VIE);
- }
- const FunctionDecl *Definition = nullptr;
- FD->getBody(Definition);
- if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
- return false;
- if (ZeroInit && !HadZeroInit) {
- ImplicitValueInitExpr VIE(Type);
- if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
- return false;
- }
- auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
- return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
- cast<CXXConstructorDecl>(Definition),
- Info, *Value);
- }
- //===----------------------------------------------------------------------===//
- // Integer Evaluation
- //
- // As a GNU extension, we support casting pointers to sufficiently-wide integer
- // types and back in constant folding. Integer values are thus represented
- // either as an integer-valued APValue, or as an lvalue-valued APValue.
- //===----------------------------------------------------------------------===//
- namespace {
- class IntExprEvaluator
- : public ExprEvaluatorBase<IntExprEvaluator> {
- APValue &Result;
- public:
- IntExprEvaluator(EvalInfo &info, APValue &result)
- : ExprEvaluatorBaseTy(info), Result(result) {}
- bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
- assert(E->getType()->isIntegralOrEnumerationType() &&
- "Invalid evaluation result.");
- assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
- "Invalid evaluation result.");
- assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
- "Invalid evaluation result.");
- Result = APValue(SI);
- return true;
- }
- bool Success(const llvm::APSInt &SI, const Expr *E) {
- return Success(SI, E, Result);
- }
- bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
- assert(E->getType()->isIntegralOrEnumerationType() &&
- "Invalid evaluation result.");
- assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
- "Invalid evaluation result.");
- Result = APValue(APSInt(I));
- Result.getInt().setIsUnsigned(
- E->getType()->isUnsignedIntegerOrEnumerationType());
- return true;
- }
- bool Success(const llvm::APInt &I, const Expr *E) {
- return Success(I, E, Result);
- }
- bool Success(uint64_t Value, const Expr *E, APValue &Result) {
- assert(E->getType()->isIntegralOrEnumerationType() &&
- "Invalid evaluation result.");
- Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
- return true;
- }
- bool Success(uint64_t Value, const Expr *E) {
- return Success(Value, E, Result);
- }
- bool Success(CharUnits Size, const Expr *E) {
- return Success(Size.getQuantity(), E);
- }
- bool Success(const APValue &V, const Expr *E) {
- if (V.isLValue() || V.isAddrLabelDiff()) {
- Result = V;
- return true;
- }
- return Success(V.getInt(), E);
- }
- bool ZeroInitialization(const Expr *E) { return Success(0, E); }
- //===--------------------------------------------------------------------===//
- // Visitor Methods
- //===--------------------------------------------------------------------===//
- bool VisitIntegerLiteral(const IntegerLiteral *E) {
- return Success(E->getValue(), E);
- }
- bool VisitCharacterLiteral(const CharacterLiteral *E) {
- return Success(E->getValue(), E);
- }
- bool CheckReferencedDecl(const Expr *E, const Decl *D);
- bool VisitDeclRefExpr(const DeclRefExpr *E) {
- if (CheckReferencedDecl(E, E->getDecl()))
- return true;
- return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
- }
- bool VisitMemberExpr(const MemberExpr *E) {
- if (CheckReferencedDecl(E, E->getMemberDecl())) {
- VisitIgnoredValue(E->getBase());
- return true;
- }
- return ExprEvaluatorBaseTy::VisitMemberExpr(E);
- }
- bool VisitCallExpr(const CallExpr *E);
- bool VisitBinaryOperator(const BinaryOperator *E);
- bool VisitOffsetOfExpr(const OffsetOfExpr *E);
- bool VisitUnaryOperator(const UnaryOperator *E);
- bool VisitCastExpr(const CastExpr* E);
- bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
- bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
- return Success(E->getValue(), E);
- }
- bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
- return Success(E->getValue(), E);
- }
-
- // Note, GNU defines __null as an integer, not a pointer.
- bool VisitGNUNullExpr(const GNUNullExpr *E) {
- return ZeroInitialization(E);
- }
- bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
- return Success(E->getValue(), E);
- }
- bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
- return Success(E->getValue(), E);
- }
- bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
- return Success(E->getValue(), E);
- }
- bool VisitUnaryReal(const UnaryOperator *E);
- bool VisitUnaryImag(const UnaryOperator *E);
- bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
- bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
- private:
- static QualType GetObjectType(APValue::LValueBase B);
- bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
- // FIXME: Missing: array subscript of vector, member of vector
- };
- } // end anonymous namespace
- /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
- /// produce either the integer value or a pointer.
- ///
- /// GCC has a heinous extension which folds casts between pointer types and
- /// pointer-sized integral types. We support this by allowing the evaluation of
- /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
- /// Some simple arithmetic on such values is supported (they are treated much
- /// like char*).
- static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
- EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
- return IntExprEvaluator(Info, Result).Visit(E);
- }
- static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
- APValue Val;
- if (!EvaluateIntegerOrLValue(E, Val, Info))
- return false;
- if (!Val.isInt()) {
- // FIXME: It would be better to produce the diagnostic for casting
- // a pointer to an integer.
- Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- Result = Val.getInt();
- return true;
- }
- /// Check whether the given declaration can be directly converted to an integral
- /// rvalue. If not, no diagnostic is produced; there are other things we can
- /// try.
- bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
- // Enums are integer constant exprs.
- if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
- // Check for signedness/width mismatches between E type and ECD value.
- bool SameSign = (ECD->getInitVal().isSigned()
- == E->getType()->isSignedIntegerOrEnumerationType());
- bool SameWidth = (ECD->getInitVal().getBitWidth()
- == Info.Ctx.getIntWidth(E->getType()));
- if (SameSign && SameWidth)
- return Success(ECD->getInitVal(), E);
- else {
- // Get rid of mismatch (otherwise Success assertions will fail)
- // by computing a new value matching the type of E.
- llvm::APSInt Val = ECD->getInitVal();
- if (!SameSign)
- Val.setIsSigned(!ECD->getInitVal().isSigned());
- if (!SameWidth)
- Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
- return Success(Val, E);
- }
- }
- return false;
- }
- /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
- /// as GCC.
- static int EvaluateBuiltinClassifyType(const CallExpr *E) {
- // The following enum mimics the values returned by GCC.
- // FIXME: Does GCC differ between lvalue and rvalue references here?
- enum gcc_type_class {
- no_type_class = -1,
- void_type_class, integer_type_class, char_type_class,
- enumeral_type_class, boolean_type_class,
- pointer_type_class, reference_type_class, offset_type_class,
- real_type_class, complex_type_class,
- function_type_class, method_type_class,
- record_type_class, union_type_class,
- array_type_class, string_type_class,
- lang_type_class
- };
- // If no argument was supplied, default to "no_type_class". This isn't
- // ideal, however it is what gcc does.
- if (E->getNumArgs() == 0)
- return no_type_class;
- QualType ArgTy = E->getArg(0)->getType();
- if (ArgTy->isVoidType())
- return void_type_class;
- else if (ArgTy->isEnumeralType())
- return enumeral_type_class;
- else if (ArgTy->isBooleanType())
- return boolean_type_class;
- else if (ArgTy->isCharType())
- return string_type_class; // gcc doesn't appear to use char_type_class
- else if (ArgTy->isIntegerType())
- return integer_type_class;
- else if (ArgTy->isPointerType())
- return pointer_type_class;
- else if (ArgTy->isReferenceType())
- return reference_type_class;
- else if (ArgTy->isRealType())
- return real_type_class;
- else if (ArgTy->isComplexType())
- return complex_type_class;
- else if (ArgTy->isFunctionType())
- return function_type_class;
- else if (ArgTy->isStructureOrClassType())
- return record_type_class;
- else if (ArgTy->isUnionType())
- return union_type_class;
- else if (ArgTy->isArrayType())
- return array_type_class;
- else if (ArgTy->isUnionType())
- return union_type_class;
- else // FIXME: offset_type_class, method_type_class, & lang_type_class?
- llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
- }
- /// EvaluateBuiltinConstantPForLValue - Determine the result of
- /// __builtin_constant_p when applied to the given lvalue.
- ///
- /// An lvalue is only "constant" if it is a pointer or reference to the first
- /// character of a string literal.
- template<typename LValue>
- static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
- const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
- return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
- }
- /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
- /// GCC as we can manage.
- static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
- QualType ArgType = Arg->getType();
- // __builtin_constant_p always has one operand. The rules which gcc follows
- // are not precisely documented, but are as follows:
- //
- // - If the operand is of integral, floating, complex or enumeration type,
- // and can be folded to a known value of that type, it returns 1.
- // - If the operand and can be folded to a pointer to the first character
- // of a string literal (or such a pointer cast to an integral type), it
- // returns 1.
- //
- // Otherwise, it returns 0.
- //
- // FIXME: GCC also intends to return 1 for literals of aggregate types, but
- // its support for this does not currently work.
- if (ArgType->isIntegralOrEnumerationType()) {
- Expr::EvalResult Result;
- if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
- return false;
- APValue &V = Result.Val;
- if (V.getKind() == APValue::Int)
- return true;
- return EvaluateBuiltinConstantPForLValue(V);
- } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
- return Arg->isEvaluatable(Ctx);
- } else if (ArgType->isPointerType() || Arg->isGLValue()) {
- LValue LV;
- Expr::EvalStatus Status;
- EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
- if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
- : EvaluatePointer(Arg, LV, Info)) &&
- !Status.HasSideEffects)
- return EvaluateBuiltinConstantPForLValue(LV);
- }
- // Anything else isn't considered to be sufficiently constant.
- return false;
- }
- /// Retrieves the "underlying object type" of the given expression,
- /// as used by __builtin_object_size.
- QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
- if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
- if (const VarDecl *VD = dyn_cast<VarDecl>(D))
- return VD->getType();
- } else if (const Expr *E = B.get<const Expr*>()) {
- if (isa<CompoundLiteralExpr>(E))
- return E->getType();
- }
- return QualType();
- }
- bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
- LValue Base;
- {
- // The operand of __builtin_object_size is never evaluated for side-effects.
- // If there are any, but we can determine the pointed-to object anyway, then
- // ignore the side-effects.
- SpeculativeEvaluationRAII SpeculativeEval(Info);
- if (!EvaluatePointer(E->getArg(0), Base, Info))
- return false;
- }
- if (!Base.getLValueBase()) {
- // It is not possible to determine which objects ptr points to at compile time,
- // __builtin_object_size should return (size_t) -1 for type 0 or 1
- // and (size_t) 0 for type 2 or 3.
- llvm::APSInt TypeIntVaue;
- const Expr *ExprType = E->getArg(1);
- if (!ExprType->EvaluateAsInt(TypeIntVaue, Info.Ctx))
- return false;
- if (TypeIntVaue == 0 || TypeIntVaue == 1)
- return Success(-1, E);
- if (TypeIntVaue == 2 || TypeIntVaue == 3)
- return Success(0, E);
- return Error(E);
- }
- QualType T = GetObjectType(Base.getLValueBase());
- if (T.isNull() ||
- T->isIncompleteType() ||
- T->isFunctionType() ||
- T->isVariablyModifiedType() ||
- T->isDependentType())
- return Error(E);
- CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
- CharUnits Offset = Base.getLValueOffset();
- if (!Offset.isNegative() && Offset <= Size)
- Size -= Offset;
- else
- Size = CharUnits::Zero();
- return Success(Size, E);
- }
- bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
- switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
- default:
- return ExprEvaluatorBaseTy::VisitCallExpr(E);
- case Builtin::BI__builtin_object_size: {
- if (TryEvaluateBuiltinObjectSize(E))
- return true;
- // If evaluating the argument has side-effects, we can't determine the size
- // of the object, and so we lower it to unknown now. CodeGen relies on us to
- // handle all cases where the expression has side-effects.
- if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
- if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
- return Success(-1ULL, E);
- return Success(0, E);
- }
- // Expression had no side effects, but we couldn't statically determine the
- // size of the referenced object.
- switch (Info.EvalMode) {
- case EvalInfo::EM_ConstantExpression:
- case EvalInfo::EM_PotentialConstantExpression:
- case EvalInfo::EM_ConstantFold:
- case EvalInfo::EM_EvaluateForOverflow:
- case EvalInfo::EM_IgnoreSideEffects:
- return Error(E);
- case EvalInfo::EM_ConstantExpressionUnevaluated:
- case EvalInfo::EM_PotentialConstantExpressionUnevaluated:
- return Success(-1ULL, E);
- }
- }
- case Builtin::BI__builtin_bswap16:
- case Builtin::BI__builtin_bswap32:
- case Builtin::BI__builtin_bswap64: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- return Success(Val.byteSwap(), E);
- }
- case Builtin::BI__builtin_classify_type:
- return Success(EvaluateBuiltinClassifyType(E), E);
- // FIXME: BI__builtin_clrsb
- // FIXME: BI__builtin_clrsbl
- // FIXME: BI__builtin_clrsbll
- case Builtin::BI__builtin_clz:
- case Builtin::BI__builtin_clzl:
- case Builtin::BI__builtin_clzll:
- case Builtin::BI__builtin_clzs: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- if (!Val)
- return Error(E);
- return Success(Val.countLeadingZeros(), E);
- }
- case Builtin::BI__builtin_constant_p:
- return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
- case Builtin::BI__builtin_ctz:
- case Builtin::BI__builtin_ctzl:
- case Builtin::BI__builtin_ctzll:
- case Builtin::BI__builtin_ctzs: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- if (!Val)
- return Error(E);
- return Success(Val.countTrailingZeros(), E);
- }
- case Builtin::BI__builtin_eh_return_data_regno: {
- int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
- Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
- return Success(Operand, E);
- }
- case Builtin::BI__builtin_expect:
- return Visit(E->getArg(0));
- case Builtin::BI__builtin_ffs:
- case Builtin::BI__builtin_ffsl:
- case Builtin::BI__builtin_ffsll: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- unsigned N = Val.countTrailingZeros();
- return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
- }
- case Builtin::BI__builtin_fpclassify: {
- APFloat Val(0.0);
- if (!EvaluateFloat(E->getArg(5), Val, Info))
- return false;
- unsigned Arg;
- switch (Val.getCategory()) {
- case APFloat::fcNaN: Arg = 0; break;
- case APFloat::fcInfinity: Arg = 1; break;
- case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
- case APFloat::fcZero: Arg = 4; break;
- }
- return Visit(E->getArg(Arg));
- }
- case Builtin::BI__builtin_isinf_sign: {
- APFloat Val(0.0);
- return EvaluateFloat(E->getArg(0), Val, Info) &&
- Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
- }
- case Builtin::BI__builtin_isinf: {
- APFloat Val(0.0);
- return EvaluateFloat(E->getArg(0), Val, Info) &&
- Success(Val.isInfinity() ? 1 : 0, E);
- }
- case Builtin::BI__builtin_isfinite: {
- APFloat Val(0.0);
- return EvaluateFloat(E->getArg(0), Val, Info) &&
- Success(Val.isFinite() ? 1 : 0, E);
- }
- case Builtin::BI__builtin_isnan: {
- APFloat Val(0.0);
- return EvaluateFloat(E->getArg(0), Val, Info) &&
- Success(Val.isNaN() ? 1 : 0, E);
- }
- case Builtin::BI__builtin_isnormal: {
- APFloat Val(0.0);
- return EvaluateFloat(E->getArg(0), Val, Info) &&
- Success(Val.isNormal() ? 1 : 0, E);
- }
- case Builtin::BI__builtin_parity:
- case Builtin::BI__builtin_parityl:
- case Builtin::BI__builtin_parityll: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- return Success(Val.countPopulation() % 2, E);
- }
- case Builtin::BI__builtin_popcount:
- case Builtin::BI__builtin_popcountl:
- case Builtin::BI__builtin_popcountll: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- return Success(Val.countPopulation(), E);
- }
- case Builtin::BIstrlen:
- // A call to strlen is not a constant expression.
- if (Info.getLangOpts().CPlusPlus11)
- Info.CCEDiag(E, diag::note_constexpr_invalid_function)
- << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
- else
- Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
- // Fall through.
- case Builtin::BI__builtin_strlen: {
- // As an extension, we support __builtin_strlen() as a constant expression,
- // and support folding strlen() to a constant.
- LValue String;
- if (!EvaluatePointer(E->getArg(0), String, Info))
- return false;
- // Fast path: if it's a string literal, search the string value.
- if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
- String.getLValueBase().dyn_cast<const Expr *>())) {
- // The string literal may have embedded null characters. Find the first
- // one and truncate there.
- StringRef Str = S->getBytes();
- int64_t Off = String.Offset.getQuantity();
- if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
- S->getCharByteWidth() == 1) {
- Str = Str.substr(Off);
- StringRef::size_type Pos = Str.find(0);
- if (Pos != StringRef::npos)
- Str = Str.substr(0, Pos);
- return Success(Str.size(), E);
- }
- // Fall through to slow path to issue appropriate diagnostic.
- }
- // Slow path: scan the bytes of the string looking for the terminating 0.
- QualType CharTy = E->getArg(0)->getType()->getPointeeType();
- for (uint64_t Strlen = 0; /**/; ++Strlen) {
- APValue Char;
- if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
- !Char.isInt())
- return false;
- if (!Char.getInt())
- return Success(Strlen, E);
- if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
- return false;
- }
- }
- case Builtin::BI__atomic_always_lock_free:
- case Builtin::BI__atomic_is_lock_free:
- case Builtin::BI__c11_atomic_is_lock_free: {
- APSInt SizeVal;
- if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
- return false;
- // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
- // of two less than the maximum inline atomic width, we know it is
- // lock-free. If the size isn't a power of two, or greater than the
- // maximum alignment where we promote atomics, we know it is not lock-free
- // (at least not in the sense of atomic_is_lock_free). Otherwise,
- // the answer can only be determined at runtime; for example, 16-byte
- // atomics have lock-free implementations on some, but not all,
- // x86-64 processors.
- // Check power-of-two.
- CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
- if (Size.isPowerOfTwo()) {
- // Check against inlining width.
- unsigned InlineWidthBits =
- Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
- if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
- if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
- Size == CharUnits::One() ||
- E->getArg(1)->isNullPointerConstant(Info.Ctx,
- Expr::NPC_NeverValueDependent))
- // OK, we will inline appropriately-aligned operations of this size,
- // and _Atomic(T) is appropriately-aligned.
- return Success(1, E);
- QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
- castAs<PointerType>()->getPointeeType();
- if (!PointeeType->isIncompleteType() &&
- Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
- // OK, we will inline operations on this object.
- return Success(1, E);
- }
- }
- }
- return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
- Success(0, E) : Error(E);
- }
- }
- }
- static bool HasSameBase(const LValue &A, const LValue &B) {
- if (!A.getLValueBase())
- return !B.getLValueBase();
- if (!B.getLValueBase())
- return false;
- if (A.getLValueBase().getOpaqueValue() !=
- B.getLValueBase().getOpaqueValue()) {
- const Decl *ADecl = GetLValueBaseDecl(A);
- if (!ADecl)
- return false;
- const Decl *BDecl = GetLValueBaseDecl(B);
- if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
- return false;
- }
- return IsGlobalLValue(A.getLValueBase()) ||
- A.getLValueCallIndex() == B.getLValueCallIndex();
- }
- /// \brief Determine whether this is a pointer past the end of the complete
- /// object referred to by the lvalue.
- static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
- const LValue &LV) {
- // A null pointer can be viewed as being "past the end" but we don't
- // choose to look at it that way here.
- if (!LV.getLValueBase())
- return false;
- // If the designator is valid and refers to a subobject, we're not pointing
- // past the end.
- if (!LV.getLValueDesignator().Invalid &&
- !LV.getLValueDesignator().isOnePastTheEnd())
- return false;
- // We're a past-the-end pointer if we point to the byte after the object,
- // no matter what our type or path is.
- auto Size = Ctx.getTypeSizeInChars(getType(LV.getLValueBase()));
- return LV.getLValueOffset() == Size;
- }
- namespace {
- /// \brief Data recursive integer evaluator of certain binary operators.
- ///
- /// We use a data recursive algorithm for binary operators so that we are able
- /// to handle extreme cases of chained binary operators without causing stack
- /// overflow.
- class DataRecursiveIntBinOpEvaluator {
- struct EvalResult {
- APValue Val;
- bool Failed;
- EvalResult() : Failed(false) { }
- void swap(EvalResult &RHS) {
- Val.swap(RHS.Val);
- Failed = RHS.Failed;
- RHS.Failed = false;
- }
- };
- struct Job {
- const Expr *E;
- EvalResult LHSResult; // meaningful only for binary operator expression.
- enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
- Job() : StoredInfo(nullptr) {}
- void startSpeculativeEval(EvalInfo &Info) {
- OldEvalStatus = Info.EvalStatus;
- Info.EvalStatus.Diag = nullptr;
- StoredInfo = &Info;
- }
- ~Job() {
- if (StoredInfo) {
- StoredInfo->EvalStatus = OldEvalStatus;
- }
- }
- private:
- EvalInfo *StoredInfo; // non-null if status changed.
- Expr::EvalStatus OldEvalStatus;
- };
- SmallVector<Job, 16> Queue;
- IntExprEvaluator &IntEval;
- EvalInfo &Info;
- APValue &FinalResult;
- public:
- DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
- : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
- /// \brief True if \param E is a binary operator that we are going to handle
- /// data recursively.
- /// We handle binary operators that are comma, logical, or that have operands
- /// with integral or enumeration type.
- static bool shouldEnqueue(const BinaryOperator *E) {
- return E->getOpcode() == BO_Comma ||
- E->isLogicalOp() ||
- (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
- E->getRHS()->getType()->isIntegralOrEnumerationType());
- }
- bool Traverse(const BinaryOperator *E) {
- enqueue(E);
- EvalResult PrevResult;
- while (!Queue.empty())
- process(PrevResult);
- if (PrevResult.Failed) return false;
- FinalResult.swap(PrevResult.Val);
- return true;
- }
- private:
- bool Success(uint64_t Value, const Expr *E, APValue &Result) {
- return IntEval.Success(Value, E, Result);
- }
- bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
- return IntEval.Success(Value, E, Result);
- }
- bool Error(const Expr *E) {
- return IntEval.Error(E);
- }
- bool Error(const Expr *E, diag::kind D) {
- return IntEval.Error(E, D);
- }
- OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
- return Info.CCEDiag(E, D);
- }
- // \brief Returns true if visiting the RHS is necessary, false otherwise.
- bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
- bool &SuppressRHSDiags);
- bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
- const BinaryOperator *E, APValue &Result);
- void EvaluateExpr(const Expr *E, EvalResult &Result) {
- Result.Failed = !Evaluate(Result.Val, Info, E);
- if (Result.Failed)
- Result.Val = APValue();
- }
- void process(EvalResult &Result);
- void enqueue(const Expr *E) {
- E = E->IgnoreParens();
- Queue.resize(Queue.size()+1);
- Queue.back().E = E;
- Queue.back().Kind = Job::AnyExprKind;
- }
- };
- }
- bool DataRecursiveIntBinOpEvaluator::
- VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
- bool &SuppressRHSDiags) {
- if (E->getOpcode() == BO_Comma) {
- // Ignore LHS but note if we could not evaluate it.
- if (LHSResult.Failed)
- return Info.noteSideEffect();
- return true;
- }
- if (E->isLogicalOp()) {
- bool LHSAsBool;
- if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
- // We were able to evaluate the LHS, see if we can get away with not
- // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
- if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
- Success(LHSAsBool, E, LHSResult.Val);
- return false; // Ignore RHS
- }
- } else {
- LHSResult.Failed = true;
- // Since we weren't able to evaluate the left hand side, it
- // must have had side effects.
- if (!Info.noteSideEffect())
- return false;
- // We can't evaluate the LHS; however, sometimes the result
- // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
- // Don't ignore RHS and suppress diagnostics from this arm.
- SuppressRHSDiags = true;
- }
- return true;
- }
- assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
- E->getRHS()->getType()->isIntegralOrEnumerationType());
- if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
- return false; // Ignore RHS;
- return true;
- }
- bool DataRecursiveIntBinOpEvaluator::
- VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
- const BinaryOperator *E, APValue &Result) {
- if (E->getOpcode() == BO_Comma) {
- if (RHSResult.Failed)
- return false;
- Result = RHSResult.Val;
- return true;
- }
-
- if (E->isLogicalOp()) {
- bool lhsResult, rhsResult;
- bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
- bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
-
- if (LHSIsOK) {
- if (RHSIsOK) {
- if (E->getOpcode() == BO_LOr)
- return Success(lhsResult || rhsResult, E, Result);
- else
- return Success(lhsResult && rhsResult, E, Result);
- }
- } else {
- if (RHSIsOK) {
- // We can't evaluate the LHS; however, sometimes the result
- // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
- if (rhsResult == (E->getOpcode() == BO_LOr))
- return Success(rhsResult, E, Result);
- }
- }
-
- return false;
- }
-
- assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
- E->getRHS()->getType()->isIntegralOrEnumerationType());
-
- if (LHSResult.Failed || RHSResult.Failed)
- return false;
-
- const APValue &LHSVal = LHSResult.Val;
- const APValue &RHSVal = RHSResult.Val;
-
- // Handle cases like (unsigned long)&a + 4.
- if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
- Result = LHSVal;
- CharUnits AdditionalOffset =
- CharUnits::fromQuantity(RHSVal.getInt().getZExtValue());
- if (E->getOpcode() == BO_Add)
- Result.getLValueOffset() += AdditionalOffset;
- else
- Result.getLValueOffset() -= AdditionalOffset;
- return true;
- }
-
- // Handle cases like 4 + (unsigned long)&a
- if (E->getOpcode() == BO_Add &&
- RHSVal.isLValue() && LHSVal.isInt()) {
- Result = RHSVal;
- Result.getLValueOffset() +=
- CharUnits::fromQuantity(LHSVal.getInt().getZExtValue());
- return true;
- }
-
- if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
- // Handle (intptr_t)&&A - (intptr_t)&&B.
- if (!LHSVal.getLValueOffset().isZero() ||
- !RHSVal.getLValueOffset().isZero())
- return false;
- const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
- const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
- if (!LHSExpr || !RHSExpr)
- return false;
- const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
- const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
- if (!LHSAddrExpr || !RHSAddrExpr)
- return false;
- // Make sure both labels come from the same function.
- if (LHSAddrExpr->getLabel()->getDeclContext() !=
- RHSAddrExpr->getLabel()->getDeclContext())
- return false;
- Result = APValue(LHSAddrExpr, RHSAddrExpr);
- return true;
- }
- // All the remaining cases expect both operands to be an integer
- if (!LHSVal.isInt() || !RHSVal.isInt())
- return Error(E);
- // Set up the width and signedness manually, in case it can't be deduced
- // from the operation we're performing.
- // FIXME: Don't do this in the cases where we can deduce it.
- APSInt Value(Info.Ctx.getIntWidth(E->getType()),
- E->getType()->isUnsignedIntegerOrEnumerationType());
- if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
- RHSVal.getInt(), Value))
- return false;
- return Success(Value, E, Result);
- }
- void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
- Job &job = Queue.back();
-
- switch (job.Kind) {
- case Job::AnyExprKind: {
- if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
- if (shouldEnqueue(Bop)) {
- job.Kind = Job::BinOpKind;
- enqueue(Bop->getLHS());
- return;
- }
- }
-
- EvaluateExpr(job.E, Result);
- Queue.pop_back();
- return;
- }
-
- case Job::BinOpKind: {
- const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
- bool SuppressRHSDiags = false;
- if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
- Queue.pop_back();
- return;
- }
- if (SuppressRHSDiags)
- job.startSpeculativeEval(Info);
- job.LHSResult.swap(Result);
- job.Kind = Job::BinOpVisitedLHSKind;
- enqueue(Bop->getRHS());
- return;
- }
-
- case Job::BinOpVisitedLHSKind: {
- const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
- EvalResult RHS;
- RHS.swap(Result);
- Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
- Queue.pop_back();
- return;
- }
- }
-
- llvm_unreachable("Invalid Job::Kind!");
- }
- bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
- if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
- return Error(E);
- if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
- return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
- QualType LHSTy = E->getLHS()->getType();
- QualType RHSTy = E->getRHS()->getType();
- if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
- ComplexValue LHS, RHS;
- bool LHSOK;
- if (E->isAssignmentOp()) {
- LValue LV;
- EvaluateLValue(E->getLHS(), LV, Info);
- LHSOK = false;
- } else if (LHSTy->isRealFloatingType()) {
- LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
- if (LHSOK) {
- LHS.makeComplexFloat();
- LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
- }
- } else {
- LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
- }
- if (!LHSOK && !Info.keepEvaluatingAfterFailure())
- return false;
- if (E->getRHS()->getType()->isRealFloatingType()) {
- if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
- return false;
- RHS.makeComplexFloat();
- RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
- } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
- return false;
- if (LHS.isComplexFloat()) {
- APFloat::cmpResult CR_r =
- LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
- APFloat::cmpResult CR_i =
- LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
- if (E->getOpcode() == BO_EQ)
- return Success((CR_r == APFloat::cmpEqual &&
- CR_i == APFloat::cmpEqual), E);
- else {
- assert(E->getOpcode() == BO_NE &&
- "Invalid complex comparison.");
- return Success(((CR_r == APFloat::cmpGreaterThan ||
- CR_r == APFloat::cmpLessThan ||
- CR_r == APFloat::cmpUnordered) ||
- (CR_i == APFloat::cmpGreaterThan ||
- CR_i == APFloat::cmpLessThan ||
- CR_i == APFloat::cmpUnordered)), E);
- }
- } else {
- if (E->getOpcode() == BO_EQ)
- return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
- LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
- else {
- assert(E->getOpcode() == BO_NE &&
- "Invalid compex comparison.");
- return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
- LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
- }
- }
- }
- if (LHSTy->isRealFloatingType() &&
- RHSTy->isRealFloatingType()) {
- APFloat RHS(0.0), LHS(0.0);
- bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
- if (!LHSOK && !Info.keepEvaluatingAfterFailure())
- return false;
- if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
- return false;
- APFloat::cmpResult CR = LHS.compare(RHS);
- switch (E->getOpcode()) {
- default:
- llvm_unreachable("Invalid binary operator!");
- case BO_LT:
- return Success(CR == APFloat::cmpLessThan, E);
- case BO_GT:
- return Success(CR == APFloat::cmpGreaterThan, E);
- case BO_LE:
- return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
- case BO_GE:
- return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
- E);
- case BO_EQ:
- return Success(CR == APFloat::cmpEqual, E);
- case BO_NE:
- return Success(CR == APFloat::cmpGreaterThan
- || CR == APFloat::cmpLessThan
- || CR == APFloat::cmpUnordered, E);
- }
- }
- if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
- if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
- LValue LHSValue, RHSValue;
- bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
- if (!LHSOK && Info.keepEvaluatingAfterFailure())
- return false;
- if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
- return false;
- // Reject differing bases from the normal codepath; we special-case
- // comparisons to null.
- if (!HasSameBase(LHSValue, RHSValue)) {
- if (E->getOpcode() == BO_Sub) {
- // Handle &&A - &&B.
- if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
- return false;
- const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
- const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
- if (!LHSExpr || !RHSExpr)
- return false;
- const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
- const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
- if (!LHSAddrExpr || !RHSAddrExpr)
- return false;
- // Make sure both labels come from the same function.
- if (LHSAddrExpr->getLabel()->getDeclContext() !=
- RHSAddrExpr->getLabel()->getDeclContext())
- return false;
- Result = APValue(LHSAddrExpr, RHSAddrExpr);
- return true;
- }
- // Inequalities and subtractions between unrelated pointers have
- // unspecified or undefined behavior.
- if (!E->isEqualityOp())
- return Error(E);
- // A constant address may compare equal to the address of a symbol.
- // The one exception is that address of an object cannot compare equal
- // to a null pointer constant.
- if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
- (!RHSValue.Base && !RHSValue.Offset.isZero()))
- return Error(E);
- // It's implementation-defined whether distinct literals will have
- // distinct addresses. In clang, the result of such a comparison is
- // unspecified, so it is not a constant expression. However, we do know
- // that the address of a literal will be non-null.
- if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
- LHSValue.Base && RHSValue.Base)
- return Error(E);
- // We can't tell whether weak symbols will end up pointing to the same
- // object.
- if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
- return Error(E);
- // We can't compare the address of the start of one object with the
- // past-the-end address of another object, per C++ DR1652.
- if ((LHSValue.Base && LHSValue.Offset.isZero() &&
- isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
- (RHSValue.Base && RHSValue.Offset.isZero() &&
- isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
- return Error(E);
- // We can't tell whether an object is at the same address as another
- // zero sized object.
- if ((RHSValue.Base && isZeroSized(LHSValue)) ||
- (LHSValue.Base && isZeroSized(RHSValue)))
- return Error(E);
- // Pointers with different bases cannot represent the same object.
- // (Note that clang defaults to -fmerge-all-constants, which can
- // lead to inconsistent results for comparisons involving the address
- // of a constant; this generally doesn't matter in practice.)
- return Success(E->getOpcode() == BO_NE, E);
- }
- const CharUnits &LHSOffset = LHSValue.getLValueOffset();
- const CharUnits &RHSOffset = RHSValue.getLValueOffset();
- SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
- SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
- if (E->getOpcode() == BO_Sub) {
- // C++11 [expr.add]p6:
- // Unless both pointers point to elements of the same array object, or
- // one past the last element of the array object, the behavior is
- // undefined.
- if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
- !AreElementsOfSameArray(getType(LHSValue.Base),
- LHSDesignator, RHSDesignator))
- CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
- QualType Type = E->getLHS()->getType();
- QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
- CharUnits ElementSize;
- if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
- return false;
- // As an extension, a type may have zero size (empty struct or union in
- // C, array of zero length). Pointer subtraction in such cases has
- // undefined behavior, so is not constant.
- if (ElementSize.isZero()) {
- Info.Diag(E, diag::note_constexpr_pointer_subtraction_zero_size)
- << ElementType;
- return false;
- }
- // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
- // and produce incorrect results when it overflows. Such behavior
- // appears to be non-conforming, but is common, so perhaps we should
- // assume the standard intended for such cases to be undefined behavior
- // and check for them.
- // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
- // overflow in the final conversion to ptrdiff_t.
- APSInt LHS(
- llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
- APSInt RHS(
- llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
- APSInt ElemSize(
- llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
- APSInt TrueResult = (LHS - RHS) / ElemSize;
- APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
- if (Result.extend(65) != TrueResult)
- HandleOverflow(Info, E, TrueResult, E->getType());
- return Success(Result, E);
- }
- // C++11 [expr.rel]p3:
- // Pointers to void (after pointer conversions) can be compared, with a
- // result defined as follows: If both pointers represent the same
- // address or are both the null pointer value, the result is true if the
- // operator is <= or >= and false otherwise; otherwise the result is
- // unspecified.
- // We interpret this as applying to pointers to *cv* void.
- if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
- E->isRelationalOp())
- CCEDiag(E, diag::note_constexpr_void_comparison);
- // C++11 [expr.rel]p2:
- // - If two pointers point to non-static data members of the same object,
- // or to subobjects or array elements fo such members, recursively, the
- // pointer to the later declared member compares greater provided the
- // two members have the same access control and provided their class is
- // not a union.
- // [...]
- // - Otherwise pointer comparisons are unspecified.
- if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
- E->isRelationalOp()) {
- bool WasArrayIndex;
- unsigned Mismatch =
- FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
- RHSDesignator, WasArrayIndex);
- // At the point where the designators diverge, the comparison has a
- // specified value if:
- // - we are comparing array indices
- // - we are comparing fields of a union, or fields with the same access
- // Otherwise, the result is unspecified and thus the comparison is not a
- // constant expression.
- if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
- Mismatch < RHSDesignator.Entries.size()) {
- const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
- const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
- if (!LF && !RF)
- CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
- else if (!LF)
- CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
- << getAsBaseClass(LHSDesignator.Entries[Mismatch])
- << RF->getParent() << RF;
- else if (!RF)
- CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
- << getAsBaseClass(RHSDesignator.Entries[Mismatch])
- << LF->getParent() << LF;
- else if (!LF->getParent()->isUnion() &&
- LF->getAccess() != RF->getAccess())
- CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
- << LF << LF->getAccess() << RF << RF->getAccess()
- << LF->getParent();
- }
- }
- // The comparison here must be unsigned, and performed with the same
- // width as the pointer.
- unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
- uint64_t CompareLHS = LHSOffset.getQuantity();
- uint64_t CompareRHS = RHSOffset.getQuantity();
- assert(PtrSize <= 64 && "Unexpected pointer width");
- uint64_t Mask = ~0ULL >> (64 - PtrSize);
- CompareLHS &= Mask;
- CompareRHS &= Mask;
- // If there is a base and this is a relational operator, we can only
- // compare pointers within the object in question; otherwise, the result
- // depends on where the object is located in memory.
- if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
- QualType BaseTy = getType(LHSValue.Base);
- if (BaseTy->isIncompleteType())
- return Error(E);
- CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
- uint64_t OffsetLimit = Size.getQuantity();
- if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
- return Error(E);
- }
- switch (E->getOpcode()) {
- default: llvm_unreachable("missing comparison operator");
- case BO_LT: return Success(CompareLHS < CompareRHS, E);
- case BO_GT: return Success(CompareLHS > CompareRHS, E);
- case BO_LE: return Success(CompareLHS <= CompareRHS, E);
- case BO_GE: return Success(CompareLHS >= CompareRHS, E);
- case BO_EQ: return Success(CompareLHS == CompareRHS, E);
- case BO_NE: return Success(CompareLHS != CompareRHS, E);
- }
- }
- }
- if (LHSTy->isMemberPointerType()) {
- assert(E->isEqualityOp() && "unexpected member pointer operation");
- assert(RHSTy->isMemberPointerType() && "invalid comparison");
- MemberPtr LHSValue, RHSValue;
- bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
- if (!LHSOK && Info.keepEvaluatingAfterFailure())
- return false;
- if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
- return false;
- // C++11 [expr.eq]p2:
- // If both operands are null, they compare equal. Otherwise if only one is
- // null, they compare unequal.
- if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
- bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
- return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
- }
- // Otherwise if either is a pointer to a virtual member function, the
- // result is unspecified.
- if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
- if (MD->isVirtual())
- CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
- if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
- if (MD->isVirtual())
- CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
- // Otherwise they compare equal if and only if they would refer to the
- // same member of the same most derived object or the same subobject if
- // they were dereferenced with a hypothetical object of the associated
- // class type.
- bool Equal = LHSValue == RHSValue;
- return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
- }
- if (LHSTy->isNullPtrType()) {
- assert(E->isComparisonOp() && "unexpected nullptr operation");
- assert(RHSTy->isNullPtrType() && "missing pointer conversion");
- // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
- // are compared, the result is true of the operator is <=, >= or ==, and
- // false otherwise.
- BinaryOperator::Opcode Opcode = E->getOpcode();
- return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
- }
- assert((!LHSTy->isIntegralOrEnumerationType() ||
- !RHSTy->isIntegralOrEnumerationType()) &&
- "DataRecursiveIntBinOpEvaluator should have handled integral types");
- // We can't continue from here for non-integral types.
- return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
- }
- /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
- /// a result as the expression's type.
- bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
- const UnaryExprOrTypeTraitExpr *E) {
- switch(E->getKind()) {
- case UETT_AlignOf: {
- if (E->isArgumentType())
- return Success(GetAlignOfType(Info, E->getArgumentType()), E);
- else
- return Success(GetAlignOfExpr(Info, E->getArgumentExpr()), E);
- }
- case UETT_VecStep: {
- QualType Ty = E->getTypeOfArgument();
- if (Ty->isVectorType()) {
- unsigned n = Ty->castAs<VectorType>()->getNumElements();
- // The vec_step built-in functions that take a 3-component
- // vector return 4. (OpenCL 1.1 spec 6.11.12)
- if (n == 3)
- n = 4;
- return Success(n, E);
- } else
- return Success(1, E);
- }
- case UETT_SizeOf: {
- QualType SrcTy = E->getTypeOfArgument();
- // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
- // the result is the size of the referenced type."
- if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
- SrcTy = Ref->getPointeeType();
- CharUnits Sizeof;
- if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
- return false;
- return Success(Sizeof, E);
- }
- case UETT_OpenMPRequiredSimdAlign:
- assert(E->isArgumentType());
- return Success(
- Info.Ctx.toCharUnitsFromBits(
- Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
- .getQuantity(),
- E);
- // HLSL Change Begins
- case UETT_ArrayLength: {
- QualType SrcTy = E->getTypeOfArgument();
- assert(isa<ConstantArrayType>(SrcTy));
- const ConstantArrayType *CAT = cast<ConstantArrayType>(SrcTy);
- return Success(CAT->getSize(), E);
- }
- // HLSL Change Ends
- }
- llvm_unreachable("unknown expr/type trait");
- }
- bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
- CharUnits Result;
- unsigned n = OOE->getNumComponents();
- if (n == 0)
- return Error(OOE);
- QualType CurrentType = OOE->getTypeSourceInfo()->getType();
- for (unsigned i = 0; i != n; ++i) {
- OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
- switch (ON.getKind()) {
- case OffsetOfExpr::OffsetOfNode::Array: {
- const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
- APSInt IdxResult;
- if (!EvaluateInteger(Idx, IdxResult, Info))
- return false;
- const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
- if (!AT)
- return Error(OOE);
- CurrentType = AT->getElementType();
- CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
- Result += IdxResult.getSExtValue() * ElementSize;
- break;
- }
- case OffsetOfExpr::OffsetOfNode::Field: {
- FieldDecl *MemberDecl = ON.getField();
- const RecordType *RT = CurrentType->getAs<RecordType>();
- if (!RT)
- return Error(OOE);
- RecordDecl *RD = RT->getDecl();
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
- unsigned i = MemberDecl->getFieldIndex();
- assert(i < RL.getFieldCount() && "offsetof field in wrong type");
- Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
- CurrentType = MemberDecl->getType().getNonReferenceType();
- break;
- }
- case OffsetOfExpr::OffsetOfNode::Identifier:
- llvm_unreachable("dependent __builtin_offsetof");
- case OffsetOfExpr::OffsetOfNode::Base: {
- CXXBaseSpecifier *BaseSpec = ON.getBase();
- if (BaseSpec->isVirtual())
- return Error(OOE);
- // Find the layout of the class whose base we are looking into.
- const RecordType *RT = CurrentType->getAs<RecordType>();
- if (!RT)
- return Error(OOE);
- RecordDecl *RD = RT->getDecl();
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
- // Find the base class itself.
- CurrentType = BaseSpec->getType();
- const RecordType *BaseRT = CurrentType->getAs<RecordType>();
- if (!BaseRT)
- return Error(OOE);
-
- // Add the offset to the base.
- Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
- break;
- }
- }
- }
- return Success(Result, OOE);
- }
- bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
- switch (E->getOpcode()) {
- default:
- // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
- // See C99 6.6p3.
- return Error(E);
- case UO_Extension:
- // FIXME: Should extension allow i-c-e extension expressions in its scope?
- // If so, we could clear the diagnostic ID.
- return Visit(E->getSubExpr());
- case UO_Plus:
- // The result is just the value.
- return Visit(E->getSubExpr());
- case UO_Minus: {
- if (!Visit(E->getSubExpr()))
- return false;
- if (!Result.isInt()) return Error(E);
- const APSInt &Value = Result.getInt();
- if (Value.isSigned() && Value.isMinSignedValue())
- HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
- E->getType());
- return Success(-Value, E);
- }
- case UO_Not: {
- if (!Visit(E->getSubExpr()))
- return false;
- if (!Result.isInt()) return Error(E);
- return Success(~Result.getInt(), E);
- }
- case UO_LNot: {
- bool bres;
- if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
- return false;
- return Success(!bres, E);
- }
- }
- }
- /// HandleCast - This is used to evaluate implicit or explicit casts where the
- /// result type is integer.
- bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
- const Expr *SubExpr = E->getSubExpr();
- QualType DestType = E->getType();
- QualType SrcType = SubExpr->getType();
- switch (E->getCastKind()) {
- case CK_BaseToDerived:
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase:
- case CK_Dynamic:
- case CK_ToUnion:
- case CK_ArrayToPointerDecay:
- case CK_FunctionToPointerDecay:
- case CK_NullToPointer:
- case CK_NullToMemberPointer:
- case CK_BaseToDerivedMemberPointer:
- case CK_DerivedToBaseMemberPointer:
- case CK_ReinterpretMemberPointer:
- case CK_ConstructorConversion:
- case CK_IntegralToPointer:
- case CK_ToVoid:
- case CK_VectorSplat:
- case CK_IntegralToFloating:
- case CK_FloatingCast:
- case CK_CPointerToObjCPointerCast:
- case CK_BlockPointerToObjCPointerCast:
- case CK_AnyPointerToBlockPointerCast:
- case CK_ObjCObjectLValueCast:
- case CK_FloatingRealToComplex:
- case CK_FloatingComplexToReal:
- case CK_FloatingComplexCast:
- case CK_FloatingComplexToIntegralComplex:
- case CK_IntegralRealToComplex:
- case CK_IntegralComplexCast:
- case CK_IntegralComplexToFloatingComplex:
- case CK_BuiltinFnToFnPtr:
- case CK_ZeroToOCLEvent:
- case CK_NonAtomicToAtomic:
- case CK_AddressSpaceConversion:
- llvm_unreachable("invalid cast kind for integral value");
- case CK_BitCast:
- case CK_Dependent:
- case CK_LValueBitCast:
- case CK_ARCProduceObject:
- case CK_ARCConsumeObject:
- case CK_ARCReclaimReturnedObject:
- case CK_ARCExtendBlockObject:
- case CK_CopyAndAutoreleaseBlockObject:
- case CK_HLSLVectorToScalarCast: // HLSL Change
- case CK_HLSLMatrixToScalarCast: // HLSL Change
- return Error(E);
- case CK_UserDefinedConversion:
- case CK_LValueToRValue:
- case CK_AtomicToNonAtomic:
- case CK_NoOp:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_MemberPointerToBoolean:
- case CK_PointerToBoolean:
- case CK_IntegralToBoolean:
- case CK_FloatingToBoolean:
- case CK_FloatingComplexToBoolean:
- case CK_IntegralComplexToBoolean: {
- bool BoolResult;
- if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
- return false;
- return Success(BoolResult, E);
- }
- case CK_IntegralCast: {
- if (!Visit(SubExpr))
- return false;
- if (!Result.isInt()) {
- // Allow casts of address-of-label differences if they are no-ops
- // or narrowing. (The narrowing case isn't actually guaranteed to
- // be constant-evaluatable except in some narrow cases which are hard
- // to detect here. We let it through on the assumption the user knows
- // what they are doing.)
- if (Result.isAddrLabelDiff())
- return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
- // Only allow casts of lvalues if they are lossless.
- return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
- }
- return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
- Result.getInt()), E);
- }
- case CK_PointerToIntegral: {
- CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
- LValue LV;
- if (!EvaluatePointer(SubExpr, LV, Info))
- return false;
- if (LV.getLValueBase()) {
- // Only allow based lvalue casts if they are lossless.
- // FIXME: Allow a larger integer size than the pointer size, and allow
- // narrowing back down to pointer width in subsequent integral casts.
- // FIXME: Check integer type's active bits, not its type size.
- if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
- return Error(E);
- LV.Designator.setInvalid();
- LV.moveInto(Result);
- return true;
- }
- APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
- SrcType);
- return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
- }
- case CK_IntegralComplexToReal: {
- ComplexValue C;
- if (!EvaluateComplex(SubExpr, C, Info))
- return false;
- return Success(C.getComplexIntReal(), E);
- }
- case CK_FloatingToIntegral: {
- APFloat F(0.0);
- if (!EvaluateFloat(SubExpr, F, Info))
- return false;
- APSInt Value;
- if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
- return false;
- return Success(Value, E);
- }
- }
- llvm_unreachable("unknown cast resulting in integral value");
- }
- bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
- if (E->getSubExpr()->getType()->isAnyComplexType()) {
- ComplexValue LV;
- if (!EvaluateComplex(E->getSubExpr(), LV, Info))
- return false;
- if (!LV.isComplexInt())
- return Error(E);
- return Success(LV.getComplexIntReal(), E);
- }
- return Visit(E->getSubExpr());
- }
- bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
- if (E->getSubExpr()->getType()->isComplexIntegerType()) {
- ComplexValue LV;
- if (!EvaluateComplex(E->getSubExpr(), LV, Info))
- return false;
- if (!LV.isComplexInt())
- return Error(E);
- return Success(LV.getComplexIntImag(), E);
- }
- VisitIgnoredValue(E->getSubExpr());
- return Success(0, E);
- }
- bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
- return Success(E->getPackLength(), E);
- }
- bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
- return Success(E->getValue(), E);
- }
- //===----------------------------------------------------------------------===//
- // Float Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class FloatExprEvaluator
- : public ExprEvaluatorBase<FloatExprEvaluator> {
- APFloat &Result;
- public:
- FloatExprEvaluator(EvalInfo &info, APFloat &result)
- : ExprEvaluatorBaseTy(info), Result(result) {}
- bool Success(const APValue &V, const Expr *e) {
- Result = V.getFloat();
- return true;
- }
- bool ZeroInitialization(const Expr *E) {
- Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
- return true;
- }
- bool VisitCallExpr(const CallExpr *E);
- bool VisitUnaryOperator(const UnaryOperator *E);
- bool VisitBinaryOperator(const BinaryOperator *E);
- bool VisitFloatingLiteral(const FloatingLiteral *E);
- bool VisitCastExpr(const CastExpr *E);
- bool VisitUnaryReal(const UnaryOperator *E);
- bool VisitUnaryImag(const UnaryOperator *E);
- // FIXME: Missing: array subscript of vector, member of vector
- };
- } // end anonymous namespace
- static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isRealFloatingType());
- return FloatExprEvaluator(Info, Result).Visit(E);
- }
- static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
- QualType ResultTy,
- const Expr *Arg,
- bool SNaN,
- llvm::APFloat &Result) {
- const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
- if (!S) return false;
- const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
- llvm::APInt fill;
- // Treat empty strings as if they were zero.
- if (S->getString().empty())
- fill = llvm::APInt(32, 0);
- else if (S->getString().getAsInteger(0, fill))
- return false;
- if (Context.getTargetInfo().isNan2008()) {
- if (SNaN)
- Result = llvm::APFloat::getSNaN(Sem, false, &fill);
- else
- Result = llvm::APFloat::getQNaN(Sem, false, &fill);
- } else {
- // Prior to IEEE 754-2008, architectures were allowed to choose whether
- // the first bit of their significand was set for qNaN or sNaN. MIPS chose
- // a different encoding to what became a standard in 2008, and for pre-
- // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
- // sNaN. This is now known as "legacy NaN" encoding.
- if (SNaN)
- Result = llvm::APFloat::getQNaN(Sem, false, &fill);
- else
- Result = llvm::APFloat::getSNaN(Sem, false, &fill);
- }
- return true;
- }
- bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
- switch (E->getBuiltinCallee()) {
- default:
- return ExprEvaluatorBaseTy::VisitCallExpr(E);
- case Builtin::BI__builtin_huge_val:
- case Builtin::BI__builtin_huge_valf:
- case Builtin::BI__builtin_huge_vall:
- case Builtin::BI__builtin_inf:
- case Builtin::BI__builtin_inff:
- case Builtin::BI__builtin_infl: {
- const llvm::fltSemantics &Sem =
- Info.Ctx.getFloatTypeSemantics(E->getType());
- Result = llvm::APFloat::getInf(Sem);
- return true;
- }
- case Builtin::BI__builtin_nans:
- case Builtin::BI__builtin_nansf:
- case Builtin::BI__builtin_nansl:
- if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
- true, Result))
- return Error(E);
- return true;
- case Builtin::BI__builtin_nan:
- case Builtin::BI__builtin_nanf:
- case Builtin::BI__builtin_nanl:
- // If this is __builtin_nan() turn this into a nan, otherwise we
- // can't constant fold it.
- if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
- false, Result))
- return Error(E);
- return true;
- case Builtin::BI__builtin_fabs:
- case Builtin::BI__builtin_fabsf:
- case Builtin::BI__builtin_fabsl:
- if (!EvaluateFloat(E->getArg(0), Result, Info))
- return false;
- if (Result.isNegative())
- Result.changeSign();
- return true;
- // FIXME: Builtin::BI__builtin_powi
- // FIXME: Builtin::BI__builtin_powif
- // FIXME: Builtin::BI__builtin_powil
- case Builtin::BI__builtin_copysign:
- case Builtin::BI__builtin_copysignf:
- case Builtin::BI__builtin_copysignl: {
- APFloat RHS(0.);
- if (!EvaluateFloat(E->getArg(0), Result, Info) ||
- !EvaluateFloat(E->getArg(1), RHS, Info))
- return false;
- Result.copySign(RHS);
- return true;
- }
- }
- }
- bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
- if (E->getSubExpr()->getType()->isAnyComplexType()) {
- ComplexValue CV;
- if (!EvaluateComplex(E->getSubExpr(), CV, Info))
- return false;
- Result = CV.FloatReal;
- return true;
- }
- return Visit(E->getSubExpr());
- }
- bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
- if (E->getSubExpr()->getType()->isAnyComplexType()) {
- ComplexValue CV;
- if (!EvaluateComplex(E->getSubExpr(), CV, Info))
- return false;
- Result = CV.FloatImag;
- return true;
- }
- VisitIgnoredValue(E->getSubExpr());
- const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
- Result = llvm::APFloat::getZero(Sem);
- return true;
- }
- bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
- switch (E->getOpcode()) {
- default: return Error(E);
- case UO_Plus:
- return EvaluateFloat(E->getSubExpr(), Result, Info);
- case UO_Minus:
- if (!EvaluateFloat(E->getSubExpr(), Result, Info))
- return false;
- Result.changeSign();
- return true;
- }
- }
- bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
- if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
- return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
- APFloat RHS(0.0);
- bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
- if (!LHSOK && !Info.keepEvaluatingAfterFailure())
- return false;
- return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
- handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
- }
- bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
- Result = E->getValue();
- return true;
- }
- bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
- const Expr* SubExpr = E->getSubExpr();
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_IntegralToFloating: {
- APSInt IntResult;
- return EvaluateInteger(SubExpr, IntResult, Info) &&
- HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
- E->getType(), Result);
- }
- case CK_FloatingCast: {
- if (!Visit(SubExpr))
- return false;
- return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
- Result);
- }
- case CK_FloatingComplexToReal: {
- ComplexValue V;
- if (!EvaluateComplex(SubExpr, V, Info))
- return false;
- Result = V.getComplexFloatReal();
- return true;
- }
- }
- }
- //===----------------------------------------------------------------------===//
- // Complex Evaluation (for float and integer)
- //===----------------------------------------------------------------------===//
- namespace {
- class ComplexExprEvaluator
- : public ExprEvaluatorBase<ComplexExprEvaluator> {
- ComplexValue &Result;
- public:
- ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
- : ExprEvaluatorBaseTy(info), Result(Result) {}
- bool Success(const APValue &V, const Expr *e) {
- Result.setFrom(V);
- return true;
- }
- bool ZeroInitialization(const Expr *E);
- //===--------------------------------------------------------------------===//
- // Visitor Methods
- //===--------------------------------------------------------------------===//
- bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
- bool VisitCastExpr(const CastExpr *E);
- bool VisitBinaryOperator(const BinaryOperator *E);
- bool VisitUnaryOperator(const UnaryOperator *E);
- bool VisitInitListExpr(const InitListExpr *E);
- };
- } // end anonymous namespace
- static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
- EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isAnyComplexType());
- return ComplexExprEvaluator(Info, Result).Visit(E);
- }
- bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
- QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
- if (ElemTy->isRealFloatingType()) {
- Result.makeComplexFloat();
- APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
- Result.FloatReal = Zero;
- Result.FloatImag = Zero;
- } else {
- Result.makeComplexInt();
- APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
- Result.IntReal = Zero;
- Result.IntImag = Zero;
- }
- return true;
- }
- bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
- const Expr* SubExpr = E->getSubExpr();
- if (SubExpr->getType()->isRealFloatingType()) {
- Result.makeComplexFloat();
- APFloat &Imag = Result.FloatImag;
- if (!EvaluateFloat(SubExpr, Imag, Info))
- return false;
- Result.FloatReal = APFloat(Imag.getSemantics());
- return true;
- } else {
- assert(SubExpr->getType()->isIntegerType() &&
- "Unexpected imaginary literal.");
- Result.makeComplexInt();
- APSInt &Imag = Result.IntImag;
- if (!EvaluateInteger(SubExpr, Imag, Info))
- return false;
- Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
- return true;
- }
- }
- bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- case CK_BitCast:
- case CK_BaseToDerived:
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase:
- case CK_Dynamic:
- case CK_ToUnion:
- case CK_ArrayToPointerDecay:
- case CK_FunctionToPointerDecay:
- case CK_NullToPointer:
- case CK_NullToMemberPointer:
- case CK_BaseToDerivedMemberPointer:
- case CK_DerivedToBaseMemberPointer:
- case CK_MemberPointerToBoolean:
- case CK_ReinterpretMemberPointer:
- case CK_ConstructorConversion:
- case CK_IntegralToPointer:
- case CK_PointerToIntegral:
- case CK_PointerToBoolean:
- case CK_ToVoid:
- case CK_VectorSplat:
- case CK_IntegralCast:
- case CK_IntegralToBoolean:
- case CK_IntegralToFloating:
- case CK_FloatingToIntegral:
- case CK_FloatingToBoolean:
- case CK_FloatingCast:
- case CK_CPointerToObjCPointerCast:
- case CK_BlockPointerToObjCPointerCast:
- case CK_AnyPointerToBlockPointerCast:
- case CK_ObjCObjectLValueCast:
- case CK_FloatingComplexToReal:
- case CK_FloatingComplexToBoolean:
- case CK_IntegralComplexToReal:
- case CK_IntegralComplexToBoolean:
- case CK_ARCProduceObject:
- case CK_ARCConsumeObject:
- case CK_ARCReclaimReturnedObject:
- case CK_ARCExtendBlockObject:
- case CK_CopyAndAutoreleaseBlockObject:
- case CK_BuiltinFnToFnPtr:
- case CK_ZeroToOCLEvent:
- case CK_NonAtomicToAtomic:
- case CK_AddressSpaceConversion:
- llvm_unreachable("invalid cast kind for complex value");
- case CK_LValueToRValue:
- case CK_AtomicToNonAtomic:
- case CK_NoOp:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_Dependent:
- case CK_LValueBitCast:
- case CK_UserDefinedConversion:
- return Error(E);
- case CK_FloatingRealToComplex: {
- APFloat &Real = Result.FloatReal;
- if (!EvaluateFloat(E->getSubExpr(), Real, Info))
- return false;
- Result.makeComplexFloat();
- Result.FloatImag = APFloat(Real.getSemantics());
- return true;
- }
- case CK_FloatingComplexCast: {
- if (!Visit(E->getSubExpr()))
- return false;
- QualType To = E->getType()->getAs<ComplexType>()->getElementType();
- QualType From
- = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
- return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
- HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
- }
- case CK_FloatingComplexToIntegralComplex: {
- if (!Visit(E->getSubExpr()))
- return false;
- QualType To = E->getType()->getAs<ComplexType>()->getElementType();
- QualType From
- = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
- Result.makeComplexInt();
- return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
- To, Result.IntReal) &&
- HandleFloatToIntCast(Info, E, From, Result.FloatImag,
- To, Result.IntImag);
- }
- case CK_IntegralRealToComplex: {
- APSInt &Real = Result.IntReal;
- if (!EvaluateInteger(E->getSubExpr(), Real, Info))
- return false;
- Result.makeComplexInt();
- Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
- return true;
- }
- case CK_IntegralComplexCast: {
- if (!Visit(E->getSubExpr()))
- return false;
- QualType To = E->getType()->getAs<ComplexType>()->getElementType();
- QualType From
- = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
- Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
- Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
- return true;
- }
- case CK_IntegralComplexToFloatingComplex: {
- if (!Visit(E->getSubExpr()))
- return false;
- QualType To = E->getType()->castAs<ComplexType>()->getElementType();
- QualType From
- = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
- Result.makeComplexFloat();
- return HandleIntToFloatCast(Info, E, From, Result.IntReal,
- To, Result.FloatReal) &&
- HandleIntToFloatCast(Info, E, From, Result.IntImag,
- To, Result.FloatImag);
- }
- }
- llvm_unreachable("unknown cast resulting in complex value");
- }
- bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
- if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
- return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
- // Track whether the LHS or RHS is real at the type system level. When this is
- // the case we can simplify our evaluation strategy.
- bool LHSReal = false, RHSReal = false;
- bool LHSOK;
- if (E->getLHS()->getType()->isRealFloatingType()) {
- LHSReal = true;
- APFloat &Real = Result.FloatReal;
- LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
- if (LHSOK) {
- Result.makeComplexFloat();
- Result.FloatImag = APFloat(Real.getSemantics());
- }
- } else {
- LHSOK = Visit(E->getLHS());
- }
- if (!LHSOK && !Info.keepEvaluatingAfterFailure())
- return false;
- ComplexValue RHS;
- if (E->getRHS()->getType()->isRealFloatingType()) {
- RHSReal = true;
- APFloat &Real = RHS.FloatReal;
- if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
- return false;
- RHS.makeComplexFloat();
- RHS.FloatImag = APFloat(Real.getSemantics());
- } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
- return false;
- assert(!(LHSReal && RHSReal) &&
- "Cannot have both operands of a complex operation be real.");
- switch (E->getOpcode()) {
- default: return Error(E);
- case BO_Add:
- if (Result.isComplexFloat()) {
- Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
- APFloat::rmNearestTiesToEven);
- if (LHSReal)
- Result.getComplexFloatImag() = RHS.getComplexFloatImag();
- else if (!RHSReal)
- Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
- APFloat::rmNearestTiesToEven);
- } else {
- Result.getComplexIntReal() += RHS.getComplexIntReal();
- Result.getComplexIntImag() += RHS.getComplexIntImag();
- }
- break;
- case BO_Sub:
- if (Result.isComplexFloat()) {
- Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
- APFloat::rmNearestTiesToEven);
- if (LHSReal) {
- Result.getComplexFloatImag() = RHS.getComplexFloatImag();
- Result.getComplexFloatImag().changeSign();
- } else if (!RHSReal) {
- Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
- APFloat::rmNearestTiesToEven);
- }
- } else {
- Result.getComplexIntReal() -= RHS.getComplexIntReal();
- Result.getComplexIntImag() -= RHS.getComplexIntImag();
- }
- break;
- case BO_Mul:
- if (Result.isComplexFloat()) {
- // This is an implementation of complex multiplication according to the
- // constraints laid out in C11 Annex G. The implemantion uses the
- // following naming scheme:
- // (a + ib) * (c + id)
- ComplexValue LHS = Result;
- APFloat &A = LHS.getComplexFloatReal();
- APFloat &B = LHS.getComplexFloatImag();
- APFloat &C = RHS.getComplexFloatReal();
- APFloat &D = RHS.getComplexFloatImag();
- APFloat &ResR = Result.getComplexFloatReal();
- APFloat &ResI = Result.getComplexFloatImag();
- if (LHSReal) {
- assert(!RHSReal && "Cannot have two real operands for a complex op!");
- ResR = A * C;
- ResI = A * D;
- } else if (RHSReal) {
- ResR = C * A;
- ResI = C * B;
- } else {
- // In the fully general case, we need to handle NaNs and infinities
- // robustly.
- APFloat AC = A * C;
- APFloat BD = B * D;
- APFloat AD = A * D;
- APFloat BC = B * C;
- ResR = AC - BD;
- ResI = AD + BC;
- if (ResR.isNaN() && ResI.isNaN()) {
- bool Recalc = false;
- if (A.isInfinity() || B.isInfinity()) {
- A = APFloat::copySign(
- APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
- B = APFloat::copySign(
- APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
- if (C.isNaN())
- C = APFloat::copySign(APFloat(C.getSemantics()), C);
- if (D.isNaN())
- D = APFloat::copySign(APFloat(D.getSemantics()), D);
- Recalc = true;
- }
- if (C.isInfinity() || D.isInfinity()) {
- C = APFloat::copySign(
- APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
- D = APFloat::copySign(
- APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
- if (A.isNaN())
- A = APFloat::copySign(APFloat(A.getSemantics()), A);
- if (B.isNaN())
- B = APFloat::copySign(APFloat(B.getSemantics()), B);
- Recalc = true;
- }
- if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
- AD.isInfinity() || BC.isInfinity())) {
- if (A.isNaN())
- A = APFloat::copySign(APFloat(A.getSemantics()), A);
- if (B.isNaN())
- B = APFloat::copySign(APFloat(B.getSemantics()), B);
- if (C.isNaN())
- C = APFloat::copySign(APFloat(C.getSemantics()), C);
- if (D.isNaN())
- D = APFloat::copySign(APFloat(D.getSemantics()), D);
- Recalc = true;
- }
- if (Recalc) {
- ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
- ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
- }
- }
- }
- } else {
- ComplexValue LHS = Result;
- Result.getComplexIntReal() =
- (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
- LHS.getComplexIntImag() * RHS.getComplexIntImag());
- Result.getComplexIntImag() =
- (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
- LHS.getComplexIntImag() * RHS.getComplexIntReal());
- }
- break;
- case BO_Div:
- if (Result.isComplexFloat()) {
- // This is an implementation of complex division according to the
- // constraints laid out in C11 Annex G. The implemantion uses the
- // following naming scheme:
- // (a + ib) / (c + id)
- ComplexValue LHS = Result;
- APFloat &A = LHS.getComplexFloatReal();
- APFloat &B = LHS.getComplexFloatImag();
- APFloat &C = RHS.getComplexFloatReal();
- APFloat &D = RHS.getComplexFloatImag();
- APFloat &ResR = Result.getComplexFloatReal();
- APFloat &ResI = Result.getComplexFloatImag();
- if (RHSReal) {
- ResR = A / C;
- ResI = B / C;
- } else {
- if (LHSReal) {
- // No real optimizations we can do here, stub out with zero.
- B = APFloat::getZero(A.getSemantics());
- }
- int DenomLogB = 0;
- APFloat MaxCD = maxnum(abs(C), abs(D));
- if (MaxCD.isFinite()) {
- DenomLogB = ilogb(MaxCD);
- C = scalbn(C, -DenomLogB);
- D = scalbn(D, -DenomLogB);
- }
- APFloat Denom = C * C + D * D;
- ResR = scalbn((A * C + B * D) / Denom, -DenomLogB);
- ResI = scalbn((B * C - A * D) / Denom, -DenomLogB);
- if (ResR.isNaN() && ResI.isNaN()) {
- if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
- ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
- ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
- } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
- D.isFinite()) {
- A = APFloat::copySign(
- APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
- B = APFloat::copySign(
- APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
- ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
- ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
- } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
- C = APFloat::copySign(
- APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
- D = APFloat::copySign(
- APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
- ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
- ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
- }
- }
- }
- } else {
- if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
- return Error(E, diag::note_expr_divide_by_zero);
- ComplexValue LHS = Result;
- APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
- RHS.getComplexIntImag() * RHS.getComplexIntImag();
- Result.getComplexIntReal() =
- (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
- LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
- Result.getComplexIntImag() =
- (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
- LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
- }
- break;
- }
- return true;
- }
- bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
- // Get the operand value into 'Result'.
- if (!Visit(E->getSubExpr()))
- return false;
- switch (E->getOpcode()) {
- default:
- return Error(E);
- case UO_Extension:
- return true;
- case UO_Plus:
- // The result is always just the subexpr.
- return true;
- case UO_Minus:
- if (Result.isComplexFloat()) {
- Result.getComplexFloatReal().changeSign();
- Result.getComplexFloatImag().changeSign();
- }
- else {
- Result.getComplexIntReal() = -Result.getComplexIntReal();
- Result.getComplexIntImag() = -Result.getComplexIntImag();
- }
- return true;
- case UO_Not:
- if (Result.isComplexFloat())
- Result.getComplexFloatImag().changeSign();
- else
- Result.getComplexIntImag() = -Result.getComplexIntImag();
- return true;
- }
- }
- bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
- if (E->getNumInits() == 2) {
- if (E->getType()->isComplexType()) {
- Result.makeComplexFloat();
- if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
- return false;
- if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
- return false;
- } else {
- Result.makeComplexInt();
- if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
- return false;
- if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
- return false;
- }
- return true;
- }
- return ExprEvaluatorBaseTy::VisitInitListExpr(E);
- }
- //===----------------------------------------------------------------------===//
- // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
- // implicit conversion.
- //===----------------------------------------------------------------------===//
- namespace {
- class AtomicExprEvaluator :
- public ExprEvaluatorBase<AtomicExprEvaluator> {
- APValue &Result;
- public:
- AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
- : ExprEvaluatorBaseTy(Info), Result(Result) {}
- bool Success(const APValue &V, const Expr *E) {
- Result = V;
- return true;
- }
- bool ZeroInitialization(const Expr *E) {
- ImplicitValueInitExpr VIE(
- E->getType()->castAs<AtomicType>()->getValueType());
- return Evaluate(Result, Info, &VIE);
- }
- bool VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_NonAtomicToAtomic:
- return Evaluate(Result, Info, E->getSubExpr());
- }
- }
- };
- } // end anonymous namespace
- static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isAtomicType());
- return AtomicExprEvaluator(Info, Result).Visit(E);
- }
- //===----------------------------------------------------------------------===//
- // Void expression evaluation, primarily for a cast to void on the LHS of a
- // comma operator
- //===----------------------------------------------------------------------===//
- namespace {
- class VoidExprEvaluator
- : public ExprEvaluatorBase<VoidExprEvaluator> {
- public:
- VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
- bool Success(const APValue &V, const Expr *e) { return true; }
- bool VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_ToVoid:
- VisitIgnoredValue(E->getSubExpr());
- return true;
- }
- }
- bool VisitCallExpr(const CallExpr *E) {
- switch (E->getBuiltinCallee()) {
- default:
- return ExprEvaluatorBaseTy::VisitCallExpr(E);
- case Builtin::BI__assume:
- case Builtin::BI__builtin_assume:
- // The argument is not evaluated!
- return true;
- }
- }
- };
- } // end anonymous namespace
- static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isVoidType());
- return VoidExprEvaluator(Info).Visit(E);
- }
- //===----------------------------------------------------------------------===//
- // Top level Expr::EvaluateAsRValue method.
- //===----------------------------------------------------------------------===//
- static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
- // In C, function designators are not lvalues, but we evaluate them as if they
- // are.
- // HLSL Change Begins.
- if (Info.getLangOpts().HLSL) {
- if (E->isRValue() && hlsl::IsHLSLVecType(E->getType()) && EvaluateVector(E, Result, Info))
- return true;
- if (E->getStmtClass() == Stmt::InitListExprClass && !E->getType()->isScalarType())
- return false;
- if (E->getStmtClass() == Stmt::DeclRefExprClass) {
- const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
- const ValueDecl *VD = DRE->getDecl();
- // External variable is in cbuffer, cannot use as immediate.
- if (VD->hasExternalFormalLinkage() &&
- !isa<EnumConstantDecl>(VD))
- return false;
- }
- }
- // HLSL Change Ends.
- QualType T = E->getType();
- if (E->isGLValue() || T->isFunctionType()) {
- LValue LV;
- if (!EvaluateLValue(E, LV, Info))
- return false;
- LV.moveInto(Result);
- } else if (T->isVectorType()) {
- if (!EvaluateVector(E, Result, Info))
- return false;
- } else if (T->isIntegralOrEnumerationType()) {
- if (!IntExprEvaluator(Info, Result).Visit(E))
- return false;
- } else if (T->hasPointerRepresentation()) {
- LValue LV;
- if (!EvaluatePointer(E, LV, Info))
- return false;
- LV.moveInto(Result);
- } else if (T->isRealFloatingType()) {
- llvm::APFloat F(0.0);
- if (!EvaluateFloat(E, F, Info))
- return false;
- Result = APValue(F);
- } else if (T->isAnyComplexType()) {
- ComplexValue C;
- if (!EvaluateComplex(E, C, Info))
- return false;
- C.moveInto(Result);
- } else if (T->isMemberPointerType()) {
- MemberPtr P;
- if (!EvaluateMemberPointer(E, P, Info))
- return false;
- P.moveInto(Result);
- return true;
- } else if (T->isArrayType()) {
- LValue LV;
- LV.set(E, Info.CurrentCall->Index);
- APValue &Value = Info.CurrentCall->createTemporary(E, false);
- if (!EvaluateArray(E, LV, Value, Info))
- return false;
- Result = Value;
- } else if (T->isRecordType()) {
- LValue LV;
- LV.set(E, Info.CurrentCall->Index);
- APValue &Value = Info.CurrentCall->createTemporary(E, false);
- if (!EvaluateRecord(E, LV, Value, Info))
- return false;
- Result = Value;
- } else if (T->isVoidType()) {
- if (!Info.getLangOpts().CPlusPlus11)
- Info.CCEDiag(E, diag::note_constexpr_nonliteral)
- << E->getType();
- if (!EvaluateVoid(E, Info))
- return false;
- } else if (T->isAtomicType()) {
- if (!EvaluateAtomic(E, Result, Info))
- return false;
- } else if (Info.getLangOpts().CPlusPlus11) {
- Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
- return false;
- } else {
- Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- return true;
- }
- /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
- /// cases, the in-place evaluation is essential, since later initializers for
- /// an object can indirectly refer to subobjects which were initialized earlier.
- static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
- const Expr *E, bool AllowNonLiteralTypes) {
- assert(!E->isValueDependent());
- if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
- return false;
- if (E->isRValue()) {
- // Evaluate arrays and record types in-place, so that later initializers can
- // refer to earlier-initialized members of the object.
- if (E->getType()->isArrayType())
- return EvaluateArray(E, This, Result, Info);
- else if (E->getType()->isRecordType())
- return EvaluateRecord(E, This, Result, Info);
- }
- // For any other type, in-place evaluation is unimportant.
- return Evaluate(Result, Info, E);
- }
- /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
- /// lvalue-to-rvalue cast if it is an lvalue.
- static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
- if (E->getType().isNull())
- return false;
- if (!CheckLiteralType(Info, E))
- return false;
- if (!::Evaluate(Result, Info, E))
- return false;
- if (E->isGLValue()) {
- LValue LV;
- LV.setFrom(Info.Ctx, Result);
- if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
- return false;
- }
- // Check this core constant expression is a constant expression.
- return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
- }
- static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
- const ASTContext &Ctx, bool &IsConst) {
- // Fast-path evaluations of integer literals, since we sometimes see files
- // containing vast quantities of these.
- if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
- Result.Val = APValue(APSInt(L->getValue(),
- L->getType()->isUnsignedIntegerType()));
- IsConst = true;
- return true;
- }
- // This case should be rare, but we need to check it before we check on
- // the type below.
- if (Exp->getType().isNull()) {
- IsConst = false;
- return true;
- }
-
- // FIXME: Evaluating values of large array and record types can cause
- // performance problems. Only do so in C++11 for now.
- if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
- Exp->getType()->isRecordType()) &&
- !hlsl::IsHLSLVecMatType(Exp->getType()) && // HLSL Change
- !Ctx.getLangOpts().CPlusPlus11) {
- IsConst = false;
- return true;
- }
- return false;
- }
- /// EvaluateAsRValue - Return true if this is a constant which we can fold using
- /// any crazy technique (that has nothing to do with language standards) that
- /// we want to. If this function returns true, it returns the folded constant
- /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
- /// will be applied to the result.
- bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
- bool IsConst;
- if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
- return IsConst;
-
- EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
- return ::EvaluateAsRValue(Info, this, Result.Val);
- }
- bool Expr::EvaluateAsBooleanCondition(bool &Result,
- const ASTContext &Ctx) const {
- EvalResult Scratch;
- return EvaluateAsRValue(Scratch, Ctx) &&
- HandleConversionToBool(Scratch.Val, Result);
- }
- bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
- SideEffectsKind AllowSideEffects) const {
- if (!getType()->isIntegralOrEnumerationType())
- return false;
- EvalResult ExprResult;
- if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
- (!AllowSideEffects && ExprResult.HasSideEffects))
- return false;
- Result = ExprResult.Val.getInt();
- return true;
- }
- bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
- EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
- LValue LV;
- if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
- !CheckLValueConstantExpression(Info, getExprLoc(),
- Ctx.getLValueReferenceType(getType()), LV))
- return false;
- LV.moveInto(Result.Val);
- return true;
- }
- bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
- const VarDecl *VD,
- SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
- // FIXME: Evaluating initializers for large array and record types can cause
- // performance problems. Only do so in C++11 for now.
- if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
- !Ctx.getLangOpts().CPlusPlus11)
- return false;
- Expr::EvalStatus EStatus;
- EStatus.Diag = &Notes;
- EvalInfo InitInfo(Ctx, EStatus, EvalInfo::EM_ConstantFold);
- InitInfo.setEvaluatingDecl(VD, Value);
- LValue LVal;
- LVal.set(VD);
- // C++11 [basic.start.init]p2:
- // Variables with static storage duration or thread storage duration shall be
- // zero-initialized before any other initialization takes place.
- // This behavior is not present in C.
- if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
- !VD->getType()->isReferenceType()) {
- ImplicitValueInitExpr VIE(VD->getType());
- if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
- /*AllowNonLiteralTypes=*/true))
- return false;
- }
- if (!EvaluateInPlace(Value, InitInfo, LVal, this,
- /*AllowNonLiteralTypes=*/true) ||
- EStatus.HasSideEffects)
- return false;
- return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
- Value);
- }
- /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
- /// constant folded, but discard the result.
- bool Expr::isEvaluatable(const ASTContext &Ctx) const {
- EvalResult Result;
- return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
- }
- APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
- SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
- EvalResult EvalResult;
- EvalResult.Diag = Diag;
- bool Result = EvaluateAsRValue(EvalResult, Ctx);
- (void)Result;
- assert(Result && "Could not evaluate expression");
- assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
- return EvalResult.Val.getInt();
- }
- void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
- bool IsConst;
- EvalResult EvalResult;
- if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
- EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
- (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
- }
- }
- bool Expr::EvalResult::isGlobalLValue() const {
- assert(Val.isLValue());
- return IsGlobalLValue(Val.getLValueBase());
- }
- /// isIntegerConstantExpr - this recursive routine will test if an expression is
- /// an integer constant expression.
- /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
- /// comma, etc
- // CheckICE - This function does the fundamental ICE checking: the returned
- // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
- // and a (possibly null) SourceLocation indicating the location of the problem.
- //
- // Note that to reduce code duplication, this helper does no evaluation
- // itself; the caller checks whether the expression is evaluatable, and
- // in the rare cases where CheckICE actually cares about the evaluated
- // value, it calls into Evalute.
- namespace {
- enum ICEKind {
- /// This expression is an ICE.
- IK_ICE,
- /// This expression is not an ICE, but if it isn't evaluated, it's
- /// a legal subexpression for an ICE. This return value is used to handle
- /// the comma operator in C99 mode, and non-constant subexpressions.
- IK_ICEIfUnevaluated,
- /// This expression is not an ICE, and is not a legal subexpression for one.
- IK_NotICE
- };
- struct ICEDiag {
- ICEKind Kind;
- SourceLocation Loc;
- ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
- };
- }
- static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
- static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
- static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
- Expr::EvalResult EVResult;
- if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
- !EVResult.Val.isInt())
- return ICEDiag(IK_NotICE, E->getLocStart());
- return NoDiag();
- }
- static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
- assert(!E->isValueDependent() && "Should not see value dependent exprs!");
- if (!E->getType()->isIntegralOrEnumerationType())
- return ICEDiag(IK_NotICE, E->getLocStart());
- switch (E->getStmtClass()) {
- #define ABSTRACT_STMT(Node)
- #define STMT(Node, Base) case Expr::Node##Class:
- #define EXPR(Node, Base)
- #include "clang/AST/StmtNodes.inc"
- case Expr::PredefinedExprClass:
- case Expr::FloatingLiteralClass:
- case Expr::ImaginaryLiteralClass:
- case Expr::StringLiteralClass:
- case Expr::ArraySubscriptExprClass:
- case Expr::MemberExprClass:
- case Expr::CompoundAssignOperatorClass:
- case Expr::CompoundLiteralExprClass:
- case Expr::ExtVectorElementExprClass:
- case Expr::ExtMatrixElementExprClass: // HLSL Change
- case Expr::HLSLVectorElementExprClass: // HLSL Change
- case Expr::DesignatedInitExprClass:
- case Expr::NoInitExprClass:
- case Expr::DesignatedInitUpdateExprClass:
- case Expr::ImplicitValueInitExprClass:
- case Expr::ParenListExprClass:
- case Expr::VAArgExprClass:
- case Expr::AddrLabelExprClass:
- case Expr::StmtExprClass:
- case Expr::CXXMemberCallExprClass:
- case Expr::CUDAKernelCallExprClass:
- case Expr::CXXDynamicCastExprClass:
- case Expr::CXXTypeidExprClass:
- case Expr::CXXUuidofExprClass:
- case Expr::MSPropertyRefExprClass:
- case Expr::CXXNullPtrLiteralExprClass:
- case Expr::UserDefinedLiteralClass:
- case Expr::CXXThisExprClass:
- case Expr::CXXThrowExprClass:
- case Expr::CXXNewExprClass:
- case Expr::CXXDeleteExprClass:
- case Expr::CXXPseudoDestructorExprClass:
- case Expr::UnresolvedLookupExprClass:
- case Expr::TypoExprClass:
- case Expr::DependentScopeDeclRefExprClass:
- case Expr::CXXConstructExprClass:
- case Expr::CXXStdInitializerListExprClass:
- case Expr::CXXBindTemporaryExprClass:
- case Expr::ExprWithCleanupsClass:
- case Expr::CXXTemporaryObjectExprClass:
- case Expr::CXXUnresolvedConstructExprClass:
- case Expr::CXXDependentScopeMemberExprClass:
- case Expr::UnresolvedMemberExprClass:
- case Expr::ObjCStringLiteralClass:
- case Expr::ObjCBoxedExprClass:
- case Expr::ObjCArrayLiteralClass:
- case Expr::ObjCDictionaryLiteralClass:
- case Expr::ObjCEncodeExprClass:
- case Expr::ObjCMessageExprClass:
- case Expr::ObjCSelectorExprClass:
- case Expr::ObjCProtocolExprClass:
- case Expr::ObjCIvarRefExprClass:
- case Expr::ObjCPropertyRefExprClass:
- case Expr::ObjCSubscriptRefExprClass:
- case Expr::ObjCIsaExprClass:
- case Expr::ShuffleVectorExprClass:
- case Expr::ConvertVectorExprClass:
- case Expr::BlockExprClass:
- case Expr::NoStmtClass:
- case Expr::OpaqueValueExprClass:
- case Expr::PackExpansionExprClass:
- case Expr::SubstNonTypeTemplateParmPackExprClass:
- case Expr::FunctionParmPackExprClass:
- case Expr::AsTypeExprClass:
- case Expr::ObjCIndirectCopyRestoreExprClass:
- case Expr::MaterializeTemporaryExprClass:
- case Expr::PseudoObjectExprClass:
- case Expr::AtomicExprClass:
- case Expr::LambdaExprClass:
- case Expr::CXXFoldExprClass:
- return ICEDiag(IK_NotICE, E->getLocStart());
- case Expr::InitListExprClass: {
- // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
- // form "T x = { a };" is equivalent to "T x = a;".
- // Unless we're initializing a reference, T is a scalar as it is known to be
- // of integral or enumeration type.
- if (E->isRValue() && (!Ctx.getLangOpts().HLSL || E->getType()->isScalarType() || IsHLSLVecInitList(E))) // HLSL Change
- if (cast<InitListExpr>(E)->getNumInits() == 1)
- return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
- return ICEDiag(IK_NotICE, E->getLocStart());
- }
- case Expr::SizeOfPackExprClass:
- case Expr::GNUNullExprClass:
- // GCC considers the GNU __null value to be an integral constant expression.
- return NoDiag();
- case Expr::SubstNonTypeTemplateParmExprClass:
- return
- CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
- case Expr::ParenExprClass:
- return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
- case Expr::GenericSelectionExprClass:
- return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
- case Expr::IntegerLiteralClass:
- case Expr::CharacterLiteralClass:
- case Expr::ObjCBoolLiteralExprClass:
- case Expr::CXXBoolLiteralExprClass:
- case Expr::CXXScalarValueInitExprClass:
- case Expr::TypeTraitExprClass:
- case Expr::ArrayTypeTraitExprClass:
- case Expr::ExpressionTraitExprClass:
- case Expr::CXXNoexceptExprClass:
- return NoDiag();
- case Expr::CallExprClass:
- case Expr::CXXOperatorCallExprClass: {
- // C99 6.6/3 allows function calls within unevaluated subexpressions of
- // constant expressions, but they can never be ICEs because an ICE cannot
- // contain an operand of (pointer to) function type.
- const CallExpr *CE = cast<CallExpr>(E);
- if (hlsl::IsIntrinsicOp(GetCallExprFunction(CE)) || CE->getBuiltinCallee()) // HLSL Change
- return CheckEvalInICE(E, Ctx);
- return ICEDiag(IK_NotICE, E->getLocStart());
- }
- case Expr::DeclRefExprClass: {
- if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
- return NoDiag();
- const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
- if (Ctx.getLangOpts().CPlusPlus &&
- D && IsConstNonVolatile(D->getType())) {
- // Parameter variables are never constants. Without this check,
- // getAnyInitializer() can find a default argument, which leads
- // to chaos.
- if (isa<ParmVarDecl>(D))
- return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
- // C++ 7.1.5.1p2
- // A variable of non-volatile const-qualified integral or enumeration
- // type initialized by an ICE can be used in ICEs.
- if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
- if (!Dcl->getType()->isIntegralOrEnumerationType())
- return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
- // HLSL Change: cbuffer vars with init are not really constant in this way
- if (Ctx.getLangOpts().HLSL &&
- Dcl->hasGlobalStorage() &&
- Dcl->getStorageClass() != SC_Static) {
- return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
- }
- const VarDecl *VD;
- // Look for a declaration of this variable that has an initializer, and
- // check whether it is an ICE.
- if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
- return NoDiag();
- else
- return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
- }
- }
- return ICEDiag(IK_NotICE, E->getLocStart());
- }
- case Expr::UnaryOperatorClass: {
- const UnaryOperator *Exp = cast<UnaryOperator>(E);
- switch (Exp->getOpcode()) {
- case UO_PostInc:
- case UO_PostDec:
- case UO_PreInc:
- case UO_PreDec:
- case UO_AddrOf:
- case UO_Deref:
- // C99 6.6/3 allows increment and decrement within unevaluated
- // subexpressions of constant expressions, but they can never be ICEs
- // because an ICE cannot contain an lvalue operand.
- return ICEDiag(IK_NotICE, E->getLocStart());
- case UO_Extension:
- case UO_LNot:
- case UO_Plus:
- case UO_Minus:
- case UO_Not:
- case UO_Real:
- case UO_Imag:
- return CheckICE(Exp->getSubExpr(), Ctx);
- }
- // OffsetOf falls through here.
- }
- case Expr::OffsetOfExprClass: {
- // Note that per C99, offsetof must be an ICE. And AFAIK, using
- // EvaluateAsRValue matches the proposed gcc behavior for cases like
- // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
- // compliance: we should warn earlier for offsetof expressions with
- // array subscripts that aren't ICEs, and if the array subscripts
- // are ICEs, the value of the offsetof must be an integer constant.
- return CheckEvalInICE(E, Ctx);
- }
- case Expr::UnaryExprOrTypeTraitExprClass: {
- const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
- if ((Exp->getKind() == UETT_SizeOf) &&
- Exp->getTypeOfArgument()->isVariableArrayType())
- return ICEDiag(IK_NotICE, E->getLocStart());
- return NoDiag();
- }
- case Expr::BinaryOperatorClass: {
- const BinaryOperator *Exp = cast<BinaryOperator>(E);
- switch (Exp->getOpcode()) {
- case BO_PtrMemD:
- case BO_PtrMemI:
- case BO_Assign:
- case BO_MulAssign:
- case BO_DivAssign:
- case BO_RemAssign:
- case BO_AddAssign:
- case BO_SubAssign:
- case BO_ShlAssign:
- case BO_ShrAssign:
- case BO_AndAssign:
- case BO_XorAssign:
- case BO_OrAssign:
- // C99 6.6/3 allows assignments within unevaluated subexpressions of
- // constant expressions, but they can never be ICEs because an ICE cannot
- // contain an lvalue operand.
- return ICEDiag(IK_NotICE, E->getLocStart());
- case BO_Mul:
- case BO_Div:
- case BO_Rem:
- case BO_Add:
- case BO_Sub:
- case BO_Shl:
- case BO_Shr:
- case BO_LT:
- case BO_GT:
- case BO_LE:
- case BO_GE:
- case BO_EQ:
- case BO_NE:
- case BO_And:
- case BO_Xor:
- case BO_Or:
- case BO_Comma: {
- ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
- ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
- if (Exp->getOpcode() == BO_Div ||
- Exp->getOpcode() == BO_Rem) {
- // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
- // we don't evaluate one.
- if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
- llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
- if (REval == 0)
- return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
- if (REval.isSigned() && REval.isAllOnesValue()) {
- llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
- if (LEval.isMinSignedValue())
- return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
- }
- }
- }
- if (Exp->getOpcode() == BO_Comma && !Ctx.getLangOpts().HLSL) { // HLSL Change: comma is allowed in ICE
- if (Ctx.getLangOpts().C99) {
- // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
- // if it isn't evaluated.
- if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
- return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
- } else {
- // In both C89 and C++, commas in ICEs are illegal.
- return ICEDiag(IK_NotICE, E->getLocStart());
- }
- }
- return Worst(LHSResult, RHSResult);
- }
- case BO_LAnd:
- case BO_LOr: {
- ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
- ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
- if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
- // Rare case where the RHS has a comma "side-effect"; we need
- // to actually check the condition to see whether the side
- // with the comma is evaluated.
- if ((Exp->getOpcode() == BO_LAnd) !=
- (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
- return RHSResult;
- return NoDiag();
- }
- return Worst(LHSResult, RHSResult);
- }
- }
- }
- case Expr::ImplicitCastExprClass:
- case Expr::CStyleCastExprClass:
- case Expr::CXXFunctionalCastExprClass:
- case Expr::CXXStaticCastExprClass:
- case Expr::CXXReinterpretCastExprClass:
- case Expr::CXXConstCastExprClass:
- case Expr::ObjCBridgedCastExprClass: {
- const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
- if (isa<ExplicitCastExpr>(E)) {
- if (const FloatingLiteral *FL
- = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
- unsigned DestWidth = Ctx.getIntWidth(E->getType());
- bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
- APSInt IgnoredVal(DestWidth, !DestSigned);
- bool Ignored;
- // If the value does not fit in the destination type, the behavior is
- // undefined, so we are not required to treat it as a constant
- // expression.
- if (FL->getValue().convertToInteger(IgnoredVal,
- llvm::APFloat::rmTowardZero,
- &Ignored) & APFloat::opInvalidOp)
- return ICEDiag(IK_NotICE, E->getLocStart());
- return NoDiag();
- }
- }
- switch (cast<CastExpr>(E)->getCastKind()) {
- case CK_LValueToRValue:
- case CK_AtomicToNonAtomic:
- case CK_NonAtomicToAtomic:
- case CK_NoOp:
- case CK_IntegralToBoolean:
- case CK_IntegralCast:
- return CheckICE(SubExpr, Ctx);
- default:
- return ICEDiag(IK_NotICE, E->getLocStart());
- }
- }
- case Expr::BinaryConditionalOperatorClass: {
- const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
- ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
- if (CommonResult.Kind == IK_NotICE) return CommonResult;
- ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
- if (FalseResult.Kind == IK_NotICE) return FalseResult;
- if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
- if (FalseResult.Kind == IK_ICEIfUnevaluated &&
- Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
- return FalseResult;
- }
- case Expr::ConditionalOperatorClass: {
- const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
- // If the condition (ignoring parens) is a __builtin_constant_p call,
- // then only the true side is actually considered in an integer constant
- // expression, and it is fully evaluated. This is an important GNU
- // extension. See GCC PR38377 for discussion.
- if (const CallExpr *CallCE
- = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
- if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
- return CheckEvalInICE(E, Ctx);
- ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
- if (CondResult.Kind == IK_NotICE)
- return CondResult;
- ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
- ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
- if (TrueResult.Kind == IK_NotICE)
- return TrueResult;
- if (FalseResult.Kind == IK_NotICE)
- return FalseResult;
- if (CondResult.Kind == IK_ICEIfUnevaluated)
- return CondResult;
- if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
- return NoDiag();
- // Rare case where the diagnostics depend on which side is evaluated
- // Note that if we get here, CondResult is 0, and at least one of
- // TrueResult and FalseResult is non-zero.
- if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
- return FalseResult;
- return TrueResult;
- }
- case Expr::CXXDefaultArgExprClass:
- return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
- case Expr::CXXDefaultInitExprClass:
- return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
- case Expr::ChooseExprClass: {
- return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
- }
- }
- llvm_unreachable("Invalid StmtClass!");
- }
- /// Evaluate an expression as a C++11 integral constant expression.
- static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
- const Expr *E,
- llvm::APSInt *Value,
- SourceLocation *Loc) {
- if (!E->getType()->isIntegralOrEnumerationType()) {
- if (Loc) *Loc = E->getExprLoc();
- return false;
- }
- APValue Result;
- if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
- return false;
- if (!Result.isInt()) {
- if (Loc) *Loc = E->getExprLoc();
- return false;
- }
- if (Value) *Value = Result.getInt();
- return true;
- }
- bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
- SourceLocation *Loc) const {
- if (Ctx.getLangOpts().CPlusPlus11)
- return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
- ICEDiag D = CheckICE(this, Ctx);
- if (D.Kind != IK_ICE) {
- if (Loc) *Loc = D.Loc;
- return false;
- }
- return true;
- }
- bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
- SourceLocation *Loc, bool isEvaluated) const {
- if (Ctx.getLangOpts().CPlusPlus11)
- return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
- if (!isIntegerConstantExpr(Ctx, Loc))
- return false;
- if (!EvaluateAsInt(Value, Ctx))
- llvm_unreachable("ICE cannot be evaluated!");
- return true;
- }
- bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
- return CheckICE(this, Ctx).Kind == IK_ICE;
- }
- bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
- SourceLocation *Loc) const {
- // We support this checking in C++98 mode in order to diagnose compatibility
- // issues.
- assert(Ctx.getLangOpts().CPlusPlus);
- // Build evaluation settings.
- Expr::EvalStatus Status;
- SmallVector<PartialDiagnosticAt, 8> Diags;
- Status.Diag = &Diags;
- EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
- APValue Scratch;
- bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
- if (!Diags.empty()) {
- IsConstExpr = false;
- if (Loc) *Loc = Diags[0].first;
- } else if (!IsConstExpr) {
- // FIXME: This shouldn't happen.
- if (Loc) *Loc = getExprLoc();
- }
- return IsConstExpr;
- }
- bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
- const FunctionDecl *Callee,
- ArrayRef<const Expr*> Args) const {
- Expr::EvalStatus Status;
- EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
- ArgVector ArgValues(Args.size());
- for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
- I != E; ++I) {
- if ((*I)->isValueDependent() ||
- !Evaluate(ArgValues[I - Args.begin()], Info, *I))
- // If evaluation fails, throw away the argument entirely.
- ArgValues[I - Args.begin()] = APValue();
- if (Info.EvalStatus.HasSideEffects)
- return false;
- }
- // Build fake call to Callee.
- CallStackFrame Frame(Info, Callee->getLocation(), Callee, /*This*/nullptr,
- ArgValues.data());
- return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
- }
- bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
- SmallVectorImpl<
- PartialDiagnosticAt> &Diags) {
- // FIXME: It would be useful to check constexpr function templates, but at the
- // moment the constant expression evaluator cannot cope with the non-rigorous
- // ASTs which we build for dependent expressions.
- if (FD->isDependentContext())
- return true;
- Expr::EvalStatus Status;
- Status.Diag = &Diags;
- EvalInfo Info(FD->getASTContext(), Status,
- EvalInfo::EM_PotentialConstantExpression);
- const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
- const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
- // Fabricate an arbitrary expression on the stack and pretend that it
- // is a temporary being used as the 'this' pointer.
- LValue This;
- ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
- This.set(&VIE, Info.CurrentCall->Index);
- ArrayRef<const Expr*> Args;
- SourceLocation Loc = FD->getLocation();
- APValue Scratch;
- if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
- // Evaluate the call as a constant initializer, to allow the construction
- // of objects of non-literal types.
- Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
- HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
- } else
- HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
- Args, FD->getBody(), Info, Scratch);
- return Diags.empty();
- }
- bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
- const FunctionDecl *FD,
- SmallVectorImpl<
- PartialDiagnosticAt> &Diags) {
- Expr::EvalStatus Status;
- Status.Diag = &Diags;
- EvalInfo Info(FD->getASTContext(), Status,
- EvalInfo::EM_PotentialConstantExpressionUnevaluated);
- // Fabricate a call stack frame to give the arguments a plausible cover story.
- ArrayRef<const Expr*> Args;
- ArgVector ArgValues(0);
- bool Success = EvaluateArgs(Args, ArgValues, Info);
- (void)Success;
- assert(Success &&
- "Failed to set up arguments for potential constant evaluation");
- CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
- APValue ResultScratch;
- Evaluate(ResultScratch, Info, E);
- return Diags.empty();
- }
|