HLOperationLower.cpp 334 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014
  1. ///////////////////////////////////////////////////////////////////////////////
  2. // //
  3. // HLOperationLower.cpp //
  4. // Copyright (C) Microsoft Corporation. All rights reserved. //
  5. // This file is distributed under the University of Illinois Open Source //
  6. // License. See LICENSE.TXT for details. //
  7. // //
  8. // Lower functions to lower HL operations to DXIL operations. //
  9. // //
  10. ///////////////////////////////////////////////////////////////////////////////
  11. #define _USE_MATH_DEFINES
  12. #include <array>
  13. #include <cmath>
  14. #include <unordered_set>
  15. #include <functional>
  16. #include "dxc/DXIL/DxilModule.h"
  17. #include "dxc/DXIL/DxilOperations.h"
  18. #include "dxc/HLSL/HLMatrixLowerHelper.h"
  19. #include "dxc/HLSL/HLMatrixType.h"
  20. #include "dxc/HLSL/HLModule.h"
  21. #include "dxc/DXIL/DxilUtil.h"
  22. #include "dxc/HLSL/HLOperationLower.h"
  23. #include "dxc/HLSL/HLOperationLowerExtension.h"
  24. #include "dxc/HLSL/HLOperations.h"
  25. #include "dxc/HlslIntrinsicOp.h"
  26. #include "dxc/HLSL/DxilConvergent.h"
  27. #include "dxc/DXIL/DxilResourceProperties.h"
  28. #include "llvm/IR/GetElementPtrTypeIterator.h"
  29. #include "llvm/IR/IRBuilder.h"
  30. #include "llvm/IR/Instructions.h"
  31. #include "llvm/IR/IntrinsicInst.h"
  32. #include "llvm/IR/Module.h"
  33. #include "llvm/ADT/APSInt.h"
  34. using namespace llvm;
  35. using namespace hlsl;
  36. struct HLOperationLowerHelper {
  37. OP &hlslOP;
  38. Type *voidTy;
  39. Type *f32Ty;
  40. Type *i32Ty;
  41. Type *i16Ty;
  42. llvm::Type *i1Ty;
  43. Type *i8Ty;
  44. DxilTypeSystem &dxilTypeSys;
  45. DxilFunctionProps *functionProps;
  46. bool bLegacyCBufferLoad;
  47. DataLayout dataLayout;
  48. HLOperationLowerHelper(HLModule &HLM);
  49. };
  50. HLOperationLowerHelper::HLOperationLowerHelper(HLModule &HLM)
  51. : hlslOP(*HLM.GetOP()), dxilTypeSys(HLM.GetTypeSystem()),
  52. dataLayout(DataLayout(HLM.GetHLOptions().bUseMinPrecision
  53. ? hlsl::DXIL::kLegacyLayoutString
  54. : hlsl::DXIL::kNewLayoutString)) {
  55. llvm::LLVMContext &Ctx = HLM.GetCtx();
  56. voidTy = Type::getVoidTy(Ctx);
  57. f32Ty = Type::getFloatTy(Ctx);
  58. i32Ty = Type::getInt32Ty(Ctx);
  59. i16Ty = Type::getInt16Ty(Ctx);
  60. i1Ty = Type::getInt1Ty(Ctx);
  61. i8Ty = Type::getInt8Ty(Ctx);
  62. Function *EntryFunc = HLM.GetEntryFunction();
  63. functionProps = nullptr;
  64. if (HLM.HasDxilFunctionProps(EntryFunc))
  65. functionProps = &HLM.GetDxilFunctionProps(EntryFunc);
  66. bLegacyCBufferLoad = HLM.GetHLOptions().bLegacyCBufferLoad;
  67. }
  68. struct HLObjectOperationLowerHelper {
  69. private:
  70. // For object intrinsics.
  71. HLModule &HLM;
  72. struct ResAttribute {
  73. DXIL::ResourceClass RC;
  74. DXIL::ResourceKind RK;
  75. Type *ResourceType;
  76. };
  77. std::unordered_map<Value *, ResAttribute> HandleMetaMap;
  78. std::unordered_set<LoadInst *> &UpdateCounterSet;
  79. // Map from pointer of cbuffer to pointer of resource.
  80. // For cbuffer like this:
  81. // cbuffer A {
  82. // Texture2D T;
  83. // };
  84. // A global resource Texture2D T2 will be created for Texture2D T.
  85. // CBPtrToResourceMap[T] will return T2.
  86. std::unordered_map<Value *, Value *> CBPtrToResourceMap;
  87. public:
  88. HLObjectOperationLowerHelper(HLModule &HLM,
  89. std::unordered_set<LoadInst *> &UpdateCounter)
  90. : HLM(HLM), UpdateCounterSet(UpdateCounter) {}
  91. DXIL::ResourceClass GetRC(Value *Handle) {
  92. ResAttribute &Res = FindCreateHandleResourceBase(Handle);
  93. return Res.RC;
  94. }
  95. DXIL::ResourceKind GetRK(Value *Handle) {
  96. ResAttribute &Res = FindCreateHandleResourceBase(Handle);
  97. return Res.RK;
  98. }
  99. Type *GetResourceType(Value *Handle) {
  100. ResAttribute &Res = FindCreateHandleResourceBase(Handle);
  101. return Res.ResourceType;
  102. }
  103. void MarkHasCounter(Value *handle, Type *i8Ty) {
  104. CallInst *CIHandle = cast<CallInst>(handle);
  105. DXASSERT(hlsl::GetHLOpcodeGroup(CIHandle->getCalledFunction()) == HLOpcodeGroup::HLAnnotateHandle, "else invalid handle");
  106. // Mark has counter for the input handle.
  107. Value *counterHandle =
  108. CIHandle->getArgOperand(HLOperandIndex::kAnnotateHandleHandleOpIdx);
  109. // Change kind into StructurBufferWithCounter.
  110. Constant *Props = cast<Constant>(CIHandle->getArgOperand(
  111. HLOperandIndex::kAnnotateHandleResourcePropertiesOpIdx));
  112. DxilResourceProperties RP = resource_helper::loadPropsFromConstant(*Props);
  113. RP.Basic.SamplerCmpOrHasCounter = true;
  114. CIHandle->setArgOperand(
  115. HLOperandIndex::kAnnotateHandleResourcePropertiesOpIdx,
  116. resource_helper::getAsConstant(
  117. RP,
  118. HLM.GetOP()->GetResourcePropertiesType(),
  119. *HLM.GetShaderModel()));
  120. DXIL::ResourceClass RC = GetRC(handle);
  121. DXASSERT_LOCALVAR(RC, RC == DXIL::ResourceClass::UAV,
  122. "must UAV for counter");
  123. std::unordered_set<Value *> resSet;
  124. MarkHasCounterOnCreateHandle(counterHandle, resSet);
  125. }
  126. Value *GetOrCreateResourceForCbPtr(GetElementPtrInst *CbPtr,
  127. GlobalVariable *CbGV,
  128. DxilResourceProperties &RP) {
  129. // Change array idx to 0 to make sure all array ptr share same key.
  130. Value *Key = UniformCbPtr(CbPtr, CbGV);
  131. if (CBPtrToResourceMap.count(Key))
  132. return CBPtrToResourceMap[Key];
  133. Value *Resource = CreateResourceForCbPtr(CbPtr, CbGV, RP);
  134. CBPtrToResourceMap[Key] = Resource;
  135. return Resource;
  136. }
  137. Value *LowerCbResourcePtr(GetElementPtrInst *CbPtr, Value *ResPtr) {
  138. // Simple case.
  139. if (ResPtr->getType() == CbPtr->getType())
  140. return ResPtr;
  141. // Array case.
  142. DXASSERT_NOMSG(ResPtr->getType()->getPointerElementType()->isArrayTy());
  143. IRBuilder<> Builder(CbPtr);
  144. gep_type_iterator GEPIt = gep_type_begin(CbPtr), E = gep_type_end(CbPtr);
  145. Value *arrayIdx = GEPIt.getOperand();
  146. // Only calc array idx and size.
  147. // Ignore struct type part.
  148. for (; GEPIt != E; ++GEPIt) {
  149. if (GEPIt->isArrayTy()) {
  150. arrayIdx = Builder.CreateMul(
  151. arrayIdx, Builder.getInt32(GEPIt->getArrayNumElements()));
  152. arrayIdx = Builder.CreateAdd(arrayIdx, GEPIt.getOperand());
  153. }
  154. }
  155. return Builder.CreateGEP(ResPtr, {Builder.getInt32(0), arrayIdx});
  156. }
  157. DxilResourceProperties GetResPropsFromAnnotateHandle(CallInst *Anno) {
  158. Constant *Props = cast<Constant>(Anno->getArgOperand(
  159. HLOperandIndex::kAnnotateHandleResourcePropertiesOpIdx));
  160. DxilResourceProperties RP = resource_helper::loadPropsFromConstant(
  161. *Props);
  162. return RP;
  163. }
  164. private:
  165. ResAttribute &FindCreateHandleResourceBase(Value *Handle) {
  166. if (HandleMetaMap.count(Handle))
  167. return HandleMetaMap[Handle];
  168. // Add invalid first to avoid dead loop.
  169. HandleMetaMap[Handle] = {DXIL::ResourceClass::Invalid,
  170. DXIL::ResourceKind::Invalid,
  171. StructType::get(Type::getVoidTy(HLM.GetCtx()), nullptr)};
  172. if (CallInst *CI = dyn_cast<CallInst>(Handle)) {
  173. hlsl::HLOpcodeGroup group =
  174. hlsl::GetHLOpcodeGroupByName(CI->getCalledFunction());
  175. if (group == HLOpcodeGroup::HLAnnotateHandle) {
  176. Constant *Props = cast<Constant>(CI->getArgOperand(
  177. HLOperandIndex::kAnnotateHandleResourcePropertiesOpIdx));
  178. DxilResourceProperties RP =
  179. resource_helper::loadPropsFromConstant(*Props);
  180. Type *ResTy =
  181. CI->getArgOperand(HLOperandIndex::kAnnotateHandleResourceTypeOpIdx)
  182. ->getType();
  183. ResAttribute Attrib = {RP.getResourceClass(), RP.getResourceKind(),
  184. ResTy};
  185. HandleMetaMap[Handle] = Attrib;
  186. return HandleMetaMap[Handle];
  187. }
  188. }
  189. Handle->getContext().emitError("cannot map resource to handle");
  190. return HandleMetaMap[Handle];
  191. }
  192. CallInst *FindCreateHandle(Value *handle,
  193. std::unordered_set<Value *> &resSet) {
  194. // Already checked.
  195. if (resSet.count(handle))
  196. return nullptr;
  197. resSet.insert(handle);
  198. if (CallInst *CI = dyn_cast<CallInst>(handle))
  199. return CI;
  200. if (SelectInst *Sel = dyn_cast<SelectInst>(handle)) {
  201. if (CallInst *CI = FindCreateHandle(Sel->getTrueValue(), resSet))
  202. return CI;
  203. if (CallInst *CI = FindCreateHandle(Sel->getFalseValue(), resSet))
  204. return CI;
  205. return nullptr;
  206. }
  207. if (PHINode *Phi = dyn_cast<PHINode>(handle)) {
  208. for (unsigned i = 0; i < Phi->getNumOperands(); i++) {
  209. if (CallInst *CI = FindCreateHandle(Phi->getOperand(i), resSet))
  210. return CI;
  211. }
  212. return nullptr;
  213. }
  214. return nullptr;
  215. }
  216. void MarkHasCounterOnCreateHandle(Value *handle,
  217. std::unordered_set<Value *> &resSet) {
  218. // Already checked.
  219. if (resSet.count(handle))
  220. return;
  221. resSet.insert(handle);
  222. if (CallInst *CI = dyn_cast<CallInst>(handle)) {
  223. Value *Res =
  224. CI->getArgOperand(HLOperandIndex::kCreateHandleResourceOpIdx);
  225. LoadInst *LdRes = dyn_cast<LoadInst>(Res);
  226. if (!LdRes) {
  227. dxilutil::EmitErrorOnInstruction(CI, "cannot map resource to handle.");
  228. return;
  229. }
  230. UpdateCounterSet.insert(LdRes);
  231. return;
  232. }
  233. if (SelectInst *Sel = dyn_cast<SelectInst>(handle)) {
  234. MarkHasCounterOnCreateHandle(Sel->getTrueValue(), resSet);
  235. MarkHasCounterOnCreateHandle(Sel->getFalseValue(), resSet);
  236. }
  237. if (PHINode *Phi = dyn_cast<PHINode>(handle)) {
  238. for (unsigned i = 0; i < Phi->getNumOperands(); i++) {
  239. MarkHasCounterOnCreateHandle(Phi->getOperand(i), resSet);
  240. }
  241. }
  242. }
  243. Value *UniformCbPtr(GetElementPtrInst *CbPtr, GlobalVariable *CbGV) {
  244. gep_type_iterator GEPIt = gep_type_begin(CbPtr), E = gep_type_end(CbPtr);
  245. std::vector<Value *> idxList(CbPtr->idx_begin(), CbPtr->idx_end());
  246. unsigned i = 0;
  247. IRBuilder<> Builder(HLM.GetCtx());
  248. Value *zero = Builder.getInt32(0);
  249. for (; GEPIt != E; ++GEPIt, ++i) {
  250. ConstantInt *ImmIdx = dyn_cast<ConstantInt>(GEPIt.getOperand());
  251. if (!ImmIdx) {
  252. // Remove dynamic indexing to avoid crash.
  253. idxList[i] = zero;
  254. }
  255. }
  256. Value *Key = Builder.CreateInBoundsGEP(CbGV, idxList);
  257. return Key;
  258. }
  259. Value *CreateResourceForCbPtr(GetElementPtrInst *CbPtr, GlobalVariable *CbGV,
  260. DxilResourceProperties &RP) {
  261. Type *CbTy = CbPtr->getPointerOperandType();
  262. DXASSERT_LOCALVAR(CbTy, CbTy == CbGV->getType(), "else arg not point to var");
  263. gep_type_iterator GEPIt = gep_type_begin(CbPtr), E = gep_type_end(CbPtr);
  264. unsigned i = 0;
  265. IRBuilder<> Builder(HLM.GetCtx());
  266. unsigned arraySize = 1;
  267. DxilTypeSystem &typeSys = HLM.GetTypeSystem();
  268. std::string Name;
  269. for (; GEPIt != E; ++GEPIt, ++i) {
  270. if (GEPIt->isArrayTy()) {
  271. arraySize *= GEPIt->getArrayNumElements();
  272. if (!Name.empty())
  273. Name += ".";
  274. if (ConstantInt *ImmIdx = dyn_cast<ConstantInt>(GEPIt.getOperand())) {
  275. unsigned idx = ImmIdx->getLimitedValue();
  276. Name += std::to_string(idx);
  277. }
  278. } else if (GEPIt->isStructTy()) {
  279. DxilStructAnnotation *typeAnnot =
  280. typeSys.GetStructAnnotation(cast<StructType>(*GEPIt));
  281. DXASSERT_NOMSG(typeAnnot);
  282. unsigned idx = cast<ConstantInt>(GEPIt.getOperand())->getLimitedValue();
  283. DXASSERT_NOMSG(typeAnnot->GetNumFields() > idx);
  284. DxilFieldAnnotation &fieldAnnot = typeAnnot->GetFieldAnnotation(idx);
  285. if (!Name.empty())
  286. Name += ".";
  287. Name += fieldAnnot.GetFieldName();
  288. }
  289. }
  290. Type *Ty = CbPtr->getResultElementType();
  291. // Not support resource array in cbuffer.
  292. unsigned ResBinding = HLM.GetBindingForResourceInCB(CbPtr, CbGV, RP.getResourceClass());
  293. return CreateResourceGV(Ty, Name, RP, ResBinding);
  294. }
  295. Value *CreateResourceGV(Type *Ty, StringRef Name, DxilResourceProperties &RP,
  296. unsigned ResBinding) {
  297. Module &M = *HLM.GetModule();
  298. Constant *GV = M.getOrInsertGlobal(Name, Ty);
  299. // Create resource and set GV as globalSym.
  300. DxilResourceBase *Res = HLM.AddResourceWithGlobalVariableAndProps(GV, RP);
  301. DXASSERT(Res, "fail to create resource for global variable in cbuffer");
  302. Res->SetLowerBound(ResBinding);
  303. return GV;
  304. }
  305. };
  306. // Helper for lowering resource extension methods.
  307. struct HLObjectExtensionLowerHelper : public hlsl::HLResourceLookup {
  308. explicit HLObjectExtensionLowerHelper(HLObjectOperationLowerHelper &ObjHelper)
  309. : m_ObjHelper(ObjHelper)
  310. { }
  311. virtual bool GetResourceKindName(Value *HLHandle, const char **ppName)
  312. {
  313. DXIL::ResourceKind K = m_ObjHelper.GetRK(HLHandle);
  314. bool Success = K != DXIL::ResourceKind::Invalid;
  315. if (Success)
  316. {
  317. *ppName = hlsl::GetResourceKindName(K);
  318. }
  319. return Success;
  320. }
  321. private:
  322. HLObjectOperationLowerHelper &m_ObjHelper;
  323. };
  324. using IntrinsicLowerFuncTy = Value *(CallInst *CI, IntrinsicOp IOP,
  325. DXIL::OpCode opcode,
  326. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated);
  327. struct IntrinsicLower {
  328. // Intrinsic opcode.
  329. IntrinsicOp IntriOpcode;
  330. // Lower function.
  331. IntrinsicLowerFuncTy &LowerFunc;
  332. // DXIL opcode if can direct map.
  333. DXIL::OpCode DxilOpcode;
  334. };
  335. // IOP intrinsics.
  336. namespace {
  337. Value *TrivialDxilOperation(Function *dxilFunc, OP::OpCode opcode, ArrayRef<Value *> refArgs,
  338. Type *Ty, Type *RetTy, OP *hlslOP,
  339. IRBuilder<> &Builder) {
  340. unsigned argNum = refArgs.size();
  341. std::vector<Value *> args = refArgs;
  342. if (Ty->isVectorTy()) {
  343. Value *retVal = llvm::UndefValue::get(RetTy);
  344. unsigned vecSize = Ty->getVectorNumElements();
  345. for (unsigned i = 0; i < vecSize; i++) {
  346. // Update vector args, skip known opcode arg.
  347. for (unsigned argIdx = HLOperandIndex::kUnaryOpSrc0Idx; argIdx < argNum;
  348. argIdx++) {
  349. if (refArgs[argIdx]->getType()->isVectorTy()) {
  350. Value *arg = refArgs[argIdx];
  351. args[argIdx] = Builder.CreateExtractElement(arg, i);
  352. }
  353. }
  354. Value *EltOP =
  355. Builder.CreateCall(dxilFunc, args, hlslOP->GetOpCodeName(opcode));
  356. retVal = Builder.CreateInsertElement(retVal, EltOP, i);
  357. }
  358. return retVal;
  359. } else {
  360. if (!RetTy->isVoidTy()) {
  361. Value *retVal =
  362. Builder.CreateCall(dxilFunc, args, hlslOP->GetOpCodeName(opcode));
  363. return retVal;
  364. } else {
  365. // Cannot add name to void.
  366. return Builder.CreateCall(dxilFunc, args);
  367. }
  368. }
  369. }
  370. // Generates a DXIL operation over an overloaded type (Ty), returning a
  371. // RetTy value; when Ty is a vector, it will replicate per-element operations
  372. // into RetTy to rebuild it.
  373. Value *TrivialDxilOperation(OP::OpCode opcode, ArrayRef<Value *> refArgs,
  374. Type *Ty, Type *RetTy, OP *hlslOP,
  375. IRBuilder<> &Builder) {
  376. Type *EltTy = Ty->getScalarType();
  377. Function *dxilFunc = hlslOP->GetOpFunc(opcode, EltTy);
  378. return TrivialDxilOperation(dxilFunc, opcode, refArgs, Ty, RetTy, hlslOP, Builder);
  379. }
  380. Value *TrivialDxilOperation(OP::OpCode opcode, ArrayRef<Value *> refArgs,
  381. Type *Ty, Instruction *Inst, OP *hlslOP) {
  382. DXASSERT(refArgs.size() > 0, "else opcode isn't in signature");
  383. DXASSERT(refArgs[0] == nullptr,
  384. "else caller has already filled the value in");
  385. IRBuilder<> B(Inst);
  386. Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  387. const_cast<llvm::Value **>(refArgs.data())[0] =
  388. opArg; // actually stack memory from caller
  389. return TrivialDxilOperation(opcode, refArgs, Ty, Inst->getType(), hlslOP, B);
  390. }
  391. Value *TrivialDxilUnaryOperationRet(OP::OpCode opcode, Value *src, Type *RetTy,
  392. hlsl::OP *hlslOP, IRBuilder<> &Builder) {
  393. Type *Ty = src->getType();
  394. Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  395. Value *args[] = {opArg, src};
  396. return TrivialDxilOperation(opcode, args, Ty, RetTy, hlslOP, Builder);
  397. }
  398. Value *TrivialDxilUnaryOperation(OP::OpCode opcode, Value *src,
  399. hlsl::OP *hlslOP, IRBuilder<> &Builder) {
  400. return TrivialDxilUnaryOperationRet(opcode, src, src->getType(), hlslOP,
  401. Builder);
  402. }
  403. Value *TrivialDxilBinaryOperation(OP::OpCode opcode, Value *src0, Value *src1,
  404. hlsl::OP *hlslOP, IRBuilder<> &Builder) {
  405. Type *Ty = src0->getType();
  406. Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  407. Value *args[] = {opArg, src0, src1};
  408. return TrivialDxilOperation(opcode, args, Ty, Ty, hlslOP, Builder);
  409. }
  410. Value *TrivialDxilTrinaryOperation(OP::OpCode opcode, Value *src0, Value *src1,
  411. Value *src2, hlsl::OP *hlslOP,
  412. IRBuilder<> &Builder) {
  413. Type *Ty = src0->getType();
  414. Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  415. Value *args[] = {opArg, src0, src1, src2};
  416. return TrivialDxilOperation(opcode, args, Ty, Ty, hlslOP, Builder);
  417. }
  418. Value *TrivialUnaryOperation(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  419. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  420. Value *src0 = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  421. IRBuilder<> Builder(CI);
  422. hlsl::OP *hlslOP = &helper.hlslOP;
  423. Value *retVal = TrivialDxilUnaryOperationRet(opcode, src0, CI->getType(), hlslOP, Builder);
  424. return retVal;
  425. }
  426. Value *TrivialBinaryOperation(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  427. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  428. hlsl::OP *hlslOP = &helper.hlslOP;
  429. Value *src0 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  430. Value *src1 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  431. IRBuilder<> Builder(CI);
  432. Value *binOp =
  433. TrivialDxilBinaryOperation(opcode, src0, src1, hlslOP, Builder);
  434. return binOp;
  435. }
  436. Value *TrivialTrinaryOperation(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  437. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  438. hlsl::OP *hlslOP = &helper.hlslOP;
  439. Value *src0 = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc0Idx);
  440. Value *src1 = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc1Idx);
  441. Value *src2 = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc2Idx);
  442. IRBuilder<> Builder(CI);
  443. Value *triOp =
  444. TrivialDxilTrinaryOperation(opcode, src0, src1, src2, hlslOP, Builder);
  445. return triOp;
  446. }
  447. Value *TrivialIsSpecialFloat(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  448. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  449. hlsl::OP *hlslOP = &helper.hlslOP;
  450. Value *src = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  451. IRBuilder<> Builder(CI);
  452. Type *Ty = src->getType();
  453. Type *RetTy = Type::getInt1Ty(CI->getContext());
  454. if (Ty->isVectorTy())
  455. RetTy = VectorType::get(RetTy, Ty->getVectorNumElements());
  456. Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  457. Value *args[] = {opArg, src};
  458. return TrivialDxilOperation(opcode, args, Ty, RetTy, hlslOP, Builder);
  459. }
  460. bool IsResourceGEP(GetElementPtrInst *I) {
  461. Type *Ty = I->getType()->getPointerElementType();
  462. Ty = dxilutil::GetArrayEltTy(Ty);
  463. // Only mark on GEP which point to resource.
  464. return dxilutil::IsHLSLResourceType(Ty);
  465. }
  466. Value *TranslateNonUniformResourceIndex(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  467. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  468. Value *V = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  469. CI->replaceAllUsesWith(V);
  470. Type *hdlTy = helper.hlslOP.GetHandleType();
  471. for (User *U : V->users()) {
  472. if (GetElementPtrInst *I = dyn_cast<GetElementPtrInst>(U)) {
  473. // Only mark on GEP which point to resource.
  474. if (IsResourceGEP(I))
  475. DxilMDHelper::MarkNonUniform(I);
  476. } else if (CastInst *castI = dyn_cast<CastInst>(U)) {
  477. for (User *castU : castI->users()) {
  478. if (GetElementPtrInst *I = dyn_cast<GetElementPtrInst>(castU)) {
  479. // Only mark on GEP which point to resource.
  480. if (IsResourceGEP(I))
  481. DxilMDHelper::MarkNonUniform(I);
  482. }
  483. }
  484. } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
  485. if (CI->getType() == hdlTy)
  486. DxilMDHelper::MarkNonUniform(CI);
  487. }
  488. }
  489. return nullptr;
  490. }
  491. Value *TrivialBarrier(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  492. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  493. hlsl::OP *OP = &helper.hlslOP;
  494. Function *dxilFunc = OP->GetOpFunc(OP::OpCode::Barrier, CI->getType());
  495. Constant *opArg = OP->GetU32Const((unsigned)OP::OpCode::Barrier);
  496. unsigned uglobal = static_cast<unsigned>(DXIL::BarrierMode::UAVFenceGlobal);
  497. unsigned g = static_cast<unsigned>(DXIL::BarrierMode::TGSMFence);
  498. unsigned t = static_cast<unsigned>(DXIL::BarrierMode::SyncThreadGroup);
  499. // unsigned ut = static_cast<unsigned>(DXIL::BarrierMode::UAVFenceThreadGroup);
  500. unsigned barrierMode = 0;
  501. switch (IOP) {
  502. case IntrinsicOp::IOP_AllMemoryBarrier:
  503. barrierMode = uglobal | g;
  504. break;
  505. case IntrinsicOp::IOP_AllMemoryBarrierWithGroupSync:
  506. barrierMode = uglobal | g | t;
  507. break;
  508. case IntrinsicOp::IOP_GroupMemoryBarrier:
  509. barrierMode = g;
  510. break;
  511. case IntrinsicOp::IOP_GroupMemoryBarrierWithGroupSync:
  512. barrierMode = g | t;
  513. break;
  514. case IntrinsicOp::IOP_DeviceMemoryBarrier:
  515. barrierMode = uglobal;
  516. break;
  517. case IntrinsicOp::IOP_DeviceMemoryBarrierWithGroupSync:
  518. barrierMode = uglobal | t;
  519. break;
  520. default:
  521. DXASSERT(0, "invalid opcode for barrier");
  522. break;
  523. }
  524. Value *src0 = OP->GetU32Const(static_cast<unsigned>(barrierMode));
  525. Value *args[] = {opArg, src0};
  526. IRBuilder<> Builder(CI);
  527. Builder.CreateCall(dxilFunc, args);
  528. return nullptr;
  529. }
  530. Value *TranslateD3DColorToUByte4(CallInst *CI, IntrinsicOp IOP,
  531. OP::OpCode opcode,
  532. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  533. IRBuilder<> Builder(CI);
  534. Value *val = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  535. Type *Ty = val->getType();
  536. // Use the same scaling factor used by FXC (i.e., 255.001953)
  537. // Excerpt from stackoverflow discussion:
  538. // "Built-in rounding, necessary because of truncation. 0.001953 * 256 = 0.5"
  539. Constant *toByteConst = ConstantFP::get(Ty->getScalarType(), 255.001953);
  540. if (Ty->isVectorTy()) {
  541. static constexpr int supportedVecElemCount = 4;
  542. if (Ty->getVectorNumElements() == supportedVecElemCount) {
  543. toByteConst = ConstantVector::getSplat(supportedVecElemCount, toByteConst);
  544. // Swizzle the input val -> val.zyxw
  545. std::vector<int> mask { 2, 1, 0, 3 };
  546. val = Builder.CreateShuffleVector(val, val, mask);
  547. } else {
  548. dxilutil::EmitErrorOnInstruction(CI, "Unsupported input type for intrinsic D3DColorToUByte4.");
  549. return UndefValue::get(CI->getType());
  550. }
  551. }
  552. Value *byte4 = Builder.CreateFMul(toByteConst, val);
  553. return Builder.CreateCast(Instruction::CastOps::FPToSI, byte4, CI->getType());
  554. }
  555. // Returns true if pow can be implemented using Fxc's mul-only code gen pattern.
  556. // Fxc uses the below rules when choosing mul-only code gen pattern to implement pow function.
  557. // Rule 1: Applicable only to power values in the range [INT32_MIN, INT32_MAX]
  558. // Rule 2: The maximum number of mul ops needed shouldn't exceed (2n+1) or (n+1) based on whether the power
  559. // is a positive or a negative value. Here "n" is the number of scalar elements in power.
  560. // Rule 3: Power must be an exact value.
  561. // +----------+---------------------+------------------+
  562. // | BaseType | IsExponentPositive | MaxMulOpsAllowed |
  563. // +----------+---------------------+------------------+
  564. // | float4x4 | True | 33 |
  565. // | float4x4 | False | 17 |
  566. // | float4x2 | True | 17 |
  567. // | float4x2 | False | 9 |
  568. // | float2x4 | True | 17 |
  569. // | float2x4 | False | 9 |
  570. // | float4 | True | 9 |
  571. // | float4 | False | 5 |
  572. // | float2 | True | 5 |
  573. // | float2 | False | 3 |
  574. // | float | True | 3 |
  575. // | float | False | 2 |
  576. // +----------+---------------------+------------------+
  577. bool CanUseFxcMulOnlyPatternForPow(IRBuilder<>& Builder, Value *x, Value *pow, int32_t& powI) {
  578. // Applicable only when power is a literal.
  579. if (!isa<ConstantDataVector>(pow) && !isa<ConstantFP>(pow)) {
  580. return false;
  581. }
  582. // Only apply this code gen on splat values.
  583. if (ConstantDataVector *cdv = dyn_cast<ConstantDataVector>(pow)) {
  584. if (!hlsl::dxilutil::IsSplat(cdv)) {
  585. return false;
  586. }
  587. }
  588. APFloat powAPF = isa<ConstantDataVector>(pow) ?
  589. cast<ConstantDataVector>(pow)->getElementAsAPFloat(0) : // should be a splat value
  590. cast<ConstantFP>(pow)->getValueAPF();
  591. APSInt powAPS(32, false);
  592. bool isExact = false;
  593. // Try converting float value of power to integer and also check if the float value is exact.
  594. APFloat::opStatus status = powAPF.convertToInteger(powAPS, APFloat::rmTowardZero, &isExact);
  595. if (status == APFloat::opStatus::opOK && isExact) {
  596. powI = powAPS.getExtValue();
  597. uint32_t powU = abs(powI);
  598. int setBitCount = 0;
  599. int maxBitSetPos = -1;
  600. for (int i = 0; i < 32; i++) {
  601. if ((powU >> i) & 1) {
  602. setBitCount++;
  603. maxBitSetPos = i;
  604. }
  605. }
  606. DXASSERT(maxBitSetPos <= 30, "msb should always be zero.");
  607. unsigned numElem = isa<ConstantDataVector>(pow) ? x->getType()->getVectorNumElements() : 1;
  608. int mulOpThreshold = powI < 0 ? numElem + 1 : 2 * numElem + 1;
  609. int mulOpNeeded = maxBitSetPos + setBitCount - 1;
  610. return mulOpNeeded <= mulOpThreshold;
  611. }
  612. return false;
  613. }
  614. Value *TranslatePowUsingFxcMulOnlyPattern(IRBuilder<>& Builder, Value *x, const int32_t y) {
  615. uint32_t absY = abs(y);
  616. // If y is zero then always return 1.
  617. if (absY == 0) {
  618. return ConstantFP::get(x->getType(), 1);
  619. }
  620. int lastSetPos = -1;
  621. Value *result = nullptr;
  622. Value *mul = nullptr;
  623. for (int i = 0; i < 32; i++) {
  624. if ((absY >> i) & 1) {
  625. for (int j = i; j > lastSetPos; j--) {
  626. if (!mul) {
  627. mul = x;
  628. }
  629. else {
  630. mul = Builder.CreateFMul(mul, mul);
  631. }
  632. }
  633. result = (result == nullptr) ? mul : Builder.CreateFMul(result, mul);
  634. lastSetPos = i;
  635. }
  636. }
  637. // Compute reciprocal for negative power values.
  638. if (y < 0) {
  639. Value* constOne = ConstantFP::get(x->getType(), 1);
  640. result = Builder.CreateFDiv(constOne, result);
  641. }
  642. return result;
  643. }
  644. Value *TranslatePowImpl(hlsl::OP *hlslOP, IRBuilder<>& Builder, Value *x, Value *y, bool isFXCCompatMode = false) {
  645. // As applicable implement pow using only mul ops as done by Fxc.
  646. int32_t p = 0;
  647. if (CanUseFxcMulOnlyPatternForPow(Builder, x, y, p)) {
  648. if (isFXCCompatMode) {
  649. return TranslatePowUsingFxcMulOnlyPattern(Builder, x, p);
  650. } else if (p == 2) {
  651. // Only take care 2 for it will not affect register pressure.
  652. return Builder.CreateFMul(x, x);
  653. }
  654. }
  655. // Default to log-mul-exp pattern if previous scenarios don't apply.
  656. // t = log(x);
  657. Value *logX =
  658. TrivialDxilUnaryOperation(DXIL::OpCode::Log, x, hlslOP, Builder);
  659. // t = y * t;
  660. Value *mulY = Builder.CreateFMul(logX, y);
  661. // pow = exp(t);
  662. return TrivialDxilUnaryOperation(DXIL::OpCode::Exp, mulY, hlslOP, Builder);
  663. }
  664. Value *TranslateAddUint64(CallInst *CI, IntrinsicOp IOP,
  665. OP::OpCode opcode,
  666. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  667. hlsl::OP *hlslOP = &helper.hlslOP;
  668. IRBuilder<> Builder(CI);
  669. Value *val = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  670. Type *Ty = val->getType();
  671. VectorType *VT = dyn_cast<VectorType>(Ty);
  672. if (!VT) {
  673. dxilutil::EmitErrorOnInstruction(
  674. CI, "AddUint64 can only be applied to uint2 and uint4 operands.");
  675. return UndefValue::get(Ty);
  676. }
  677. unsigned size = VT->getNumElements();
  678. if (size != 2 && size != 4) {
  679. dxilutil::EmitErrorOnInstruction(
  680. CI, "AddUint64 can only be applied to uint2 and uint4 operands.");
  681. return UndefValue::get(Ty);
  682. }
  683. Value *op0 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  684. Value *op1 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  685. Value *RetVal = UndefValue::get(Ty);
  686. Function *AddC = hlslOP->GetOpFunc(DXIL::OpCode::UAddc, helper.i32Ty);
  687. Value *opArg = Builder.getInt32(static_cast<unsigned>(DXIL::OpCode::UAddc));
  688. for (unsigned i=0; i<size; i+=2) {
  689. Value *low0 = Builder.CreateExtractElement(op0, i);
  690. Value *low1 = Builder.CreateExtractElement(op1, i);
  691. Value *lowWithC = Builder.CreateCall(AddC, { opArg, low0, low1});
  692. Value *low = Builder.CreateExtractValue(lowWithC, 0);
  693. RetVal = Builder.CreateInsertElement(RetVal, low, i);
  694. Value *carry = Builder.CreateExtractValue(lowWithC, 1);
  695. // Ext i1 to i32
  696. carry = Builder.CreateZExt(carry, helper.i32Ty);
  697. Value *hi0 = Builder.CreateExtractElement(op0, i+1);
  698. Value *hi1 = Builder.CreateExtractElement(op1, i+1);
  699. Value *hi = Builder.CreateAdd(hi0, hi1);
  700. hi = Builder.CreateAdd(hi, carry);
  701. RetVal = Builder.CreateInsertElement(RetVal, hi, i+1);
  702. }
  703. return RetVal;
  704. }
  705. bool IsValidLoadInput(Value *V) {
  706. // Must be load input.
  707. // TODO: report this error on front-end
  708. if (!V || !isa<CallInst>(V)) {
  709. return false;
  710. }
  711. CallInst *CI = cast<CallInst>(V);
  712. // Must be immediate.
  713. ConstantInt *opArg =
  714. cast<ConstantInt>(CI->getArgOperand(DXIL::OperandIndex::kOpcodeIdx));
  715. DXIL::OpCode op = static_cast<DXIL::OpCode>(opArg->getLimitedValue());
  716. if (op != DXIL::OpCode::LoadInput) {
  717. return false;
  718. }
  719. return true;
  720. }
  721. // Tunnel through insert/extract element and shuffle to find original source
  722. // of scalar value, or specified element (vecIdx) of vector value.
  723. Value *FindScalarSource(Value *src, unsigned vecIdx = 0) {
  724. Type *srcTy = src->getType()->getScalarType();
  725. while (src && !isa<UndefValue>(src)) {
  726. if (src->getType()->isVectorTy()) {
  727. if (InsertElementInst *IE = dyn_cast<InsertElementInst>(src)) {
  728. unsigned curIdx = (unsigned)cast<ConstantInt>(IE->getOperand(2))
  729. ->getUniqueInteger().getLimitedValue();
  730. src = IE->getOperand( (curIdx == vecIdx) ? 1 : 0 );
  731. } else if (ShuffleVectorInst *SV = dyn_cast<ShuffleVectorInst>(src)) {
  732. int newIdx = SV->getMaskValue(vecIdx);
  733. if (newIdx < 0)
  734. return UndefValue::get(srcTy);
  735. vecIdx = (unsigned)newIdx;
  736. src = SV->getOperand(0);
  737. unsigned numElt = src->getType()->getVectorNumElements();
  738. if (numElt <= vecIdx) {
  739. vecIdx -= numElt;
  740. src = SV->getOperand(1);
  741. }
  742. } else {
  743. return UndefValue::get(srcTy); // Didn't find it.
  744. }
  745. } else {
  746. if (ExtractElementInst *EE = dyn_cast<ExtractElementInst>(src)) {
  747. vecIdx = (unsigned)cast<ConstantInt>(EE->getIndexOperand())
  748. ->getUniqueInteger().getLimitedValue();
  749. src = EE->getVectorOperand();
  750. } else if (hlsl::IsConvergentMarker(src)) {
  751. src = hlsl::GetConvergentSource(src);
  752. } else {
  753. break; // Found it.
  754. }
  755. }
  756. }
  757. return src;
  758. }
  759. // Finds corresponding inputs, calls translation for each, and returns
  760. // resulting vector or scalar.
  761. // Uses functor that takes (inputElemID, rowIdx, colIdx), and returns
  762. // translation for one input scalar.
  763. Value *TranslateEvalHelper(CallInst *CI, Value *val, IRBuilder<> &Builder,
  764. std::function<Value*(Value*, Value*, Value*)> fnTranslateScalarInput) {
  765. Type *Ty = CI->getType();
  766. Value *result = UndefValue::get(Ty);
  767. if (Ty->isVectorTy()) {
  768. for (unsigned i = 0; i < Ty->getVectorNumElements(); ++i) {
  769. Value *InputEl = FindScalarSource(val, i);
  770. if (!IsValidLoadInput(InputEl)) {
  771. dxilutil::EmitErrorOnInstruction(CI, "attribute evaluation can only be done "
  772. "on values taken directly from inputs.");
  773. return result;
  774. }
  775. CallInst *loadInput = cast<CallInst>(InputEl);
  776. Value *inputElemID = loadInput->getArgOperand(DXIL::OperandIndex::kLoadInputIDOpIdx);
  777. Value *rowIdx = loadInput->getArgOperand(DXIL::OperandIndex::kLoadInputRowOpIdx);
  778. Value *colIdx = loadInput->getArgOperand(DXIL::OperandIndex::kLoadInputColOpIdx);
  779. Value *Elt = fnTranslateScalarInput(inputElemID, rowIdx, colIdx);
  780. result = Builder.CreateInsertElement(result, Elt, i);
  781. }
  782. }
  783. else {
  784. Value *InputEl = FindScalarSource(val);
  785. if (!IsValidLoadInput(InputEl)) {
  786. dxilutil::EmitErrorOnInstruction(CI, "attribute evaluation can only be done "
  787. "on values taken directly from inputs.");
  788. return result;
  789. }
  790. CallInst *loadInput = cast<CallInst>(InputEl);
  791. Value *inputElemID = loadInput->getArgOperand(DXIL::OperandIndex::kLoadInputIDOpIdx);
  792. Value *rowIdx = loadInput->getArgOperand(DXIL::OperandIndex::kLoadInputRowOpIdx);
  793. Value *colIdx = loadInput->getArgOperand(DXIL::OperandIndex::kLoadInputColOpIdx);
  794. result = fnTranslateScalarInput(inputElemID, rowIdx, colIdx);
  795. }
  796. return result;
  797. }
  798. Value *TranslateEvalSample(CallInst *CI, IntrinsicOp IOP, OP::OpCode op,
  799. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  800. hlsl::OP *hlslOP = &helper.hlslOP;
  801. Value *val = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  802. Value *sampleIdx = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  803. IRBuilder<> Builder(CI);
  804. OP::OpCode opcode = OP::OpCode::EvalSampleIndex;
  805. Value *opArg = hlslOP->GetU32Const((unsigned)opcode);
  806. Function *evalFunc = hlslOP->GetOpFunc(opcode, CI->getType()->getScalarType());
  807. return TranslateEvalHelper(CI, val, Builder,
  808. [&](Value *inputElemID, Value *rowIdx, Value *colIdx) -> Value* {
  809. return Builder.CreateCall(evalFunc, { opArg, inputElemID, rowIdx, colIdx, sampleIdx });
  810. }
  811. );
  812. }
  813. Value *TranslateEvalSnapped(CallInst *CI, IntrinsicOp IOP, OP::OpCode op,
  814. HLOperationLowerHelper &helper,
  815. HLObjectOperationLowerHelper *pObjHelper,
  816. bool &Translated) {
  817. hlsl::OP *hlslOP = &helper.hlslOP;
  818. Value *val = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  819. Value *offset = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  820. IRBuilder<> Builder(CI);
  821. Value *offsetX = Builder.CreateExtractElement(offset, (uint64_t)0);
  822. Value *offsetY = Builder.CreateExtractElement(offset, 1);
  823. OP::OpCode opcode = OP::OpCode::EvalSnapped;
  824. Value *opArg = hlslOP->GetU32Const((unsigned)opcode);
  825. Function *evalFunc = hlslOP->GetOpFunc(opcode, CI->getType()->getScalarType());
  826. return TranslateEvalHelper(CI, val, Builder,
  827. [&](Value *inputElemID, Value *rowIdx, Value *colIdx) -> Value* {
  828. return Builder.CreateCall(evalFunc, { opArg, inputElemID, rowIdx, colIdx, offsetX, offsetY });
  829. }
  830. );
  831. }
  832. Value *TranslateEvalCentroid(CallInst *CI, IntrinsicOp IOP, OP::OpCode op,
  833. HLOperationLowerHelper &helper,
  834. HLObjectOperationLowerHelper *pObjHelper,
  835. bool &Translated) {
  836. hlsl::OP *hlslOP = &helper.hlslOP;
  837. Value *val = CI->getArgOperand(DXIL::OperandIndex::kUnarySrc0OpIdx);
  838. IRBuilder<> Builder(CI);
  839. OP::OpCode opcode = OP::OpCode::EvalCentroid;
  840. Value *opArg = hlslOP->GetU32Const((unsigned)opcode);
  841. Function *evalFunc = hlslOP->GetOpFunc(opcode, CI->getType()->getScalarType());
  842. return TranslateEvalHelper(CI, val, Builder,
  843. [&](Value *inputElemID, Value *rowIdx, Value *colIdx) -> Value* {
  844. return Builder.CreateCall(evalFunc, { opArg, inputElemID, rowIdx, colIdx });
  845. }
  846. );
  847. }
  848. Value *TranslateGetAttributeAtVertex(CallInst *CI, IntrinsicOp IOP, OP::OpCode op,
  849. HLOperationLowerHelper &helper,
  850. HLObjectOperationLowerHelper *pObjHelper,
  851. bool &Translated) {
  852. DXASSERT(op == OP::OpCode::AttributeAtVertex, "Wrong opcode to translate");
  853. hlsl::OP *hlslOP = &helper.hlslOP;
  854. IRBuilder<> Builder(CI);
  855. Value *val = CI->getArgOperand(DXIL::OperandIndex::kBinarySrc0OpIdx);
  856. Value *vertexIdx = CI->getArgOperand(DXIL::OperandIndex::kBinarySrc1OpIdx);
  857. Value *vertexI8Idx = Builder.CreateTrunc(vertexIdx, Type::getInt8Ty(CI->getContext()));
  858. Value *opArg = hlslOP->GetU32Const((unsigned)op);
  859. Function *evalFunc = hlslOP->GetOpFunc(op, val->getType()->getScalarType());
  860. return TranslateEvalHelper(CI, val, Builder,
  861. [&](Value *inputElemID, Value *rowIdx, Value *colIdx) -> Value* {
  862. return Builder.CreateCall(evalFunc, { opArg, inputElemID, rowIdx, colIdx, vertexI8Idx });
  863. }
  864. );
  865. }
  866. Value *TrivialNoArgOperation(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  867. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  868. hlsl::OP *hlslOP = &helper.hlslOP;
  869. Type *Ty = Type::getVoidTy(CI->getContext());
  870. Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  871. Value *args[] = {opArg};
  872. IRBuilder<> Builder(CI);
  873. Value *dxilOp = TrivialDxilOperation(opcode, args, Ty, Ty, hlslOP, Builder);
  874. return dxilOp;
  875. }
  876. Value *TrivialNoArgWithRetOperation(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  877. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  878. hlsl::OP *hlslOP = &helper.hlslOP;
  879. Type *Ty = CI->getType();
  880. Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  881. Value *args[] = {opArg};
  882. IRBuilder<> Builder(CI);
  883. Value *dxilOp = TrivialDxilOperation(opcode, args, Ty, Ty, hlslOP, Builder);
  884. return dxilOp;
  885. }
  886. Value *TranslateGetRTSamplePos(CallInst *CI, IntrinsicOp IOP, OP::OpCode op,
  887. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  888. hlsl::OP *hlslOP = &helper.hlslOP;
  889. OP::OpCode opcode = OP::OpCode::RenderTargetGetSamplePosition;
  890. IRBuilder<> Builder(CI);
  891. Type *Ty = Type::getVoidTy(CI->getContext());
  892. Value *val = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  893. Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  894. Value *args[] = {opArg, val};
  895. Value *samplePos =
  896. TrivialDxilOperation(opcode, args, Ty, Ty, hlslOP, Builder);
  897. Value *result = UndefValue::get(CI->getType());
  898. Value *samplePosX = Builder.CreateExtractValue(samplePos, 0);
  899. Value *samplePosY = Builder.CreateExtractValue(samplePos, 1);
  900. result = Builder.CreateInsertElement(result, samplePosX, (uint64_t)0);
  901. result = Builder.CreateInsertElement(result, samplePosY, 1);
  902. return result;
  903. }
  904. // val QuadReadLaneAt(val, uint);
  905. Value *TranslateQuadReadLaneAt(CallInst *CI, IntrinsicOp IOP,
  906. OP::OpCode opcode,
  907. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  908. hlsl::OP *hlslOP = &helper.hlslOP;
  909. Value *refArgs[] = {nullptr, CI->getOperand(1), CI->getOperand(2)};
  910. return TrivialDxilOperation(DXIL::OpCode::QuadReadLaneAt, refArgs,
  911. CI->getOperand(1)->getType(), CI, hlslOP);
  912. }
  913. // Wave intrinsics of the form fn(val,QuadOpKind)->val
  914. Value *TranslateQuadReadAcross(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  915. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  916. hlsl::OP *hlslOP = &helper.hlslOP;
  917. DXIL::QuadOpKind opKind;
  918. switch (IOP) {
  919. case IntrinsicOp::IOP_QuadReadAcrossX: opKind = DXIL::QuadOpKind::ReadAcrossX; break;
  920. case IntrinsicOp::IOP_QuadReadAcrossY: opKind = DXIL::QuadOpKind::ReadAcrossY; break;
  921. default: DXASSERT_NOMSG(IOP == IntrinsicOp::IOP_QuadReadAcrossDiagonal);
  922. case IntrinsicOp::IOP_QuadReadAcrossDiagonal: opKind = DXIL::QuadOpKind::ReadAcrossDiagonal; break;
  923. }
  924. Constant *OpArg = hlslOP->GetI8Const((unsigned)opKind);
  925. Value *refArgs[] = {nullptr, CI->getOperand(1), OpArg};
  926. return TrivialDxilOperation(DXIL::OpCode::QuadOp, refArgs,
  927. CI->getOperand(1)->getType(), CI, hlslOP);
  928. }
  929. // WaveAllEqual(val<n>)->bool<n>
  930. Value *TranslateWaveAllEqual(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  931. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  932. hlsl::OP *hlslOP = &helper.hlslOP;
  933. Value *src = CI->getArgOperand(HLOperandIndex::kWaveAllEqualValueOpIdx);
  934. IRBuilder<> Builder(CI);
  935. Type *Ty = src->getType();
  936. Type *RetTy = Type::getInt1Ty(CI->getContext());
  937. if (Ty->isVectorTy())
  938. RetTy = VectorType::get(RetTy, Ty->getVectorNumElements());
  939. Constant *opArg = hlslOP->GetU32Const((unsigned)DXIL::OpCode::WaveActiveAllEqual);
  940. Value *args[] = {opArg, src};
  941. return TrivialDxilOperation(DXIL::OpCode::WaveActiveAllEqual, args, Ty, RetTy,
  942. hlslOP, Builder);
  943. }
  944. // WaveMatch(val<n>)->uint4
  945. Value *TranslateWaveMatch(CallInst *CI, IntrinsicOp IOP, OP::OpCode Opc,
  946. HLOperationLowerHelper &Helper,
  947. HLObjectOperationLowerHelper *ObjHelper,
  948. bool &Translated) {
  949. hlsl::OP *Op = &Helper.hlslOP;
  950. IRBuilder<> Builder(CI);
  951. // Generate a dx.op.waveMatch call for each scalar in the input, and perform
  952. // a bitwise AND between each result to derive the final bitmask in the case
  953. // of vector inputs.
  954. // (1) Collect the list of all scalar inputs (e.g. decompose vectors)
  955. SmallVector<Value *, 4> ScalarInputs;
  956. Value *Val = CI->getArgOperand(1);
  957. Type *ValTy = Val->getType();
  958. Type *EltTy = ValTy->getScalarType();
  959. if (ValTy->isVectorTy()) {
  960. for (uint64_t i = 0, e = ValTy->getVectorNumElements(); i != e; ++i) {
  961. Value *Elt = Builder.CreateExtractElement(Val, i);
  962. ScalarInputs.push_back(Elt);
  963. }
  964. } else {
  965. ScalarInputs.push_back(Val);
  966. }
  967. Value *Res = nullptr;
  968. Constant *OpcArg = Op->GetU32Const((unsigned)DXIL::OpCode::WaveMatch);
  969. Value *Fn = Op->GetOpFunc(OP::OpCode::WaveMatch, EltTy);
  970. // (2) For each scalar, emit a call to dx.op.waveMatch. If this is not the
  971. // first scalar, then AND the result with the accumulator.
  972. for (unsigned i = 0, e = ScalarInputs.size(); i != e; ++i) {
  973. Value *Args[] = { OpcArg, ScalarInputs[i] };
  974. Value *Call = Builder.CreateCall(Fn, Args);
  975. if (Res) {
  976. // Generate bitwise AND of the components
  977. for (unsigned j = 0; j != 4; ++j) {
  978. Value *ResVal = Builder.CreateExtractValue(Res, j);
  979. Value *CallVal = Builder.CreateExtractValue(Call, j);
  980. Value *And = Builder.CreateAnd(ResVal, CallVal);
  981. Res = Builder.CreateInsertValue(Res, And, j);
  982. }
  983. } else {
  984. Res = Call;
  985. }
  986. }
  987. // (3) Convert the final aggregate into a vector to make the types match
  988. Value *ResVec = UndefValue::get(CI->getType());
  989. for (unsigned i = 0; i != 4; ++i) {
  990. Value *Elt = Builder.CreateExtractValue(Res, i);
  991. ResVec = Builder.CreateInsertElement(ResVec, Elt, i);
  992. }
  993. return ResVec;
  994. }
  995. // Wave intrinsics of the form fn(valA)->valB, where no overloading takes place
  996. Value *TranslateWaveA2B(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  997. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  998. hlsl::OP *hlslOP = &helper.hlslOP;
  999. Value *refArgs[] = {nullptr, CI->getOperand(1)};
  1000. return TrivialDxilOperation(opcode, refArgs, helper.voidTy, CI, hlslOP);
  1001. }
  1002. // Wave ballot intrinsic.
  1003. Value *TranslateWaveBallot(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1004. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1005. // The high-level operation is uint4 ballot(i1).
  1006. // The DXIL operation is struct.u4 ballot(i1).
  1007. // To avoid updating users with more than a simple replace, we translate into
  1008. // a call into struct.u4, then reassemble the vector.
  1009. // Scalarization and constant propagation take care of cleanup.
  1010. IRBuilder<> B(CI);
  1011. // Make the DXIL call itself.
  1012. hlsl::OP *hlslOP = &helper.hlslOP;
  1013. Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  1014. Value *refArgs[] = { opArg, CI->getOperand(1) };
  1015. Function *dxilFunc = hlslOP->GetOpFunc(opcode, Type::getVoidTy(CI->getContext()));
  1016. Value *dxilVal = B.CreateCall(dxilFunc, refArgs, hlslOP->GetOpCodeName(opcode));
  1017. // Assign from the call results into a vector.
  1018. Type *ResTy = CI->getType();
  1019. DXASSERT_NOMSG(ResTy->isVectorTy() && ResTy->getVectorNumElements() == 4);
  1020. DXASSERT_NOMSG(dxilVal->getType()->isStructTy() &&
  1021. dxilVal->getType()->getNumContainedTypes() == 4);
  1022. // 'x' component is the first vector element, highest bits.
  1023. Value *ResVal = llvm::UndefValue::get(ResTy);
  1024. for (unsigned Idx = 0; Idx < 4; ++Idx) {
  1025. ResVal = B.CreateInsertElement(
  1026. ResVal, B.CreateExtractValue(dxilVal, ArrayRef<unsigned>(Idx)), Idx);
  1027. }
  1028. return ResVal;
  1029. }
  1030. static bool WaveIntrinsicNeedsSign(OP::OpCode opcode) {
  1031. return opcode == OP::OpCode::WaveActiveOp ||
  1032. opcode == OP::OpCode::WavePrefixOp;
  1033. }
  1034. static unsigned WaveIntrinsicToSignedOpKind(IntrinsicOp IOP) {
  1035. if (IOP == IntrinsicOp::IOP_WaveActiveUMax ||
  1036. IOP == IntrinsicOp::IOP_WaveActiveUMin ||
  1037. IOP == IntrinsicOp::IOP_WaveActiveUSum ||
  1038. IOP == IntrinsicOp::IOP_WaveActiveUProduct ||
  1039. IOP == IntrinsicOp::IOP_WaveMultiPrefixUProduct ||
  1040. IOP == IntrinsicOp::IOP_WaveMultiPrefixUSum ||
  1041. IOP == IntrinsicOp::IOP_WavePrefixUSum ||
  1042. IOP == IntrinsicOp::IOP_WavePrefixUProduct)
  1043. return (unsigned)DXIL::SignedOpKind::Unsigned;
  1044. return (unsigned)DXIL::SignedOpKind::Signed;
  1045. }
  1046. static unsigned WaveIntrinsicToOpKind(IntrinsicOp IOP) {
  1047. switch (IOP) {
  1048. // Bit operations.
  1049. case IntrinsicOp::IOP_WaveActiveBitOr:
  1050. return (unsigned)DXIL::WaveBitOpKind::Or;
  1051. case IntrinsicOp::IOP_WaveActiveBitAnd:
  1052. return (unsigned)DXIL::WaveBitOpKind::And;
  1053. case IntrinsicOp::IOP_WaveActiveBitXor:
  1054. return (unsigned)DXIL::WaveBitOpKind::Xor;
  1055. // Prefix operations.
  1056. case IntrinsicOp::IOP_WavePrefixSum:
  1057. case IntrinsicOp::IOP_WavePrefixUSum:
  1058. return (unsigned)DXIL::WaveOpKind::Sum;
  1059. case IntrinsicOp::IOP_WavePrefixProduct:
  1060. case IntrinsicOp::IOP_WavePrefixUProduct:
  1061. return (unsigned)DXIL::WaveOpKind::Product;
  1062. // Numeric operations.
  1063. case IntrinsicOp::IOP_WaveActiveMax:
  1064. case IntrinsicOp::IOP_WaveActiveUMax:
  1065. return (unsigned)DXIL::WaveOpKind::Max;
  1066. case IntrinsicOp::IOP_WaveActiveMin:
  1067. case IntrinsicOp::IOP_WaveActiveUMin:
  1068. return (unsigned)DXIL::WaveOpKind::Min;
  1069. case IntrinsicOp::IOP_WaveActiveSum:
  1070. case IntrinsicOp::IOP_WaveActiveUSum:
  1071. return (unsigned)DXIL::WaveOpKind::Sum;
  1072. case IntrinsicOp::IOP_WaveActiveProduct:
  1073. case IntrinsicOp::IOP_WaveActiveUProduct:
  1074. // MultiPrefix operations
  1075. case IntrinsicOp::IOP_WaveMultiPrefixBitAnd:
  1076. return (unsigned)DXIL::WaveMultiPrefixOpKind::And;
  1077. case IntrinsicOp::IOP_WaveMultiPrefixBitOr:
  1078. return (unsigned)DXIL::WaveMultiPrefixOpKind::Or;
  1079. case IntrinsicOp::IOP_WaveMultiPrefixBitXor:
  1080. return (unsigned)DXIL::WaveMultiPrefixOpKind::Xor;
  1081. case IntrinsicOp::IOP_WaveMultiPrefixProduct:
  1082. case IntrinsicOp::IOP_WaveMultiPrefixUProduct:
  1083. return (unsigned)DXIL::WaveMultiPrefixOpKind::Product;
  1084. case IntrinsicOp::IOP_WaveMultiPrefixSum:
  1085. case IntrinsicOp::IOP_WaveMultiPrefixUSum:
  1086. return (unsigned)DXIL::WaveMultiPrefixOpKind::Sum;
  1087. default:
  1088. DXASSERT(IOP == IntrinsicOp::IOP_WaveActiveProduct ||
  1089. IOP == IntrinsicOp::IOP_WaveActiveUProduct,
  1090. "else caller passed incorrect value");
  1091. return (unsigned)DXIL::WaveOpKind::Product;
  1092. }
  1093. }
  1094. // Wave intrinsics of the form fn(valA)->valA
  1095. Value *TranslateWaveA2A(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1096. HLOperationLowerHelper &helper,
  1097. HLObjectOperationLowerHelper *pObjHelper,
  1098. bool &Translated) {
  1099. hlsl::OP *hlslOP = &helper.hlslOP;
  1100. Constant *kindValInt = hlslOP->GetI8Const(WaveIntrinsicToOpKind(IOP));
  1101. Constant *signValInt = hlslOP->GetI8Const(WaveIntrinsicToSignedOpKind(IOP));
  1102. Value *refArgs[] = {nullptr, CI->getOperand(1), kindValInt, signValInt};
  1103. unsigned refArgCount = _countof(refArgs);
  1104. if (!WaveIntrinsicNeedsSign(opcode))
  1105. refArgCount--;
  1106. return TrivialDxilOperation(opcode,
  1107. llvm::ArrayRef<Value *>(refArgs, refArgCount),
  1108. CI->getOperand(1)->getType(), CI, hlslOP);
  1109. }
  1110. // WaveMultiPrefixOP(val<n>, mask) -> val<n>
  1111. Value *TranslateWaveMultiPrefix(CallInst *CI, IntrinsicOp IOP, OP::OpCode Opc,
  1112. HLOperationLowerHelper &Helper,
  1113. HLObjectOperationLowerHelper *ObjHelper,
  1114. bool &Translated) {
  1115. hlsl::OP *Op = &Helper.hlslOP;
  1116. Constant *KindValInt = Op->GetI8Const(WaveIntrinsicToOpKind(IOP));
  1117. Constant *SignValInt = Op->GetI8Const(WaveIntrinsicToSignedOpKind(IOP));
  1118. // Decompose mask into scalars
  1119. IRBuilder<> Builder(CI);
  1120. Value *Mask = CI->getArgOperand(2);
  1121. Value *Mask0 = Builder.CreateExtractElement(Mask, (uint64_t)0);
  1122. Value *Mask1 = Builder.CreateExtractElement(Mask, (uint64_t)1);
  1123. Value *Mask2 = Builder.CreateExtractElement(Mask, (uint64_t)2);
  1124. Value *Mask3 = Builder.CreateExtractElement(Mask, (uint64_t)3);
  1125. Value *Args[] = { nullptr, CI->getOperand(1),
  1126. Mask0, Mask1, Mask2, Mask3, KindValInt, SignValInt };
  1127. return TrivialDxilOperation(Opc, Args, CI->getOperand(1)->getType(), CI, Op);
  1128. }
  1129. // WaveMultiPrefixBitCount(i1, mask) -> i32
  1130. Value *TranslateWaveMultiPrefixBitCount(CallInst *CI, IntrinsicOp IOP,
  1131. OP::OpCode Opc,
  1132. HLOperationLowerHelper &Helper,
  1133. HLObjectOperationLowerHelper *ObjHelper,
  1134. bool &Translated) {
  1135. hlsl::OP *Op = &Helper.hlslOP;
  1136. // Decompose mask into scalars
  1137. IRBuilder<> Builder(CI);
  1138. Value *Mask = CI->getArgOperand(2);
  1139. Value *Mask0 = Builder.CreateExtractElement(Mask, (uint64_t)0);
  1140. Value *Mask1 = Builder.CreateExtractElement(Mask, (uint64_t)1);
  1141. Value *Mask2 = Builder.CreateExtractElement(Mask, (uint64_t)2);
  1142. Value *Mask3 = Builder.CreateExtractElement(Mask, (uint64_t)3);
  1143. Value *Args[] = { nullptr, CI->getOperand(1), Mask0, Mask1, Mask2, Mask3 };
  1144. return TrivialDxilOperation(Opc, Args, Helper.voidTy, CI, Op);
  1145. }
  1146. // Wave intrinsics of the form fn()->val
  1147. Value *TranslateWaveToVal(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1148. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1149. hlsl::OP *hlslOP = &helper.hlslOP;
  1150. Value *refArgs[] = {nullptr};
  1151. return TrivialDxilOperation(opcode, refArgs, helper.voidTy, CI, hlslOP);
  1152. }
  1153. // Wave intrinsics of the form fn(val,lane)->val
  1154. Value *TranslateWaveReadLaneAt(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1155. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1156. hlsl::OP *hlslOP = &helper.hlslOP;
  1157. Value *refArgs[] = {nullptr, CI->getOperand(1), CI->getOperand(2)};
  1158. return TrivialDxilOperation(DXIL::OpCode::WaveReadLaneAt, refArgs,
  1159. CI->getOperand(1)->getType(), CI, hlslOP);
  1160. }
  1161. // Wave intrinsics of the form fn(val)->val
  1162. Value *TranslateWaveReadLaneFirst(CallInst *CI, IntrinsicOp IOP,
  1163. OP::OpCode opcode,
  1164. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1165. hlsl::OP *hlslOP = &helper.hlslOP;
  1166. Value *refArgs[] = {nullptr, CI->getOperand(1)};
  1167. return TrivialDxilOperation(DXIL::OpCode::WaveReadLaneFirst, refArgs,
  1168. CI->getOperand(1)->getType(), CI, hlslOP);
  1169. }
  1170. Value *TranslateAbs(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1171. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1172. hlsl::OP *hlslOP = &helper.hlslOP;
  1173. Type *pOverloadTy = CI->getType()->getScalarType();
  1174. if (pOverloadTy->isFloatingPointTy()) {
  1175. Value *refArgs[] = {nullptr, CI->getOperand(1)};
  1176. return TrivialDxilOperation(DXIL::OpCode::FAbs, refArgs, CI->getType(), CI,
  1177. hlslOP);
  1178. } else {
  1179. Value *src = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  1180. IRBuilder<> Builder(CI);
  1181. Value *neg = Builder.CreateNeg(src);
  1182. return TrivialDxilBinaryOperation(DXIL::OpCode::IMax, src, neg, hlslOP,
  1183. Builder);
  1184. }
  1185. }
  1186. Value *TranslateUAbs(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1187. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1188. return CI->getOperand(HLOperandIndex::kUnaryOpSrc0Idx); // No-op
  1189. }
  1190. Value *GenerateCmpNEZero(Value *val, IRBuilder<> Builder) {
  1191. Type *Ty = val->getType();
  1192. Type *EltTy = Ty->getScalarType();
  1193. Constant *zero = nullptr;
  1194. if (EltTy->isFloatingPointTy())
  1195. zero = ConstantFP::get(EltTy, 0);
  1196. else
  1197. zero = ConstantInt::get(EltTy, 0);
  1198. if (Ty != EltTy) {
  1199. zero = ConstantVector::getSplat(Ty->getVectorNumElements(), zero);
  1200. }
  1201. if (EltTy->isFloatingPointTy())
  1202. return Builder.CreateFCmpUNE(val, zero);
  1203. else
  1204. return Builder.CreateICmpNE(val, zero);
  1205. }
  1206. Value *TranslateAllForValue(Value *val, IRBuilder<> &Builder) {
  1207. Value *cond = GenerateCmpNEZero(val, Builder);
  1208. Type *Ty = val->getType();
  1209. Type *EltTy = Ty->getScalarType();
  1210. if (Ty != EltTy) {
  1211. Value *Result = Builder.CreateExtractElement(cond, (uint64_t)0);
  1212. for (unsigned i = 1; i < Ty->getVectorNumElements(); i++) {
  1213. Value *Elt = Builder.CreateExtractElement(cond, i);
  1214. Result = Builder.CreateAnd(Result, Elt);
  1215. }
  1216. return Result;
  1217. } else
  1218. return cond;
  1219. }
  1220. Value *TranslateAll(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1221. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1222. Value *val = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  1223. IRBuilder<> Builder(CI);
  1224. return TranslateAllForValue(val, Builder);
  1225. }
  1226. Value *TranslateAny(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1227. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1228. Value *val = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  1229. IRBuilder<> Builder(CI);
  1230. Value *cond = GenerateCmpNEZero(val, Builder);
  1231. Type *Ty = val->getType();
  1232. Type *EltTy = Ty->getScalarType();
  1233. if (Ty != EltTy) {
  1234. Value *Result = Builder.CreateExtractElement(cond, (uint64_t)0);
  1235. for (unsigned i = 1; i < Ty->getVectorNumElements(); i++) {
  1236. Value *Elt = Builder.CreateExtractElement(cond, i);
  1237. Result = Builder.CreateOr(Result, Elt);
  1238. }
  1239. return Result;
  1240. } else
  1241. return cond;
  1242. }
  1243. Value *TranslateBitcast(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1244. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1245. Type *Ty = CI->getType();
  1246. Value *op = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  1247. IRBuilder<> Builder(CI);
  1248. return Builder.CreateBitCast(op, Ty);
  1249. }
  1250. Value *TranslateDoubleAsUint(Value *x, Value *lo, Value *hi,
  1251. IRBuilder<> &Builder, hlsl::OP *hlslOP) {
  1252. Type *Ty = x->getType();
  1253. Type *outTy = lo->getType()->getPointerElementType();
  1254. DXIL::OpCode opcode = DXIL::OpCode::SplitDouble;
  1255. Function *dxilFunc = hlslOP->GetOpFunc(opcode, Ty->getScalarType());
  1256. Value *opArg = hlslOP->GetU32Const(static_cast<unsigned>(opcode));
  1257. if (Ty->isVectorTy()) {
  1258. Value *retValLo = llvm::UndefValue::get(outTy);
  1259. Value *retValHi = llvm::UndefValue::get(outTy);
  1260. unsigned vecSize = Ty->getVectorNumElements();
  1261. for (unsigned i = 0; i < vecSize; i++) {
  1262. Value *Elt = Builder.CreateExtractElement(x, i);
  1263. Value *EltOP = Builder.CreateCall(dxilFunc, {opArg, Elt},
  1264. hlslOP->GetOpCodeName(opcode));
  1265. Value *EltLo = Builder.CreateExtractValue(EltOP, 0);
  1266. retValLo = Builder.CreateInsertElement(retValLo, EltLo, i);
  1267. Value *EltHi = Builder.CreateExtractValue(EltOP, 1);
  1268. retValHi = Builder.CreateInsertElement(retValHi, EltHi, i);
  1269. }
  1270. Builder.CreateStore(retValLo, lo);
  1271. Builder.CreateStore(retValHi, hi);
  1272. } else {
  1273. Value *retVal =
  1274. Builder.CreateCall(dxilFunc, {opArg, x}, hlslOP->GetOpCodeName(opcode));
  1275. Value *retValLo = Builder.CreateExtractValue(retVal, 0);
  1276. Value *retValHi = Builder.CreateExtractValue(retVal, 1);
  1277. Builder.CreateStore(retValLo, lo);
  1278. Builder.CreateStore(retValHi, hi);
  1279. }
  1280. return nullptr;
  1281. }
  1282. Value *TranslateAsUint(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1283. HLOperationLowerHelper &helper,
  1284. HLObjectOperationLowerHelper *pObjHelper,
  1285. bool &Translated) {
  1286. if (CI->getNumArgOperands() == 2) {
  1287. return TranslateBitcast(CI, IOP, opcode, helper, pObjHelper, Translated);
  1288. } else {
  1289. DXASSERT_NOMSG(CI->getNumArgOperands() == 4);
  1290. hlsl::OP *hlslOP = &helper.hlslOP;
  1291. Value *x = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc0Idx);
  1292. DXASSERT_NOMSG(x->getType()->getScalarType()->isDoubleTy());
  1293. Value *lo = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc1Idx);
  1294. Value *hi = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc2Idx);
  1295. IRBuilder<> Builder(CI);
  1296. return TranslateDoubleAsUint(x, lo, hi, Builder, hlslOP);
  1297. }
  1298. }
  1299. Value *TranslateAsDouble(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1300. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1301. hlsl::OP *hlslOP = &helper.hlslOP;
  1302. Value *x = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  1303. Value *y = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  1304. Value *opArg = hlslOP->GetU32Const(static_cast<unsigned>(opcode));
  1305. IRBuilder<> Builder(CI);
  1306. return TrivialDxilOperation(opcode, { opArg, x, y }, CI->getType(), CI->getType(), hlslOP, Builder);
  1307. }
  1308. Value *TranslateAtan2(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1309. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1310. hlsl::OP *hlslOP = &helper.hlslOP;
  1311. Value *y = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  1312. Value *x = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  1313. IRBuilder<> Builder(CI);
  1314. Value *tan = Builder.CreateFDiv(y, x);
  1315. Value *atan =
  1316. TrivialDxilUnaryOperation(OP::OpCode::Atan, tan, hlslOP, Builder);
  1317. // Modify atan result based on https://en.wikipedia.org/wiki/Atan2.
  1318. Type *Ty = x->getType();
  1319. Constant *pi = ConstantFP::get(Ty->getScalarType(), M_PI);
  1320. Constant *halfPi = ConstantFP::get(Ty->getScalarType(), M_PI / 2);
  1321. Constant *negHalfPi = ConstantFP::get(Ty->getScalarType(), -M_PI / 2);
  1322. Constant *zero = ConstantFP::get(Ty->getScalarType(), 0);
  1323. if (Ty->isVectorTy()) {
  1324. unsigned vecSize = Ty->getVectorNumElements();
  1325. pi = ConstantVector::getSplat(vecSize, pi);
  1326. halfPi = ConstantVector::getSplat(vecSize, halfPi);
  1327. negHalfPi = ConstantVector::getSplat(vecSize, negHalfPi);
  1328. zero = ConstantVector::getSplat(vecSize, zero);
  1329. }
  1330. Value *atanAddPi = Builder.CreateFAdd(atan, pi);
  1331. Value *atanSubPi = Builder.CreateFSub(atan, pi);
  1332. // x > 0 -> atan.
  1333. Value *result = atan;
  1334. Value *xLt0 = Builder.CreateFCmpOLT(x, zero);
  1335. Value *xEq0 = Builder.CreateFCmpOEQ(x, zero);
  1336. Value *yGe0 = Builder.CreateFCmpOGE(y, zero);
  1337. Value *yLt0 = Builder.CreateFCmpOLT(y, zero);
  1338. // x < 0, y >= 0 -> atan + pi.
  1339. Value *xLt0AndyGe0 = Builder.CreateAnd(xLt0, yGe0);
  1340. result = Builder.CreateSelect(xLt0AndyGe0, atanAddPi, result);
  1341. // x < 0, y < 0 -> atan - pi.
  1342. Value *xLt0AndYLt0 = Builder.CreateAnd(xLt0, yLt0);
  1343. result = Builder.CreateSelect(xLt0AndYLt0, atanSubPi, result);
  1344. // x == 0, y < 0 -> -pi/2
  1345. Value *xEq0AndYLt0 = Builder.CreateAnd(xEq0, yLt0);
  1346. result = Builder.CreateSelect(xEq0AndYLt0, negHalfPi, result);
  1347. // x == 0, y > 0 -> pi/2
  1348. Value *xEq0AndYGe0 = Builder.CreateAnd(xEq0, yGe0);
  1349. result = Builder.CreateSelect(xEq0AndYGe0, halfPi, result);
  1350. return result;
  1351. }
  1352. Value *TranslateClamp(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1353. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1354. hlsl::OP *hlslOP = &helper.hlslOP;
  1355. Type *Ty = CI->getType();
  1356. Type *EltTy = Ty->getScalarType();
  1357. DXIL::OpCode maxOp = DXIL::OpCode::FMax;
  1358. DXIL::OpCode minOp = DXIL::OpCode::FMin;
  1359. if (IOP == IntrinsicOp::IOP_uclamp) {
  1360. maxOp = DXIL::OpCode::UMax;
  1361. minOp = DXIL::OpCode::UMin;
  1362. } else if (EltTy->isIntegerTy()) {
  1363. maxOp = DXIL::OpCode::IMax;
  1364. minOp = DXIL::OpCode::IMin;
  1365. }
  1366. Value *x = CI->getArgOperand(HLOperandIndex::kClampOpXIdx);
  1367. Value *maxVal = CI->getArgOperand(HLOperandIndex::kClampOpMaxIdx);
  1368. Value *minVal = CI->getArgOperand(HLOperandIndex::kClampOpMinIdx);
  1369. IRBuilder<> Builder(CI);
  1370. // min(max(x, minVal), maxVal).
  1371. Value *maxXMinVal =
  1372. TrivialDxilBinaryOperation(maxOp, x, minVal, hlslOP, Builder);
  1373. return TrivialDxilBinaryOperation(minOp, maxXMinVal, maxVal, hlslOP, Builder);
  1374. }
  1375. Value *TranslateClip(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1376. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1377. hlsl::OP *hlslOP = &helper.hlslOP;
  1378. Function *discard =
  1379. hlslOP->GetOpFunc(OP::OpCode::Discard, Type::getVoidTy(CI->getContext()));
  1380. IRBuilder<> Builder(CI);
  1381. Value *cond = nullptr;
  1382. Value *arg = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  1383. if (VectorType *VT = dyn_cast<VectorType>(arg->getType())) {
  1384. Value *elt = Builder.CreateExtractElement(arg, (uint64_t)0);
  1385. cond = Builder.CreateFCmpOLT(elt, hlslOP->GetFloatConst(0));
  1386. for (unsigned i = 1; i < VT->getNumElements(); i++) {
  1387. Value *elt = Builder.CreateExtractElement(arg, i);
  1388. Value *eltCond = Builder.CreateFCmpOLT(elt, hlslOP->GetFloatConst(0));
  1389. cond = Builder.CreateOr(cond, eltCond);
  1390. }
  1391. } else
  1392. cond = Builder.CreateFCmpOLT(arg, hlslOP->GetFloatConst(0));
  1393. /*If discard condition evaluates to false at compile-time, then
  1394. don't emit the discard instruction.*/
  1395. if (ConstantInt *constCond = dyn_cast<ConstantInt>(cond))
  1396. if (!constCond->getLimitedValue())
  1397. return nullptr;
  1398. Constant *opArg = hlslOP->GetU32Const((unsigned)OP::OpCode::Discard);
  1399. Builder.CreateCall(discard, {opArg, cond});
  1400. return nullptr;
  1401. }
  1402. Value *TranslateCross(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1403. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1404. VectorType *VT = cast<VectorType>(CI->getType());
  1405. DXASSERT_NOMSG(VT->getNumElements() == 3);
  1406. Value *op0 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  1407. Value *op1 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  1408. IRBuilder<> Builder(CI);
  1409. Value *op0_x = Builder.CreateExtractElement(op0, (uint64_t)0);
  1410. Value *op0_y = Builder.CreateExtractElement(op0, 1);
  1411. Value *op0_z = Builder.CreateExtractElement(op0, 2);
  1412. Value *op1_x = Builder.CreateExtractElement(op1, (uint64_t)0);
  1413. Value *op1_y = Builder.CreateExtractElement(op1, 1);
  1414. Value *op1_z = Builder.CreateExtractElement(op1, 2);
  1415. auto MulSub = [&](Value *x0, Value *y0, Value *x1, Value *y1) -> Value * {
  1416. Value *xy = Builder.CreateFMul(x0, y1);
  1417. Value *yx = Builder.CreateFMul(y0, x1);
  1418. return Builder.CreateFSub(xy, yx);
  1419. };
  1420. Value *yz_zy = MulSub(op0_y, op0_z, op1_y, op1_z);
  1421. Value *zx_xz = MulSub(op0_z, op0_x, op1_z, op1_x);
  1422. Value *xy_yx = MulSub(op0_x, op0_y, op1_x, op1_y);
  1423. Value *cross = UndefValue::get(VT);
  1424. cross = Builder.CreateInsertElement(cross, yz_zy, (uint64_t)0);
  1425. cross = Builder.CreateInsertElement(cross, zx_xz, 1);
  1426. cross = Builder.CreateInsertElement(cross, xy_yx, 2);
  1427. return cross;
  1428. }
  1429. Value *TranslateDegrees(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1430. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1431. IRBuilder<> Builder(CI);
  1432. Type *Ty = CI->getType();
  1433. Value *val = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  1434. // 180/pi.
  1435. Constant *toDegreeConst = ConstantFP::get(Ty->getScalarType(), 180 / M_PI);
  1436. if (Ty != Ty->getScalarType()) {
  1437. toDegreeConst =
  1438. ConstantVector::getSplat(Ty->getVectorNumElements(), toDegreeConst);
  1439. }
  1440. return Builder.CreateFMul(toDegreeConst, val);
  1441. }
  1442. Value *TranslateDst(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1443. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1444. Value *src0 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  1445. Value *src1 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  1446. Type *Ty = src1->getType();
  1447. IRBuilder<> Builder(CI);
  1448. Value *Result = UndefValue::get(Ty);
  1449. Constant *oneConst = ConstantFP::get(Ty->getScalarType(), 1);
  1450. // dest.x = 1;
  1451. Result = Builder.CreateInsertElement(Result, oneConst, (uint64_t)0);
  1452. // dest.y = src0.y * src1.y;
  1453. Value *src0_y = Builder.CreateExtractElement(src0, 1);
  1454. Value *src1_y = Builder.CreateExtractElement(src1, 1);
  1455. Value *yMuly = Builder.CreateFMul(src0_y, src1_y);
  1456. Result = Builder.CreateInsertElement(Result, yMuly, 1);
  1457. // dest.z = src0.z;
  1458. Value *src0_z = Builder.CreateExtractElement(src0, 2);
  1459. Result = Builder.CreateInsertElement(Result, src0_z, 2);
  1460. // dest.w = src1.w;
  1461. Value *src1_w = Builder.CreateExtractElement(src1, 3);
  1462. Result = Builder.CreateInsertElement(Result, src1_w, 3);
  1463. return Result;
  1464. }
  1465. Value *TranslateFirstbitHi(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1466. HLOperationLowerHelper &helper,
  1467. HLObjectOperationLowerHelper *pObjHelper,
  1468. bool &Translated) {
  1469. Value *firstbitHi =
  1470. TrivialUnaryOperation(CI, IOP, opcode, helper, pObjHelper, Translated);
  1471. // firstbitHi == -1? -1 : (bitWidth-1 -firstbitHi);
  1472. IRBuilder<> Builder(CI);
  1473. Constant *neg1 = Builder.getInt32(-1);
  1474. Value *src = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  1475. Type *Ty = src->getType();
  1476. IntegerType *EltTy = cast<IntegerType>(Ty->getScalarType());
  1477. Constant *bitWidth = Builder.getInt32(EltTy->getBitWidth()-1);
  1478. if (Ty == Ty->getScalarType()) {
  1479. Value *sub = Builder.CreateSub(bitWidth, firstbitHi);
  1480. Value *cond = Builder.CreateICmpEQ(neg1, firstbitHi);
  1481. return Builder.CreateSelect(cond, neg1, sub);
  1482. } else {
  1483. Value *result = UndefValue::get(CI->getType());
  1484. unsigned vecSize = Ty->getVectorNumElements();
  1485. for (unsigned i = 0; i < vecSize; i++) {
  1486. Value *EltFirstBit = Builder.CreateExtractElement(firstbitHi, i);
  1487. Value *sub = Builder.CreateSub(bitWidth, EltFirstBit);
  1488. Value *cond = Builder.CreateICmpEQ(neg1, EltFirstBit);
  1489. Value *Elt = Builder.CreateSelect(cond, neg1, sub);
  1490. result = Builder.CreateInsertElement(result, Elt, i);
  1491. }
  1492. return result;
  1493. }
  1494. }
  1495. Value *TranslateFirstbitLo(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1496. HLOperationLowerHelper &helper,
  1497. HLObjectOperationLowerHelper *pObjHelper,
  1498. bool &Translated) {
  1499. Value *firstbitLo =
  1500. TrivialUnaryOperation(CI, IOP, opcode, helper, pObjHelper, Translated);
  1501. return firstbitLo;
  1502. }
  1503. Value *TranslateLit(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1504. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1505. Value *n_dot_l = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc0Idx);
  1506. Value *n_dot_h = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc1Idx);
  1507. Value *m = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc2Idx);
  1508. IRBuilder<> Builder(CI);
  1509. Type *Ty = m->getType();
  1510. Value *Result = UndefValue::get(VectorType::get(Ty, 4));
  1511. // Result = (ambient, diffuse, specular, 1)
  1512. // ambient = 1.
  1513. Constant *oneConst = ConstantFP::get(Ty, 1);
  1514. Result = Builder.CreateInsertElement(Result, oneConst, (uint64_t)0);
  1515. // Result.w = 1.
  1516. Result = Builder.CreateInsertElement(Result, oneConst, 3);
  1517. // diffuse = (n_dot_l < 0) ? 0 : n_dot_l.
  1518. Constant *zeroConst = ConstantFP::get(Ty, 0);
  1519. Value *nlCmp = Builder.CreateFCmpOLT(n_dot_l, zeroConst);
  1520. Value *diffuse = Builder.CreateSelect(nlCmp, zeroConst, n_dot_l);
  1521. Result = Builder.CreateInsertElement(Result, diffuse, 1);
  1522. // specular = ((n_dot_l < 0) || (n_dot_h < 0)) ? 0: (n_dot_h ^ m).
  1523. Value *nhCmp = Builder.CreateFCmpOLT(n_dot_h, zeroConst);
  1524. Value *specCond = Builder.CreateOr(nlCmp, nhCmp);
  1525. bool isFXCCompatMode = CI->getModule()->GetHLModule().GetHLOptions().bFXCCompatMode;
  1526. Value *nhPowM = TranslatePowImpl(&helper.hlslOP, Builder, n_dot_h, m, isFXCCompatMode);
  1527. Value *spec = Builder.CreateSelect(specCond, zeroConst, nhPowM);
  1528. Result = Builder.CreateInsertElement(Result, spec, 2);
  1529. return Result;
  1530. }
  1531. Value *TranslateRadians(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1532. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1533. IRBuilder<> Builder(CI);
  1534. Type *Ty = CI->getType();
  1535. Value *val = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  1536. // pi/180.
  1537. Constant *toRadianConst = ConstantFP::get(Ty->getScalarType(), M_PI / 180);
  1538. if (Ty != Ty->getScalarType()) {
  1539. toRadianConst =
  1540. ConstantVector::getSplat(Ty->getVectorNumElements(), toRadianConst);
  1541. }
  1542. return Builder.CreateFMul(toRadianConst, val);
  1543. }
  1544. Value *TranslateF16ToF32(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1545. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1546. IRBuilder<> Builder(CI);
  1547. Value *x = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  1548. Type *Ty = CI->getType();
  1549. Function *f16tof32 =
  1550. helper.hlslOP.GetOpFunc(opcode, helper.voidTy);
  1551. return TrivialDxilOperation(
  1552. f16tof32, opcode, {Builder.getInt32(static_cast<unsigned>(opcode)), x},
  1553. x->getType(), Ty, &helper.hlslOP, Builder);
  1554. }
  1555. Value *TranslateF32ToF16(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1556. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1557. IRBuilder<> Builder(CI);
  1558. Value *x = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  1559. Type *Ty = CI->getType();
  1560. Function *f32tof16 =
  1561. helper.hlslOP.GetOpFunc(opcode, helper.voidTy);
  1562. return TrivialDxilOperation(
  1563. f32tof16, opcode, {Builder.getInt32(static_cast<unsigned>(opcode)), x},
  1564. x->getType(), Ty, &helper.hlslOP, Builder);
  1565. }
  1566. Value *TranslateLength(CallInst *CI, Value *val, hlsl::OP *hlslOP) {
  1567. IRBuilder<> Builder(CI);
  1568. if (VectorType *VT = dyn_cast<VectorType>(val->getType())) {
  1569. Value *Elt = Builder.CreateExtractElement(val, (uint64_t)0);
  1570. unsigned size = VT->getNumElements();
  1571. if (size > 1) {
  1572. Value *Sum = Builder.CreateFMul(Elt, Elt);
  1573. for (unsigned i = 1; i < size; i++) {
  1574. Elt = Builder.CreateExtractElement(val, i);
  1575. Value *Mul = Builder.CreateFMul(Elt, Elt);
  1576. Sum = Builder.CreateFAdd(Sum, Mul);
  1577. }
  1578. DXIL::OpCode sqrt = DXIL::OpCode::Sqrt;
  1579. Function *dxilSqrt = hlslOP->GetOpFunc(sqrt, VT->getElementType());
  1580. Value *opArg = hlslOP->GetI32Const((unsigned)sqrt);
  1581. return Builder.CreateCall(dxilSqrt, {opArg, Sum},
  1582. hlslOP->GetOpCodeName(sqrt));
  1583. } else {
  1584. val = Elt;
  1585. }
  1586. }
  1587. DXIL::OpCode fabs = DXIL::OpCode::FAbs;
  1588. Function *dxilFAbs = hlslOP->GetOpFunc(fabs, val->getType());
  1589. Value *opArg = hlslOP->GetI32Const((unsigned)fabs);
  1590. return Builder.CreateCall(dxilFAbs, {opArg, val},
  1591. hlslOP->GetOpCodeName(fabs));
  1592. }
  1593. Value *TranslateLength(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1594. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1595. hlsl::OP *hlslOP = &helper.hlslOP;
  1596. Value *val = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  1597. return TranslateLength(CI, val, hlslOP);
  1598. }
  1599. Value *TranslateModF(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1600. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1601. hlsl::OP *hlslOP = &helper.hlslOP;
  1602. Value *val = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  1603. Value *outIntPtr = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  1604. IRBuilder<> Builder(CI);
  1605. Value *intP =
  1606. TrivialDxilUnaryOperation(OP::OpCode::Round_z, val, hlslOP, Builder);
  1607. Value *fracP = Builder.CreateFSub(val, intP);
  1608. Builder.CreateStore(intP, outIntPtr);
  1609. return fracP;
  1610. }
  1611. Value *TranslateDistance(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1612. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1613. hlsl::OP *hlslOP = &helper.hlslOP;
  1614. Value *src0 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  1615. Value *src1 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  1616. IRBuilder<> Builder(CI);
  1617. Value *sub = Builder.CreateFSub(src0, src1);
  1618. return TranslateLength(CI, sub, hlslOP);
  1619. }
  1620. Value *TranslateExp(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1621. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1622. hlsl::OP *hlslOP = &helper.hlslOP;
  1623. IRBuilder<> Builder(CI);
  1624. Type *Ty = CI->getType();
  1625. Value *val = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  1626. Constant *log2eConst = ConstantFP::get(Ty->getScalarType(), M_LOG2E);
  1627. if (Ty != Ty->getScalarType()) {
  1628. log2eConst =
  1629. ConstantVector::getSplat(Ty->getVectorNumElements(), log2eConst);
  1630. }
  1631. val = Builder.CreateFMul(log2eConst, val);
  1632. Value *exp = TrivialDxilUnaryOperation(OP::OpCode::Exp, val, hlslOP, Builder);
  1633. return exp;
  1634. }
  1635. Value *TranslateLog(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1636. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1637. hlsl::OP *hlslOP = &helper.hlslOP;
  1638. IRBuilder<> Builder(CI);
  1639. Type *Ty = CI->getType();
  1640. Value *val = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  1641. Constant *ln2Const = ConstantFP::get(Ty->getScalarType(), M_LN2);
  1642. if (Ty != Ty->getScalarType()) {
  1643. ln2Const = ConstantVector::getSplat(Ty->getVectorNumElements(), ln2Const);
  1644. }
  1645. Value *log = TrivialDxilUnaryOperation(OP::OpCode::Log, val, hlslOP, Builder);
  1646. return Builder.CreateFMul(ln2Const, log);
  1647. }
  1648. Value *TranslateLog10(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1649. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1650. hlsl::OP *hlslOP = &helper.hlslOP;
  1651. IRBuilder<> Builder(CI);
  1652. Type *Ty = CI->getType();
  1653. Value *val = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  1654. Constant *log2_10Const = ConstantFP::get(Ty->getScalarType(), M_LN2 / M_LN10);
  1655. if (Ty != Ty->getScalarType()) {
  1656. log2_10Const =
  1657. ConstantVector::getSplat(Ty->getVectorNumElements(), log2_10Const);
  1658. }
  1659. Value *log = TrivialDxilUnaryOperation(OP::OpCode::Log, val, hlslOP, Builder);
  1660. return Builder.CreateFMul(log2_10Const, log);
  1661. }
  1662. Value *TranslateFMod(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1663. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1664. hlsl::OP *hlslOP = &helper.hlslOP;
  1665. Value *src0 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  1666. Value *src1 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  1667. IRBuilder<> Builder(CI);
  1668. Value *div = Builder.CreateFDiv(src0, src1);
  1669. Value *negDiv = Builder.CreateFNeg(div);
  1670. Value *ge = Builder.CreateFCmpOGE(div, negDiv);
  1671. Value *absDiv =
  1672. TrivialDxilUnaryOperation(OP::OpCode::FAbs, div, hlslOP, Builder);
  1673. Value *frc =
  1674. TrivialDxilUnaryOperation(OP::OpCode::Frc, absDiv, hlslOP, Builder);
  1675. Value *negFrc = Builder.CreateFNeg(frc);
  1676. Value *realFrc = Builder.CreateSelect(ge, frc, negFrc);
  1677. return Builder.CreateFMul(realFrc, src1);
  1678. }
  1679. Value *TranslateFUIBinary(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1680. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1681. bool isFloat = CI->getType()->getScalarType()->isFloatingPointTy();
  1682. if (isFloat) {
  1683. switch (IOP) {
  1684. case IntrinsicOp::IOP_max:
  1685. opcode = OP::OpCode::FMax;
  1686. break;
  1687. case IntrinsicOp::IOP_min:
  1688. default:
  1689. DXASSERT_NOMSG(IOP == IntrinsicOp::IOP_min);
  1690. opcode = OP::OpCode::FMin;
  1691. break;
  1692. }
  1693. }
  1694. return TrivialBinaryOperation(CI, IOP, opcode, helper, pObjHelper, Translated);
  1695. }
  1696. Value *TranslateFUITrinary(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1697. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1698. bool isFloat = CI->getType()->getScalarType()->isFloatingPointTy();
  1699. if (isFloat) {
  1700. switch (IOP) {
  1701. case IntrinsicOp::IOP_mad:
  1702. default:
  1703. DXASSERT_NOMSG(IOP == IntrinsicOp::IOP_mad);
  1704. opcode = OP::OpCode::FMad;
  1705. break;
  1706. }
  1707. }
  1708. return TrivialTrinaryOperation(CI, IOP, opcode, helper, pObjHelper, Translated);
  1709. }
  1710. Value *TranslateFrexp(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1711. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1712. hlsl::OP *hlslOP = &helper.hlslOP;
  1713. Value *val = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  1714. Value *expPtr = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  1715. IRBuilder<> Builder(CI);
  1716. Type *i32Ty = Type::getInt32Ty(CI->getContext());
  1717. Constant *exponentMaskConst = ConstantInt::get(i32Ty, 0x7f800000);
  1718. Constant *mantisaMaskConst = ConstantInt::get(i32Ty, 0x007fffff);
  1719. Constant *exponentShiftConst = ConstantInt::get(i32Ty, 23);
  1720. Constant *mantisaOrConst = ConstantInt::get(i32Ty, 0x3f000000);
  1721. Constant *exponentBiasConst = ConstantInt::get(i32Ty, -(int)0x3f000000);
  1722. Constant *zeroVal = hlslOP->GetFloatConst(0);
  1723. // int iVal = asint(val);
  1724. Type *dstTy = i32Ty;
  1725. Type *Ty = val->getType();
  1726. if (Ty->isVectorTy()) {
  1727. unsigned vecSize = Ty->getVectorNumElements();
  1728. dstTy = VectorType::get(i32Ty, vecSize);
  1729. exponentMaskConst = ConstantVector::getSplat(vecSize, exponentMaskConst);
  1730. mantisaMaskConst = ConstantVector::getSplat(vecSize, mantisaMaskConst);
  1731. exponentShiftConst = ConstantVector::getSplat(vecSize, exponentShiftConst);
  1732. mantisaOrConst = ConstantVector::getSplat(vecSize, mantisaOrConst);
  1733. exponentBiasConst = ConstantVector::getSplat(vecSize, exponentBiasConst);
  1734. zeroVal = ConstantVector::getSplat(vecSize, zeroVal);
  1735. }
  1736. // bool ne = val != 0;
  1737. Value *notZero = Builder.CreateFCmpUNE(val, zeroVal);
  1738. notZero = Builder.CreateSExt(notZero, dstTy);
  1739. Value *intVal = Builder.CreateBitCast(val, dstTy);
  1740. // temp = intVal & exponentMask;
  1741. Value *temp = Builder.CreateAnd(intVal, exponentMaskConst);
  1742. // temp = temp + exponentBias;
  1743. temp = Builder.CreateAdd(temp, exponentBiasConst);
  1744. // temp = temp & ne;
  1745. temp = Builder.CreateAnd(temp, notZero);
  1746. // temp = temp >> exponentShift;
  1747. temp = Builder.CreateAShr(temp, exponentShiftConst);
  1748. // exp = float(temp);
  1749. Value *exp = Builder.CreateSIToFP(temp, Ty);
  1750. Builder.CreateStore(exp, expPtr);
  1751. // temp = iVal & mantisaMask;
  1752. temp = Builder.CreateAnd(intVal, mantisaMaskConst);
  1753. // temp = temp | mantisaOr;
  1754. temp = Builder.CreateOr(temp, mantisaOrConst);
  1755. // mantisa = temp & ne;
  1756. Value *mantisa = Builder.CreateAnd(temp, notZero);
  1757. return Builder.CreateBitCast(mantisa, Ty);
  1758. }
  1759. Value *TranslateLdExp(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1760. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1761. hlsl::OP *hlslOP = &helper.hlslOP;
  1762. Value *src0 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  1763. Value *src1 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  1764. IRBuilder<> Builder(CI);
  1765. Value *exp =
  1766. TrivialDxilUnaryOperation(OP::OpCode::Exp, src1, hlslOP, Builder);
  1767. return Builder.CreateFMul(exp, src0);
  1768. }
  1769. Value *TranslateFWidth(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1770. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1771. hlsl::OP *hlslOP = &helper.hlslOP;
  1772. Value *src = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  1773. IRBuilder<> Builder(CI);
  1774. Value *ddx =
  1775. TrivialDxilUnaryOperation(OP::OpCode::DerivCoarseX, src, hlslOP, Builder);
  1776. Value *absDdx =
  1777. TrivialDxilUnaryOperation(OP::OpCode::FAbs, ddx, hlslOP, Builder);
  1778. Value *ddy =
  1779. TrivialDxilUnaryOperation(OP::OpCode::DerivCoarseY, src, hlslOP, Builder);
  1780. Value *absDdy =
  1781. TrivialDxilUnaryOperation(OP::OpCode::FAbs, ddy, hlslOP, Builder);
  1782. return Builder.CreateFAdd(absDdx, absDdy);
  1783. }
  1784. Value *TranslateLerp(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1785. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1786. // x + s(y-x)
  1787. Value *x = CI->getArgOperand(HLOperandIndex::kLerpOpXIdx);
  1788. Value *y = CI->getArgOperand(HLOperandIndex::kLerpOpYIdx);
  1789. IRBuilder<> Builder(CI);
  1790. Value *ySubx = Builder.CreateFSub(y, x);
  1791. Value *s = CI->getArgOperand(HLOperandIndex::kLerpOpSIdx);
  1792. Value *sMulSub = Builder.CreateFMul(s, ySubx);
  1793. return Builder.CreateFAdd(x, sMulSub);
  1794. }
  1795. Value *TrivialDotOperation(OP::OpCode opcode, Value *src0,
  1796. Value *src1, hlsl::OP *hlslOP,
  1797. IRBuilder<> &Builder) {
  1798. Type *Ty = src0->getType()->getScalarType();
  1799. Function *dxilFunc = hlslOP->GetOpFunc(opcode, Ty);
  1800. Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  1801. SmallVector<Value *, 9> args;
  1802. args.emplace_back(opArg);
  1803. unsigned vecSize = src0->getType()->getVectorNumElements();
  1804. for (unsigned i = 0; i < vecSize; i++)
  1805. args.emplace_back(Builder.CreateExtractElement(src0, i));
  1806. for (unsigned i = 0; i < vecSize; i++)
  1807. args.emplace_back(Builder.CreateExtractElement(src1, i));
  1808. Value *dotOP = Builder.CreateCall(dxilFunc, args);
  1809. return dotOP;
  1810. }
  1811. Value *TranslateIDot(Value *arg0, Value *arg1, unsigned vecSize, hlsl::OP *hlslOP, IRBuilder<> &Builder, bool Unsigned = false) {
  1812. auto madOpCode = Unsigned ? DXIL::OpCode::UMad : DXIL::OpCode::IMad;
  1813. Value *Elt0 = Builder.CreateExtractElement(arg0, (uint64_t)0);
  1814. Value *Elt1 = Builder.CreateExtractElement(arg1, (uint64_t)0);
  1815. Value *Result = Builder.CreateMul(Elt0, Elt1);
  1816. for (unsigned iVecElt = 1; iVecElt < vecSize; ++iVecElt) {
  1817. Elt0 = Builder.CreateExtractElement(arg0, iVecElt);
  1818. Elt1 = Builder.CreateExtractElement(arg1, iVecElt);
  1819. Result = TrivialDxilTrinaryOperation(madOpCode, Elt0, Elt1, Result, hlslOP, Builder);
  1820. }
  1821. return Result;
  1822. }
  1823. Value *TranslateFDot(Value *arg0, Value *arg1, unsigned vecSize,
  1824. hlsl::OP *hlslOP, IRBuilder<> &Builder) {
  1825. switch (vecSize) {
  1826. case 2:
  1827. return TrivialDotOperation(OP::OpCode::Dot2, arg0, arg1, hlslOP, Builder);
  1828. break;
  1829. case 3:
  1830. return TrivialDotOperation(OP::OpCode::Dot3, arg0, arg1, hlslOP, Builder);
  1831. break;
  1832. case 4:
  1833. return TrivialDotOperation(OP::OpCode::Dot4, arg0, arg1, hlslOP, Builder);
  1834. break;
  1835. default:
  1836. DXASSERT(vecSize == 1, "wrong vector size");
  1837. {
  1838. Value *vecMul = Builder.CreateFMul(arg0, arg1);
  1839. return Builder.CreateExtractElement(vecMul, (uint64_t)0);
  1840. }
  1841. break;
  1842. }
  1843. }
  1844. Value *TranslateDot(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1845. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1846. hlsl::OP *hlslOP = &helper.hlslOP;
  1847. Value *arg0 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  1848. Type *Ty = arg0->getType();
  1849. unsigned vecSize = Ty->getVectorNumElements();
  1850. Value *arg1 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  1851. IRBuilder<> Builder(CI);
  1852. if (Ty->getScalarType()->isFloatingPointTy()) {
  1853. return TranslateFDot(arg0, arg1, vecSize, hlslOP, Builder);
  1854. } else {
  1855. return TranslateIDot(arg0, arg1, vecSize, hlslOP, Builder);
  1856. }
  1857. }
  1858. Value *TranslateNormalize(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1859. HLOperationLowerHelper &helper,
  1860. HLObjectOperationLowerHelper *pObjHelper,
  1861. bool &Translated) {
  1862. hlsl::OP *hlslOP = &helper.hlslOP;
  1863. Type *Ty = CI->getType();
  1864. Value *op = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  1865. VectorType *VT = cast<VectorType>(Ty);
  1866. unsigned vecSize = VT->getNumElements();
  1867. IRBuilder<> Builder(CI);
  1868. Value *dot = TranslateFDot(op, op, vecSize, hlslOP, Builder);
  1869. DXIL::OpCode rsqrtOp = DXIL::OpCode::Rsqrt;
  1870. Function *dxilRsqrt = hlslOP->GetOpFunc(rsqrtOp, VT->getElementType());
  1871. Value *rsqrt = Builder.CreateCall(
  1872. dxilRsqrt, {hlslOP->GetI32Const((unsigned)rsqrtOp), dot},
  1873. hlslOP->GetOpCodeName(rsqrtOp));
  1874. Value *vecRsqrt = UndefValue::get(VT);
  1875. for (unsigned i = 0; i < VT->getNumElements(); i++)
  1876. vecRsqrt = Builder.CreateInsertElement(vecRsqrt, rsqrt, i);
  1877. return Builder.CreateFMul(op, vecRsqrt);
  1878. }
  1879. Value *TranslateReflect(CallInst *CI, IntrinsicOp IOP, OP::OpCode op,
  1880. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1881. hlsl::OP *hlslOP = &helper.hlslOP;
  1882. // v = i - 2 * n * dot(i, n).
  1883. IRBuilder<> Builder(CI);
  1884. Value *i = CI->getArgOperand(HLOperandIndex::kReflectOpIIdx);
  1885. Value *n = CI->getArgOperand(HLOperandIndex::kReflectOpNIdx);
  1886. VectorType *VT = cast<VectorType>(i->getType());
  1887. unsigned vecSize = VT->getNumElements();
  1888. Value *dot = TranslateFDot(i, n, vecSize, hlslOP, Builder);
  1889. // 2 * dot (i, n).
  1890. dot = Builder.CreateFMul(hlslOP->GetFloatConst(2), dot);
  1891. // 2 * n * dot(i, n).
  1892. Value *vecDot = Builder.CreateVectorSplat(vecSize, dot);
  1893. Value *nMulDot = Builder.CreateFMul(vecDot, n);
  1894. // i - 2 * n * dot(i, n).
  1895. return Builder.CreateFSub(i, nMulDot);
  1896. }
  1897. Value *TranslateRefract(CallInst *CI, IntrinsicOp IOP, OP::OpCode op,
  1898. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1899. hlsl::OP *hlslOP = &helper.hlslOP;
  1900. // d = dot(i, n);
  1901. // t = 1 - eta * eta * ( 1 - d*d);
  1902. // cond = t >= 1;
  1903. // r = eta * i - (eta * d + sqrt(t)) * n;
  1904. // return cond ? r : 0;
  1905. IRBuilder<> Builder(CI);
  1906. Value *i = CI->getArgOperand(HLOperandIndex::kRefractOpIIdx);
  1907. Value *n = CI->getArgOperand(HLOperandIndex::kRefractOpNIdx);
  1908. Value *eta = CI->getArgOperand(HLOperandIndex::kRefractOpEtaIdx);
  1909. VectorType *VT = cast<VectorType>(i->getType());
  1910. unsigned vecSize = VT->getNumElements();
  1911. Value *dot = TranslateFDot(i, n, vecSize, hlslOP, Builder);
  1912. // eta * eta;
  1913. Value *eta2 = Builder.CreateFMul(eta, eta);
  1914. // d*d;
  1915. Value *dot2 = Builder.CreateFMul(dot, dot);
  1916. Constant *one = ConstantFP::get(eta->getType(), 1);
  1917. Constant *zero = ConstantFP::get(eta->getType(), 0);
  1918. // 1- d*d;
  1919. dot2 = Builder.CreateFSub(one, dot2);
  1920. // eta * eta * (1-d*d);
  1921. eta2 = Builder.CreateFMul(dot2, eta2);
  1922. // t = 1 - eta * eta * ( 1 - d*d);
  1923. Value *t = Builder.CreateFSub(one, eta2);
  1924. // cond = t >= 0;
  1925. Value *cond = Builder.CreateFCmpOGE(t, zero);
  1926. // eta * i;
  1927. Value *vecEta = UndefValue::get(VT);
  1928. for (unsigned i = 0; i < vecSize; i++)
  1929. vecEta = Builder.CreateInsertElement(vecEta, eta, i);
  1930. Value *etaMulI = Builder.CreateFMul(i, vecEta);
  1931. // sqrt(t);
  1932. Value *sqrt = TrivialDxilUnaryOperation(OP::OpCode::Sqrt, t, hlslOP, Builder);
  1933. // eta * d;
  1934. Value *etaMulD = Builder.CreateFMul(eta, dot);
  1935. // eta * d + sqrt(t);
  1936. Value *etaSqrt = Builder.CreateFAdd(etaMulD, sqrt);
  1937. // (eta * d + sqrt(t)) * n;
  1938. Value *vecEtaSqrt = Builder.CreateVectorSplat(vecSize, etaSqrt);
  1939. Value *r = Builder.CreateFMul(vecEtaSqrt, n);
  1940. // r = eta * i - (eta * d + sqrt(t)) * n;
  1941. r = Builder.CreateFSub(etaMulI, r);
  1942. Value *refract =
  1943. Builder.CreateSelect(cond, r, ConstantVector::getSplat(vecSize, zero));
  1944. return refract;
  1945. }
  1946. Value *TranslateSmoothStep(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1947. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1948. hlsl::OP *hlslOP = &helper.hlslOP;
  1949. // s = saturate((x-min)/(max-min)).
  1950. IRBuilder<> Builder(CI);
  1951. Value *minVal = CI->getArgOperand(HLOperandIndex::kSmoothStepOpMinIdx);
  1952. Value *maxVal = CI->getArgOperand(HLOperandIndex::kSmoothStepOpMaxIdx);
  1953. Value *maxSubMin = Builder.CreateFSub(maxVal, minVal);
  1954. Value *x = CI->getArgOperand(HLOperandIndex::kSmoothStepOpXIdx);
  1955. Value *xSubMin = Builder.CreateFSub(x, minVal);
  1956. Value *satVal = Builder.CreateFDiv(xSubMin, maxSubMin);
  1957. Value *s = TrivialDxilUnaryOperation(DXIL::OpCode::Saturate, satVal, hlslOP,
  1958. Builder);
  1959. // return s * s *(3-2*s).
  1960. Constant *c2 = ConstantFP::get(CI->getType(),2);
  1961. Constant *c3 = ConstantFP::get(CI->getType(),3);
  1962. Value *sMul2 = Builder.CreateFMul(s, c2);
  1963. Value *result = Builder.CreateFSub(c3, sMul2);
  1964. result = Builder.CreateFMul(s, result);
  1965. result = Builder.CreateFMul(s, result);
  1966. return result;
  1967. }
  1968. Value *TranslateMSad4(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  1969. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  1970. hlsl::OP *hlslOP = &helper.hlslOP;
  1971. Value *ref = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc0Idx);
  1972. Value *src = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc1Idx);
  1973. Value *accum = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc2Idx);
  1974. Type *Ty = CI->getType();
  1975. IRBuilder<> Builder(CI);
  1976. Value *vecRef = UndefValue::get(Ty);
  1977. for (unsigned i = 0; i < 4; i++)
  1978. vecRef = Builder.CreateInsertElement(vecRef, ref, i);
  1979. Value *srcX = Builder.CreateExtractElement(src, (uint64_t)0);
  1980. Value *srcY = Builder.CreateExtractElement(src, 1);
  1981. Value *byteSrc = UndefValue::get(Ty);
  1982. byteSrc = Builder.CreateInsertElement(byteSrc, srcX, (uint64_t)0);
  1983. // ushr r0.yzw, srcX, l(0, 8, 16, 24)
  1984. // bfi r1.yzw, l(0, 8, 16, 24), l(0, 24, 16, 8), srcX, r0.yyzw
  1985. Value *bfiOpArg =
  1986. hlslOP->GetU32Const(static_cast<unsigned>(DXIL::OpCode::Bfi));
  1987. Value *imm8 = hlslOP->GetU32Const(8);
  1988. Value *imm16 = hlslOP->GetU32Const(16);
  1989. Value *imm24 = hlslOP->GetU32Const(24);
  1990. Ty = ref->getType();
  1991. // Get x[31:8].
  1992. Value *srcXShift = Builder.CreateLShr(srcX, imm8);
  1993. // y[0~7] x[31:8].
  1994. Value *byteSrcElt = TrivialDxilOperation(
  1995. DXIL::OpCode::Bfi, {bfiOpArg, imm8, imm24, srcY, srcXShift}, Ty, Ty,
  1996. hlslOP, Builder);
  1997. byteSrc = Builder.CreateInsertElement(byteSrc, byteSrcElt, 1);
  1998. // Get x[31:16].
  1999. srcXShift = Builder.CreateLShr(srcXShift, imm8);
  2000. // y[0~15] x[31:16].
  2001. byteSrcElt = TrivialDxilOperation(DXIL::OpCode::Bfi,
  2002. {bfiOpArg, imm16, imm16, srcY, srcXShift},
  2003. Ty, Ty, hlslOP, Builder);
  2004. byteSrc = Builder.CreateInsertElement(byteSrc, byteSrcElt, 2);
  2005. // Get x[31:24].
  2006. srcXShift = Builder.CreateLShr(srcXShift, imm8);
  2007. // y[0~23] x[31:24].
  2008. byteSrcElt = TrivialDxilOperation(DXIL::OpCode::Bfi,
  2009. {bfiOpArg, imm24, imm8, srcY, srcXShift},
  2010. Ty, Ty, hlslOP, Builder);
  2011. byteSrc = Builder.CreateInsertElement(byteSrc, byteSrcElt, 3);
  2012. // Msad on vecref and byteSrc.
  2013. return TrivialDxilTrinaryOperation(DXIL::OpCode::Msad, vecRef, byteSrc, accum,
  2014. hlslOP, Builder);
  2015. }
  2016. Value *TranslateRCP(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  2017. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  2018. Type *Ty = CI->getType();
  2019. Value *op = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  2020. IRBuilder<> Builder(CI);
  2021. Constant *one = ConstantFP::get(Ty->getScalarType(), 1.0);
  2022. if (Ty != Ty->getScalarType()) {
  2023. one = ConstantVector::getSplat(Ty->getVectorNumElements(), one);
  2024. }
  2025. return Builder.CreateFDiv(one, op);
  2026. }
  2027. Value *TranslateSign(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  2028. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  2029. Value *val = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  2030. Type *Ty = val->getType();
  2031. bool IsInt = Ty->getScalarType()->isIntegerTy();
  2032. IRBuilder<> Builder(CI);
  2033. Constant *zero = Constant::getNullValue(Ty);
  2034. Value *zeroLtVal = IsInt ? Builder.CreateICmpSLT(zero, val) : Builder.CreateFCmpOLT(zero, val);
  2035. Value *valLtZero = IsInt ? Builder.CreateICmpSLT(val, zero) : Builder.CreateFCmpOLT(val, zero);
  2036. zeroLtVal = Builder.CreateZExt(zeroLtVal, CI->getType());
  2037. valLtZero = Builder.CreateZExt(valLtZero, CI->getType());
  2038. return Builder.CreateSub(zeroLtVal, valLtZero);
  2039. }
  2040. Value *TranslateUSign(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  2041. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  2042. Value *val = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  2043. Type *Ty = val->getType();
  2044. IRBuilder<> Builder(CI);
  2045. Constant *zero = Constant::getNullValue(Ty);
  2046. Value *nonZero = Builder.CreateICmpNE(val, zero);
  2047. return Builder.CreateZExt(nonZero, CI->getType());
  2048. }
  2049. Value *TranslateStep(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  2050. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  2051. Value *edge = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  2052. Value *x = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  2053. Type *Ty = CI->getType();
  2054. IRBuilder<> Builder(CI);
  2055. Constant *one = ConstantFP::get(Ty->getScalarType(), 1.0);
  2056. Constant *zero = ConstantFP::get(Ty->getScalarType(), 0);
  2057. Value *cond = Builder.CreateFCmpOLT(x, edge);
  2058. if (Ty != Ty->getScalarType()) {
  2059. one = ConstantVector::getSplat(Ty->getVectorNumElements(), one);
  2060. zero = ConstantVector::getSplat(Ty->getVectorNumElements(), zero);
  2061. }
  2062. return Builder.CreateSelect(cond, zero, one);
  2063. }
  2064. Value *TranslatePow(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  2065. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  2066. hlsl::OP *hlslOP = &helper.hlslOP;
  2067. Value *x = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  2068. Value *y = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  2069. bool isFXCCompatMode = CI->getModule()->GetHLModule().GetHLOptions().bFXCCompatMode;
  2070. IRBuilder<> Builder(CI);
  2071. return TranslatePowImpl(hlslOP,Builder,x,y,isFXCCompatMode);
  2072. }
  2073. Value *TranslatePrintf(CallInst *CI, IntrinsicOp IOP, DXIL::OpCode opcode,
  2074. HLOperationLowerHelper &helper,
  2075. HLObjectOperationLowerHelper *pObjHelper,
  2076. bool &Translated) {
  2077. Translated = false;
  2078. CI->getContext().emitError(CI, "use of undeclared identifier 'printf'");
  2079. return nullptr;
  2080. }
  2081. Value *TranslateFaceforward(CallInst *CI, IntrinsicOp IOP, OP::OpCode op,
  2082. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  2083. hlsl::OP *hlslOP = &helper.hlslOP;
  2084. Type *Ty = CI->getType();
  2085. Value *n = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc0Idx);
  2086. Value *i = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc1Idx);
  2087. Value *ng = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc2Idx);
  2088. IRBuilder<> Builder(CI);
  2089. unsigned vecSize = Ty->getVectorNumElements();
  2090. // -n x sign(dot(i, ng)).
  2091. Value *dotOp = TranslateFDot(i, ng, vecSize, hlslOP, Builder);
  2092. Constant *zero = ConstantFP::get(Ty->getScalarType(), 0);
  2093. Value *dotLtZero = Builder.CreateFCmpOLT(dotOp, zero);
  2094. Value *negN = Builder.CreateFNeg(n);
  2095. Value *faceforward = Builder.CreateSelect(dotLtZero, n, negN);
  2096. return faceforward;
  2097. }
  2098. Value *TrivialSetMeshOutputCounts(CallInst *CI, IntrinsicOp IOP, OP::OpCode op,
  2099. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  2100. hlsl::OP *hlslOP = &helper.hlslOP;
  2101. Value *src0 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  2102. Value *src1 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  2103. IRBuilder<> Builder(CI);
  2104. Constant *opArg = hlslOP->GetU32Const((unsigned)op);
  2105. Value *args[] = { opArg, src0, src1 };
  2106. Function *dxilFunc = hlslOP->GetOpFunc(op, Type::getVoidTy(CI->getContext()));
  2107. Builder.CreateCall(dxilFunc, args);
  2108. return nullptr;
  2109. }
  2110. Value *TrivialDispatchMesh(CallInst *CI, IntrinsicOp IOP, OP::OpCode op,
  2111. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  2112. hlsl::OP *hlslOP = &helper.hlslOP;
  2113. Value *src0 = CI->getArgOperand(HLOperandIndex::kDispatchMeshOpThreadX);
  2114. Value *src1 = CI->getArgOperand(HLOperandIndex::kDispatchMeshOpThreadY);
  2115. Value *src2 = CI->getArgOperand(HLOperandIndex::kDispatchMeshOpThreadZ);
  2116. Value *src3 = CI->getArgOperand(HLOperandIndex::kDispatchMeshOpPayload);
  2117. IRBuilder<> Builder(CI);
  2118. Constant *opArg = hlslOP->GetU32Const((unsigned)op);
  2119. Value *args[] = { opArg, src0, src1, src2, src3 };
  2120. Function *dxilFunc = hlslOP->GetOpFunc(op, src3->getType());
  2121. Builder.CreateCall(dxilFunc, args);
  2122. return nullptr;
  2123. }
  2124. }
  2125. // MOP intrinsics
  2126. namespace {
  2127. Value *TranslateGetSamplePosition(CallInst *CI, IntrinsicOp IOP, OP::OpCode op,
  2128. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  2129. hlsl::OP *hlslOP = &helper.hlslOP;
  2130. Value *handle = CI->getArgOperand(HLOperandIndex::kHandleOpIdx);
  2131. IRBuilder<> Builder(CI);
  2132. Value *sampleIdx =
  2133. CI->getArgOperand(HLOperandIndex::kGetSamplePositionSampleIdxOpIndex);
  2134. OP::OpCode opcode = OP::OpCode::Texture2DMSGetSamplePosition;
  2135. llvm::Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  2136. Function *dxilFunc =
  2137. hlslOP->GetOpFunc(opcode, Type::getVoidTy(CI->getContext()));
  2138. Value *args[] = {opArg, handle, sampleIdx};
  2139. Value *samplePos = Builder.CreateCall(dxilFunc, args);
  2140. Value *result = UndefValue::get(CI->getType());
  2141. Value *samplePosX = Builder.CreateExtractValue(samplePos, 0);
  2142. Value *samplePosY = Builder.CreateExtractValue(samplePos, 1);
  2143. result = Builder.CreateInsertElement(result, samplePosX, (uint64_t)0);
  2144. result = Builder.CreateInsertElement(result, samplePosY, 1);
  2145. return result;
  2146. }
  2147. Value *TranslateGetDimensions(CallInst *CI, IntrinsicOp IOP, OP::OpCode op,
  2148. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  2149. hlsl::OP *hlslOP = &helper.hlslOP;
  2150. Value *handle = CI->getArgOperand(HLOperandIndex::kHandleOpIdx);
  2151. DxilResource::Kind RK = pObjHelper->GetRK(handle);
  2152. IRBuilder<> Builder(CI);
  2153. OP::OpCode opcode = OP::OpCode::GetDimensions;
  2154. llvm::Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  2155. Function *dxilFunc =
  2156. hlslOP->GetOpFunc(opcode, Type::getVoidTy(CI->getContext()));
  2157. Type *i32Ty = Type::getInt32Ty(CI->getContext());
  2158. Value *mipLevel = UndefValue::get(i32Ty);
  2159. unsigned widthOpIdx = HLOperandIndex::kGetDimensionsMipWidthOpIndex;
  2160. switch (RK) {
  2161. case DxilResource::Kind::Texture1D:
  2162. case DxilResource::Kind::Texture1DArray:
  2163. case DxilResource::Kind::Texture2D:
  2164. case DxilResource::Kind::Texture2DArray:
  2165. case DxilResource::Kind::TextureCube:
  2166. case DxilResource::Kind::TextureCubeArray:
  2167. case DxilResource::Kind::Texture3D: {
  2168. Value *opMipLevel =
  2169. CI->getArgOperand(HLOperandIndex::kGetDimensionsMipLevelOpIndex);
  2170. // mipLevel is in parameter, should not be pointer.
  2171. if (!opMipLevel->getType()->isPointerTy())
  2172. mipLevel = opMipLevel;
  2173. else {
  2174. // No mip level.
  2175. widthOpIdx = HLOperandIndex::kGetDimensionsNoMipWidthOpIndex;
  2176. mipLevel = ConstantInt::get(i32Ty, 0);
  2177. }
  2178. } break;
  2179. default:
  2180. widthOpIdx = HLOperandIndex::kGetDimensionsNoMipWidthOpIndex;
  2181. break;
  2182. }
  2183. Value *args[] = {opArg, handle, mipLevel};
  2184. Value *dims = Builder.CreateCall(dxilFunc, args);
  2185. unsigned dimensionIdx = 0;
  2186. Value *width = Builder.CreateExtractValue(dims, dimensionIdx++);
  2187. Value *widthPtr = CI->getArgOperand(widthOpIdx);
  2188. if (widthPtr->getType()->getPointerElementType()->isFloatingPointTy())
  2189. width = Builder.CreateSIToFP(width,
  2190. widthPtr->getType()->getPointerElementType());
  2191. Builder.CreateStore(width, widthPtr);
  2192. if (DXIL::IsStructuredBuffer(RK)) {
  2193. // Set stride.
  2194. Value *stridePtr = CI->getArgOperand(widthOpIdx + 1);
  2195. const DataLayout &DL = helper.dataLayout;
  2196. Value *handle = CI->getArgOperand(HLOperandIndex::kHandleOpIdx);
  2197. Type *bufTy = pObjHelper->GetResourceType(handle);
  2198. Type *bufRetTy = bufTy->getStructElementType(0);
  2199. unsigned stride = DL.getTypeAllocSize(bufRetTy);
  2200. Builder.CreateStore(hlslOP->GetU32Const(stride), stridePtr);
  2201. } else {
  2202. if (widthOpIdx == HLOperandIndex::kGetDimensionsMipWidthOpIndex ||
  2203. // Samples is in w channel too.
  2204. RK == DXIL::ResourceKind::Texture2DMS) {
  2205. // Has mip.
  2206. for (unsigned argIdx = widthOpIdx + 1;
  2207. argIdx < CI->getNumArgOperands() - 1; argIdx++) {
  2208. Value *dim = Builder.CreateExtractValue(dims, dimensionIdx++);
  2209. Value *ptr = CI->getArgOperand(argIdx);
  2210. if (ptr->getType()->getPointerElementType()->isFloatingPointTy())
  2211. dim = Builder.CreateSIToFP(dim,
  2212. ptr->getType()->getPointerElementType());
  2213. Builder.CreateStore(dim, ptr);
  2214. }
  2215. // NumOfLevel is in w channel.
  2216. dimensionIdx = 3;
  2217. Value *dim = Builder.CreateExtractValue(dims, dimensionIdx);
  2218. Value *ptr = CI->getArgOperand(CI->getNumArgOperands() - 1);
  2219. if (ptr->getType()->getPointerElementType()->isFloatingPointTy())
  2220. dim =
  2221. Builder.CreateSIToFP(dim, ptr->getType()->getPointerElementType());
  2222. Builder.CreateStore(dim, ptr);
  2223. } else {
  2224. for (unsigned argIdx = widthOpIdx + 1; argIdx < CI->getNumArgOperands();
  2225. argIdx++) {
  2226. Value *dim = Builder.CreateExtractValue(dims, dimensionIdx++);
  2227. Value *ptr = CI->getArgOperand(argIdx);
  2228. if (ptr->getType()->getPointerElementType()->isFloatingPointTy())
  2229. dim = Builder.CreateSIToFP(dim,
  2230. ptr->getType()->getPointerElementType());
  2231. Builder.CreateStore(dim, ptr);
  2232. }
  2233. }
  2234. }
  2235. return nullptr;
  2236. }
  2237. Value *GenerateUpdateCounter(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  2238. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  2239. hlsl::OP *hlslOP = &helper.hlslOP;
  2240. Value *handle = CI->getArgOperand(HLOperandIndex::kHandleOpIdx);
  2241. pObjHelper->MarkHasCounter(handle, helper.i8Ty);
  2242. bool bInc = IOP == IntrinsicOp::MOP_IncrementCounter;
  2243. IRBuilder<> Builder(CI);
  2244. OP::OpCode OpCode = OP::OpCode::BufferUpdateCounter;
  2245. Value *OpCodeArg = hlslOP->GetU32Const((unsigned)OpCode);
  2246. Value *IncVal = hlslOP->GetI8Const(bInc ? 1 : -1);
  2247. // Create BufferUpdateCounter call.
  2248. Value *Args[] = {OpCodeArg, handle, IncVal};
  2249. Function *F =
  2250. hlslOP->GetOpFunc(OpCode, Type::getVoidTy(handle->getContext()));
  2251. return Builder.CreateCall(F, Args);
  2252. }
  2253. static Value *ScalarizeResRet(Type *RetTy, Value *ResRet, IRBuilder<> &Builder) {
  2254. // Extract value part.
  2255. Value *retVal = llvm::UndefValue::get(RetTy);
  2256. if (RetTy->isVectorTy()) {
  2257. for (unsigned i = 0; i < RetTy->getVectorNumElements(); i++) {
  2258. Value *retComp = Builder.CreateExtractValue(ResRet, i);
  2259. retVal = Builder.CreateInsertElement(retVal, retComp, i);
  2260. }
  2261. } else {
  2262. retVal = Builder.CreateExtractValue(ResRet, 0);
  2263. }
  2264. return retVal;
  2265. }
  2266. static Value *ScalarizeElements(Type *RetTy, ArrayRef<Value*> Elts, IRBuilder<> &Builder) {
  2267. // Extract value part.
  2268. Value *retVal = llvm::UndefValue::get(RetTy);
  2269. if (RetTy->isVectorTy()) {
  2270. unsigned vecSize = RetTy->getVectorNumElements();
  2271. DXASSERT(vecSize <= Elts.size(), "vector size mismatch");
  2272. for (unsigned i = 0; i < vecSize; i++) {
  2273. Value *retComp = Elts[i];
  2274. retVal = Builder.CreateInsertElement(retVal, retComp, i);
  2275. }
  2276. } else {
  2277. retVal = Elts[0];
  2278. }
  2279. return retVal;
  2280. }
  2281. void UpdateStatus(Value *ResRet, Value *status, IRBuilder<> &Builder,
  2282. hlsl::OP *hlslOp) {
  2283. if (status && !isa<UndefValue>(status)) {
  2284. Value *statusVal = Builder.CreateExtractValue(ResRet, DXIL::kResRetStatusIndex);
  2285. Value *checkAccessOp = hlslOp->GetI32Const(
  2286. static_cast<unsigned>(DXIL::OpCode::CheckAccessFullyMapped));
  2287. Function *checkAccessFn = hlslOp->GetOpFunc(
  2288. DXIL::OpCode::CheckAccessFullyMapped, statusVal->getType());
  2289. // CheckAccess on status.
  2290. Value *bStatus =
  2291. Builder.CreateCall(checkAccessFn, {checkAccessOp, statusVal});
  2292. Value *extStatus =
  2293. Builder.CreateZExt(bStatus, Type::getInt32Ty(status->getContext()));
  2294. Builder.CreateStore(extStatus, status);
  2295. }
  2296. }
  2297. Value *SplatToVector(Value *Elt, Type *DstTy, IRBuilder<> &Builder) {
  2298. Value *Result = UndefValue::get(DstTy);
  2299. for (unsigned i = 0; i < DstTy->getVectorNumElements(); i++)
  2300. Result = Builder.CreateInsertElement(Result, Elt, i);
  2301. return Result;
  2302. }
  2303. Value *TranslateMul(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  2304. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  2305. hlsl::OP *hlslOP = &helper.hlslOP;
  2306. Value *arg0 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  2307. Value *arg1 = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  2308. Type *arg0Ty = arg0->getType();
  2309. Type *arg1Ty = arg1->getType();
  2310. IRBuilder<> Builder(CI);
  2311. if (arg0Ty->isVectorTy()) {
  2312. if (arg1Ty->isVectorTy()) {
  2313. // mul(vector, vector) == dot(vector, vector)
  2314. unsigned vecSize = arg0Ty->getVectorNumElements();
  2315. if (arg0Ty->getScalarType()->isFloatingPointTy()) {
  2316. return TranslateFDot(arg0, arg1, vecSize, hlslOP, Builder);
  2317. }
  2318. else {
  2319. return TranslateIDot(arg0, arg1, vecSize, hlslOP, Builder, IOP == IntrinsicOp::IOP_umul);
  2320. }
  2321. }
  2322. else {
  2323. // mul(vector, scalar) == vector * scalar-splat
  2324. arg1 = SplatToVector(arg1, arg0Ty, Builder);
  2325. }
  2326. }
  2327. else {
  2328. if (arg1Ty->isVectorTy()) {
  2329. // mul(scalar, vector) == scalar-splat * vector
  2330. arg0 = SplatToVector(arg0, arg1Ty, Builder);
  2331. }
  2332. // else mul(scalar, scalar) == scalar * scalar;
  2333. }
  2334. // create fmul/mul for the pair of vectors or scalars
  2335. if (arg0Ty->getScalarType()->isFloatingPointTy()) {
  2336. return Builder.CreateFMul(arg0, arg1);
  2337. }
  2338. else {
  2339. return Builder.CreateMul(arg0, arg1);
  2340. }
  2341. }
  2342. // Sample intrinsics.
  2343. struct SampleHelper {
  2344. SampleHelper(CallInst *CI, OP::OpCode op, HLObjectOperationLowerHelper *pObjHelper);
  2345. OP::OpCode opcode = OP::OpCode::NumOpCodes;
  2346. DXIL::ResourceKind resourceKind = DXIL::ResourceKind::Invalid;
  2347. Value *sampledTexHandle = nullptr;
  2348. Value *texHandle = nullptr;
  2349. Value *samplerHandle = nullptr;
  2350. static const unsigned kMaxCoordDimensions = 4;
  2351. unsigned coordDimensions = 0;
  2352. Value *coord[kMaxCoordDimensions];
  2353. Value *compareValue = nullptr;
  2354. Value *bias = nullptr;
  2355. Value *lod = nullptr;
  2356. // SampleGrad only.
  2357. static const unsigned kMaxDDXYDimensions = 3;
  2358. Value *ddx[kMaxDDXYDimensions];
  2359. Value *ddy[kMaxDDXYDimensions];
  2360. // Optional.
  2361. static const unsigned kMaxOffsetDimensions = 3;
  2362. unsigned offsetDimensions = 0;
  2363. Value *offset[kMaxOffsetDimensions];
  2364. Value *clamp = nullptr;
  2365. Value *status = nullptr;
  2366. unsigned maxHLOperandRead = 0;
  2367. Value *ReadHLOperand(CallInst *CI, unsigned opIdx) {
  2368. if (CI->getNumArgOperands() > opIdx) {
  2369. maxHLOperandRead = std::max(maxHLOperandRead, opIdx);
  2370. return CI->getArgOperand(opIdx);
  2371. }
  2372. return nullptr;
  2373. }
  2374. void TranslateCoord(CallInst *CI, unsigned coordIdx) {
  2375. Value *coordArg = ReadHLOperand(CI, coordIdx);
  2376. DXASSERT_NOMSG(coordArg);
  2377. DXASSERT(coordArg->getType()->getVectorNumElements() == coordDimensions,
  2378. "otherwise, HL coordinate dimensions mismatch");
  2379. IRBuilder<> Builder(CI);
  2380. for (unsigned i = 0; i < coordDimensions; i++)
  2381. coord[i] = Builder.CreateExtractElement(coordArg, i);
  2382. Value *undefF = UndefValue::get(Type::getFloatTy(CI->getContext()));
  2383. for (unsigned i = coordDimensions; i < kMaxCoordDimensions; i++)
  2384. coord[i] = undefF;
  2385. }
  2386. void TranslateOffset(CallInst *CI, unsigned offsetIdx) {
  2387. IntegerType *i32Ty = Type::getInt32Ty(CI->getContext());
  2388. if (Value *offsetArg = ReadHLOperand(CI, offsetIdx)) {
  2389. DXASSERT(offsetArg->getType()->getVectorNumElements() == offsetDimensions,
  2390. "otherwise, HL coordinate dimensions mismatch");
  2391. IRBuilder<> Builder(CI);
  2392. for (unsigned i = 0; i < offsetDimensions; i++)
  2393. offset[i] = Builder.CreateExtractElement(offsetArg, i);
  2394. } else {
  2395. // Use zeros for offsets when not specified, not undef.
  2396. Value *zero = ConstantInt::get(i32Ty, (uint64_t)0);
  2397. for (unsigned i = 0; i < offsetDimensions; i++)
  2398. offset[i] = zero;
  2399. }
  2400. // Use undef for components that should not be used for this resource dim.
  2401. Value *undefI = UndefValue::get(i32Ty);
  2402. for (unsigned i = offsetDimensions; i < kMaxOffsetDimensions; i++)
  2403. offset[i] = undefI;
  2404. }
  2405. void SetBias(CallInst *CI, unsigned biasIdx) {
  2406. // Clamp bias for immediate.
  2407. bias = ReadHLOperand(CI, biasIdx);
  2408. DXASSERT_NOMSG(bias);
  2409. if (ConstantFP *FP = dyn_cast<ConstantFP>(bias)) {
  2410. float v = FP->getValueAPF().convertToFloat();
  2411. if (v > DXIL::kMaxMipLodBias)
  2412. bias = ConstantFP::get(FP->getType(), DXIL::kMaxMipLodBias);
  2413. if (v < DXIL::kMinMipLodBias)
  2414. bias = ConstantFP::get(FP->getType(), DXIL::kMinMipLodBias);
  2415. }
  2416. }
  2417. void SetLOD(CallInst *CI, unsigned lodIdx) {
  2418. lod = ReadHLOperand(CI, lodIdx);
  2419. DXASSERT_NOMSG(lod);
  2420. }
  2421. void SetCompareValue(CallInst *CI, unsigned cmpIdx) {
  2422. compareValue = ReadHLOperand(CI, cmpIdx);
  2423. DXASSERT_NOMSG(compareValue);
  2424. }
  2425. void SetClamp(CallInst *CI, unsigned clampIdx) {
  2426. if ((clamp = ReadHLOperand(CI, clampIdx))) {
  2427. if (clamp->getType()->isVectorTy()) {
  2428. IRBuilder<> Builder(CI);
  2429. clamp = Builder.CreateExtractElement(clamp, (uint64_t)0);
  2430. }
  2431. } else
  2432. clamp = UndefValue::get(Type::getFloatTy(CI->getContext()));
  2433. }
  2434. void SetStatus(CallInst *CI, unsigned statusIdx) {
  2435. status = ReadHLOperand(CI, statusIdx);
  2436. }
  2437. void SetDDX(CallInst *CI, unsigned ddxIdx) {
  2438. SetDDXY(CI, ddx, ReadHLOperand(CI, ddxIdx));
  2439. }
  2440. void SetDDY(CallInst *CI, unsigned ddyIdx) {
  2441. SetDDXY(CI, ddy, ReadHLOperand(CI, ddyIdx));
  2442. }
  2443. void SetDDXY(CallInst *CI, MutableArrayRef<Value *> ddxy, Value *ddxyArg) {
  2444. DXASSERT_NOMSG(ddxyArg);
  2445. IRBuilder<> Builder(CI);
  2446. unsigned ddxySize = ddxyArg->getType()->getVectorNumElements();
  2447. for (unsigned i = 0; i < ddxySize; i++)
  2448. ddxy[i] = Builder.CreateExtractElement(ddxyArg, i);
  2449. Value *undefF = UndefValue::get(Type::getFloatTy(CI->getContext()));
  2450. for (unsigned i = ddxySize; i < kMaxDDXYDimensions; i++)
  2451. ddxy[i] = undefF;
  2452. }
  2453. };
  2454. SampleHelper::SampleHelper(
  2455. CallInst *CI, OP::OpCode op, HLObjectOperationLowerHelper *pObjHelper)
  2456. : opcode(op) {
  2457. texHandle = CI->getArgOperand(HLOperandIndex::kHandleOpIdx);
  2458. resourceKind = pObjHelper->GetRK(texHandle);
  2459. if (resourceKind == DXIL::ResourceKind::Invalid) {
  2460. opcode = DXIL::OpCode::NumOpCodes;
  2461. return;
  2462. }
  2463. coordDimensions = opcode == DXIL::OpCode::CalculateLOD ? DxilResource::GetNumDimensionsForCalcLOD(resourceKind)
  2464. : DxilResource::GetNumCoords(resourceKind);
  2465. offsetDimensions = DxilResource::GetNumOffsets(resourceKind);
  2466. const bool bFeedbackOp = hlsl::OP::IsDxilOpFeedback(op);
  2467. sampledTexHandle = bFeedbackOp ? CI->getArgOperand(HLOperandIndex::kWriteSamplerFeedbackSampledArgIndex)
  2468. : nullptr;
  2469. const unsigned kSamplerArgIndex = bFeedbackOp ? HLOperandIndex::kWriteSamplerFeedbackSamplerArgIndex
  2470. : HLOperandIndex::kSampleSamplerArgIndex;
  2471. samplerHandle = CI->getArgOperand(kSamplerArgIndex);
  2472. const unsigned kCoordArgIdx = bFeedbackOp ? HLOperandIndex::kWriteSamplerFeedbackCoordArgIndex
  2473. : HLOperandIndex::kSampleCoordArgIndex;
  2474. TranslateCoord(CI, kCoordArgIdx);
  2475. // TextureCube does not support offsets, shifting each subsequent arg index down by 1
  2476. unsigned cube = (resourceKind == DXIL::ResourceKind::TextureCube ||
  2477. resourceKind == DXIL::ResourceKind::TextureCubeArray)
  2478. ? 1 : 0;
  2479. switch (op) {
  2480. case OP::OpCode::Sample:
  2481. TranslateOffset(CI, cube ? HLOperandIndex::kInvalidIdx : HLOperandIndex::kSampleOffsetArgIndex);
  2482. SetClamp(CI, HLOperandIndex::kSampleClampArgIndex - cube);
  2483. SetStatus(CI, HLOperandIndex::kSampleStatusArgIndex - cube);
  2484. break;
  2485. case OP::OpCode::SampleLevel:
  2486. SetLOD(CI, HLOperandIndex::kSampleLLevelArgIndex);
  2487. TranslateOffset(CI, cube ? HLOperandIndex::kInvalidIdx : HLOperandIndex::kSampleLOffsetArgIndex);
  2488. SetStatus(CI, HLOperandIndex::kSampleLStatusArgIndex - cube);
  2489. break;
  2490. case OP::OpCode::SampleBias:
  2491. SetBias(CI, HLOperandIndex::kSampleBBiasArgIndex);
  2492. TranslateOffset(CI, cube ? HLOperandIndex::kInvalidIdx : HLOperandIndex::kSampleBOffsetArgIndex);
  2493. SetClamp(CI, HLOperandIndex::kSampleBClampArgIndex - cube);
  2494. SetStatus(CI, HLOperandIndex::kSampleBStatusArgIndex - cube);
  2495. break;
  2496. case OP::OpCode::SampleCmp:
  2497. SetCompareValue(CI, HLOperandIndex::kSampleCmpCmpValArgIndex);
  2498. TranslateOffset(CI, cube ? HLOperandIndex::kInvalidIdx : HLOperandIndex::kSampleCmpOffsetArgIndex);
  2499. SetClamp(CI, HLOperandIndex::kSampleCmpClampArgIndex - cube);
  2500. SetStatus(CI, HLOperandIndex::kSampleCmpStatusArgIndex - cube);
  2501. break;
  2502. case OP::OpCode::SampleCmpLevelZero:
  2503. SetCompareValue(CI, HLOperandIndex::kSampleCmpLZCmpValArgIndex);
  2504. TranslateOffset(CI, cube ? HLOperandIndex::kInvalidIdx : HLOperandIndex::kSampleCmpLZOffsetArgIndex);
  2505. SetStatus(CI, HLOperandIndex::kSampleCmpLZStatusArgIndex - cube);
  2506. break;
  2507. case OP::OpCode::SampleGrad:
  2508. SetDDX(CI, HLOperandIndex::kSampleGDDXArgIndex);
  2509. SetDDY(CI, HLOperandIndex::kSampleGDDYArgIndex);
  2510. TranslateOffset(CI, cube ? HLOperandIndex::kInvalidIdx : HLOperandIndex::kSampleGOffsetArgIndex);
  2511. SetClamp(CI, HLOperandIndex::kSampleGClampArgIndex - cube);
  2512. SetStatus(CI, HLOperandIndex::kSampleGStatusArgIndex - cube);
  2513. break;
  2514. case OP::OpCode::CalculateLOD:
  2515. // Only need coord for LOD calculation.
  2516. break;
  2517. case OP::OpCode::WriteSamplerFeedback:
  2518. SetClamp(CI, HLOperandIndex::kWriteSamplerFeedback_ClampArgIndex);
  2519. break;
  2520. case OP::OpCode::WriteSamplerFeedbackBias:
  2521. SetBias(CI, HLOperandIndex::kWriteSamplerFeedbackBias_BiasArgIndex);
  2522. SetClamp(CI, HLOperandIndex::kWriteSamplerFeedbackBias_ClampArgIndex);
  2523. break;
  2524. case OP::OpCode::WriteSamplerFeedbackGrad:
  2525. SetDDX(CI, HLOperandIndex::kWriteSamplerFeedbackGrad_DdxArgIndex);
  2526. SetDDY(CI, HLOperandIndex::kWriteSamplerFeedbackGrad_DdyArgIndex);
  2527. SetClamp(CI, HLOperandIndex::kWriteSamplerFeedbackGrad_ClampArgIndex);
  2528. break;
  2529. case OP::OpCode::WriteSamplerFeedbackLevel:
  2530. SetLOD(CI, HLOperandIndex::kWriteSamplerFeedbackLevel_LodArgIndex);
  2531. break;
  2532. default:
  2533. DXASSERT(0, "invalid opcode for Sample");
  2534. break;
  2535. }
  2536. DXASSERT(maxHLOperandRead == CI->getNumArgOperands() - 1,
  2537. "otherwise, unused HL arguments for Sample op");
  2538. }
  2539. Value *TranslateCalculateLOD(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  2540. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  2541. hlsl::OP *hlslOP = &helper.hlslOP;
  2542. SampleHelper sampleHelper(CI, OP::OpCode::CalculateLOD, pObjHelper);
  2543. if (sampleHelper.opcode == DXIL::OpCode::NumOpCodes) {
  2544. Translated = false;
  2545. return nullptr;
  2546. }
  2547. bool bClamped = IOP == IntrinsicOp::MOP_CalculateLevelOfDetail;
  2548. IRBuilder<> Builder(CI);
  2549. Value *opArg =
  2550. hlslOP->GetU32Const(static_cast<unsigned>(OP::OpCode::CalculateLOD));
  2551. Value *clamped = hlslOP->GetI1Const(bClamped);
  2552. Value *args[] = {opArg,
  2553. sampleHelper.texHandle,
  2554. sampleHelper.samplerHandle,
  2555. sampleHelper.coord[0],
  2556. sampleHelper.coord[1],
  2557. sampleHelper.coord[2],
  2558. clamped};
  2559. Function *dxilFunc = hlslOP->GetOpFunc(OP::OpCode::CalculateLOD,
  2560. Type::getFloatTy(opArg->getContext()));
  2561. Value *LOD = Builder.CreateCall(dxilFunc, args);
  2562. return LOD;
  2563. }
  2564. Value *TranslateCheckAccess(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  2565. HLOperationLowerHelper &helper,
  2566. HLObjectOperationLowerHelper *pObjHelper,
  2567. bool &Translated) {
  2568. // Translate CheckAccess into uint->bool, later optimization should remove it.
  2569. // Real checkaccess is generated in UpdateStatus.
  2570. IRBuilder<> Builder(CI);
  2571. Value *V = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  2572. return Builder.CreateTrunc(V, helper.i1Ty);
  2573. }
  2574. void GenerateDxilSample(CallInst *CI, Function *F, ArrayRef<Value *> sampleArgs,
  2575. Value *status, hlsl::OP *hlslOp) {
  2576. IRBuilder<> Builder(CI);
  2577. CallInst *call = Builder.CreateCall(F, sampleArgs);
  2578. dxilutil::MigrateDebugValue(CI, call);
  2579. // extract value part
  2580. Value *retVal = ScalarizeResRet(CI->getType(), call, Builder);
  2581. // Replace ret val.
  2582. CI->replaceAllUsesWith(retVal);
  2583. // get status
  2584. if (status) {
  2585. UpdateStatus(call, status, Builder, hlslOp);
  2586. }
  2587. }
  2588. Value *TranslateSample(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  2589. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  2590. hlsl::OP *hlslOP = &helper.hlslOP;
  2591. SampleHelper sampleHelper(CI, opcode, pObjHelper);
  2592. if (sampleHelper.opcode == DXIL::OpCode::NumOpCodes) {
  2593. Translated = false;
  2594. return nullptr;
  2595. }
  2596. Type *Ty = CI->getType();
  2597. Function *F = hlslOP->GetOpFunc(opcode, Ty->getScalarType());
  2598. Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  2599. switch (opcode) {
  2600. case OP::OpCode::Sample: {
  2601. Value *sampleArgs[] = {
  2602. opArg, sampleHelper.texHandle, sampleHelper.samplerHandle,
  2603. // Coord.
  2604. sampleHelper.coord[0], sampleHelper.coord[1], sampleHelper.coord[2],
  2605. sampleHelper.coord[3],
  2606. // Offset.
  2607. sampleHelper.offset[0], sampleHelper.offset[1], sampleHelper.offset[2],
  2608. // Clamp.
  2609. sampleHelper.clamp};
  2610. GenerateDxilSample(CI, F, sampleArgs, sampleHelper.status, hlslOP);
  2611. } break;
  2612. case OP::OpCode::SampleLevel: {
  2613. Value *sampleArgs[] = {
  2614. opArg, sampleHelper.texHandle, sampleHelper.samplerHandle,
  2615. // Coord.
  2616. sampleHelper.coord[0], sampleHelper.coord[1], sampleHelper.coord[2],
  2617. sampleHelper.coord[3],
  2618. // Offset.
  2619. sampleHelper.offset[0], sampleHelper.offset[1], sampleHelper.offset[2],
  2620. // LOD.
  2621. sampleHelper.lod};
  2622. GenerateDxilSample(CI, F, sampleArgs, sampleHelper.status, hlslOP);
  2623. } break;
  2624. case OP::OpCode::SampleGrad: {
  2625. Value *sampleArgs[] = {
  2626. opArg, sampleHelper.texHandle, sampleHelper.samplerHandle,
  2627. // Coord.
  2628. sampleHelper.coord[0], sampleHelper.coord[1], sampleHelper.coord[2],
  2629. sampleHelper.coord[3],
  2630. // Offset.
  2631. sampleHelper.offset[0], sampleHelper.offset[1], sampleHelper.offset[2],
  2632. // Ddx.
  2633. sampleHelper.ddx[0], sampleHelper.ddx[1], sampleHelper.ddx[2],
  2634. // Ddy.
  2635. sampleHelper.ddy[0], sampleHelper.ddy[1], sampleHelper.ddy[2],
  2636. // Clamp.
  2637. sampleHelper.clamp};
  2638. GenerateDxilSample(CI, F, sampleArgs, sampleHelper.status, hlslOP);
  2639. } break;
  2640. case OP::OpCode::SampleBias: {
  2641. Value *sampleArgs[] = {
  2642. opArg, sampleHelper.texHandle, sampleHelper.samplerHandle,
  2643. // Coord.
  2644. sampleHelper.coord[0], sampleHelper.coord[1], sampleHelper.coord[2],
  2645. sampleHelper.coord[3],
  2646. // Offset.
  2647. sampleHelper.offset[0], sampleHelper.offset[1], sampleHelper.offset[2],
  2648. // Bias.
  2649. sampleHelper.bias,
  2650. // Clamp.
  2651. sampleHelper.clamp};
  2652. GenerateDxilSample(CI, F, sampleArgs, sampleHelper.status, hlslOP);
  2653. } break;
  2654. case OP::OpCode::SampleCmp: {
  2655. Value *sampleArgs[] = {
  2656. opArg, sampleHelper.texHandle, sampleHelper.samplerHandle,
  2657. // Coord.
  2658. sampleHelper.coord[0], sampleHelper.coord[1], sampleHelper.coord[2],
  2659. sampleHelper.coord[3],
  2660. // Offset.
  2661. sampleHelper.offset[0], sampleHelper.offset[1], sampleHelper.offset[2],
  2662. // CmpVal.
  2663. sampleHelper.compareValue,
  2664. // Clamp.
  2665. sampleHelper.clamp};
  2666. GenerateDxilSample(CI, F, sampleArgs, sampleHelper.status, hlslOP);
  2667. } break;
  2668. case OP::OpCode::SampleCmpLevelZero:
  2669. default: {
  2670. DXASSERT(opcode == OP::OpCode::SampleCmpLevelZero, "invalid sample opcode");
  2671. Value *sampleArgs[] = {
  2672. opArg, sampleHelper.texHandle, sampleHelper.samplerHandle,
  2673. // Coord.
  2674. sampleHelper.coord[0], sampleHelper.coord[1], sampleHelper.coord[2],
  2675. sampleHelper.coord[3],
  2676. // Offset.
  2677. sampleHelper.offset[0], sampleHelper.offset[1], sampleHelper.offset[2],
  2678. // CmpVal.
  2679. sampleHelper.compareValue};
  2680. GenerateDxilSample(CI, F, sampleArgs, sampleHelper.status, hlslOP);
  2681. } break;
  2682. }
  2683. // CI is replaced in GenerateDxilSample.
  2684. return nullptr;
  2685. }
  2686. // Gather intrinsics.
  2687. struct GatherHelper {
  2688. enum class GatherChannel {
  2689. GatherAll,
  2690. GatherRed,
  2691. GatherGreen,
  2692. GatherBlue,
  2693. GatherAlpha,
  2694. };
  2695. GatherHelper(CallInst *CI, OP::OpCode op, HLObjectOperationLowerHelper *pObjHelper,
  2696. GatherHelper::GatherChannel ch);
  2697. OP::OpCode opcode;
  2698. Value *texHandle;
  2699. Value *samplerHandle;
  2700. static const unsigned kMaxCoordDimensions = 4;
  2701. Value *coord[kMaxCoordDimensions];
  2702. unsigned channel;
  2703. Value *special; // For CompareValue, Bias, LOD.
  2704. // Optional.
  2705. static const unsigned kMaxOffsetDimensions = 2;
  2706. Value *offset[kMaxOffsetDimensions];
  2707. // For the overload send different offset for each sample.
  2708. // Only save 3 sampleOffsets because use offset for normal overload as first
  2709. // sample offset.
  2710. static const unsigned kSampleOffsetDimensions = 3;
  2711. Value *sampleOffsets[kSampleOffsetDimensions][kMaxOffsetDimensions];
  2712. Value *status;
  2713. bool hasSampleOffsets;
  2714. unsigned maxHLOperandRead = 0;
  2715. Value *ReadHLOperand(CallInst *CI, unsigned opIdx) {
  2716. if (CI->getNumArgOperands() > opIdx) {
  2717. maxHLOperandRead = std::max(maxHLOperandRead, opIdx);
  2718. return CI->getArgOperand(opIdx);
  2719. }
  2720. return nullptr;
  2721. }
  2722. void TranslateCoord(CallInst *CI, unsigned coordIdx,
  2723. unsigned coordDimensions) {
  2724. Value *coordArg = ReadHLOperand(CI, coordIdx);
  2725. DXASSERT_NOMSG(coordArg);
  2726. DXASSERT(coordArg->getType()->getVectorNumElements() == coordDimensions,
  2727. "otherwise, HL coordinate dimensions mismatch");
  2728. IRBuilder<> Builder(CI);
  2729. for (unsigned i = 0; i < coordDimensions; i++)
  2730. coord[i] = Builder.CreateExtractElement(coordArg, i);
  2731. Value *undefF = UndefValue::get(Type::getFloatTy(CI->getContext()));
  2732. for (unsigned i = coordDimensions; i < kMaxCoordDimensions; i++)
  2733. coord[i] = undefF;
  2734. }
  2735. void SetStatus(CallInst *CI, unsigned statusIdx) {
  2736. status = ReadHLOperand(CI, statusIdx);
  2737. }
  2738. void TranslateOffset(CallInst *CI, unsigned offsetIdx,
  2739. unsigned offsetDimensions) {
  2740. IntegerType *i32Ty = Type::getInt32Ty(CI->getContext());
  2741. if (Value *offsetArg = ReadHLOperand(CI, offsetIdx)) {
  2742. DXASSERT(offsetArg->getType()->getVectorNumElements() == offsetDimensions,
  2743. "otherwise, HL coordinate dimensions mismatch");
  2744. IRBuilder<> Builder(CI);
  2745. for (unsigned i = 0; i < offsetDimensions; i++)
  2746. offset[i] = Builder.CreateExtractElement(offsetArg, i);
  2747. } else {
  2748. // Use zeros for offsets when not specified, not undef.
  2749. Value *zero = ConstantInt::get(i32Ty, (uint64_t)0);
  2750. for (unsigned i = 0; i < offsetDimensions; i++)
  2751. offset[i] = zero;
  2752. }
  2753. // Use undef for components that should not be used for this resource dim.
  2754. Value *undefI = UndefValue::get(i32Ty);
  2755. for (unsigned i = offsetDimensions; i < kMaxOffsetDimensions; i++)
  2756. offset[i] = undefI;
  2757. }
  2758. void TranslateSampleOffset(CallInst *CI, unsigned offsetIdx,
  2759. unsigned offsetDimensions) {
  2760. Value *undefI = UndefValue::get(Type::getInt32Ty(CI->getContext()));
  2761. if (CI->getNumArgOperands() >= (offsetIdx + kSampleOffsetDimensions)) {
  2762. hasSampleOffsets = true;
  2763. IRBuilder<> Builder(CI);
  2764. for (unsigned ch = 0; ch < kSampleOffsetDimensions; ch++) {
  2765. Value *offsetArg = ReadHLOperand(CI, offsetIdx + ch);
  2766. for (unsigned i = 0; i < offsetDimensions; i++)
  2767. sampleOffsets[ch][i] = Builder.CreateExtractElement(offsetArg, i);
  2768. for (unsigned i = offsetDimensions; i < kMaxOffsetDimensions; i++)
  2769. sampleOffsets[ch][i] = undefI;
  2770. }
  2771. }
  2772. }
  2773. // Update the offset args for gather with sample offset at sampleIdx.
  2774. void UpdateOffsetInGatherArgs(MutableArrayRef<Value *> gatherArgs,
  2775. unsigned sampleIdx) {
  2776. unsigned offsetBase = DXIL::OperandIndex::kTextureGatherOffset0OpIdx;
  2777. for (unsigned i = 0; i < kMaxOffsetDimensions; i++)
  2778. // -1 because offset for sample 0 is in GatherHelper::offset.
  2779. gatherArgs[offsetBase + i] = sampleOffsets[sampleIdx - 1][i];
  2780. }
  2781. };
  2782. GatherHelper::GatherHelper(
  2783. CallInst *CI, OP::OpCode op, HLObjectOperationLowerHelper *pObjHelper,
  2784. GatherHelper::GatherChannel ch)
  2785. : opcode(op), special(nullptr), hasSampleOffsets(false) {
  2786. switch (ch) {
  2787. case GatherChannel::GatherAll:
  2788. channel = 0;
  2789. break;
  2790. case GatherChannel::GatherRed:
  2791. channel = 0;
  2792. break;
  2793. case GatherChannel::GatherGreen:
  2794. channel = 1;
  2795. break;
  2796. case GatherChannel::GatherBlue:
  2797. channel = 2;
  2798. break;
  2799. case GatherChannel::GatherAlpha:
  2800. channel = 3;
  2801. break;
  2802. }
  2803. IRBuilder<> Builder(CI);
  2804. texHandle = CI->getArgOperand(HLOperandIndex::kHandleOpIdx);
  2805. samplerHandle = CI->getArgOperand(HLOperandIndex::kSampleSamplerArgIndex);
  2806. DXIL::ResourceKind RK = pObjHelper->GetRK(texHandle);
  2807. if (RK == DXIL::ResourceKind::Invalid) {
  2808. opcode = DXIL::OpCode::NumOpCodes;
  2809. return;
  2810. }
  2811. unsigned coordSize = DxilResource::GetNumCoords(RK);
  2812. unsigned offsetSize = DxilResource::GetNumOffsets(RK);
  2813. bool cube = RK == DXIL::ResourceKind::TextureCube ||
  2814. RK == DXIL::ResourceKind::TextureCubeArray;
  2815. const unsigned kCoordArgIdx = HLOperandIndex::kSampleCoordArgIndex;
  2816. TranslateCoord(CI, kCoordArgIdx, coordSize);
  2817. switch (op) {
  2818. case OP::OpCode::TextureGather: {
  2819. unsigned statusIdx;
  2820. if (cube) {
  2821. TranslateOffset(CI, HLOperandIndex::kInvalidIdx, offsetSize);
  2822. statusIdx = HLOperandIndex::kGatherCubeStatusArgIndex;
  2823. } else {
  2824. TranslateOffset(CI, HLOperandIndex::kGatherOffsetArgIndex, offsetSize);
  2825. // Gather all don't have sample offset version overload.
  2826. if (ch != GatherChannel::GatherAll)
  2827. TranslateSampleOffset(CI, HLOperandIndex::kGatherSampleOffsetArgIndex,
  2828. offsetSize);
  2829. statusIdx =
  2830. hasSampleOffsets ? HLOperandIndex::kGatherStatusWithSampleOffsetArgIndex
  2831. : HLOperandIndex::kGatherStatusArgIndex;
  2832. }
  2833. SetStatus(CI, statusIdx);
  2834. } break;
  2835. case OP::OpCode::TextureGatherCmp: {
  2836. special = ReadHLOperand(CI, HLOperandIndex::kGatherCmpCmpValArgIndex);
  2837. unsigned statusIdx;
  2838. if (cube) {
  2839. TranslateOffset(CI, HLOperandIndex::kInvalidIdx, offsetSize);
  2840. statusIdx = HLOperandIndex::kGatherCmpCubeStatusArgIndex;
  2841. } else {
  2842. TranslateOffset(CI, HLOperandIndex::kGatherCmpOffsetArgIndex, offsetSize);
  2843. // Gather all don't have sample offset version overload.
  2844. if (ch != GatherChannel::GatherAll)
  2845. TranslateSampleOffset(CI, HLOperandIndex::kGatherCmpSampleOffsetArgIndex,
  2846. offsetSize);
  2847. statusIdx =
  2848. hasSampleOffsets
  2849. ? HLOperandIndex::kGatherCmpStatusWithSampleOffsetArgIndex
  2850. : HLOperandIndex::kGatherCmpStatusArgIndex;
  2851. }
  2852. SetStatus(CI, statusIdx);
  2853. } break;
  2854. default:
  2855. DXASSERT(0, "invalid opcode for Gather");
  2856. break;
  2857. }
  2858. DXASSERT(maxHLOperandRead == CI->getNumArgOperands() - 1,
  2859. "otherwise, unused HL arguments for Sample op");
  2860. }
  2861. void GenerateDxilGather(CallInst *CI, Function *F,
  2862. MutableArrayRef<Value *> gatherArgs,
  2863. GatherHelper &helper, hlsl::OP *hlslOp) {
  2864. IRBuilder<> Builder(CI);
  2865. CallInst *call = Builder.CreateCall(F, gatherArgs);
  2866. dxilutil::MigrateDebugValue(CI, call);
  2867. Value *retVal;
  2868. if (!helper.hasSampleOffsets) {
  2869. // extract value part
  2870. retVal = ScalarizeResRet(CI->getType(), call, Builder);
  2871. } else {
  2872. retVal = UndefValue::get(CI->getType());
  2873. Value *elt = Builder.CreateExtractValue(call, (uint64_t)0);
  2874. retVal = Builder.CreateInsertElement(retVal, elt, (uint64_t)0);
  2875. helper.UpdateOffsetInGatherArgs(gatherArgs, /*sampleIdx*/ 1);
  2876. CallInst *callY = Builder.CreateCall(F, gatherArgs);
  2877. elt = Builder.CreateExtractValue(callY, (uint64_t)1);
  2878. retVal = Builder.CreateInsertElement(retVal, elt, 1);
  2879. helper.UpdateOffsetInGatherArgs(gatherArgs, /*sampleIdx*/ 2);
  2880. CallInst *callZ = Builder.CreateCall(F, gatherArgs);
  2881. elt = Builder.CreateExtractValue(callZ, (uint64_t)2);
  2882. retVal = Builder.CreateInsertElement(retVal, elt, 2);
  2883. helper.UpdateOffsetInGatherArgs(gatherArgs, /*sampleIdx*/ 3);
  2884. CallInst *callW = Builder.CreateCall(F, gatherArgs);
  2885. elt = Builder.CreateExtractValue(callW, (uint64_t)3);
  2886. retVal = Builder.CreateInsertElement(retVal, elt, 3);
  2887. // TODO: UpdateStatus for each gather call.
  2888. }
  2889. // Replace ret val.
  2890. CI->replaceAllUsesWith(retVal);
  2891. // Get status
  2892. if (helper.status) {
  2893. UpdateStatus(call, helper.status, Builder, hlslOp);
  2894. }
  2895. }
  2896. Value *TranslateGather(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  2897. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  2898. hlsl::OP *hlslOP = &helper.hlslOP;
  2899. GatherHelper::GatherChannel ch = GatherHelper::GatherChannel::GatherAll;
  2900. switch (IOP) {
  2901. case IntrinsicOp::MOP_Gather:
  2902. case IntrinsicOp::MOP_GatherCmp:
  2903. ch = GatherHelper::GatherChannel::GatherAll;
  2904. break;
  2905. case IntrinsicOp::MOP_GatherRed:
  2906. case IntrinsicOp::MOP_GatherCmpRed:
  2907. ch = GatherHelper::GatherChannel::GatherRed;
  2908. break;
  2909. case IntrinsicOp::MOP_GatherGreen:
  2910. case IntrinsicOp::MOP_GatherCmpGreen:
  2911. ch = GatherHelper::GatherChannel::GatherGreen;
  2912. break;
  2913. case IntrinsicOp::MOP_GatherBlue:
  2914. case IntrinsicOp::MOP_GatherCmpBlue:
  2915. ch = GatherHelper::GatherChannel::GatherBlue;
  2916. break;
  2917. case IntrinsicOp::MOP_GatherAlpha:
  2918. case IntrinsicOp::MOP_GatherCmpAlpha:
  2919. ch = GatherHelper::GatherChannel::GatherAlpha;
  2920. break;
  2921. default:
  2922. DXASSERT(0, "invalid gather intrinsic");
  2923. break;
  2924. }
  2925. GatherHelper gatherHelper(CI, opcode, pObjHelper, ch);
  2926. if (gatherHelper.opcode == DXIL::OpCode::NumOpCodes) {
  2927. Translated = false;
  2928. return nullptr;
  2929. }
  2930. Type *Ty = CI->getType();
  2931. Function *F = hlslOP->GetOpFunc(opcode, Ty->getScalarType());
  2932. Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  2933. Value *channelArg = hlslOP->GetU32Const(gatherHelper.channel);
  2934. switch (opcode) {
  2935. case OP::OpCode::TextureGather: {
  2936. Value *gatherArgs[] = {
  2937. opArg, gatherHelper.texHandle, gatherHelper.samplerHandle,
  2938. // Coord.
  2939. gatherHelper.coord[0], gatherHelper.coord[1], gatherHelper.coord[2],
  2940. gatherHelper.coord[3],
  2941. // Offset.
  2942. gatherHelper.offset[0], gatherHelper.offset[1],
  2943. // Channel.
  2944. channelArg};
  2945. GenerateDxilGather(CI, F, gatherArgs, gatherHelper, hlslOP);
  2946. } break;
  2947. case OP::OpCode::TextureGatherCmp: {
  2948. Value *gatherArgs[] = {
  2949. opArg, gatherHelper.texHandle, gatherHelper.samplerHandle,
  2950. // Coord.
  2951. gatherHelper.coord[0], gatherHelper.coord[1], gatherHelper.coord[2],
  2952. gatherHelper.coord[3],
  2953. // Offset.
  2954. gatherHelper.offset[0], gatherHelper.offset[1],
  2955. // Channel.
  2956. channelArg,
  2957. // CmpVal.
  2958. gatherHelper.special};
  2959. GenerateDxilGather(CI, F, gatherArgs, gatherHelper, hlslOP);
  2960. } break;
  2961. default:
  2962. DXASSERT(0, "invalid opcode for Gather");
  2963. break;
  2964. }
  2965. // CI is replaced in GenerateDxilGather.
  2966. return nullptr;
  2967. }
  2968. static Value* TranslateWriteSamplerFeedback(CallInst* CI, IntrinsicOp IOP, OP::OpCode opcode,
  2969. HLOperationLowerHelper& helper,
  2970. HLObjectOperationLowerHelper* pObjHelper,
  2971. bool& Translated) {
  2972. hlsl::OP *hlslOP = &helper.hlslOP;
  2973. SampleHelper sampleHelper(CI, opcode, pObjHelper);
  2974. if (sampleHelper.opcode == DXIL::OpCode::NumOpCodes) {
  2975. Translated = false;
  2976. return nullptr;
  2977. }
  2978. Type *Ty = CI->getType();
  2979. Function *F = hlslOP->GetOpFunc(opcode, Ty->getScalarType());
  2980. Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  2981. IRBuilder<> Builder(CI);
  2982. switch (opcode) {
  2983. case OP::OpCode::WriteSamplerFeedback: {
  2984. Value *samplerFeedbackArgs[] = {
  2985. opArg, sampleHelper.texHandle, sampleHelper.sampledTexHandle, sampleHelper.samplerHandle,
  2986. // Coord.
  2987. sampleHelper.coord[0], sampleHelper.coord[1], sampleHelper.coord[2],
  2988. sampleHelper.coord[3],
  2989. // Clamp.
  2990. sampleHelper.clamp};
  2991. return Builder.CreateCall(F, samplerFeedbackArgs);
  2992. } break;
  2993. case OP::OpCode::WriteSamplerFeedbackBias: {
  2994. Value *samplerFeedbackArgs[] = {
  2995. opArg, sampleHelper.texHandle, sampleHelper.sampledTexHandle, sampleHelper.samplerHandle,
  2996. // Coord.
  2997. sampleHelper.coord[0], sampleHelper.coord[1], sampleHelper.coord[2],
  2998. sampleHelper.coord[3],
  2999. // Bias.
  3000. sampleHelper.bias,
  3001. // Clamp.
  3002. sampleHelper.clamp};
  3003. return Builder.CreateCall(F, samplerFeedbackArgs);
  3004. } break;
  3005. case OP::OpCode::WriteSamplerFeedbackGrad: {
  3006. Value *samplerFeedbackArgs[] = {
  3007. opArg, sampleHelper.texHandle, sampleHelper.sampledTexHandle, sampleHelper.samplerHandle,
  3008. // Coord.
  3009. sampleHelper.coord[0], sampleHelper.coord[1], sampleHelper.coord[2],
  3010. sampleHelper.coord[3],
  3011. // Ddx.
  3012. sampleHelper.ddx[0], sampleHelper.ddx[1], sampleHelper.ddx[2],
  3013. // Ddy.
  3014. sampleHelper.ddy[0], sampleHelper.ddy[1], sampleHelper.ddy[2],
  3015. // Clamp.
  3016. sampleHelper.clamp};
  3017. return Builder.CreateCall(F, samplerFeedbackArgs);
  3018. } break;
  3019. case OP::OpCode::WriteSamplerFeedbackLevel: {
  3020. Value *samplerFeedbackArgs[] = {
  3021. opArg, sampleHelper.texHandle, sampleHelper.sampledTexHandle, sampleHelper.samplerHandle,
  3022. // Coord.
  3023. sampleHelper.coord[0], sampleHelper.coord[1], sampleHelper.coord[2],
  3024. sampleHelper.coord[3],
  3025. // LOD.
  3026. sampleHelper.lod};
  3027. return Builder.CreateCall(F, samplerFeedbackArgs);
  3028. } break;
  3029. default:
  3030. DXASSERT(false, "otherwise, unknown SamplerFeedback Op");
  3031. break;
  3032. }
  3033. return nullptr;
  3034. }
  3035. // Load/Store intrinsics.
  3036. struct ResLoadHelper {
  3037. ResLoadHelper(CallInst *CI, DxilResource::Kind RK, DxilResourceBase::Class RC,
  3038. Value *h, IntrinsicOp IOP, bool bForSubscript=false);
  3039. ResLoadHelper(CallInst *CI, DxilResource::Kind RK, DxilResourceBase::Class RC,
  3040. Value *h, Value *mip);
  3041. // For double subscript.
  3042. ResLoadHelper(Instruction *ldInst, Value *h, Value *idx, Value *mip)
  3043. : opcode(OP::OpCode::TextureLoad),
  3044. intrinsicOpCode(IntrinsicOp::Num_Intrinsics), handle(h), retVal(ldInst),
  3045. addr(idx), offset(nullptr), status(nullptr), mipLevel(mip) {}
  3046. OP::OpCode opcode;
  3047. IntrinsicOp intrinsicOpCode;
  3048. unsigned dxilMajor;
  3049. unsigned dxilMinor;
  3050. Value *handle;
  3051. Value *retVal;
  3052. Value *addr;
  3053. Value *offset;
  3054. Value *status;
  3055. Value *mipLevel;
  3056. };
  3057. ResLoadHelper::ResLoadHelper(CallInst *CI, DxilResource::Kind RK,
  3058. DxilResourceBase::Class RC, Value *hdl, IntrinsicOp IOP, bool bForSubscript)
  3059. : intrinsicOpCode(IOP), handle(hdl), offset(nullptr), status(nullptr) {
  3060. switch (RK) {
  3061. case DxilResource::Kind::RawBuffer:
  3062. case DxilResource::Kind::StructuredBuffer:
  3063. opcode = OP::OpCode::RawBufferLoad;
  3064. break;
  3065. case DxilResource::Kind::TypedBuffer:
  3066. opcode = OP::OpCode::BufferLoad;
  3067. break;
  3068. case DxilResource::Kind::Invalid:
  3069. DXASSERT(0, "invalid resource kind");
  3070. break;
  3071. default:
  3072. opcode = OP::OpCode::TextureLoad;
  3073. break;
  3074. }
  3075. retVal = CI;
  3076. const unsigned kAddrIdx = HLOperandIndex::kBufLoadAddrOpIdx;
  3077. addr = CI->getArgOperand(kAddrIdx);
  3078. unsigned argc = CI->getNumArgOperands();
  3079. if (opcode == OP::OpCode::TextureLoad) {
  3080. // mip at last channel
  3081. unsigned coordSize = DxilResource::GetNumCoords(RK);
  3082. if (RC == DxilResourceBase::Class::SRV) {
  3083. if (bForSubscript) {
  3084. // Use 0 when access by [].
  3085. mipLevel = IRBuilder<>(CI).getInt32(0);
  3086. } else {
  3087. if (coordSize == 1 && !addr->getType()->isVectorTy()) {
  3088. // Use addr when access by Load.
  3089. mipLevel = addr;
  3090. } else {
  3091. mipLevel = IRBuilder<>(CI).CreateExtractElement(addr, coordSize);
  3092. }
  3093. }
  3094. } else {
  3095. // Set mip level to undef for UAV.
  3096. mipLevel = UndefValue::get(Type::getInt32Ty(addr->getContext()));
  3097. }
  3098. if (RC == DxilResourceBase::Class::SRV) {
  3099. unsigned offsetIdx = HLOperandIndex::kTexLoadOffsetOpIdx;
  3100. unsigned statusIdx = HLOperandIndex::kTexLoadStatusOpIdx;
  3101. if (RK == DxilResource::Kind::Texture2DMS ||
  3102. RK == DxilResource::Kind::Texture2DMSArray) {
  3103. offsetIdx = HLOperandIndex::kTex2DMSLoadOffsetOpIdx;
  3104. statusIdx = HLOperandIndex::kTex2DMSLoadStatusOpIdx;
  3105. mipLevel =
  3106. CI->getArgOperand(HLOperandIndex::kTex2DMSLoadSampleIdxOpIdx);
  3107. }
  3108. if (argc > offsetIdx)
  3109. offset = CI->getArgOperand(offsetIdx);
  3110. if (argc > statusIdx)
  3111. status = CI->getArgOperand(statusIdx);
  3112. } else {
  3113. const unsigned kStatusIdx = HLOperandIndex::kRWTexLoadStatusOpIdx;
  3114. if (argc > kStatusIdx)
  3115. status = CI->getArgOperand(kStatusIdx);
  3116. }
  3117. } else {
  3118. const unsigned kStatusIdx = HLOperandIndex::kBufLoadStatusOpIdx;
  3119. if (argc > kStatusIdx)
  3120. status = CI->getArgOperand(kStatusIdx);
  3121. }
  3122. }
  3123. ResLoadHelper::ResLoadHelper(CallInst *CI, DxilResource::Kind RK,
  3124. DxilResourceBase::Class RC, Value *hdl, Value *mip)
  3125. : handle(hdl), offset(nullptr), status(nullptr) {
  3126. DXASSERT(RK != DxilResource::Kind::RawBuffer &&
  3127. RK != DxilResource::Kind::TypedBuffer &&
  3128. RK != DxilResource::Kind::Invalid,
  3129. "invalid resource kind");
  3130. opcode = OP::OpCode::TextureLoad;
  3131. retVal = CI;
  3132. mipLevel = mip;
  3133. const unsigned kAddrIdx = HLOperandIndex::kMipLoadAddrOpIdx;
  3134. addr = CI->getArgOperand(kAddrIdx);
  3135. unsigned argc = CI->getNumArgOperands();
  3136. const unsigned kOffsetIdx = HLOperandIndex::kMipLoadOffsetOpIdx;
  3137. const unsigned kStatusIdx = HLOperandIndex::kMipLoadStatusOpIdx;
  3138. if (argc > kOffsetIdx)
  3139. offset = CI->getArgOperand(kOffsetIdx);
  3140. if (argc > kStatusIdx)
  3141. status = CI->getArgOperand(kStatusIdx);
  3142. }
  3143. void TranslateStructBufSubscript(CallInst *CI, Value *handle, Value *status,
  3144. hlsl::OP *OP, HLResource::Kind RK, const DataLayout &DL);
  3145. // Create { v0, v1 } from { v0.lo, v0.hi, v1.lo, v1.hi }
  3146. void Make64bitResultForLoad(Type *EltTy, ArrayRef<Value *> resultElts32,
  3147. unsigned size, MutableArrayRef<Value *> resultElts,
  3148. hlsl::OP *hlslOP, IRBuilder<> &Builder) {
  3149. Type *i64Ty = Builder.getInt64Ty();
  3150. Type *doubleTy = Builder.getDoubleTy();
  3151. if (EltTy == doubleTy) {
  3152. Function *makeDouble =
  3153. hlslOP->GetOpFunc(DXIL::OpCode::MakeDouble, doubleTy);
  3154. Value *makeDoubleOpArg =
  3155. Builder.getInt32((unsigned)DXIL::OpCode::MakeDouble);
  3156. for (unsigned i = 0; i < size; i++) {
  3157. Value *lo = resultElts32[2 * i];
  3158. Value *hi = resultElts32[2 * i + 1];
  3159. Value *V = Builder.CreateCall(makeDouble, {makeDoubleOpArg, lo, hi});
  3160. resultElts[i] = V;
  3161. }
  3162. } else {
  3163. for (unsigned i = 0; i < size; i++) {
  3164. Value *lo = resultElts32[2 * i];
  3165. Value *hi = resultElts32[2 * i + 1];
  3166. lo = Builder.CreateZExt(lo, i64Ty);
  3167. hi = Builder.CreateZExt(hi, i64Ty);
  3168. hi = Builder.CreateShl(hi, 32);
  3169. resultElts[i] = Builder.CreateOr(lo, hi);
  3170. }
  3171. }
  3172. }
  3173. static Constant *GetRawBufferMaskForETy(Type *Ty, unsigned NumComponents, hlsl::OP *OP) {
  3174. unsigned mask = 0;
  3175. switch (NumComponents) {
  3176. case 0:
  3177. break;
  3178. case 1:
  3179. mask = DXIL::kCompMask_X;
  3180. break;
  3181. case 2:
  3182. mask = DXIL::kCompMask_X | DXIL::kCompMask_Y;
  3183. break;
  3184. case 3:
  3185. mask = DXIL::kCompMask_X | DXIL::kCompMask_Y | DXIL::kCompMask_Z;
  3186. break;
  3187. case 4:
  3188. mask = DXIL::kCompMask_All;
  3189. break;
  3190. default:
  3191. DXASSERT(false, "Cannot load more than 2 components for 64bit types.");
  3192. }
  3193. return OP->GetI8Const(mask);
  3194. }
  3195. Value *GenerateStructBufLd(Value *handle, Value *bufIdx, Value *offset,
  3196. Value *status, Type *EltTy,
  3197. MutableArrayRef<Value *> resultElts, hlsl::OP *OP,
  3198. IRBuilder<> &Builder, unsigned NumComponents, Constant *alignment);
  3199. void TranslateLoad(ResLoadHelper &helper, HLResource::Kind RK,
  3200. IRBuilder<> &Builder, hlsl::OP *OP, const DataLayout &DL) {
  3201. Type *Ty = helper.retVal->getType();
  3202. if (Ty->isPointerTy()) {
  3203. DXASSERT(!DxilResource::IsAnyTexture(RK), "Textures should not be treated as structured buffers.");
  3204. TranslateStructBufSubscript(cast<CallInst>(helper.retVal), helper.handle,
  3205. helper.status, OP, RK, DL);
  3206. return;
  3207. }
  3208. OP::OpCode opcode = helper.opcode;
  3209. Type *i32Ty = Builder.getInt32Ty();
  3210. Type *i64Ty = Builder.getInt64Ty();
  3211. Type *doubleTy = Builder.getDoubleTy();
  3212. Type *EltTy = Ty->getScalarType();
  3213. // If RawBuffer load of 64-bit value, don't set alignment to 8,
  3214. // since buffer alignment isn't known to be anything over 4.
  3215. unsigned alignValue = OP->GetAllocSizeForType(EltTy);
  3216. if (RK == HLResource::Kind::RawBuffer && alignValue > 4)
  3217. alignValue = 4;
  3218. Constant *Alignment = OP->GetI32Const(alignValue);
  3219. unsigned numComponents = 1;
  3220. if (Ty->isVectorTy()) {
  3221. numComponents = Ty->getVectorNumElements();
  3222. }
  3223. if (DXIL::IsStructuredBuffer(RK)) {
  3224. // Basic type case for StructuredBuffer::Load()
  3225. Value *ResultElts[4];
  3226. Value *StructBufLoad = GenerateStructBufLd(helper.handle, helper.addr, OP->GetU32Const(0),
  3227. helper.status, EltTy, ResultElts, OP, Builder, numComponents, Alignment);
  3228. dxilutil::MigrateDebugValue(helper.retVal, StructBufLoad);
  3229. Value *retValNew = ScalarizeElements(Ty, ResultElts, Builder);
  3230. helper.retVal->replaceAllUsesWith(retValNew);
  3231. helper.retVal = retValNew;
  3232. return;
  3233. }
  3234. bool isTyped = opcode == OP::OpCode::TextureLoad ||
  3235. RK == DxilResource::Kind::TypedBuffer;
  3236. bool is64 = EltTy == i64Ty || EltTy == doubleTy;
  3237. if (is64 && isTyped) {
  3238. EltTy = i32Ty;
  3239. }
  3240. bool isBool = EltTy->isIntegerTy(1);
  3241. if (isBool) {
  3242. // Value will be loaded in its memory representation.
  3243. EltTy = i32Ty;
  3244. if (Ty->isVectorTy()) Ty = VectorType::get(EltTy, numComponents);
  3245. }
  3246. Function *F = OP->GetOpFunc(opcode, EltTy);
  3247. llvm::Constant *opArg = OP->GetU32Const((unsigned)opcode);
  3248. llvm::Value *undefI = llvm::UndefValue::get(i32Ty);
  3249. SmallVector<Value *, 12> loadArgs;
  3250. loadArgs.emplace_back(opArg); // opcode
  3251. loadArgs.emplace_back(helper.handle); // resource handle
  3252. if (opcode == OP::OpCode::TextureLoad) {
  3253. // set mip level
  3254. loadArgs.emplace_back(helper.mipLevel);
  3255. }
  3256. if (opcode == OP::OpCode::TextureLoad) {
  3257. // texture coord
  3258. unsigned coordSize = DxilResource::GetNumCoords(RK);
  3259. bool isVectorAddr = helper.addr->getType()->isVectorTy();
  3260. for (unsigned i = 0; i < 3; i++) {
  3261. if (i < coordSize) {
  3262. loadArgs.emplace_back(
  3263. isVectorAddr ? Builder.CreateExtractElement(helper.addr, i) : helper.addr);
  3264. }
  3265. else
  3266. loadArgs.emplace_back(undefI);
  3267. }
  3268. } else {
  3269. if (helper.addr->getType()->isVectorTy()) {
  3270. Value *scalarOffset =
  3271. Builder.CreateExtractElement(helper.addr, (uint64_t)0);
  3272. // TODO: calculate the real address based on opcode
  3273. loadArgs.emplace_back(scalarOffset); // offset
  3274. } else {
  3275. // TODO: calculate the real address based on opcode
  3276. loadArgs.emplace_back(helper.addr); // offset
  3277. }
  3278. }
  3279. // offset 0
  3280. if (opcode == OP::OpCode::TextureLoad) {
  3281. if (helper.offset && !isa<llvm::UndefValue>(helper.offset)) {
  3282. unsigned offsetSize = DxilResource::GetNumOffsets(RK);
  3283. for (unsigned i = 0; i < 3; i++) {
  3284. if (i < offsetSize)
  3285. loadArgs.emplace_back(Builder.CreateExtractElement(helper.offset, i));
  3286. else
  3287. loadArgs.emplace_back(undefI);
  3288. }
  3289. } else {
  3290. loadArgs.emplace_back(undefI);
  3291. loadArgs.emplace_back(undefI);
  3292. loadArgs.emplace_back(undefI);
  3293. }
  3294. }
  3295. // Offset 1
  3296. if (RK == DxilResource::Kind::RawBuffer) {
  3297. // elementOffset, mask, alignment
  3298. loadArgs.emplace_back(undefI);
  3299. Type *rtnTy = helper.retVal->getType();
  3300. loadArgs.emplace_back(GetRawBufferMaskForETy(rtnTy, numComponents, OP));
  3301. loadArgs.emplace_back(Alignment);
  3302. }
  3303. else if (RK == DxilResource::Kind::TypedBuffer) {
  3304. loadArgs.emplace_back(undefI);
  3305. }
  3306. Value *ResRet =
  3307. Builder.CreateCall(F, loadArgs, OP->GetOpCodeName(opcode));
  3308. dxilutil::MigrateDebugValue(helper.retVal, ResRet);
  3309. Value *retValNew = nullptr;
  3310. if (!is64 || !isTyped) {
  3311. retValNew = ScalarizeResRet(Ty, ResRet, Builder);
  3312. } else {
  3313. unsigned size = numComponents;
  3314. DXASSERT(size <= 2, "typed buffer only allow 4 dwords");
  3315. EltTy = Ty->getScalarType();
  3316. Value *Elts[2];
  3317. Make64bitResultForLoad(Ty->getScalarType(),
  3318. {
  3319. Builder.CreateExtractValue(ResRet, 0),
  3320. Builder.CreateExtractValue(ResRet, 1),
  3321. Builder.CreateExtractValue(ResRet, 2),
  3322. Builder.CreateExtractValue(ResRet, 3),
  3323. },
  3324. size, Elts, OP, Builder);
  3325. retValNew = ScalarizeElements(Ty, Elts, Builder);
  3326. }
  3327. if (isBool) {
  3328. // Convert result back to register representation.
  3329. retValNew = Builder.CreateICmpNE(retValNew, Constant::getNullValue(retValNew->getType()));
  3330. }
  3331. // replace
  3332. helper.retVal->replaceAllUsesWith(retValNew);
  3333. // Save new ret val.
  3334. helper.retVal = retValNew;
  3335. // get status
  3336. UpdateStatus(ResRet, helper.status, Builder, OP);
  3337. }
  3338. Value *TranslateResourceLoad(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  3339. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  3340. hlsl::OP *hlslOP = &helper.hlslOP;
  3341. Value *handle = CI->getArgOperand(HLOperandIndex::kHandleOpIdx);
  3342. IRBuilder<> Builder(CI);
  3343. DXIL::ResourceClass RC = pObjHelper->GetRC(handle);
  3344. DXIL::ResourceKind RK = pObjHelper->GetRK(handle);
  3345. ResLoadHelper loadHelper(CI, RK, RC, handle, IOP);
  3346. TranslateLoad(loadHelper, RK, Builder, hlslOP, helper.dataLayout);
  3347. // CI is replaced in TranslateLoad.
  3348. return nullptr;
  3349. }
  3350. // Split { v0, v1 } to { v0.lo, v0.hi, v1.lo, v1.hi }
  3351. void Split64bitValForStore(Type *EltTy, ArrayRef<Value *> vals, unsigned size,
  3352. MutableArrayRef<Value *> vals32, hlsl::OP *hlslOP,
  3353. IRBuilder<> &Builder) {
  3354. Type *i32Ty = Builder.getInt32Ty();
  3355. Type *doubleTy = Builder.getDoubleTy();
  3356. Value *undefI32 = UndefValue::get(i32Ty);
  3357. if (EltTy == doubleTy) {
  3358. Function *dToU = hlslOP->GetOpFunc(DXIL::OpCode::SplitDouble, doubleTy);
  3359. Value *dToUOpArg = Builder.getInt32((unsigned)DXIL::OpCode::SplitDouble);
  3360. for (unsigned i = 0; i < size; i++) {
  3361. if (isa<UndefValue>(vals[i])) {
  3362. vals32[2 * i] = undefI32;
  3363. vals32[2 * i + 1] = undefI32;
  3364. } else {
  3365. Value *retVal = Builder.CreateCall(dToU, {dToUOpArg, vals[i]});
  3366. Value *lo = Builder.CreateExtractValue(retVal, 0);
  3367. Value *hi = Builder.CreateExtractValue(retVal, 1);
  3368. vals32[2 * i] = lo;
  3369. vals32[2 * i + 1] = hi;
  3370. }
  3371. }
  3372. } else {
  3373. for (unsigned i = 0; i < size; i++) {
  3374. if (isa<UndefValue>(vals[i])) {
  3375. vals32[2 * i] = undefI32;
  3376. vals32[2 * i + 1] = undefI32;
  3377. } else {
  3378. Value *lo = Builder.CreateTrunc(vals[i], i32Ty);
  3379. Value *hi = Builder.CreateLShr(vals[i], 32);
  3380. hi = Builder.CreateTrunc(hi, i32Ty);
  3381. vals32[2 * i] = lo;
  3382. vals32[2 * i + 1] = hi;
  3383. }
  3384. }
  3385. }
  3386. }
  3387. void TranslateStore(DxilResource::Kind RK, Value *handle, Value *val,
  3388. Value *offset, IRBuilder<> &Builder, hlsl::OP *OP) {
  3389. Type *Ty = val->getType();
  3390. OP::OpCode opcode = OP::OpCode::NumOpCodes;
  3391. switch (RK) {
  3392. case DxilResource::Kind::RawBuffer:
  3393. case DxilResource::Kind::StructuredBuffer:
  3394. opcode = OP::OpCode::RawBufferStore;
  3395. break;
  3396. case DxilResource::Kind::TypedBuffer:
  3397. opcode = OP::OpCode::BufferStore;
  3398. break;
  3399. case DxilResource::Kind::Invalid:
  3400. DXASSERT(0, "invalid resource kind");
  3401. break;
  3402. default:
  3403. opcode = OP::OpCode::TextureStore;
  3404. break;
  3405. }
  3406. bool isTyped = opcode == OP::OpCode::TextureStore ||
  3407. RK == DxilResource::Kind::TypedBuffer;
  3408. Type *i32Ty = Builder.getInt32Ty();
  3409. Type *i64Ty = Builder.getInt64Ty();
  3410. Type *doubleTy = Builder.getDoubleTy();
  3411. Type *EltTy = Ty->getScalarType();
  3412. if (EltTy->isIntegerTy(1)) {
  3413. // Since we're going to memory, convert bools to their memory representation.
  3414. EltTy = i32Ty;
  3415. if (Ty->isVectorTy()) Ty = VectorType::get(EltTy, Ty->getVectorNumElements());
  3416. else Ty = EltTy;
  3417. val = Builder.CreateZExt(val, Ty);
  3418. }
  3419. // If RawBuffer store of 64-bit value, don't set alignment to 8,
  3420. // since buffer alignment isn't known to be anything over 4.
  3421. unsigned alignValue = OP->GetAllocSizeForType(EltTy);
  3422. if (RK == HLResource::Kind::RawBuffer && alignValue > 4)
  3423. alignValue = 4;
  3424. Constant *Alignment = OP->GetI32Const(alignValue);
  3425. bool is64 = EltTy == i64Ty || EltTy == doubleTy;
  3426. if (is64 && isTyped) {
  3427. EltTy = i32Ty;
  3428. }
  3429. Function *F = OP->GetOpFunc(opcode, EltTy);
  3430. llvm::Constant *opArg = OP->GetU32Const((unsigned)opcode);
  3431. llvm::Value *undefI =
  3432. llvm::UndefValue::get(llvm::Type::getInt32Ty(Ty->getContext()));
  3433. llvm::Value *undefVal = llvm::UndefValue::get(Ty->getScalarType());
  3434. SmallVector<Value *, 13> storeArgs;
  3435. storeArgs.emplace_back(opArg); // opcode
  3436. storeArgs.emplace_back(handle); // resource handle
  3437. if (RK == DxilResource::Kind::RawBuffer ||
  3438. RK == DxilResource::Kind::TypedBuffer) {
  3439. // Offset 0
  3440. if (offset->getType()->isVectorTy()) {
  3441. Value *scalarOffset = Builder.CreateExtractElement(offset, (uint64_t)0);
  3442. storeArgs.emplace_back(scalarOffset); // offset
  3443. } else {
  3444. storeArgs.emplace_back(offset); // offset
  3445. }
  3446. // Offset 1
  3447. storeArgs.emplace_back(undefI);
  3448. } else {
  3449. // texture store
  3450. unsigned coordSize = DxilResource::GetNumCoords(RK);
  3451. // Set x first.
  3452. if (offset->getType()->isVectorTy())
  3453. storeArgs.emplace_back(Builder.CreateExtractElement(offset, (uint64_t)0));
  3454. else
  3455. storeArgs.emplace_back(offset);
  3456. for (unsigned i = 1; i < 3; i++) {
  3457. if (i < coordSize)
  3458. storeArgs.emplace_back(Builder.CreateExtractElement(offset, i));
  3459. else
  3460. storeArgs.emplace_back(undefI);
  3461. }
  3462. // TODO: support mip for texture ST
  3463. }
  3464. // values
  3465. uint8_t mask = 0;
  3466. if (Ty->isVectorTy()) {
  3467. unsigned vecSize = Ty->getVectorNumElements();
  3468. Value *emptyVal = undefVal;
  3469. if (isTyped) {
  3470. mask = DXIL::kCompMask_All;
  3471. emptyVal = Builder.CreateExtractElement(val, (uint64_t)0);
  3472. }
  3473. for (unsigned i = 0; i < 4; i++) {
  3474. if (i < vecSize) {
  3475. storeArgs.emplace_back(Builder.CreateExtractElement(val, i));
  3476. mask |= (1<<i);
  3477. } else {
  3478. storeArgs.emplace_back(emptyVal);
  3479. }
  3480. }
  3481. } else {
  3482. if (isTyped) {
  3483. mask = DXIL::kCompMask_All;
  3484. storeArgs.emplace_back(val);
  3485. storeArgs.emplace_back(val);
  3486. storeArgs.emplace_back(val);
  3487. storeArgs.emplace_back(val);
  3488. } else {
  3489. storeArgs.emplace_back(val);
  3490. storeArgs.emplace_back(undefVal);
  3491. storeArgs.emplace_back(undefVal);
  3492. storeArgs.emplace_back(undefVal);
  3493. mask = DXIL::kCompMask_X;
  3494. }
  3495. }
  3496. if (is64 && isTyped) {
  3497. unsigned size = 1;
  3498. if (Ty->isVectorTy()) {
  3499. size = Ty->getVectorNumElements();
  3500. }
  3501. DXASSERT(size <= 2, "raw/typed buffer only allow 4 dwords");
  3502. unsigned val0OpIdx = opcode == DXIL::OpCode::TextureStore
  3503. ? DXIL::OperandIndex::kTextureStoreVal0OpIdx
  3504. : DXIL::OperandIndex::kBufferStoreVal0OpIdx;
  3505. Value *V0 = storeArgs[val0OpIdx];
  3506. Value *V1 = storeArgs[val0OpIdx+1];
  3507. Value *vals32[4];
  3508. EltTy = Ty->getScalarType();
  3509. Split64bitValForStore(EltTy, {V0, V1}, size, vals32, OP, Builder);
  3510. // Fill the uninit vals.
  3511. if (size == 1) {
  3512. vals32[2] = vals32[0];
  3513. vals32[3] = vals32[1];
  3514. }
  3515. // Change valOp to 32 version.
  3516. for (unsigned i = 0; i < 4; i++) {
  3517. storeArgs[val0OpIdx + i] = vals32[i];
  3518. }
  3519. // change mask for double
  3520. if (opcode == DXIL::OpCode::RawBufferStore) {
  3521. mask = size == 1 ?
  3522. DXIL::kCompMask_X | DXIL::kCompMask_Y : DXIL::kCompMask_All;
  3523. }
  3524. }
  3525. storeArgs.emplace_back(OP->GetU8Const(mask)); // mask
  3526. if (opcode == DXIL::OpCode::RawBufferStore)
  3527. storeArgs.emplace_back(Alignment); // alignment only for raw buffer
  3528. Builder.CreateCall(F, storeArgs);
  3529. }
  3530. Value *TranslateResourceStore(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  3531. HLOperationLowerHelper &helper,
  3532. HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  3533. hlsl::OP *hlslOP = &helper.hlslOP;
  3534. Value *handle = CI->getArgOperand(HLOperandIndex::kHandleOpIdx);
  3535. IRBuilder<> Builder(CI);
  3536. DXIL::ResourceKind RK = pObjHelper->GetRK(handle);
  3537. Value *val = CI->getArgOperand(HLOperandIndex::kStoreValOpIdx);
  3538. Value *offset = CI->getArgOperand(HLOperandIndex::kStoreOffsetOpIdx);
  3539. TranslateStore(RK, handle, val, offset, Builder, hlslOP);
  3540. return nullptr;
  3541. }
  3542. }
  3543. // Atomic intrinsics.
  3544. namespace {
  3545. // Atomic intrinsics.
  3546. struct AtomicHelper {
  3547. AtomicHelper(CallInst *CI, OP::OpCode op, Value *h, Type *opType=nullptr);
  3548. AtomicHelper(CallInst *CI, OP::OpCode op, Value *h, Value *bufIdx,
  3549. Value *baseOffset, Type *opType=nullptr);
  3550. OP::OpCode opcode;
  3551. Value *handle;
  3552. Value *addr;
  3553. Value *offset; // Offset for structrued buffer.
  3554. Value *value;
  3555. Value *originalValue;
  3556. Value *compareValue;
  3557. Type *operationType;
  3558. };
  3559. // For MOP version of Interlocked*.
  3560. AtomicHelper::AtomicHelper(CallInst *CI, OP::OpCode op, Value *h, Type *opType)
  3561. : opcode(op), handle(h), offset(nullptr), originalValue(nullptr),
  3562. operationType(opType) {
  3563. addr = CI->getArgOperand(HLOperandIndex::kObjectInterlockedDestOpIndex);
  3564. if (op == OP::OpCode::AtomicCompareExchange) {
  3565. compareValue = CI->getArgOperand(
  3566. HLOperandIndex::kObjectInterlockedCmpCompareValueOpIndex);
  3567. value =
  3568. CI->getArgOperand(HLOperandIndex::kObjectInterlockedCmpValueOpIndex);
  3569. if (CI->getNumArgOperands() ==
  3570. (HLOperandIndex::kObjectInterlockedCmpOriginalValueOpIndex + 1))
  3571. originalValue = CI->getArgOperand(
  3572. HLOperandIndex::kObjectInterlockedCmpOriginalValueOpIndex);
  3573. } else {
  3574. value = CI->getArgOperand(HLOperandIndex::kObjectInterlockedValueOpIndex);
  3575. if (CI->getNumArgOperands() ==
  3576. (HLOperandIndex::kObjectInterlockedOriginalValueOpIndex + 1))
  3577. originalValue = CI->getArgOperand(
  3578. HLOperandIndex::kObjectInterlockedOriginalValueOpIndex);
  3579. }
  3580. if (nullptr == operationType)
  3581. operationType = value->getType();
  3582. }
  3583. // For IOP version of Interlocked*.
  3584. AtomicHelper::AtomicHelper(CallInst *CI, OP::OpCode op, Value *h, Value *bufIdx,
  3585. Value *baseOffset, Type *opType)
  3586. : opcode(op), handle(h), addr(bufIdx),
  3587. offset(baseOffset), originalValue(nullptr),
  3588. operationType(opType) {
  3589. if (op == OP::OpCode::AtomicCompareExchange) {
  3590. compareValue =
  3591. CI->getArgOperand(HLOperandIndex::kInterlockedCmpCompareValueOpIndex);
  3592. value = CI->getArgOperand(HLOperandIndex::kInterlockedCmpValueOpIndex);
  3593. if (CI->getNumArgOperands() ==
  3594. (HLOperandIndex::kInterlockedCmpOriginalValueOpIndex + 1))
  3595. originalValue = CI->getArgOperand(
  3596. HLOperandIndex::kInterlockedCmpOriginalValueOpIndex);
  3597. } else {
  3598. value = CI->getArgOperand(HLOperandIndex::kInterlockedValueOpIndex);
  3599. if (CI->getNumArgOperands() ==
  3600. (HLOperandIndex::kInterlockedOriginalValueOpIndex + 1))
  3601. originalValue =
  3602. CI->getArgOperand(HLOperandIndex::kInterlockedOriginalValueOpIndex);
  3603. }
  3604. if (nullptr == operationType)
  3605. operationType = value->getType();
  3606. }
  3607. void TranslateAtomicBinaryOperation(AtomicHelper &helper,
  3608. DXIL::AtomicBinOpCode atomicOp,
  3609. IRBuilder<> &Builder, hlsl::OP *hlslOP) {
  3610. Value *handle = helper.handle;
  3611. Value *addr = helper.addr;
  3612. Value *val = helper.value;
  3613. Type *Ty = helper.operationType;
  3614. Type *valTy = val->getType();
  3615. Value *undefI = UndefValue::get(Type::getInt32Ty(Ty->getContext()));
  3616. Function *dxilAtomic = hlslOP->GetOpFunc(helper.opcode, Ty->getScalarType());
  3617. Value *opArg = hlslOP->GetU32Const(static_cast<unsigned>(helper.opcode));
  3618. Value *atomicOpArg = hlslOP->GetU32Const(static_cast<unsigned>(atomicOp));
  3619. if (Ty != valTy)
  3620. val = Builder.CreateBitCast(val, Ty);
  3621. Value *args[] = {opArg, handle, atomicOpArg,
  3622. undefI, undefI, undefI, // coordinates
  3623. val};
  3624. // Setup coordinates.
  3625. if (addr->getType()->isVectorTy()) {
  3626. unsigned vectorNumElements = addr->getType()->getVectorNumElements();
  3627. DXASSERT(vectorNumElements <= 3, "up to 3 elements for atomic binary op");
  3628. _Analysis_assume_(vectorNumElements <= 3);
  3629. for (unsigned i = 0; i < vectorNumElements; i++) {
  3630. Value *Elt = Builder.CreateExtractElement(addr, i);
  3631. args[DXIL::OperandIndex::kAtomicBinOpCoord0OpIdx + i] = Elt;
  3632. }
  3633. } else
  3634. args[DXIL::OperandIndex::kAtomicBinOpCoord0OpIdx] = addr;
  3635. // Set offset for structured buffer.
  3636. if (helper.offset)
  3637. args[DXIL::OperandIndex::kAtomicBinOpCoord1OpIdx] = helper.offset;
  3638. Value *origVal =
  3639. Builder.CreateCall(dxilAtomic, args, hlslOP->GetAtomicOpName(atomicOp));
  3640. if (helper.originalValue) {
  3641. if (Ty != valTy)
  3642. origVal = Builder.CreateBitCast(origVal, valTy);
  3643. Builder.CreateStore(origVal, helper.originalValue);
  3644. }
  3645. }
  3646. Value *TranslateMopAtomicBinaryOperation(CallInst *CI, IntrinsicOp IOP,
  3647. OP::OpCode opcode,
  3648. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  3649. hlsl::OP *hlslOP = &helper.hlslOP;
  3650. Value *handle = CI->getArgOperand(HLOperandIndex::kHandleOpIdx);
  3651. IRBuilder<> Builder(CI);
  3652. switch (IOP) {
  3653. case IntrinsicOp::MOP_InterlockedAdd:
  3654. case IntrinsicOp::MOP_InterlockedAdd64: {
  3655. AtomicHelper helper(CI, DXIL::OpCode::AtomicBinOp, handle);
  3656. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::Add, Builder,
  3657. hlslOP);
  3658. } break;
  3659. case IntrinsicOp::MOP_InterlockedAnd:
  3660. case IntrinsicOp::MOP_InterlockedAnd64: {
  3661. AtomicHelper helper(CI, DXIL::OpCode::AtomicBinOp, handle);
  3662. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::And, Builder,
  3663. hlslOP);
  3664. } break;
  3665. case IntrinsicOp::MOP_InterlockedExchange:
  3666. case IntrinsicOp::MOP_InterlockedExchange64: {
  3667. AtomicHelper helper(CI, DXIL::OpCode::AtomicBinOp, handle);
  3668. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::Exchange,
  3669. Builder, hlslOP);
  3670. } break;
  3671. case IntrinsicOp::MOP_InterlockedExchangeFloat: {
  3672. AtomicHelper helper(CI, DXIL::OpCode::AtomicBinOp, handle, Type::getInt32Ty(CI->getContext()));
  3673. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::Exchange,
  3674. Builder, hlslOP);
  3675. } break;
  3676. case IntrinsicOp::MOP_InterlockedMax:
  3677. case IntrinsicOp::MOP_InterlockedMax64: {
  3678. AtomicHelper helper(CI, DXIL::OpCode::AtomicBinOp, handle);
  3679. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::IMax, Builder,
  3680. hlslOP);
  3681. } break;
  3682. case IntrinsicOp::MOP_InterlockedMin:
  3683. case IntrinsicOp::MOP_InterlockedMin64: {
  3684. AtomicHelper helper(CI, DXIL::OpCode::AtomicBinOp, handle);
  3685. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::IMin, Builder,
  3686. hlslOP);
  3687. } break;
  3688. case IntrinsicOp::MOP_InterlockedUMax: {
  3689. AtomicHelper helper(CI, DXIL::OpCode::AtomicBinOp, handle);
  3690. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::UMax, Builder,
  3691. hlslOP);
  3692. } break;
  3693. case IntrinsicOp::MOP_InterlockedUMin: {
  3694. AtomicHelper helper(CI, DXIL::OpCode::AtomicBinOp, handle);
  3695. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::UMin, Builder,
  3696. hlslOP);
  3697. } break;
  3698. case IntrinsicOp::MOP_InterlockedOr:
  3699. case IntrinsicOp::MOP_InterlockedOr64: {
  3700. AtomicHelper helper(CI, DXIL::OpCode::AtomicBinOp, handle);
  3701. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::Or, Builder,
  3702. hlslOP);
  3703. } break;
  3704. case IntrinsicOp::MOP_InterlockedXor:
  3705. case IntrinsicOp::MOP_InterlockedXor64:
  3706. default: {
  3707. DXASSERT(IOP == IntrinsicOp::MOP_InterlockedXor || IOP == IntrinsicOp::MOP_InterlockedXor64,
  3708. "invalid MOP atomic intrinsic");
  3709. AtomicHelper helper(CI, DXIL::OpCode::AtomicBinOp, handle);
  3710. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::Xor, Builder,
  3711. hlslOP);
  3712. } break;
  3713. }
  3714. return nullptr;
  3715. }
  3716. void TranslateAtomicCmpXChg(AtomicHelper &helper, IRBuilder<> &Builder,
  3717. hlsl::OP *hlslOP) {
  3718. Value *handle = helper.handle;
  3719. Value *addr = helper.addr;
  3720. Value *val = helper.value;
  3721. Value *cmpVal = helper.compareValue;
  3722. Type *Ty = helper.operationType;
  3723. Type *valTy = val->getType();
  3724. Value *undefI = UndefValue::get(Type::getInt32Ty(Ty->getContext()));
  3725. Function *dxilAtomic = hlslOP->GetOpFunc(helper.opcode, Ty->getScalarType());
  3726. Value *opArg = hlslOP->GetU32Const(static_cast<unsigned>(helper.opcode));
  3727. if (Ty != valTy) {
  3728. val = Builder.CreateBitCast(val, Ty);
  3729. if (cmpVal)
  3730. cmpVal = Builder.CreateBitCast(cmpVal, Ty);
  3731. }
  3732. Value *args[] = {opArg, handle, undefI, undefI, undefI, // coordinates
  3733. cmpVal, val};
  3734. // Setup coordinates.
  3735. if (addr->getType()->isVectorTy()) {
  3736. unsigned vectorNumElements = addr->getType()->getVectorNumElements();
  3737. DXASSERT(vectorNumElements <= 3, "up to 3 elements in atomic op");
  3738. _Analysis_assume_(vectorNumElements <= 3);
  3739. for (unsigned i = 0; i < vectorNumElements; i++) {
  3740. Value *Elt = Builder.CreateExtractElement(addr, i);
  3741. args[DXIL::OperandIndex::kAtomicCmpExchangeCoord0OpIdx + i] = Elt;
  3742. }
  3743. } else
  3744. args[DXIL::OperandIndex::kAtomicCmpExchangeCoord0OpIdx] = addr;
  3745. // Set offset for structured buffer.
  3746. if (helper.offset)
  3747. args[DXIL::OperandIndex::kAtomicCmpExchangeCoord1OpIdx] = helper.offset;
  3748. Value *origVal = Builder.CreateCall(dxilAtomic, args);
  3749. if (helper.originalValue) {
  3750. if (Ty != valTy)
  3751. origVal = Builder.CreateBitCast(origVal, valTy);
  3752. Builder.CreateStore(origVal, helper.originalValue);
  3753. }
  3754. }
  3755. Value *TranslateMopAtomicCmpXChg(CallInst *CI, IntrinsicOp IOP,
  3756. OP::OpCode opcode,
  3757. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  3758. hlsl::OP *hlslOP = &helper.hlslOP;
  3759. Value *handle = CI->getArgOperand(HLOperandIndex::kHandleOpIdx);
  3760. IRBuilder<> Builder(CI);
  3761. Type *opType = nullptr;
  3762. if (IOP == IntrinsicOp::MOP_InterlockedCompareStoreFloatBitwise ||
  3763. IOP == IntrinsicOp::MOP_InterlockedCompareExchangeFloatBitwise)
  3764. opType = Type::getInt32Ty(CI->getContext());
  3765. AtomicHelper atomicHelper(CI, OP::OpCode::AtomicCompareExchange, handle, opType);
  3766. TranslateAtomicCmpXChg(atomicHelper, Builder, hlslOP);
  3767. return nullptr;
  3768. }
  3769. void TranslateSharedMemAtomicBinOp(CallInst *CI, IntrinsicOp IOP, Value *addr) {
  3770. AtomicRMWInst::BinOp Op;
  3771. IRBuilder<> Builder(CI);
  3772. Value *val = CI->getArgOperand(HLOperandIndex::kInterlockedValueOpIndex);
  3773. PointerType *ptrType = dyn_cast<PointerType>(
  3774. CI->getArgOperand(HLOperandIndex::kInterlockedDestOpIndex)->getType());
  3775. bool needCast = ptrType && ptrType->getElementType()->isFloatTy();
  3776. switch (IOP) {
  3777. case IntrinsicOp::IOP_InterlockedAdd:
  3778. Op = AtomicRMWInst::BinOp::Add;
  3779. break;
  3780. case IntrinsicOp::IOP_InterlockedAnd:
  3781. Op = AtomicRMWInst::BinOp::And;
  3782. break;
  3783. case IntrinsicOp::IOP_InterlockedExchange:
  3784. if (needCast) {
  3785. val = Builder.CreateBitCast(val, Type::getInt32Ty(CI->getContext()));
  3786. addr = Builder.CreateBitCast(addr, Type::getInt32PtrTy(CI->getContext(), DXIL::kTGSMAddrSpace));
  3787. }
  3788. Op = AtomicRMWInst::BinOp::Xchg;
  3789. break;
  3790. case IntrinsicOp::IOP_InterlockedMax:
  3791. Op = AtomicRMWInst::BinOp::Max;
  3792. break;
  3793. case IntrinsicOp::IOP_InterlockedUMax:
  3794. Op = AtomicRMWInst::BinOp::UMax;
  3795. break;
  3796. case IntrinsicOp::IOP_InterlockedMin:
  3797. Op = AtomicRMWInst::BinOp::Min;
  3798. break;
  3799. case IntrinsicOp::IOP_InterlockedUMin:
  3800. Op = AtomicRMWInst::BinOp::UMin;
  3801. break;
  3802. case IntrinsicOp::IOP_InterlockedOr:
  3803. Op = AtomicRMWInst::BinOp::Or;
  3804. break;
  3805. case IntrinsicOp::IOP_InterlockedXor:
  3806. default:
  3807. DXASSERT(IOP == IntrinsicOp::IOP_InterlockedXor, "Invalid Intrinsic");
  3808. Op = AtomicRMWInst::BinOp::Xor;
  3809. break;
  3810. }
  3811. Value *Result = Builder.CreateAtomicRMW(
  3812. Op, addr, val, AtomicOrdering::SequentiallyConsistent);
  3813. if (CI->getNumArgOperands() >
  3814. HLOperandIndex::kInterlockedOriginalValueOpIndex) {
  3815. if (needCast)
  3816. Result = Builder.CreateBitCast(Result, Type::getFloatTy(CI->getContext()));
  3817. Builder.CreateStore(
  3818. Result,
  3819. CI->getArgOperand(HLOperandIndex::kInterlockedOriginalValueOpIndex));
  3820. }
  3821. }
  3822. static Value* SkipAddrSpaceCast(Value* Ptr) {
  3823. if (AddrSpaceCastInst *CastInst = dyn_cast<AddrSpaceCastInst>(Ptr))
  3824. return CastInst->getOperand(0);
  3825. else if (ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Ptr)) {
  3826. if (ConstExpr->getOpcode() == Instruction::AddrSpaceCast) {
  3827. return ConstExpr->getOperand(0);
  3828. }
  3829. }
  3830. return Ptr;
  3831. }
  3832. Value *TranslateIopAtomicBinaryOperation(CallInst *CI, IntrinsicOp IOP,
  3833. DXIL::OpCode opcode,
  3834. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  3835. Value *addr = CI->getArgOperand(HLOperandIndex::kInterlockedDestOpIndex);
  3836. addr = SkipAddrSpaceCast(addr);
  3837. unsigned addressSpace = addr->getType()->getPointerAddressSpace();
  3838. if (addressSpace == DXIL::kTGSMAddrSpace)
  3839. TranslateSharedMemAtomicBinOp(CI, IOP, addr);
  3840. else {
  3841. // buffer atomic translated in TranslateSubscript.
  3842. // Do nothing here.
  3843. // Mark not translated.
  3844. Translated = false;
  3845. }
  3846. return nullptr;
  3847. }
  3848. void TranslateSharedMemAtomicCmpXChg(CallInst *CI, Value *addr) {
  3849. Value *val = CI->getArgOperand(HLOperandIndex::kInterlockedCmpValueOpIndex);
  3850. Value *cmpVal =
  3851. CI->getArgOperand(HLOperandIndex::kInterlockedCmpCompareValueOpIndex);
  3852. IRBuilder<> Builder(CI);
  3853. PointerType *ptrType = dyn_cast<PointerType>(
  3854. CI->getArgOperand(HLOperandIndex::kInterlockedDestOpIndex)->getType());
  3855. bool needCast = false;
  3856. if (ptrType && ptrType->getElementType()->isFloatTy()) {
  3857. needCast = true;
  3858. val = Builder.CreateBitCast(val, Type::getInt32Ty(CI->getContext()));
  3859. cmpVal = Builder.CreateBitCast(cmpVal, Type::getInt32Ty(CI->getContext()));
  3860. addr = Builder.CreateBitCast(addr, Type::getInt32PtrTy(CI->getContext(), DXIL::kTGSMAddrSpace));
  3861. }
  3862. Value *Result = Builder.CreateAtomicCmpXchg(
  3863. addr, cmpVal, val, AtomicOrdering::SequentiallyConsistent,
  3864. AtomicOrdering::SequentiallyConsistent);
  3865. if (CI->getNumArgOperands() >
  3866. HLOperandIndex::kInterlockedCmpOriginalValueOpIndex) {
  3867. Value *originVal = Builder.CreateExtractValue(Result, 0);
  3868. if (needCast)
  3869. originVal = Builder.CreateBitCast(originVal, Type::getFloatTy(CI->getContext()));
  3870. Builder.CreateStore(
  3871. originVal,
  3872. CI->getArgOperand(HLOperandIndex::kInterlockedCmpOriginalValueOpIndex));
  3873. }
  3874. }
  3875. Value *TranslateIopAtomicCmpXChg(CallInst *CI, IntrinsicOp IOP,
  3876. DXIL::OpCode opcode,
  3877. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  3878. Value *addr = CI->getArgOperand(HLOperandIndex::kInterlockedDestOpIndex);
  3879. addr = SkipAddrSpaceCast(addr);
  3880. unsigned addressSpace = addr->getType()->getPointerAddressSpace();
  3881. if (addressSpace == DXIL::kTGSMAddrSpace)
  3882. TranslateSharedMemAtomicCmpXChg(CI, addr);
  3883. else {
  3884. // buffer atomic translated in TranslateSubscript.
  3885. // Do nothing here.
  3886. // Mark not translated.
  3887. Translated = false;
  3888. }
  3889. return nullptr;
  3890. }
  3891. }
  3892. // Process Tess Factor.
  3893. namespace {
  3894. // Clamp to [0.0f..1.0f], NaN->0.0f.
  3895. Value *CleanupTessFactorScale(Value *input, hlsl::OP *hlslOP, IRBuilder<> &Builder) {
  3896. float fMin = 0;
  3897. float fMax = 1;
  3898. Type *f32Ty = input->getType()->getScalarType();
  3899. Value *minFactor = ConstantFP::get(f32Ty, fMin);
  3900. Value *maxFactor = ConstantFP::get(f32Ty, fMax);
  3901. Type *Ty = input->getType();
  3902. if (Ty->isVectorTy())
  3903. minFactor = SplatToVector(minFactor, input->getType(), Builder);
  3904. Value *temp = TrivialDxilBinaryOperation(DXIL::OpCode::FMax, input, minFactor, hlslOP, Builder);
  3905. if (Ty->isVectorTy())
  3906. maxFactor = SplatToVector(maxFactor, input->getType(), Builder);
  3907. return TrivialDxilBinaryOperation(DXIL::OpCode::FMin, temp, maxFactor, hlslOP, Builder);
  3908. }
  3909. // Clamp to [1.0f..Inf], NaN->1.0f.
  3910. Value *CleanupTessFactor(Value *input, hlsl::OP *hlslOP, IRBuilder<> &Builder)
  3911. {
  3912. float fMin = 1.0;
  3913. Type *f32Ty = input->getType()->getScalarType();
  3914. Value *minFactor = ConstantFP::get(f32Ty, fMin);
  3915. minFactor = SplatToVector(minFactor, input->getType(), Builder);
  3916. return TrivialDxilBinaryOperation(DXIL::OpCode::FMax, input, minFactor, hlslOP, Builder);
  3917. }
  3918. // Do partitioning-specific clamping.
  3919. Value *ClampTessFactor(Value *input, DXIL::TessellatorPartitioning partitionMode,
  3920. hlsl::OP *hlslOP, IRBuilder<> &Builder) {
  3921. const unsigned kTESSELLATOR_MAX_EVEN_TESSELLATION_FACTOR = 64;
  3922. const unsigned kTESSELLATOR_MAX_ODD_TESSELLATION_FACTOR = 63;
  3923. const unsigned kTESSELLATOR_MIN_EVEN_TESSELLATION_FACTOR = 2;
  3924. const unsigned kTESSELLATOR_MIN_ODD_TESSELLATION_FACTOR = 1;
  3925. const unsigned kTESSELLATOR_MAX_TESSELLATION_FACTOR = 64;
  3926. float fMin;
  3927. float fMax;
  3928. switch (partitionMode) {
  3929. case DXIL::TessellatorPartitioning::Integer:
  3930. fMin = kTESSELLATOR_MIN_ODD_TESSELLATION_FACTOR;
  3931. fMax = kTESSELLATOR_MAX_TESSELLATION_FACTOR;
  3932. break;
  3933. case DXIL::TessellatorPartitioning::Pow2:
  3934. fMin = kTESSELLATOR_MIN_ODD_TESSELLATION_FACTOR;
  3935. fMax = kTESSELLATOR_MAX_EVEN_TESSELLATION_FACTOR;
  3936. break;
  3937. case DXIL::TessellatorPartitioning::FractionalOdd:
  3938. fMin = kTESSELLATOR_MIN_ODD_TESSELLATION_FACTOR;
  3939. fMax = kTESSELLATOR_MAX_ODD_TESSELLATION_FACTOR;
  3940. break;
  3941. case DXIL::TessellatorPartitioning::FractionalEven:
  3942. default:
  3943. DXASSERT(partitionMode == DXIL::TessellatorPartitioning::FractionalEven,
  3944. "invalid partition mode");
  3945. fMin = kTESSELLATOR_MIN_EVEN_TESSELLATION_FACTOR;
  3946. fMax = kTESSELLATOR_MAX_EVEN_TESSELLATION_FACTOR;
  3947. break;
  3948. }
  3949. Type *f32Ty = input->getType()->getScalarType();
  3950. Value *minFactor = ConstantFP::get(f32Ty, fMin);
  3951. Value *maxFactor = ConstantFP::get(f32Ty, fMax);
  3952. Type *Ty = input->getType();
  3953. if (Ty->isVectorTy())
  3954. minFactor = SplatToVector(minFactor, input->getType(), Builder);
  3955. Value *temp = TrivialDxilBinaryOperation(DXIL::OpCode::FMax, input, minFactor, hlslOP, Builder);
  3956. if (Ty->isVectorTy())
  3957. maxFactor = SplatToVector(maxFactor, input->getType(), Builder);
  3958. return TrivialDxilBinaryOperation(DXIL::OpCode::FMin, temp, maxFactor, hlslOP, Builder);
  3959. }
  3960. // round up for integer/pow2 partitioning
  3961. // note that this code assumes the inputs should be in the range [1, inf),
  3962. // which should be enforced by the clamp above.
  3963. Value *RoundUpTessFactor(Value *input, DXIL::TessellatorPartitioning partitionMode,
  3964. hlsl::OP *hlslOP, IRBuilder<> &Builder) {
  3965. switch (partitionMode) {
  3966. case DXIL::TessellatorPartitioning::Integer:
  3967. return TrivialDxilUnaryOperation(DXIL::OpCode::Round_pi, input, hlslOP, Builder);
  3968. case DXIL::TessellatorPartitioning::Pow2: {
  3969. const unsigned kExponentMask = 0x7f800000;
  3970. const unsigned kExponentLSB = 0x00800000;
  3971. const unsigned kMantissaMask = 0x007fffff;
  3972. Type *Ty = input->getType();
  3973. // (val = (asuint(val) & mantissamask) ?
  3974. // (asuint(val) & exponentmask) + exponentbump :
  3975. // asuint(val) & exponentmask;
  3976. Type *uintTy = Type::getInt32Ty(Ty->getContext());
  3977. if (Ty->isVectorTy())
  3978. uintTy = VectorType::get(uintTy, Ty->getVectorNumElements());
  3979. Value *uintVal = Builder.CreateCast(Instruction::CastOps::FPToUI, input, uintTy);
  3980. Value *mantMask = ConstantInt::get(uintTy->getScalarType(), kMantissaMask);
  3981. mantMask = SplatToVector(mantMask, uintTy, Builder);
  3982. Value *manVal = Builder.CreateAnd(uintVal, mantMask);
  3983. Value *expMask = ConstantInt::get(uintTy->getScalarType(), kExponentMask);
  3984. expMask = SplatToVector(expMask, uintTy, Builder);
  3985. Value *expVal = Builder.CreateAnd(uintVal, expMask);
  3986. Value *expLSB = ConstantInt::get(uintTy->getScalarType(), kExponentLSB);
  3987. expLSB = SplatToVector(expLSB, uintTy, Builder);
  3988. Value *newExpVal = Builder.CreateAdd(expVal, expLSB);
  3989. Value *manValNotZero = Builder.CreateICmpEQ(manVal, ConstantAggregateZero::get(uintTy));
  3990. Value *factors = Builder.CreateSelect(manValNotZero, newExpVal, expVal);
  3991. return Builder.CreateUIToFP(factors, Ty);
  3992. } break;
  3993. case DXIL::TessellatorPartitioning::FractionalEven:
  3994. case DXIL::TessellatorPartitioning::FractionalOdd:
  3995. return input;
  3996. default:
  3997. DXASSERT(0, "invalid partition mode");
  3998. return nullptr;
  3999. }
  4000. }
  4001. Value *TranslateProcessIsolineTessFactors(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4002. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  4003. hlsl::OP *hlslOP = &helper.hlslOP;
  4004. // Get partition mode
  4005. DXASSERT_NOMSG(helper.functionProps);
  4006. DXASSERT(helper.functionProps->shaderKind == ShaderModel::Kind::Hull, "must be hull shader");
  4007. DXIL::TessellatorPartitioning partition = helper.functionProps->ShaderProps.HS.partition;
  4008. IRBuilder<> Builder(CI);
  4009. Value *rawDetailFactor = CI->getArgOperand(HLOperandIndex::kProcessTessFactorRawDetailFactor);
  4010. rawDetailFactor = Builder.CreateExtractElement(rawDetailFactor, (uint64_t)0);
  4011. Value *rawDensityFactor = CI->getArgOperand(HLOperandIndex::kProcessTessFactorRawDensityFactor);
  4012. rawDensityFactor = Builder.CreateExtractElement(rawDensityFactor, (uint64_t)0);
  4013. Value *init = UndefValue::get(VectorType::get(helper.f32Ty, 2));
  4014. init = Builder.CreateInsertElement(init, rawDetailFactor, (uint64_t)0);
  4015. init = Builder.CreateInsertElement(init, rawDetailFactor, (uint64_t)1);
  4016. Value *clamped = ClampTessFactor(init, partition, hlslOP, Builder);
  4017. Value *rounded = RoundUpTessFactor(clamped, partition, hlslOP, Builder);
  4018. Value *roundedDetailFactor = CI->getArgOperand(HLOperandIndex::kProcessTessFactorRoundedDetailFactor);
  4019. Value *temp = UndefValue::get(VectorType::get(helper.f32Ty, 1));
  4020. Value *roundedX = Builder.CreateExtractElement(rounded, (uint64_t)0);
  4021. temp = Builder.CreateInsertElement(temp, roundedX, (uint64_t)0);
  4022. Builder.CreateStore(temp, roundedDetailFactor);
  4023. Value *roundedDensityFactor = CI->getArgOperand(HLOperandIndex::kProcessTessFactorRoundedDensityFactor);
  4024. Value *roundedY = Builder.CreateExtractElement(rounded, 1);
  4025. temp = Builder.CreateInsertElement(temp, roundedY, (uint64_t)0);
  4026. Builder.CreateStore(temp, roundedDensityFactor);
  4027. return nullptr;
  4028. }
  4029. // 3 inputs, 1 result
  4030. Value *ApplyTriTessFactorOp(Value *input, DXIL::OpCode opcode, hlsl::OP *hlslOP,
  4031. IRBuilder<> &Builder) {
  4032. Value *input0 = Builder.CreateExtractElement(input, (uint64_t)0);
  4033. Value *input1 = Builder.CreateExtractElement(input, 1);
  4034. Value *input2 = Builder.CreateExtractElement(input, 2);
  4035. if (opcode == DXIL::OpCode::FMax || opcode == DXIL::OpCode::FMin) {
  4036. Value *temp =
  4037. TrivialDxilBinaryOperation(opcode, input0, input1, hlslOP, Builder);
  4038. Value *combined =
  4039. TrivialDxilBinaryOperation(opcode, temp, input2, hlslOP, Builder);
  4040. return combined;
  4041. } else {
  4042. // Avg.
  4043. Value *temp = Builder.CreateFAdd(input0, input1);
  4044. Value *combined = Builder.CreateFAdd(temp, input2);
  4045. Value *rcp = ConstantFP::get(input0->getType(), 1.0 / 3.0);
  4046. combined = Builder.CreateFMul(combined, rcp);
  4047. return combined;
  4048. }
  4049. }
  4050. // 4 inputs, 1 result
  4051. Value *ApplyQuadTessFactorOp(Value *input, DXIL::OpCode opcode,
  4052. hlsl::OP *hlslOP, IRBuilder<> &Builder) {
  4053. Value *input0 = Builder.CreateExtractElement(input, (uint64_t)0);
  4054. Value *input1 = Builder.CreateExtractElement(input, 1);
  4055. Value *input2 = Builder.CreateExtractElement(input, 2);
  4056. Value *input3 = Builder.CreateExtractElement(input, 3);
  4057. if (opcode == DXIL::OpCode::FMax || opcode == DXIL::OpCode::FMin) {
  4058. Value *temp0 =
  4059. TrivialDxilBinaryOperation(opcode, input0, input1, hlslOP, Builder);
  4060. Value *temp1 =
  4061. TrivialDxilBinaryOperation(opcode, input2, input3, hlslOP, Builder);
  4062. Value *combined =
  4063. TrivialDxilBinaryOperation(opcode, temp0, temp1, hlslOP, Builder);
  4064. return combined;
  4065. } else {
  4066. // Avg.
  4067. Value *temp0 = Builder.CreateFAdd(input0, input1);
  4068. Value *temp1 = Builder.CreateFAdd(input2, input3);
  4069. Value *combined = Builder.CreateFAdd(temp0, temp1);
  4070. Value *rcp = ConstantFP::get(input0->getType(), 0.25);
  4071. combined = Builder.CreateFMul(combined, rcp);
  4072. return combined;
  4073. }
  4074. }
  4075. // 4 inputs, 2 result
  4076. Value *Apply2DQuadTessFactorOp(Value *input, DXIL::OpCode opcode,
  4077. hlsl::OP *hlslOP, IRBuilder<> &Builder) {
  4078. Value *input0 = Builder.CreateExtractElement(input, (uint64_t)0);
  4079. Value *input1 = Builder.CreateExtractElement(input, 1);
  4080. Value *input2 = Builder.CreateExtractElement(input, 2);
  4081. Value *input3 = Builder.CreateExtractElement(input, 3);
  4082. if (opcode == DXIL::OpCode::FMax || opcode == DXIL::OpCode::FMin) {
  4083. Value *temp0 =
  4084. TrivialDxilBinaryOperation(opcode, input0, input1, hlslOP, Builder);
  4085. Value *temp1 =
  4086. TrivialDxilBinaryOperation(opcode, input2, input3, hlslOP, Builder);
  4087. Value *combined = UndefValue::get(VectorType::get(input0->getType(), 2));
  4088. combined = Builder.CreateInsertElement(combined, temp0, (uint64_t)0);
  4089. combined = Builder.CreateInsertElement(combined, temp1, 1);
  4090. return combined;
  4091. } else {
  4092. // Avg.
  4093. Value *temp0 = Builder.CreateFAdd(input0, input1);
  4094. Value *temp1 = Builder.CreateFAdd(input2, input3);
  4095. Value *combined = UndefValue::get(VectorType::get(input0->getType(), 2));
  4096. combined = Builder.CreateInsertElement(combined, temp0, (uint64_t)0);
  4097. combined = Builder.CreateInsertElement(combined, temp1, 1);
  4098. Constant *rcp = ConstantFP::get(input0->getType(), 0.5);
  4099. rcp = ConstantVector::getSplat(2, rcp);
  4100. combined = Builder.CreateFMul(combined, rcp);
  4101. return combined;
  4102. }
  4103. }
  4104. Value *ResolveSmallValue(Value **pClampedResult, Value *rounded, Value *averageUnscaled,
  4105. float cutoffVal, DXIL::TessellatorPartitioning partitionMode, hlsl::OP *hlslOP, IRBuilder<> &Builder) {
  4106. Value *clampedResult = *pClampedResult;
  4107. Value *clampedVal = clampedResult;
  4108. Value *roundedVal = rounded;
  4109. // Do partitioning-specific clamping.
  4110. Value *clampedAvg = ClampTessFactor(averageUnscaled, partitionMode, hlslOP, Builder);
  4111. Constant *cutoffVals = ConstantFP::get(Type::getFloatTy(rounded->getContext()), cutoffVal);
  4112. if (clampedAvg->getType()->isVectorTy())
  4113. cutoffVals = ConstantVector::getSplat(clampedAvg->getType()->getVectorNumElements(), cutoffVals);
  4114. // Limit the value.
  4115. clampedAvg = TrivialDxilBinaryOperation(DXIL::OpCode::FMin, clampedAvg, cutoffVals, hlslOP, Builder);
  4116. // Round up for integer/pow2 partitioning.
  4117. Value *roundedAvg = RoundUpTessFactor(clampedAvg, partitionMode, hlslOP, Builder);
  4118. if (rounded->getType() != cutoffVals->getType())
  4119. cutoffVals = ConstantVector::getSplat(rounded->getType()->getVectorNumElements(), cutoffVals);
  4120. // If the scaled value is less than three, then take the unscaled average.
  4121. Value *lt = Builder.CreateFCmpOLT(rounded, cutoffVals);
  4122. if (clampedAvg->getType() != clampedVal->getType())
  4123. clampedAvg = SplatToVector(clampedAvg, clampedVal->getType(), Builder);
  4124. *pClampedResult = Builder.CreateSelect(lt, clampedAvg, clampedVal);
  4125. if (roundedAvg->getType() != roundedVal->getType())
  4126. roundedAvg = SplatToVector(roundedAvg, roundedVal->getType(), Builder);
  4127. Value *result = Builder.CreateSelect(lt, roundedAvg, roundedVal);
  4128. return result;
  4129. }
  4130. void ResolveQuadAxes( Value **pFinalResult, Value **pClampedResult,
  4131. float cutoffVal, DXIL::TessellatorPartitioning partitionMode, hlsl::OP *hlslOP, IRBuilder<> &Builder) {
  4132. Value *finalResult = *pFinalResult;
  4133. Value *clampedResult = *pClampedResult;
  4134. Value *clampR = clampedResult;
  4135. Value *finalR = finalResult;
  4136. Type *f32Ty = Type::getFloatTy(finalR->getContext());
  4137. Constant *cutoffVals = ConstantFP::get(f32Ty, cutoffVal);
  4138. Value *minValsX = cutoffVals;
  4139. Value *minValsY = RoundUpTessFactor(cutoffVals, partitionMode, hlslOP, Builder);
  4140. Value *clampRX = Builder.CreateExtractElement(clampR, (uint64_t)0);
  4141. Value *clampRY = Builder.CreateExtractElement(clampR, 1);
  4142. Value *maxValsX = TrivialDxilBinaryOperation(DXIL::OpCode::FMax, clampRX, clampRY, hlslOP, Builder);
  4143. Value *finalRX = Builder.CreateExtractElement(finalR, (uint64_t)0);
  4144. Value *finalRY = Builder.CreateExtractElement(finalR, 1);
  4145. Value *maxValsY = TrivialDxilBinaryOperation(DXIL::OpCode::FMax, finalRX, finalRY, hlslOP, Builder);
  4146. // Don't go over our threshold ("final" one is rounded).
  4147. Value * optionX = TrivialDxilBinaryOperation(DXIL::OpCode::FMin, maxValsX, minValsX, hlslOP, Builder);
  4148. Value * optionY = TrivialDxilBinaryOperation(DXIL::OpCode::FMin, maxValsY, minValsY, hlslOP, Builder);
  4149. Value *clampL = SplatToVector(optionX, clampR->getType(), Builder);
  4150. Value *finalL = SplatToVector(optionY, finalR->getType(), Builder);
  4151. cutoffVals = ConstantVector::getSplat(2, cutoffVals);
  4152. Value *lt = Builder.CreateFCmpOLT(clampedResult, cutoffVals);
  4153. *pClampedResult = Builder.CreateSelect(lt, clampL, clampR);
  4154. *pFinalResult = Builder.CreateSelect(lt, finalL, finalR);
  4155. }
  4156. Value *TranslateProcessTessFactors(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4157. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  4158. hlsl::OP *hlslOP = &helper.hlslOP;
  4159. // Get partition mode
  4160. DXASSERT_NOMSG(helper.functionProps);
  4161. DXASSERT(helper.functionProps->shaderKind == ShaderModel::Kind::Hull, "must be hull shader");
  4162. DXIL::TessellatorPartitioning partition = helper.functionProps->ShaderProps.HS.partition;
  4163. IRBuilder<> Builder(CI);
  4164. DXIL::OpCode tessFactorOp = DXIL::OpCode::NumOpCodes;
  4165. switch (IOP) {
  4166. case IntrinsicOp::IOP_Process2DQuadTessFactorsMax:
  4167. case IntrinsicOp::IOP_ProcessQuadTessFactorsMax:
  4168. case IntrinsicOp::IOP_ProcessTriTessFactorsMax:
  4169. tessFactorOp = DXIL::OpCode::FMax;
  4170. break;
  4171. case IntrinsicOp::IOP_Process2DQuadTessFactorsMin:
  4172. case IntrinsicOp::IOP_ProcessQuadTessFactorsMin:
  4173. case IntrinsicOp::IOP_ProcessTriTessFactorsMin:
  4174. tessFactorOp = DXIL::OpCode::FMin;
  4175. break;
  4176. default:
  4177. // Default is Avg.
  4178. break;
  4179. }
  4180. Value *rawEdgeFactor = CI->getArgOperand(HLOperandIndex::kProcessTessFactorRawEdgeFactor);
  4181. Value *insideScale = CI->getArgOperand(HLOperandIndex::kProcessTessFactorInsideScale);
  4182. // Clamp to [0.0f..1.0f], NaN->0.0f.
  4183. Value *scales = CleanupTessFactorScale(insideScale, hlslOP, Builder);
  4184. // Do partitioning-specific clamping.
  4185. Value *clamped = ClampTessFactor(rawEdgeFactor, partition, hlslOP, Builder);
  4186. // Round up for integer/pow2 partitioning.
  4187. Value *rounded = RoundUpTessFactor(clamped, partition, hlslOP, Builder);
  4188. // Store the output.
  4189. Value *roundedEdgeFactor = CI->getArgOperand(HLOperandIndex::kProcessTessFactorRoundedEdgeFactor);
  4190. Builder.CreateStore(rounded, roundedEdgeFactor);
  4191. // Clamp to [1.0f..Inf], NaN->1.0f.
  4192. bool isQuad = false;
  4193. Value *clean = CleanupTessFactor(rawEdgeFactor, hlslOP, Builder);
  4194. Value *factors = nullptr;
  4195. switch (IOP) {
  4196. case IntrinsicOp::IOP_Process2DQuadTessFactorsAvg:
  4197. case IntrinsicOp::IOP_Process2DQuadTessFactorsMax:
  4198. case IntrinsicOp::IOP_Process2DQuadTessFactorsMin:
  4199. factors = Apply2DQuadTessFactorOp(clean, tessFactorOp, hlslOP, Builder);
  4200. break;
  4201. case IntrinsicOp::IOP_ProcessQuadTessFactorsAvg:
  4202. case IntrinsicOp::IOP_ProcessQuadTessFactorsMax:
  4203. case IntrinsicOp::IOP_ProcessQuadTessFactorsMin:
  4204. factors = ApplyQuadTessFactorOp(clean, tessFactorOp, hlslOP, Builder);
  4205. isQuad = true;
  4206. break;
  4207. case IntrinsicOp::IOP_ProcessTriTessFactorsAvg:
  4208. case IntrinsicOp::IOP_ProcessTriTessFactorsMax:
  4209. case IntrinsicOp::IOP_ProcessTriTessFactorsMin:
  4210. factors = ApplyTriTessFactorOp(clean, tessFactorOp, hlslOP, Builder);
  4211. break;
  4212. default:
  4213. DXASSERT(0, "invalid opcode for ProcessTessFactor");
  4214. break;
  4215. }
  4216. Value *scaledI = nullptr;
  4217. if (scales->getType() == factors->getType())
  4218. scaledI = Builder.CreateFMul(factors, scales);
  4219. else {
  4220. Value *vecFactors = SplatToVector(factors, scales->getType(), Builder);
  4221. scaledI = Builder.CreateFMul(vecFactors, scales);
  4222. }
  4223. // Do partitioning-specific clamping.
  4224. Value *clampedI = ClampTessFactor(scaledI, partition, hlslOP, Builder);
  4225. // Round up for integer/pow2 partitioning.
  4226. Value *roundedI = RoundUpTessFactor(clampedI, partition, hlslOP, Builder);
  4227. Value *finalI = roundedI;
  4228. if (partition == DXIL::TessellatorPartitioning::FractionalOdd) {
  4229. // If not max, set to AVG.
  4230. if (tessFactorOp != DXIL::OpCode::FMax)
  4231. tessFactorOp = DXIL::OpCode::NumOpCodes;
  4232. bool b2D = false;
  4233. Value *avgFactorsI = nullptr;
  4234. switch (IOP) {
  4235. case IntrinsicOp::IOP_Process2DQuadTessFactorsAvg:
  4236. case IntrinsicOp::IOP_Process2DQuadTessFactorsMax:
  4237. case IntrinsicOp::IOP_Process2DQuadTessFactorsMin:
  4238. avgFactorsI = Apply2DQuadTessFactorOp(clean, tessFactorOp, hlslOP, Builder);
  4239. b2D = true;
  4240. break;
  4241. case IntrinsicOp::IOP_ProcessQuadTessFactorsAvg:
  4242. case IntrinsicOp::IOP_ProcessQuadTessFactorsMax:
  4243. case IntrinsicOp::IOP_ProcessQuadTessFactorsMin:
  4244. avgFactorsI = ApplyQuadTessFactorOp(clean, tessFactorOp, hlslOP, Builder);
  4245. break;
  4246. case IntrinsicOp::IOP_ProcessTriTessFactorsAvg:
  4247. case IntrinsicOp::IOP_ProcessTriTessFactorsMax:
  4248. case IntrinsicOp::IOP_ProcessTriTessFactorsMin:
  4249. avgFactorsI = ApplyTriTessFactorOp(clean, tessFactorOp, hlslOP, Builder);
  4250. break;
  4251. default:
  4252. DXASSERT(0, "invalid opcode for ProcessTessFactor");
  4253. break;
  4254. }
  4255. finalI =
  4256. ResolveSmallValue(/*inout*/&clampedI, roundedI, avgFactorsI, /*cufoff*/ 3.0,
  4257. partition, hlslOP, Builder);
  4258. if (b2D)
  4259. ResolveQuadAxes(/*inout*/&finalI, /*inout*/&clampedI, /*cutoff*/3.0, partition, hlslOP, Builder);
  4260. }
  4261. Value *unroundedInsideFactor = CI->getArgOperand(HLOperandIndex::kProcessTessFactorUnRoundedInsideFactor);
  4262. Type *outFactorTy = unroundedInsideFactor->getType()->getPointerElementType();
  4263. if (outFactorTy != clampedI->getType()) {
  4264. DXASSERT(isQuad, "quad only write one channel of out factor");
  4265. (void)isQuad;
  4266. clampedI = Builder.CreateExtractElement(clampedI, (uint64_t)0);
  4267. // Splat clampedI to float2.
  4268. clampedI = SplatToVector(clampedI, outFactorTy, Builder);
  4269. }
  4270. Builder.CreateStore(clampedI, unroundedInsideFactor);
  4271. Value *roundedInsideFactor = CI->getArgOperand(HLOperandIndex::kProcessTessFactorRoundedInsideFactor);
  4272. if (outFactorTy != finalI->getType()) {
  4273. DXASSERT(isQuad, "quad only write one channel of out factor");
  4274. finalI = Builder.CreateExtractElement(finalI, (uint64_t)0);
  4275. // Splat finalI to float2.
  4276. finalI = SplatToVector(finalI, outFactorTy, Builder);
  4277. }
  4278. Builder.CreateStore(finalI, roundedInsideFactor);
  4279. return nullptr;
  4280. }
  4281. }
  4282. // Ray Tracing.
  4283. namespace {
  4284. Value *TranslateReportIntersection(CallInst *CI, IntrinsicOp IOP,
  4285. OP::OpCode opcode,
  4286. HLOperationLowerHelper &helper,
  4287. HLObjectOperationLowerHelper *pObjHelper,
  4288. bool &Translated) {
  4289. hlsl::OP *hlslOP = &helper.hlslOP;
  4290. Value *THit = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc0Idx);
  4291. Value *HitKind = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc1Idx);
  4292. Value *Attr = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc2Idx);
  4293. Value *opArg = hlslOP->GetU32Const(static_cast<unsigned>(opcode));
  4294. Type *Ty = Attr->getType();
  4295. Function *F = hlslOP->GetOpFunc(opcode, Ty);
  4296. IRBuilder<> Builder(CI);
  4297. return Builder.CreateCall(F, {opArg, THit, HitKind, Attr});
  4298. }
  4299. Value *TranslateCallShader(CallInst *CI, IntrinsicOp IOP,
  4300. OP::OpCode opcode,
  4301. HLOperationLowerHelper &helper,
  4302. HLObjectOperationLowerHelper *pObjHelper,
  4303. bool &Translated) {
  4304. hlsl::OP *hlslOP = &helper.hlslOP;
  4305. Value *ShaderIndex = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx);
  4306. Value *Parameter = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  4307. Value *opArg = hlslOP->GetU32Const(static_cast<unsigned>(opcode));
  4308. Type *Ty = Parameter->getType();
  4309. Function *F = hlslOP->GetOpFunc(opcode, Ty);
  4310. IRBuilder<> Builder(CI);
  4311. return Builder.CreateCall(F, {opArg, ShaderIndex, Parameter});
  4312. }
  4313. Value *TranslateTraceRay(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4314. HLOperationLowerHelper &helper,
  4315. HLObjectOperationLowerHelper *pObjHelper,
  4316. bool &Translated) {
  4317. hlsl::OP *hlslOP = &helper.hlslOP;
  4318. Value *rayDesc = CI->getArgOperand(HLOperandIndex::kTraceRayRayDescOpIdx);
  4319. Value *payLoad = CI->getArgOperand(HLOperandIndex::kTraceRayPayLoadOpIdx);
  4320. Value *opArg = hlslOP->GetU32Const(static_cast<unsigned>(opcode));
  4321. Value *Args[DXIL::OperandIndex::kTraceRayNumOp];
  4322. Args[0] = opArg;
  4323. for (unsigned i = 1; i < HLOperandIndex::kTraceRayRayDescOpIdx; i++) {
  4324. Args[i] = CI->getArgOperand(i);
  4325. }
  4326. IRBuilder<> Builder(CI);
  4327. // struct RayDesc
  4328. //{
  4329. // float3 Origin;
  4330. // float TMin;
  4331. // float3 Direction;
  4332. // float TMax;
  4333. //};
  4334. Value *zeroIdx = hlslOP->GetU32Const(0);
  4335. Value *origin = Builder.CreateGEP(rayDesc, {zeroIdx, zeroIdx});
  4336. origin = Builder.CreateLoad(origin);
  4337. unsigned index = DXIL::OperandIndex::kTraceRayRayDescOpIdx;
  4338. Args[index++] = Builder.CreateExtractElement(origin, (uint64_t)0);
  4339. Args[index++] = Builder.CreateExtractElement(origin, 1);
  4340. Args[index++] = Builder.CreateExtractElement(origin, 2);
  4341. Value *tmin = Builder.CreateGEP(rayDesc, {zeroIdx, hlslOP->GetU32Const(1)});
  4342. tmin = Builder.CreateLoad(tmin);
  4343. Args[index++] = tmin;
  4344. Value *direction = Builder.CreateGEP(rayDesc, {zeroIdx, hlslOP->GetU32Const(2)});
  4345. direction = Builder.CreateLoad(direction);
  4346. Args[index++] = Builder.CreateExtractElement(direction, (uint64_t)0);
  4347. Args[index++] = Builder.CreateExtractElement(direction, 1);
  4348. Args[index++] = Builder.CreateExtractElement(direction, 2);
  4349. Value *tmax = Builder.CreateGEP(rayDesc, {zeroIdx, hlslOP->GetU32Const(3)});
  4350. tmax = Builder.CreateLoad(tmax);
  4351. Args[index++] = tmax;
  4352. Args[DXIL::OperandIndex::kTraceRayPayloadOpIdx] = payLoad;
  4353. Type *Ty = payLoad->getType();
  4354. Function *F = hlslOP->GetOpFunc(opcode, Ty);
  4355. return Builder.CreateCall(F, Args);
  4356. }
  4357. // RayQuery methods
  4358. Value *TranslateAllocateRayQuery(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4359. HLOperationLowerHelper &helper,
  4360. HLObjectOperationLowerHelper *pObjHelper,
  4361. bool &Translated) {
  4362. hlsl::OP *hlslOP = &helper.hlslOP;
  4363. Value *refArgs[] = {nullptr, CI->getOperand(1)};
  4364. return TrivialDxilOperation(opcode, refArgs, helper.voidTy, CI, hlslOP);
  4365. }
  4366. Value *TranslateTraceRayInline(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4367. HLOperationLowerHelper &helper,
  4368. HLObjectOperationLowerHelper *pObjHelper,
  4369. bool &Translated) {
  4370. hlsl::OP *hlslOP = &helper.hlslOP;
  4371. Value *opArg = hlslOP->GetU32Const(static_cast<unsigned>(opcode));
  4372. Value *Args[DXIL::OperandIndex::kTraceRayInlineNumOp];
  4373. Args[0] = opArg;
  4374. for (unsigned i = 1; i < HLOperandIndex::kTraceRayInlineRayDescOpIdx; i++) {
  4375. Args[i] = CI->getArgOperand(i);
  4376. }
  4377. IRBuilder<> Builder(CI);
  4378. unsigned hlIndex = HLOperandIndex::kTraceRayInlineRayDescOpIdx;
  4379. unsigned index = DXIL::OperandIndex::kTraceRayInlineRayDescOpIdx;
  4380. // struct RayDesc
  4381. //{
  4382. // float3 Origin;
  4383. Value *origin = CI->getArgOperand(hlIndex++);
  4384. Args[index++] = Builder.CreateExtractElement(origin, (uint64_t)0);
  4385. Args[index++] = Builder.CreateExtractElement(origin, 1);
  4386. Args[index++] = Builder.CreateExtractElement(origin, 2);
  4387. // float TMin;
  4388. Args[index++] = CI->getArgOperand(hlIndex++);
  4389. // float3 Direction;
  4390. Value *direction = CI->getArgOperand(hlIndex++);
  4391. Args[index++] = Builder.CreateExtractElement(direction, (uint64_t)0);
  4392. Args[index++] = Builder.CreateExtractElement(direction, 1);
  4393. Args[index++] = Builder.CreateExtractElement(direction, 2);
  4394. // float TMax;
  4395. Args[index++] = CI->getArgOperand(hlIndex++);
  4396. //};
  4397. DXASSERT_NOMSG(index == DXIL::OperandIndex::kTraceRayInlineNumOp);
  4398. Function *F = hlslOP->GetOpFunc(opcode, Builder.getVoidTy());
  4399. return Builder.CreateCall(F, Args);
  4400. }
  4401. Value *TranslateCommitProceduralPrimitiveHit(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4402. HLOperationLowerHelper &helper,
  4403. HLObjectOperationLowerHelper *pObjHelper,
  4404. bool &Translated) {
  4405. hlsl::OP *hlslOP = &helper.hlslOP;
  4406. Value *THit = CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx);
  4407. Value *opArg = hlslOP->GetU32Const(static_cast<unsigned>(opcode));
  4408. Value *handle = CI->getArgOperand(HLOperandIndex::kHandleOpIdx);
  4409. Value *Args[] = {opArg, handle, THit};
  4410. IRBuilder<> Builder(CI);
  4411. Function *F = hlslOP->GetOpFunc(opcode, Builder.getVoidTy());
  4412. return Builder.CreateCall(F, Args);
  4413. }
  4414. Value *TranslateGenericRayQueryMethod(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4415. HLOperationLowerHelper &helper,
  4416. HLObjectOperationLowerHelper *pObjHelper,
  4417. bool &Translated) {
  4418. hlsl::OP *hlslOP = &helper.hlslOP;
  4419. Value *opArg = hlslOP->GetU32Const(static_cast<unsigned>(opcode));
  4420. Value *handle = CI->getArgOperand(HLOperandIndex::kHandleOpIdx);
  4421. IRBuilder<> Builder(CI);
  4422. Function *F = hlslOP->GetOpFunc(opcode, CI->getType());
  4423. return Builder.CreateCall(F, {opArg, handle});
  4424. }
  4425. Value *TranslateRayQueryMatrix3x4Operation(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4426. HLOperationLowerHelper &helper,
  4427. HLObjectOperationLowerHelper *pObjHelper,
  4428. bool &Translated) {
  4429. hlsl::OP *hlslOP = &helper.hlslOP;
  4430. VectorType *Ty = cast<VectorType>(CI->getType());
  4431. Value *handle = CI->getArgOperand(HLOperandIndex::kHandleOpIdx);
  4432. uint32_t rVals[] = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2};
  4433. Constant *rows = ConstantDataVector::get(CI->getContext(), rVals);
  4434. uint8_t cVals[] = {0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3};
  4435. Constant *cols = ConstantDataVector::get(CI->getContext(), cVals);
  4436. Value *retVal =
  4437. TrivialDxilOperation(opcode, {nullptr, handle, rows, cols}, Ty, CI, hlslOP);
  4438. return retVal;
  4439. }
  4440. Value *TranslateRayQueryTransposedMatrix3x4Operation(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4441. HLOperationLowerHelper &helper,
  4442. HLObjectOperationLowerHelper *pObjHelper,
  4443. bool &Translated) {
  4444. hlsl::OP *hlslOP = &helper.hlslOP;
  4445. VectorType *Ty = cast<VectorType>(CI->getType());
  4446. Value *handle = CI->getArgOperand(HLOperandIndex::kHandleOpIdx);
  4447. uint32_t rVals[] = { 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2 };
  4448. Constant *rows = ConstantDataVector::get(CI->getContext(), rVals);
  4449. uint8_t cVals[] = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3 };
  4450. Constant *cols = ConstantDataVector::get(CI->getContext(), cVals);
  4451. Value *retVal =
  4452. TrivialDxilOperation(opcode, {nullptr, handle, rows, cols}, Ty, CI, hlslOP);
  4453. return retVal;
  4454. }
  4455. Value *TranslateRayQueryFloat2Getter(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4456. HLOperationLowerHelper &helper,
  4457. HLObjectOperationLowerHelper *pObjHelper,
  4458. bool &Translated) {
  4459. hlsl::OP *hlslOP = &helper.hlslOP;
  4460. VectorType *Ty = cast<VectorType>(CI->getType());
  4461. Value *handle = CI->getArgOperand(HLOperandIndex::kHandleOpIdx);
  4462. uint8_t elementVals[] = {0, 1};
  4463. Constant *element = ConstantDataVector::get(CI->getContext(), elementVals);
  4464. Value *retVal =
  4465. TrivialDxilOperation(opcode, {nullptr, handle, element}, Ty, CI, hlslOP);
  4466. return retVal;
  4467. }
  4468. Value *TranslateRayQueryFloat3Getter(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4469. HLOperationLowerHelper &helper,
  4470. HLObjectOperationLowerHelper *pObjHelper,
  4471. bool &Translated) {
  4472. hlsl::OP *hlslOP = &helper.hlslOP;
  4473. VectorType *Ty = cast<VectorType>(CI->getType());
  4474. Value *handle = CI->getArgOperand(HLOperandIndex::kHandleOpIdx);
  4475. uint8_t elementVals[] = {0, 1, 2};
  4476. Constant *element = ConstantDataVector::get(CI->getContext(), elementVals);
  4477. Value *retVal =
  4478. TrivialDxilOperation(opcode, {nullptr, handle, element}, Ty, CI, hlslOP);
  4479. return retVal;
  4480. }
  4481. Value *TranslateNoArgVectorOperation(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4482. HLOperationLowerHelper &helper,
  4483. HLObjectOperationLowerHelper *pObjHelper,
  4484. bool &Translated) {
  4485. hlsl::OP *hlslOP = &helper.hlslOP;
  4486. VectorType *Ty = cast<VectorType>(CI->getType());
  4487. uint8_t vals[] = {0,1,2,3};
  4488. Constant *src = ConstantDataVector::get(CI->getContext(), vals);
  4489. Value *retVal = TrivialDxilOperation(opcode, {nullptr, src}, Ty, CI, hlslOP);
  4490. return retVal;
  4491. }
  4492. Value *TranslateNoArgMatrix3x4Operation(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4493. HLOperationLowerHelper &helper,
  4494. HLObjectOperationLowerHelper *pObjHelper,
  4495. bool &Translated) {
  4496. hlsl::OP *hlslOP = &helper.hlslOP;
  4497. VectorType *Ty = cast<VectorType>(CI->getType());
  4498. uint32_t rVals[] = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2};
  4499. Constant *rows = ConstantDataVector::get(CI->getContext(), rVals);
  4500. uint8_t cVals[] = {0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3};
  4501. Constant *cols = ConstantDataVector::get(CI->getContext(), cVals);
  4502. Value *retVal =
  4503. TrivialDxilOperation(opcode, {nullptr, rows, cols}, Ty, CI, hlslOP);
  4504. return retVal;
  4505. }
  4506. Value *TranslateNoArgTransposedMatrix3x4Operation(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4507. HLOperationLowerHelper &helper,
  4508. HLObjectOperationLowerHelper *pObjHelper,
  4509. bool &Translated) {
  4510. hlsl::OP *hlslOP = &helper.hlslOP;
  4511. VectorType *Ty = cast<VectorType>(CI->getType());
  4512. uint32_t rVals[] = { 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2 };
  4513. Constant *rows = ConstantDataVector::get(CI->getContext(), rVals);
  4514. uint8_t cVals[] = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3 };
  4515. Constant *cols = ConstantDataVector::get(CI->getContext(), cVals);
  4516. Value *retVal =
  4517. TrivialDxilOperation(opcode, { nullptr, rows, cols }, Ty, CI, hlslOP);
  4518. return retVal;
  4519. }
  4520. Value *TranslateNoArgNoReturnPreserveOutput(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4521. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  4522. Instruction *pResult = cast<Instruction>(
  4523. TrivialNoArgOperation(CI, IOP, opcode, helper, pObjHelper, Translated));
  4524. // HL intrinsic must have had a return injected just after the call.
  4525. // SROA_Parameter_HLSL will copy from alloca to output just before each return.
  4526. // Now move call after the copy and just before the return.
  4527. if (isa<ReturnInst>(pResult->getNextNode()))
  4528. return pResult;
  4529. ReturnInst *RetI = cast<ReturnInst>(pResult->getParent()->getTerminator());
  4530. pResult->removeFromParent();
  4531. pResult->insertBefore(RetI);
  4532. return pResult;
  4533. }
  4534. // Special half dot2 with accumulate to float
  4535. Value *TranslateDot2Add(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4536. HLOperationLowerHelper &helper,
  4537. HLObjectOperationLowerHelper *pObjHelper,
  4538. bool &Translated) {
  4539. hlsl::OP *hlslOP = &helper.hlslOP;
  4540. Value *src0 = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc0Idx);
  4541. const unsigned vecSize = 2;
  4542. DXASSERT(src0->getType()->isVectorTy() &&
  4543. vecSize == src0->getType()->getVectorNumElements() &&
  4544. src0->getType()->getScalarType()->isHalfTy(),
  4545. "otherwise, unexpected input dimension or component type");
  4546. Value *src1 = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc1Idx);
  4547. DXASSERT(src0->getType() == src1->getType(),
  4548. "otherwise, mismatched argument types");
  4549. Value *accArg = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc2Idx);
  4550. Type *accTy = accArg->getType();
  4551. DXASSERT(!accTy->isVectorTy() && accTy->isFloatTy(),
  4552. "otherwise, unexpected accumulator type");
  4553. IRBuilder<> Builder(CI);
  4554. Function *dxilFunc = hlslOP->GetOpFunc(opcode, accTy);
  4555. Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  4556. SmallVector<Value *, 6> args;
  4557. args.emplace_back(opArg);
  4558. args.emplace_back(accArg);
  4559. for (unsigned i = 0; i < vecSize; i++)
  4560. args.emplace_back(Builder.CreateExtractElement(src0, i));
  4561. for (unsigned i = 0; i < vecSize; i++)
  4562. args.emplace_back(Builder.CreateExtractElement(src1, i));
  4563. return Builder.CreateCall(dxilFunc, args);
  4564. }
  4565. Value *TranslateDot4AddPacked(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4566. HLOperationLowerHelper &helper,
  4567. HLObjectOperationLowerHelper *pObjHelper,
  4568. bool &Translated) {
  4569. hlsl::OP *hlslOP = &helper.hlslOP;
  4570. Value *src0 = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc0Idx);
  4571. DXASSERT(
  4572. !src0->getType()->isVectorTy() && src0->getType()->isIntegerTy(32),
  4573. "otherwise, unexpected vector support in high level intrinsic template");
  4574. Value *src1 = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc1Idx);
  4575. DXASSERT(src0->getType() == src1->getType(), "otherwise, mismatched argument types");
  4576. Value *accArg = CI->getArgOperand(HLOperandIndex::kTrinaryOpSrc2Idx);
  4577. Type *accTy = accArg->getType();
  4578. DXASSERT(!accTy->isVectorTy() && accTy->isIntegerTy(32),
  4579. "otherwise, unexpected vector support in high level intrinsic template");
  4580. IRBuilder<> Builder(CI);
  4581. Function *dxilFunc = hlslOP->GetOpFunc(opcode, accTy);
  4582. Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  4583. return Builder.CreateCall(dxilFunc, { opArg, accArg, src0, src1 });
  4584. }
  4585. Value *TranslatePack(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4586. HLOperationLowerHelper &helper,
  4587. HLObjectOperationLowerHelper *pObjHelper,
  4588. bool &Translated) {
  4589. hlsl::OP *hlslOP = &helper.hlslOP;
  4590. Value *val = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  4591. Type *valTy = val->getType();
  4592. Type *eltTy = valTy->getScalarType();
  4593. DXASSERT(valTy->isVectorTy() && valTy->getVectorNumElements() == 4 && eltTy->isIntegerTy() &&
  4594. (eltTy->getIntegerBitWidth() == 32 || eltTy->getIntegerBitWidth() == 16),
  4595. "otherwise, unexpected input dimension or component type");
  4596. DXIL::PackMode packMode = DXIL::PackMode::Trunc;
  4597. switch (IOP) {
  4598. case hlsl::IntrinsicOp::IOP_pack_clamp_s8:
  4599. packMode = DXIL::PackMode::SClamp;
  4600. break;
  4601. case hlsl::IntrinsicOp::IOP_pack_clamp_u8:
  4602. packMode = DXIL::PackMode::UClamp;
  4603. break;
  4604. case hlsl::IntrinsicOp::IOP_pack_s8:
  4605. case hlsl::IntrinsicOp::IOP_pack_u8:
  4606. packMode = DXIL::PackMode::Trunc;
  4607. break;
  4608. default:
  4609. DXASSERT(false, "unexpected opcode");
  4610. break;
  4611. }
  4612. IRBuilder<> Builder(CI);
  4613. Function *dxilFunc = hlslOP->GetOpFunc(opcode, eltTy);
  4614. Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  4615. Constant *packModeArg = hlslOP->GetU8Const((unsigned)packMode);
  4616. Value *elt0 = Builder.CreateExtractElement(val, (uint64_t)0);
  4617. Value *elt1 = Builder.CreateExtractElement(val, (uint64_t)1);
  4618. Value *elt2 = Builder.CreateExtractElement(val, (uint64_t)2);
  4619. Value *elt3 = Builder.CreateExtractElement(val, (uint64_t)3);
  4620. return Builder.CreateCall(dxilFunc, { opArg, packModeArg, elt0, elt1, elt2, elt3 });
  4621. }
  4622. Value *TranslateUnpack(CallInst *CI, IntrinsicOp IOP, OP::OpCode opcode,
  4623. HLOperationLowerHelper &helper,
  4624. HLObjectOperationLowerHelper *pObjHelper,
  4625. bool &Translated) {
  4626. hlsl::OP *hlslOP = &helper.hlslOP;
  4627. Value *packedVal = CI->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx);
  4628. DXASSERT(!packedVal->getType()->isVectorTy() && packedVal->getType()->isIntegerTy(32),
  4629. "otherwise, unexpected vector support in high level intrinsic template");
  4630. Type *overloadType = nullptr;
  4631. DXIL::UnpackMode unpackMode = DXIL::UnpackMode::Unsigned;
  4632. switch (IOP) {
  4633. case hlsl::IntrinsicOp::IOP_unpack_s8s32:
  4634. unpackMode = DXIL::UnpackMode::Signed;
  4635. overloadType = helper.i32Ty;
  4636. break;
  4637. case hlsl::IntrinsicOp::IOP_unpack_u8u32:
  4638. unpackMode = DXIL::UnpackMode::Unsigned;
  4639. overloadType = helper.i32Ty;
  4640. break;
  4641. case hlsl::IntrinsicOp::IOP_unpack_s8s16:
  4642. unpackMode = DXIL::UnpackMode::Signed;
  4643. overloadType = helper.i16Ty;
  4644. break;
  4645. case hlsl::IntrinsicOp::IOP_unpack_u8u16:
  4646. unpackMode = DXIL::UnpackMode::Unsigned;
  4647. overloadType = helper.i16Ty;
  4648. break;
  4649. default:
  4650. DXASSERT(false, "unexpected opcode");
  4651. break;
  4652. }
  4653. IRBuilder<> Builder(CI);
  4654. Function *dxilFunc = hlslOP->GetOpFunc(opcode, overloadType);
  4655. Constant *opArg = hlslOP->GetU32Const((unsigned)opcode);
  4656. Constant *unpackModeArg = hlslOP->GetU8Const((unsigned)unpackMode);
  4657. Value *Res = Builder.CreateCall(dxilFunc, { opArg, unpackModeArg , packedVal });
  4658. // Convert the final aggregate into a vector to make the types match
  4659. const unsigned vecSize = 4;
  4660. Value *ResVec = UndefValue::get(CI->getType());
  4661. for (unsigned i = 0; i < vecSize; ++i) {
  4662. Value *Elt = Builder.CreateExtractValue(Res, i);
  4663. ResVec = Builder.CreateInsertElement(ResVec, Elt, i);
  4664. }
  4665. return ResVec;
  4666. }
  4667. } // namespace
  4668. // Resource Handle.
  4669. namespace {
  4670. Value *TranslateGetHandleFromHeap(CallInst *CI, IntrinsicOp IOP,
  4671. DXIL::OpCode opcode,
  4672. HLOperationLowerHelper &helper,
  4673. HLObjectOperationLowerHelper *pObjHelper,
  4674. bool &Translated) {
  4675. hlsl::OP &hlslOP = helper.hlslOP;
  4676. Function *dxilFunc = hlslOP.GetOpFunc(opcode, helper.voidTy);
  4677. IRBuilder<> Builder(CI);
  4678. Value *opArg = ConstantInt::get(helper.i32Ty, (unsigned)opcode);
  4679. return Builder.CreateCall(
  4680. dxilFunc, {opArg, CI->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx),
  4681. CI->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx),
  4682. // TODO: update nonUniformIndex later.
  4683. Builder.getInt1(false)});
  4684. }
  4685. }
  4686. // Lower table.
  4687. namespace {
  4688. Value *EmptyLower(CallInst *CI, IntrinsicOp IOP, DXIL::OpCode opcode,
  4689. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  4690. Translated = false;
  4691. dxilutil::EmitErrorOnInstruction(CI, "Unsupported intrinsic.");
  4692. return nullptr;
  4693. }
  4694. // SPIRV change starts
  4695. #ifdef ENABLE_SPIRV_CODEGEN
  4696. Value *UnsupportedVulkanIntrinsic(CallInst *CI, IntrinsicOp IOP,
  4697. DXIL::OpCode opcode,
  4698. HLOperationLowerHelper &helper,
  4699. HLObjectOperationLowerHelper *pObjHelper,
  4700. bool &Translated) {
  4701. Translated = false;
  4702. dxilutil::EmitErrorOnInstruction(CI, "Unsupported Vulkan intrinsic.");
  4703. return nullptr;
  4704. }
  4705. #endif // ENABLE_SPIRV_CODEGEN
  4706. // SPIRV change ends
  4707. Value *StreamOutputLower(CallInst *CI, IntrinsicOp IOP, DXIL::OpCode opcode,
  4708. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  4709. // Translated in DxilGenerationPass::GenerateStreamOutputOperation.
  4710. // Do nothing here.
  4711. // Mark not translated.
  4712. Translated = false;
  4713. return nullptr;
  4714. }
  4715. // This table has to match IntrinsicOp orders
  4716. IntrinsicLower gLowerTable[] = {
  4717. {IntrinsicOp::IOP_AcceptHitAndEndSearch, TranslateNoArgNoReturnPreserveOutput, DXIL::OpCode::AcceptHitAndEndSearch},
  4718. {IntrinsicOp::IOP_AddUint64, TranslateAddUint64, DXIL::OpCode::UAddc},
  4719. {IntrinsicOp::IOP_AllMemoryBarrier, TrivialBarrier, DXIL::OpCode::Barrier},
  4720. {IntrinsicOp::IOP_AllMemoryBarrierWithGroupSync, TrivialBarrier, DXIL::OpCode::Barrier},
  4721. {IntrinsicOp::IOP_AllocateRayQuery, TranslateAllocateRayQuery, DXIL::OpCode::AllocateRayQuery},
  4722. {IntrinsicOp::IOP_CallShader, TranslateCallShader, DXIL::OpCode::CallShader},
  4723. {IntrinsicOp::IOP_CheckAccessFullyMapped, TranslateCheckAccess, DXIL::OpCode::CheckAccessFullyMapped},
  4724. {IntrinsicOp::IOP_CreateResourceFromHeap, TranslateGetHandleFromHeap, DXIL::OpCode::CreateHandleFromHeap},
  4725. {IntrinsicOp::IOP_D3DCOLORtoUBYTE4, TranslateD3DColorToUByte4, DXIL::OpCode::NumOpCodes},
  4726. {IntrinsicOp::IOP_DeviceMemoryBarrier, TrivialBarrier, DXIL::OpCode::Barrier},
  4727. {IntrinsicOp::IOP_DeviceMemoryBarrierWithGroupSync, TrivialBarrier, DXIL::OpCode::Barrier},
  4728. {IntrinsicOp::IOP_DispatchMesh, TrivialDispatchMesh, DXIL::OpCode::DispatchMesh },
  4729. {IntrinsicOp::IOP_DispatchRaysDimensions, TranslateNoArgVectorOperation, DXIL::OpCode::DispatchRaysDimensions},
  4730. {IntrinsicOp::IOP_DispatchRaysIndex, TranslateNoArgVectorOperation, DXIL::OpCode::DispatchRaysIndex},
  4731. {IntrinsicOp::IOP_EvaluateAttributeAtSample, TranslateEvalSample, DXIL::OpCode::NumOpCodes},
  4732. {IntrinsicOp::IOP_EvaluateAttributeCentroid, TranslateEvalCentroid, DXIL::OpCode::EvalCentroid},
  4733. {IntrinsicOp::IOP_EvaluateAttributeSnapped, TranslateEvalSnapped, DXIL::OpCode::NumOpCodes},
  4734. {IntrinsicOp::IOP_GeometryIndex, TrivialNoArgWithRetOperation, DXIL::OpCode::GeometryIndex},
  4735. {IntrinsicOp::IOP_GetAttributeAtVertex, TranslateGetAttributeAtVertex, DXIL::OpCode::AttributeAtVertex},
  4736. {IntrinsicOp::IOP_GetRenderTargetSampleCount, TrivialNoArgOperation, DXIL::OpCode::RenderTargetGetSampleCount},
  4737. {IntrinsicOp::IOP_GetRenderTargetSamplePosition, TranslateGetRTSamplePos, DXIL::OpCode::NumOpCodes},
  4738. {IntrinsicOp::IOP_GroupMemoryBarrier, TrivialBarrier, DXIL::OpCode::Barrier},
  4739. {IntrinsicOp::IOP_GroupMemoryBarrierWithGroupSync, TrivialBarrier, DXIL::OpCode::Barrier},
  4740. {IntrinsicOp::IOP_HitKind, TrivialNoArgWithRetOperation, DXIL::OpCode::HitKind},
  4741. {IntrinsicOp::IOP_IgnoreHit, TranslateNoArgNoReturnPreserveOutput, DXIL::OpCode::IgnoreHit},
  4742. {IntrinsicOp::IOP_InstanceID, TrivialNoArgWithRetOperation, DXIL::OpCode::InstanceID},
  4743. {IntrinsicOp::IOP_InstanceIndex, TrivialNoArgWithRetOperation, DXIL::OpCode::InstanceIndex},
  4744. {IntrinsicOp::IOP_InterlockedAdd, TranslateIopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4745. {IntrinsicOp::IOP_InterlockedAnd, TranslateIopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4746. {IntrinsicOp::IOP_InterlockedCompareExchange, TranslateIopAtomicCmpXChg, DXIL::OpCode::NumOpCodes},
  4747. {IntrinsicOp::IOP_InterlockedCompareExchangeFloatBitwise, TranslateIopAtomicCmpXChg, DXIL::OpCode::NumOpCodes},
  4748. {IntrinsicOp::IOP_InterlockedCompareStore, TranslateIopAtomicCmpXChg, DXIL::OpCode::NumOpCodes},
  4749. {IntrinsicOp::IOP_InterlockedCompareStoreFloatBitwise, TranslateIopAtomicCmpXChg, DXIL::OpCode::NumOpCodes},
  4750. {IntrinsicOp::IOP_InterlockedExchange, TranslateIopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4751. {IntrinsicOp::IOP_InterlockedMax, TranslateIopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4752. {IntrinsicOp::IOP_InterlockedMin, TranslateIopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4753. {IntrinsicOp::IOP_InterlockedOr, TranslateIopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4754. {IntrinsicOp::IOP_InterlockedXor, TranslateIopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4755. {IntrinsicOp::IOP_IsHelperLane, TrivialNoArgWithRetOperation, DXIL::OpCode::IsHelperLane},
  4756. {IntrinsicOp::IOP_NonUniformResourceIndex, TranslateNonUniformResourceIndex, DXIL::OpCode::NumOpCodes},
  4757. {IntrinsicOp::IOP_ObjectRayDirection, TranslateNoArgVectorOperation, DXIL::OpCode::ObjectRayDirection},
  4758. {IntrinsicOp::IOP_ObjectRayOrigin, TranslateNoArgVectorOperation, DXIL::OpCode::ObjectRayOrigin},
  4759. {IntrinsicOp::IOP_ObjectToWorld, TranslateNoArgMatrix3x4Operation, DXIL::OpCode::ObjectToWorld},
  4760. {IntrinsicOp::IOP_ObjectToWorld3x4, TranslateNoArgMatrix3x4Operation, DXIL::OpCode::ObjectToWorld},
  4761. {IntrinsicOp::IOP_ObjectToWorld4x3, TranslateNoArgTransposedMatrix3x4Operation, DXIL::OpCode::ObjectToWorld},
  4762. {IntrinsicOp::IOP_PrimitiveIndex, TrivialNoArgWithRetOperation, DXIL::OpCode::PrimitiveIndex},
  4763. {IntrinsicOp::IOP_Process2DQuadTessFactorsAvg, TranslateProcessTessFactors, DXIL::OpCode::NumOpCodes},
  4764. {IntrinsicOp::IOP_Process2DQuadTessFactorsMax, TranslateProcessTessFactors, DXIL::OpCode::NumOpCodes},
  4765. {IntrinsicOp::IOP_Process2DQuadTessFactorsMin, TranslateProcessTessFactors, DXIL::OpCode::NumOpCodes},
  4766. {IntrinsicOp::IOP_ProcessIsolineTessFactors, TranslateProcessIsolineTessFactors, DXIL::OpCode::NumOpCodes},
  4767. {IntrinsicOp::IOP_ProcessQuadTessFactorsAvg, TranslateProcessTessFactors, DXIL::OpCode::NumOpCodes},
  4768. {IntrinsicOp::IOP_ProcessQuadTessFactorsMax, TranslateProcessTessFactors, DXIL::OpCode::NumOpCodes},
  4769. {IntrinsicOp::IOP_ProcessQuadTessFactorsMin, TranslateProcessTessFactors, DXIL::OpCode::NumOpCodes},
  4770. {IntrinsicOp::IOP_ProcessTriTessFactorsAvg, TranslateProcessTessFactors, DXIL::OpCode::NumOpCodes},
  4771. {IntrinsicOp::IOP_ProcessTriTessFactorsMax, TranslateProcessTessFactors, DXIL::OpCode::NumOpCodes},
  4772. {IntrinsicOp::IOP_ProcessTriTessFactorsMin, TranslateProcessTessFactors, DXIL::OpCode::NumOpCodes},
  4773. {IntrinsicOp::IOP_QuadReadAcrossDiagonal, TranslateQuadReadAcross, DXIL::OpCode::QuadOp},
  4774. {IntrinsicOp::IOP_QuadReadAcrossX, TranslateQuadReadAcross, DXIL::OpCode::QuadOp},
  4775. {IntrinsicOp::IOP_QuadReadAcrossY, TranslateQuadReadAcross, DXIL::OpCode::QuadOp},
  4776. {IntrinsicOp::IOP_QuadReadLaneAt, TranslateQuadReadLaneAt, DXIL::OpCode::NumOpCodes},
  4777. {IntrinsicOp::IOP_RayFlags, TrivialNoArgWithRetOperation, DXIL::OpCode::RayFlags},
  4778. {IntrinsicOp::IOP_RayTCurrent, TrivialNoArgWithRetOperation, DXIL::OpCode::RayTCurrent},
  4779. {IntrinsicOp::IOP_RayTMin, TrivialNoArgWithRetOperation, DXIL::OpCode::RayTMin},
  4780. {IntrinsicOp::IOP_ReportHit, TranslateReportIntersection, DXIL::OpCode::ReportHit},
  4781. {IntrinsicOp::IOP_SetMeshOutputCounts, TrivialSetMeshOutputCounts, DXIL::OpCode::SetMeshOutputCounts},
  4782. {IntrinsicOp::IOP_TraceRay, TranslateTraceRay, DXIL::OpCode::TraceRay},
  4783. {IntrinsicOp::IOP_WaveActiveAllEqual, TranslateWaveAllEqual, DXIL::OpCode::WaveActiveAllEqual},
  4784. {IntrinsicOp::IOP_WaveActiveAllTrue, TranslateWaveA2B, DXIL::OpCode::WaveAllTrue},
  4785. {IntrinsicOp::IOP_WaveActiveAnyTrue, TranslateWaveA2B, DXIL::OpCode::WaveAnyTrue},
  4786. {IntrinsicOp::IOP_WaveActiveBallot, TranslateWaveBallot, DXIL::OpCode::WaveActiveBallot},
  4787. {IntrinsicOp::IOP_WaveActiveBitAnd, TranslateWaveA2A, DXIL::OpCode::WaveActiveBit},
  4788. {IntrinsicOp::IOP_WaveActiveBitOr, TranslateWaveA2A, DXIL::OpCode::WaveActiveBit},
  4789. {IntrinsicOp::IOP_WaveActiveBitXor, TranslateWaveA2A, DXIL::OpCode::WaveActiveBit},
  4790. {IntrinsicOp::IOP_WaveActiveCountBits, TranslateWaveA2B, DXIL::OpCode::WaveAllBitCount},
  4791. {IntrinsicOp::IOP_WaveActiveMax, TranslateWaveA2A, DXIL::OpCode::WaveActiveOp},
  4792. {IntrinsicOp::IOP_WaveActiveMin, TranslateWaveA2A, DXIL::OpCode::WaveActiveOp},
  4793. {IntrinsicOp::IOP_WaveActiveProduct, TranslateWaveA2A, DXIL::OpCode::WaveActiveOp},
  4794. {IntrinsicOp::IOP_WaveActiveSum, TranslateWaveA2A, DXIL::OpCode::WaveActiveOp},
  4795. {IntrinsicOp::IOP_WaveGetLaneCount, TranslateWaveToVal, DXIL::OpCode::WaveGetLaneCount},
  4796. {IntrinsicOp::IOP_WaveGetLaneIndex, TranslateWaveToVal, DXIL::OpCode::WaveGetLaneIndex},
  4797. {IntrinsicOp::IOP_WaveIsFirstLane, TranslateWaveToVal, DXIL::OpCode::WaveIsFirstLane},
  4798. {IntrinsicOp::IOP_WaveMatch, TranslateWaveMatch, DXIL::OpCode::WaveMatch},
  4799. {IntrinsicOp::IOP_WaveMultiPrefixBitAnd, TranslateWaveMultiPrefix, DXIL::OpCode::WaveMultiPrefixOp},
  4800. {IntrinsicOp::IOP_WaveMultiPrefixBitOr, TranslateWaveMultiPrefix, DXIL::OpCode::WaveMultiPrefixOp},
  4801. {IntrinsicOp::IOP_WaveMultiPrefixBitXor, TranslateWaveMultiPrefix, DXIL::OpCode::WaveMultiPrefixOp},
  4802. {IntrinsicOp::IOP_WaveMultiPrefixCountBits, TranslateWaveMultiPrefixBitCount, DXIL::OpCode::WaveMultiPrefixBitCount},
  4803. {IntrinsicOp::IOP_WaveMultiPrefixProduct, TranslateWaveMultiPrefix, DXIL::OpCode::WaveMultiPrefixOp},
  4804. {IntrinsicOp::IOP_WaveMultiPrefixSum, TranslateWaveMultiPrefix, DXIL::OpCode::WaveMultiPrefixOp},
  4805. {IntrinsicOp::IOP_WavePrefixCountBits, TranslateWaveA2B, DXIL::OpCode::WavePrefixBitCount},
  4806. {IntrinsicOp::IOP_WavePrefixProduct, TranslateWaveA2A, DXIL::OpCode::WavePrefixOp},
  4807. {IntrinsicOp::IOP_WavePrefixSum, TranslateWaveA2A, DXIL::OpCode::WavePrefixOp},
  4808. {IntrinsicOp::IOP_WaveReadLaneAt, TranslateWaveReadLaneAt, DXIL::OpCode::WaveReadLaneAt},
  4809. {IntrinsicOp::IOP_WaveReadLaneFirst, TranslateWaveReadLaneFirst, DXIL::OpCode::WaveReadLaneFirst},
  4810. {IntrinsicOp::IOP_WorldRayDirection, TranslateNoArgVectorOperation, DXIL::OpCode::WorldRayDirection},
  4811. {IntrinsicOp::IOP_WorldRayOrigin, TranslateNoArgVectorOperation, DXIL::OpCode::WorldRayOrigin},
  4812. {IntrinsicOp::IOP_WorldToObject, TranslateNoArgMatrix3x4Operation, DXIL::OpCode::WorldToObject},
  4813. {IntrinsicOp::IOP_WorldToObject3x4, TranslateNoArgMatrix3x4Operation, DXIL::OpCode::WorldToObject},
  4814. {IntrinsicOp::IOP_WorldToObject4x3, TranslateNoArgTransposedMatrix3x4Operation, DXIL::OpCode::WorldToObject},
  4815. {IntrinsicOp::IOP_abort, EmptyLower, DXIL::OpCode::NumOpCodes},
  4816. {IntrinsicOp::IOP_abs, TranslateAbs, DXIL::OpCode::NumOpCodes},
  4817. {IntrinsicOp::IOP_acos, TrivialUnaryOperation, DXIL::OpCode::Acos},
  4818. {IntrinsicOp::IOP_all, TranslateAll, DXIL::OpCode::NumOpCodes},
  4819. {IntrinsicOp::IOP_any, TranslateAny, DXIL::OpCode::NumOpCodes},
  4820. {IntrinsicOp::IOP_asdouble, TranslateAsDouble, DXIL::OpCode::MakeDouble},
  4821. {IntrinsicOp::IOP_asfloat, TranslateBitcast, DXIL::OpCode::NumOpCodes},
  4822. {IntrinsicOp::IOP_asfloat16, TranslateBitcast, DXIL::OpCode::NumOpCodes},
  4823. {IntrinsicOp::IOP_asin, TrivialUnaryOperation, DXIL::OpCode::Asin},
  4824. {IntrinsicOp::IOP_asint, TranslateBitcast, DXIL::OpCode::NumOpCodes},
  4825. {IntrinsicOp::IOP_asint16, TranslateBitcast, DXIL::OpCode::NumOpCodes},
  4826. {IntrinsicOp::IOP_asuint, TranslateAsUint, DXIL::OpCode::SplitDouble},
  4827. {IntrinsicOp::IOP_asuint16, TranslateAsUint, DXIL::OpCode::NumOpCodes},
  4828. {IntrinsicOp::IOP_atan, TrivialUnaryOperation, DXIL::OpCode::Atan},
  4829. {IntrinsicOp::IOP_atan2, TranslateAtan2, DXIL::OpCode::NumOpCodes},
  4830. {IntrinsicOp::IOP_ceil, TrivialUnaryOperation, DXIL::OpCode::Round_pi},
  4831. {IntrinsicOp::IOP_clamp, TranslateClamp, DXIL::OpCode::NumOpCodes},
  4832. {IntrinsicOp::IOP_clip, TranslateClip, DXIL::OpCode::NumOpCodes},
  4833. {IntrinsicOp::IOP_cos, TrivialUnaryOperation, DXIL::OpCode::Cos},
  4834. {IntrinsicOp::IOP_cosh, TrivialUnaryOperation, DXIL::OpCode::Hcos},
  4835. {IntrinsicOp::IOP_countbits, TrivialUnaryOperation, DXIL::OpCode::Countbits},
  4836. {IntrinsicOp::IOP_cross, TranslateCross, DXIL::OpCode::NumOpCodes},
  4837. {IntrinsicOp::IOP_ddx, TrivialUnaryOperation, DXIL::OpCode::DerivCoarseX},
  4838. {IntrinsicOp::IOP_ddx_coarse, TrivialUnaryOperation, DXIL::OpCode::DerivCoarseX},
  4839. {IntrinsicOp::IOP_ddx_fine, TrivialUnaryOperation, DXIL::OpCode::DerivFineX},
  4840. {IntrinsicOp::IOP_ddy, TrivialUnaryOperation, DXIL::OpCode::DerivCoarseY},
  4841. {IntrinsicOp::IOP_ddy_coarse, TrivialUnaryOperation, DXIL::OpCode::DerivCoarseY},
  4842. {IntrinsicOp::IOP_ddy_fine, TrivialUnaryOperation, DXIL::OpCode::DerivFineY},
  4843. {IntrinsicOp::IOP_degrees, TranslateDegrees, DXIL::OpCode::NumOpCodes},
  4844. {IntrinsicOp::IOP_determinant, EmptyLower, DXIL::OpCode::NumOpCodes},
  4845. {IntrinsicOp::IOP_distance, TranslateDistance, DXIL::OpCode::NumOpCodes},
  4846. {IntrinsicOp::IOP_dot, TranslateDot, DXIL::OpCode::NumOpCodes},
  4847. {IntrinsicOp::IOP_dot2add, TranslateDot2Add, DXIL::OpCode::Dot2AddHalf},
  4848. {IntrinsicOp::IOP_dot4add_i8packed, TranslateDot4AddPacked, DXIL::OpCode::Dot4AddI8Packed},
  4849. {IntrinsicOp::IOP_dot4add_u8packed, TranslateDot4AddPacked, DXIL::OpCode::Dot4AddU8Packed},
  4850. {IntrinsicOp::IOP_dst, TranslateDst, DXIL::OpCode::NumOpCodes},
  4851. {IntrinsicOp::IOP_exp, TranslateExp, DXIL::OpCode::NumOpCodes},
  4852. {IntrinsicOp::IOP_exp2, TrivialUnaryOperation, DXIL::OpCode::Exp},
  4853. {IntrinsicOp::IOP_f16tof32, TranslateF16ToF32, DXIL::OpCode::LegacyF16ToF32},
  4854. {IntrinsicOp::IOP_f32tof16, TranslateF32ToF16, DXIL::OpCode::LegacyF32ToF16},
  4855. {IntrinsicOp::IOP_faceforward, TranslateFaceforward, DXIL::OpCode::NumOpCodes},
  4856. {IntrinsicOp::IOP_firstbithigh, TranslateFirstbitHi, DXIL::OpCode::FirstbitSHi},
  4857. {IntrinsicOp::IOP_firstbitlow, TranslateFirstbitLo, DXIL::OpCode::FirstbitLo},
  4858. {IntrinsicOp::IOP_floor, TrivialUnaryOperation, DXIL::OpCode::Round_ni},
  4859. {IntrinsicOp::IOP_fma, TrivialTrinaryOperation, DXIL::OpCode::Fma},
  4860. {IntrinsicOp::IOP_fmod, TranslateFMod, DXIL::OpCode::NumOpCodes},
  4861. {IntrinsicOp::IOP_frac, TrivialUnaryOperation, DXIL::OpCode::Frc},
  4862. {IntrinsicOp::IOP_frexp, TranslateFrexp, DXIL::OpCode::NumOpCodes},
  4863. {IntrinsicOp::IOP_fwidth, TranslateFWidth, DXIL::OpCode::NumOpCodes},
  4864. {IntrinsicOp::IOP_isfinite, TrivialIsSpecialFloat, DXIL::OpCode::IsFinite},
  4865. {IntrinsicOp::IOP_isinf, TrivialIsSpecialFloat, DXIL::OpCode::IsInf},
  4866. {IntrinsicOp::IOP_isnan, TrivialIsSpecialFloat, DXIL::OpCode::IsNaN},
  4867. {IntrinsicOp::IOP_ldexp, TranslateLdExp, DXIL::OpCode::NumOpCodes},
  4868. {IntrinsicOp::IOP_length, TranslateLength, DXIL::OpCode::NumOpCodes},
  4869. {IntrinsicOp::IOP_lerp, TranslateLerp, DXIL::OpCode::NumOpCodes},
  4870. {IntrinsicOp::IOP_lit, TranslateLit, DXIL::OpCode::NumOpCodes},
  4871. {IntrinsicOp::IOP_log, TranslateLog, DXIL::OpCode::NumOpCodes},
  4872. {IntrinsicOp::IOP_log10, TranslateLog10, DXIL::OpCode::NumOpCodes},
  4873. {IntrinsicOp::IOP_log2, TrivialUnaryOperation, DXIL::OpCode::Log},
  4874. {IntrinsicOp::IOP_mad, TranslateFUITrinary, DXIL::OpCode::IMad},
  4875. {IntrinsicOp::IOP_max, TranslateFUIBinary, DXIL::OpCode::IMax},
  4876. {IntrinsicOp::IOP_min, TranslateFUIBinary, DXIL::OpCode::IMin},
  4877. {IntrinsicOp::IOP_modf, TranslateModF, DXIL::OpCode::NumOpCodes},
  4878. {IntrinsicOp::IOP_msad4, TranslateMSad4, DXIL::OpCode::NumOpCodes},
  4879. {IntrinsicOp::IOP_mul, TranslateMul, DXIL::OpCode::NumOpCodes},
  4880. {IntrinsicOp::IOP_normalize, TranslateNormalize, DXIL::OpCode::NumOpCodes},
  4881. {IntrinsicOp::IOP_pack_clamp_s8, TranslatePack, DXIL::OpCode::Pack4x8 },
  4882. {IntrinsicOp::IOP_pack_clamp_u8, TranslatePack, DXIL::OpCode::Pack4x8 },
  4883. {IntrinsicOp::IOP_pack_s8, TranslatePack, DXIL::OpCode::Pack4x8 },
  4884. {IntrinsicOp::IOP_pack_u8, TranslatePack, DXIL::OpCode::Pack4x8 },
  4885. {IntrinsicOp::IOP_pow, TranslatePow, DXIL::OpCode::NumOpCodes},
  4886. {IntrinsicOp::IOP_printf, TranslatePrintf, DXIL::OpCode::NumOpCodes},
  4887. {IntrinsicOp::IOP_radians, TranslateRadians, DXIL::OpCode::NumOpCodes},
  4888. {IntrinsicOp::IOP_rcp, TranslateRCP, DXIL::OpCode::NumOpCodes},
  4889. {IntrinsicOp::IOP_reflect, TranslateReflect, DXIL::OpCode::NumOpCodes},
  4890. {IntrinsicOp::IOP_refract, TranslateRefract, DXIL::OpCode::NumOpCodes},
  4891. {IntrinsicOp::IOP_reversebits, TrivialUnaryOperation, DXIL::OpCode::Bfrev},
  4892. {IntrinsicOp::IOP_round, TrivialUnaryOperation, DXIL::OpCode::Round_ne},
  4893. {IntrinsicOp::IOP_rsqrt, TrivialUnaryOperation, DXIL::OpCode::Rsqrt},
  4894. {IntrinsicOp::IOP_saturate, TrivialUnaryOperation, DXIL::OpCode::Saturate},
  4895. {IntrinsicOp::IOP_sign, TranslateSign, DXIL::OpCode::NumOpCodes},
  4896. {IntrinsicOp::IOP_sin, TrivialUnaryOperation, DXIL::OpCode::Sin},
  4897. {IntrinsicOp::IOP_sincos, EmptyLower, DXIL::OpCode::NumOpCodes},
  4898. {IntrinsicOp::IOP_sinh, TrivialUnaryOperation, DXIL::OpCode::Hsin},
  4899. {IntrinsicOp::IOP_smoothstep, TranslateSmoothStep, DXIL::OpCode::NumOpCodes},
  4900. {IntrinsicOp::IOP_source_mark, EmptyLower, DXIL::OpCode::NumOpCodes},
  4901. {IntrinsicOp::IOP_sqrt, TrivialUnaryOperation, DXIL::OpCode::Sqrt},
  4902. {IntrinsicOp::IOP_step, TranslateStep, DXIL::OpCode::NumOpCodes},
  4903. {IntrinsicOp::IOP_tan, TrivialUnaryOperation, DXIL::OpCode::Tan},
  4904. {IntrinsicOp::IOP_tanh, TrivialUnaryOperation, DXIL::OpCode::Htan},
  4905. {IntrinsicOp::IOP_tex1D, EmptyLower, DXIL::OpCode::NumOpCodes},
  4906. {IntrinsicOp::IOP_tex1Dbias, EmptyLower, DXIL::OpCode::NumOpCodes},
  4907. {IntrinsicOp::IOP_tex1Dgrad, EmptyLower, DXIL::OpCode::NumOpCodes},
  4908. {IntrinsicOp::IOP_tex1Dlod, EmptyLower, DXIL::OpCode::NumOpCodes},
  4909. {IntrinsicOp::IOP_tex1Dproj, EmptyLower, DXIL::OpCode::NumOpCodes},
  4910. {IntrinsicOp::IOP_tex2D, EmptyLower, DXIL::OpCode::NumOpCodes},
  4911. {IntrinsicOp::IOP_tex2Dbias, EmptyLower, DXIL::OpCode::NumOpCodes},
  4912. {IntrinsicOp::IOP_tex2Dgrad, EmptyLower, DXIL::OpCode::NumOpCodes},
  4913. {IntrinsicOp::IOP_tex2Dlod, EmptyLower, DXIL::OpCode::NumOpCodes},
  4914. {IntrinsicOp::IOP_tex2Dproj, EmptyLower, DXIL::OpCode::NumOpCodes},
  4915. {IntrinsicOp::IOP_tex3D, EmptyLower, DXIL::OpCode::NumOpCodes},
  4916. {IntrinsicOp::IOP_tex3Dbias, EmptyLower, DXIL::OpCode::NumOpCodes},
  4917. {IntrinsicOp::IOP_tex3Dgrad, EmptyLower, DXIL::OpCode::NumOpCodes},
  4918. {IntrinsicOp::IOP_tex3Dlod, EmptyLower, DXIL::OpCode::NumOpCodes},
  4919. {IntrinsicOp::IOP_tex3Dproj, EmptyLower, DXIL::OpCode::NumOpCodes},
  4920. {IntrinsicOp::IOP_texCUBE, EmptyLower, DXIL::OpCode::NumOpCodes},
  4921. {IntrinsicOp::IOP_texCUBEbias, EmptyLower, DXIL::OpCode::NumOpCodes},
  4922. {IntrinsicOp::IOP_texCUBEgrad, EmptyLower, DXIL::OpCode::NumOpCodes},
  4923. {IntrinsicOp::IOP_texCUBElod, EmptyLower, DXIL::OpCode::NumOpCodes},
  4924. {IntrinsicOp::IOP_texCUBEproj, EmptyLower, DXIL::OpCode::NumOpCodes},
  4925. {IntrinsicOp::IOP_transpose, EmptyLower, DXIL::OpCode::NumOpCodes},
  4926. {IntrinsicOp::IOP_trunc, TrivialUnaryOperation, DXIL::OpCode::Round_z},
  4927. {IntrinsicOp::IOP_unpack_s8s16, TranslateUnpack, DXIL::OpCode::Unpack4x8},
  4928. {IntrinsicOp::IOP_unpack_s8s32, TranslateUnpack, DXIL::OpCode::Unpack4x8},
  4929. {IntrinsicOp::IOP_unpack_u8u16, TranslateUnpack, DXIL::OpCode::Unpack4x8},
  4930. {IntrinsicOp::IOP_unpack_u8u32, TranslateUnpack, DXIL::OpCode::Unpack4x8},
  4931. #ifdef ENABLE_SPIRV_CODEGEN
  4932. { IntrinsicOp::IOP_VkReadClock, UnsupportedVulkanIntrinsic, DXIL::OpCode::NumOpCodes },
  4933. #endif // ENABLE_SPIRV_CODEGEN
  4934. {IntrinsicOp::MOP_Append, StreamOutputLower, DXIL::OpCode::EmitStream},
  4935. {IntrinsicOp::MOP_RestartStrip, StreamOutputLower, DXIL::OpCode::CutStream},
  4936. {IntrinsicOp::MOP_CalculateLevelOfDetail, TranslateCalculateLOD, DXIL::OpCode::NumOpCodes},
  4937. {IntrinsicOp::MOP_CalculateLevelOfDetailUnclamped, TranslateCalculateLOD, DXIL::OpCode::NumOpCodes},
  4938. {IntrinsicOp::MOP_GetDimensions, TranslateGetDimensions, DXIL::OpCode::NumOpCodes},
  4939. {IntrinsicOp::MOP_Load, TranslateResourceLoad, DXIL::OpCode::NumOpCodes},
  4940. {IntrinsicOp::MOP_Sample, TranslateSample, DXIL::OpCode::Sample},
  4941. {IntrinsicOp::MOP_SampleBias, TranslateSample, DXIL::OpCode::SampleBias},
  4942. {IntrinsicOp::MOP_SampleCmp, TranslateSample, DXIL::OpCode::SampleCmp},
  4943. {IntrinsicOp::MOP_SampleCmpLevelZero, TranslateSample, DXIL::OpCode::SampleCmpLevelZero},
  4944. {IntrinsicOp::MOP_SampleGrad, TranslateSample, DXIL::OpCode::SampleGrad},
  4945. {IntrinsicOp::MOP_SampleLevel, TranslateSample, DXIL::OpCode::SampleLevel},
  4946. {IntrinsicOp::MOP_Gather, TranslateGather, DXIL::OpCode::TextureGather},
  4947. {IntrinsicOp::MOP_GatherAlpha, TranslateGather, DXIL::OpCode::TextureGather},
  4948. {IntrinsicOp::MOP_GatherBlue, TranslateGather, DXIL::OpCode::TextureGather},
  4949. {IntrinsicOp::MOP_GatherCmp, TranslateGather, DXIL::OpCode::TextureGatherCmp},
  4950. {IntrinsicOp::MOP_GatherCmpAlpha, TranslateGather, DXIL::OpCode::TextureGatherCmp},
  4951. {IntrinsicOp::MOP_GatherCmpBlue, TranslateGather, DXIL::OpCode::TextureGatherCmp},
  4952. {IntrinsicOp::MOP_GatherCmpGreen, TranslateGather, DXIL::OpCode::TextureGatherCmp},
  4953. {IntrinsicOp::MOP_GatherCmpRed, TranslateGather, DXIL::OpCode::TextureGatherCmp},
  4954. {IntrinsicOp::MOP_GatherGreen, TranslateGather, DXIL::OpCode::TextureGather},
  4955. {IntrinsicOp::MOP_GatherRed, TranslateGather, DXIL::OpCode::TextureGather},
  4956. {IntrinsicOp::MOP_GetSamplePosition, TranslateGetSamplePosition, DXIL::OpCode::NumOpCodes},
  4957. {IntrinsicOp::MOP_Load2, TranslateResourceLoad, DXIL::OpCode::NumOpCodes},
  4958. {IntrinsicOp::MOP_Load3, TranslateResourceLoad, DXIL::OpCode::NumOpCodes},
  4959. {IntrinsicOp::MOP_Load4, TranslateResourceLoad, DXIL::OpCode::NumOpCodes},
  4960. {IntrinsicOp::MOP_InterlockedAdd, TranslateMopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4961. {IntrinsicOp::MOP_InterlockedAdd64, TranslateMopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4962. {IntrinsicOp::MOP_InterlockedAnd, TranslateMopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4963. {IntrinsicOp::MOP_InterlockedAnd64, TranslateMopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4964. {IntrinsicOp::MOP_InterlockedCompareExchange, TranslateMopAtomicCmpXChg, DXIL::OpCode::NumOpCodes},
  4965. {IntrinsicOp::MOP_InterlockedCompareExchange64, TranslateMopAtomicCmpXChg, DXIL::OpCode::NumOpCodes},
  4966. {IntrinsicOp::MOP_InterlockedCompareExchangeFloatBitwise, TranslateMopAtomicCmpXChg, DXIL::OpCode::NumOpCodes},
  4967. {IntrinsicOp::MOP_InterlockedCompareStore, TranslateMopAtomicCmpXChg, DXIL::OpCode::NumOpCodes},
  4968. {IntrinsicOp::MOP_InterlockedCompareStore64, TranslateMopAtomicCmpXChg, DXIL::OpCode::NumOpCodes},
  4969. {IntrinsicOp::MOP_InterlockedCompareStoreFloatBitwise, TranslateMopAtomicCmpXChg, DXIL::OpCode::NumOpCodes},
  4970. {IntrinsicOp::MOP_InterlockedExchange, TranslateMopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4971. {IntrinsicOp::MOP_InterlockedExchange64, TranslateMopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4972. {IntrinsicOp::MOP_InterlockedExchangeFloat, TranslateMopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4973. {IntrinsicOp::MOP_InterlockedMax, TranslateMopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4974. {IntrinsicOp::MOP_InterlockedMax64, TranslateMopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4975. {IntrinsicOp::MOP_InterlockedMin, TranslateMopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4976. {IntrinsicOp::MOP_InterlockedMin64, TranslateMopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4977. {IntrinsicOp::MOP_InterlockedOr, TranslateMopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4978. {IntrinsicOp::MOP_InterlockedOr64, TranslateMopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4979. {IntrinsicOp::MOP_InterlockedXor, TranslateMopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4980. {IntrinsicOp::MOP_InterlockedXor64, TranslateMopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes},
  4981. {IntrinsicOp::MOP_Store, TranslateResourceStore, DXIL::OpCode::NumOpCodes},
  4982. {IntrinsicOp::MOP_Store2, TranslateResourceStore, DXIL::OpCode::NumOpCodes},
  4983. {IntrinsicOp::MOP_Store3, TranslateResourceStore, DXIL::OpCode::NumOpCodes},
  4984. {IntrinsicOp::MOP_Store4, TranslateResourceStore, DXIL::OpCode::NumOpCodes},
  4985. {IntrinsicOp::MOP_DecrementCounter, GenerateUpdateCounter, DXIL::OpCode::NumOpCodes},
  4986. {IntrinsicOp::MOP_IncrementCounter, GenerateUpdateCounter, DXIL::OpCode::NumOpCodes},
  4987. {IntrinsicOp::MOP_Consume, EmptyLower, DXIL::OpCode::NumOpCodes},
  4988. {IntrinsicOp::MOP_WriteSamplerFeedback, TranslateWriteSamplerFeedback, DXIL::OpCode::WriteSamplerFeedback},
  4989. {IntrinsicOp::MOP_WriteSamplerFeedbackBias, TranslateWriteSamplerFeedback, DXIL::OpCode::WriteSamplerFeedbackBias},
  4990. {IntrinsicOp::MOP_WriteSamplerFeedbackGrad, TranslateWriteSamplerFeedback, DXIL::OpCode::WriteSamplerFeedbackGrad},
  4991. {IntrinsicOp::MOP_WriteSamplerFeedbackLevel, TranslateWriteSamplerFeedback, DXIL::OpCode::WriteSamplerFeedbackLevel},
  4992. {IntrinsicOp::MOP_Abort, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_Abort},
  4993. {IntrinsicOp::MOP_CandidateGeometryIndex, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CandidateGeometryIndex},
  4994. {IntrinsicOp::MOP_CandidateInstanceContributionToHitGroupIndex, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CandidateInstanceContributionToHitGroupIndex},
  4995. {IntrinsicOp::MOP_CandidateInstanceID, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CandidateInstanceID},
  4996. {IntrinsicOp::MOP_CandidateInstanceIndex, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CandidateInstanceIndex},
  4997. {IntrinsicOp::MOP_CandidateObjectRayDirection, TranslateRayQueryFloat3Getter, DXIL::OpCode::RayQuery_CandidateObjectRayDirection},
  4998. {IntrinsicOp::MOP_CandidateObjectRayOrigin, TranslateRayQueryFloat3Getter, DXIL::OpCode::RayQuery_CandidateObjectRayOrigin},
  4999. {IntrinsicOp::MOP_CandidateObjectToWorld3x4, TranslateRayQueryMatrix3x4Operation, DXIL::OpCode::RayQuery_CandidateObjectToWorld3x4},
  5000. {IntrinsicOp::MOP_CandidateObjectToWorld4x3, TranslateRayQueryTransposedMatrix3x4Operation, DXIL::OpCode::RayQuery_CandidateObjectToWorld3x4},
  5001. {IntrinsicOp::MOP_CandidatePrimitiveIndex, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CandidatePrimitiveIndex},
  5002. {IntrinsicOp::MOP_CandidateProceduralPrimitiveNonOpaque, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CandidateProceduralPrimitiveNonOpaque},
  5003. {IntrinsicOp::MOP_CandidateTriangleBarycentrics, TranslateRayQueryFloat2Getter, DXIL::OpCode::RayQuery_CandidateTriangleBarycentrics},
  5004. {IntrinsicOp::MOP_CandidateTriangleFrontFace, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CandidateTriangleFrontFace},
  5005. {IntrinsicOp::MOP_CandidateTriangleRayT, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CandidateTriangleRayT},
  5006. {IntrinsicOp::MOP_CandidateType, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CandidateType},
  5007. {IntrinsicOp::MOP_CandidateWorldToObject3x4, TranslateRayQueryMatrix3x4Operation, DXIL::OpCode::RayQuery_CandidateWorldToObject3x4},
  5008. {IntrinsicOp::MOP_CandidateWorldToObject4x3, TranslateRayQueryTransposedMatrix3x4Operation, DXIL::OpCode::RayQuery_CandidateWorldToObject3x4},
  5009. {IntrinsicOp::MOP_CommitNonOpaqueTriangleHit, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CommitNonOpaqueTriangleHit},
  5010. {IntrinsicOp::MOP_CommitProceduralPrimitiveHit, TranslateCommitProceduralPrimitiveHit, DXIL::OpCode::RayQuery_CommitProceduralPrimitiveHit},
  5011. {IntrinsicOp::MOP_CommittedGeometryIndex, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CommittedGeometryIndex},
  5012. {IntrinsicOp::MOP_CommittedInstanceContributionToHitGroupIndex, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CommittedInstanceContributionToHitGroupIndex},
  5013. {IntrinsicOp::MOP_CommittedInstanceID, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CommittedInstanceID},
  5014. {IntrinsicOp::MOP_CommittedInstanceIndex, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CommittedInstanceIndex},
  5015. {IntrinsicOp::MOP_CommittedObjectRayDirection, TranslateRayQueryFloat3Getter, DXIL::OpCode::RayQuery_CommittedObjectRayDirection},
  5016. {IntrinsicOp::MOP_CommittedObjectRayOrigin, TranslateRayQueryFloat3Getter, DXIL::OpCode::RayQuery_CommittedObjectRayOrigin},
  5017. {IntrinsicOp::MOP_CommittedObjectToWorld3x4, TranslateRayQueryMatrix3x4Operation, DXIL::OpCode::RayQuery_CommittedObjectToWorld3x4},
  5018. {IntrinsicOp::MOP_CommittedObjectToWorld4x3, TranslateRayQueryTransposedMatrix3x4Operation, DXIL::OpCode::RayQuery_CommittedObjectToWorld3x4},
  5019. {IntrinsicOp::MOP_CommittedPrimitiveIndex, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CommittedPrimitiveIndex},
  5020. {IntrinsicOp::MOP_CommittedRayT, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CommittedRayT},
  5021. {IntrinsicOp::MOP_CommittedStatus, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CommittedStatus},
  5022. {IntrinsicOp::MOP_CommittedTriangleBarycentrics, TranslateRayQueryFloat2Getter, DXIL::OpCode::RayQuery_CommittedTriangleBarycentrics},
  5023. {IntrinsicOp::MOP_CommittedTriangleFrontFace, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_CommittedTriangleFrontFace},
  5024. {IntrinsicOp::MOP_CommittedWorldToObject3x4, TranslateRayQueryMatrix3x4Operation, DXIL::OpCode::RayQuery_CommittedWorldToObject3x4},
  5025. {IntrinsicOp::MOP_CommittedWorldToObject4x3, TranslateRayQueryTransposedMatrix3x4Operation, DXIL::OpCode::RayQuery_CommittedWorldToObject3x4},
  5026. {IntrinsicOp::MOP_Proceed, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_Proceed},
  5027. {IntrinsicOp::MOP_RayFlags, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_RayFlags},
  5028. {IntrinsicOp::MOP_RayTMin, TranslateGenericRayQueryMethod, DXIL::OpCode::RayQuery_RayTMin},
  5029. {IntrinsicOp::MOP_TraceRayInline, TranslateTraceRayInline, DXIL::OpCode::RayQuery_TraceRayInline},
  5030. {IntrinsicOp::MOP_WorldRayDirection, TranslateRayQueryFloat3Getter, DXIL::OpCode::RayQuery_WorldRayDirection},
  5031. {IntrinsicOp::MOP_WorldRayOrigin, TranslateRayQueryFloat3Getter, DXIL::OpCode::RayQuery_WorldRayOrigin},
  5032. // SPIRV change starts
  5033. #ifdef ENABLE_SPIRV_CODEGEN
  5034. {IntrinsicOp::MOP_SubpassLoad, UnsupportedVulkanIntrinsic, DXIL::OpCode::NumOpCodes},
  5035. #endif // ENABLE_SPIRV_CODEGEN
  5036. // SPIRV change ends
  5037. // Manully added part.
  5038. { IntrinsicOp::IOP_InterlockedUMax, TranslateIopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes },
  5039. { IntrinsicOp::IOP_InterlockedUMin, TranslateIopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes },
  5040. { IntrinsicOp::IOP_WaveActiveUMax, TranslateWaveA2A, DXIL::OpCode::WaveActiveOp },
  5041. { IntrinsicOp::IOP_WaveActiveUMin, TranslateWaveA2A, DXIL::OpCode::WaveActiveOp },
  5042. { IntrinsicOp::IOP_WaveActiveUProduct, TranslateWaveA2A, DXIL::OpCode::WaveActiveOp },
  5043. { IntrinsicOp::IOP_WaveActiveUSum, TranslateWaveA2A, DXIL::OpCode::WaveActiveOp },
  5044. { IntrinsicOp::IOP_WaveMultiPrefixUProduct, TranslateWaveMultiPrefix, DXIL::OpCode::WaveMultiPrefixOp },
  5045. { IntrinsicOp::IOP_WaveMultiPrefixUSum, TranslateWaveMultiPrefix, DXIL::OpCode::WaveMultiPrefixOp },
  5046. { IntrinsicOp::IOP_WavePrefixUProduct, TranslateWaveA2A, DXIL::OpCode::WavePrefixOp },
  5047. { IntrinsicOp::IOP_WavePrefixUSum, TranslateWaveA2A, DXIL::OpCode::WavePrefixOp },
  5048. { IntrinsicOp::IOP_uabs, TranslateUAbs, DXIL::OpCode::NumOpCodes },
  5049. { IntrinsicOp::IOP_uclamp, TranslateClamp, DXIL::OpCode::NumOpCodes },
  5050. { IntrinsicOp::IOP_ufirstbithigh, TranslateFirstbitHi, DXIL::OpCode::FirstbitHi },
  5051. { IntrinsicOp::IOP_umad, TranslateFUITrinary, DXIL::OpCode::UMad},
  5052. { IntrinsicOp::IOP_umax, TranslateFUIBinary, DXIL::OpCode::UMax},
  5053. { IntrinsicOp::IOP_umin, TranslateFUIBinary, DXIL::OpCode::UMin },
  5054. { IntrinsicOp::IOP_umul, TranslateMul, DXIL::OpCode::UMul },
  5055. { IntrinsicOp::IOP_usign, TranslateUSign, DXIL::OpCode::UMax },
  5056. { IntrinsicOp::MOP_InterlockedUMax, TranslateMopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes },
  5057. { IntrinsicOp::MOP_InterlockedUMin, TranslateMopAtomicBinaryOperation, DXIL::OpCode::NumOpCodes },
  5058. };
  5059. }
  5060. static_assert(sizeof(gLowerTable) / sizeof(gLowerTable[0]) == static_cast<size_t>(IntrinsicOp::Num_Intrinsics),
  5061. "Intrinsic lowering table must be updated to account for new intrinsics.");
  5062. static void TranslateBuiltinIntrinsic(CallInst *CI,
  5063. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  5064. unsigned opcode = hlsl::GetHLOpcode(CI);
  5065. const IntrinsicLower &lower = gLowerTable[opcode];
  5066. Value *Result =
  5067. lower.LowerFunc(CI, lower.IntriOpcode, lower.DxilOpcode, helper, pObjHelper, Translated);
  5068. if (Result)
  5069. CI->replaceAllUsesWith(Result);
  5070. }
  5071. // SharedMem.
  5072. namespace {
  5073. bool IsSharedMemPtr(Value *Ptr) {
  5074. return Ptr->getType()->getPointerAddressSpace() == DXIL::kTGSMAddrSpace;
  5075. }
  5076. bool IsLocalVariablePtr(Value *Ptr) {
  5077. while (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
  5078. Ptr = GEP->getPointerOperand();
  5079. }
  5080. bool isAlloca = isa<AllocaInst>(Ptr);
  5081. if (isAlloca) return true;
  5082. GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
  5083. if (!GV) return false;
  5084. return GV->getLinkage() == GlobalValue::LinkageTypes::InternalLinkage;
  5085. }
  5086. }
  5087. // Constant buffer.
  5088. namespace {
  5089. unsigned GetEltTypeByteSizeForConstBuf(Type *EltType, const DataLayout &DL) {
  5090. DXASSERT(EltType->isIntegerTy() || EltType->isFloatingPointTy(),
  5091. "not an element type");
  5092. // TODO: Use real size after change constant buffer into linear layout.
  5093. if (DL.getTypeSizeInBits(EltType) <= 32) {
  5094. // Constant buffer is 4 bytes align.
  5095. return 4;
  5096. } else
  5097. return 8;
  5098. }
  5099. Value *GenerateCBLoad(Value *handle, Value *offset, Type *EltTy, OP *hlslOP,
  5100. IRBuilder<> &Builder) {
  5101. Constant *OpArg = hlslOP->GetU32Const((unsigned)OP::OpCode::CBufferLoad);
  5102. DXASSERT(!EltTy->isIntegerTy(1), "Bools should not be loaded as their register representation.");
  5103. // Align to 8 bytes for now.
  5104. Constant *align = hlslOP->GetU32Const(8);
  5105. Function *CBLoad = hlslOP->GetOpFunc(OP::OpCode::CBufferLoad, EltTy);
  5106. return Builder.CreateCall(CBLoad, {OpArg, handle, offset, align});
  5107. }
  5108. Value *TranslateConstBufMatLd(Type *matType, Value *handle, Value *offset,
  5109. bool colMajor, OP *OP, const DataLayout &DL,
  5110. IRBuilder<> &Builder) {
  5111. HLMatrixType MatTy = HLMatrixType::cast(matType);
  5112. Type *EltTy = MatTy.getElementTypeForMem();
  5113. unsigned matSize = MatTy.getNumElements();
  5114. std::vector<Value *> elts(matSize);
  5115. Value *EltByteSize = ConstantInt::get(
  5116. offset->getType(), GetEltTypeByteSizeForConstBuf(EltTy, DL));
  5117. // TODO: use real size after change constant buffer into linear layout.
  5118. Value *baseOffset = offset;
  5119. for (unsigned i = 0; i < matSize; i++) {
  5120. elts[i] = GenerateCBLoad(handle, baseOffset, EltTy, OP, Builder);
  5121. baseOffset = Builder.CreateAdd(baseOffset, EltByteSize);
  5122. }
  5123. Value* Vec = HLMatrixLower::BuildVector(EltTy, elts, Builder);
  5124. Vec = MatTy.emitLoweredMemToReg(Vec, Builder);
  5125. return Vec;
  5126. }
  5127. void TranslateCBGep(GetElementPtrInst *GEP, Value *handle, Value *baseOffset,
  5128. hlsl::OP *hlslOP, IRBuilder<> &Builder,
  5129. DxilFieldAnnotation *prevFieldAnnotation,
  5130. const DataLayout &DL, DxilTypeSystem &dxilTypeSys,
  5131. HLObjectOperationLowerHelper *pObjHelper);
  5132. Value *GenerateVecEltFromGEP(Value *ldData, GetElementPtrInst *GEP,
  5133. IRBuilder<> &Builder, bool bInsertLdNextToGEP) {
  5134. DXASSERT(GEP->getNumIndices() == 2, "must have 2 level");
  5135. Value *baseIdx = (GEP->idx_begin())->get();
  5136. Value *zeroIdx = Builder.getInt32(0);
  5137. DXASSERT_LOCALVAR(baseIdx && zeroIdx, baseIdx == zeroIdx,
  5138. "base index must be 0");
  5139. Value *idx = (GEP->idx_begin() + 1)->get();
  5140. if (dyn_cast<ConstantInt>(idx)) {
  5141. return Builder.CreateExtractElement(ldData, idx);
  5142. } else {
  5143. // Dynamic indexing.
  5144. // Copy vec to array.
  5145. Type *Ty = ldData->getType();
  5146. Type *EltTy = Ty->getVectorElementType();
  5147. unsigned vecSize = Ty->getVectorNumElements();
  5148. ArrayType *AT = ArrayType::get(EltTy, vecSize);
  5149. IRBuilder<> AllocaBuilder(
  5150. GEP->getParent()->getParent()->getEntryBlock().getFirstInsertionPt());
  5151. Value *tempArray = AllocaBuilder.CreateAlloca(AT);
  5152. Value *zero = Builder.getInt32(0);
  5153. for (unsigned int i = 0; i < vecSize; i++) {
  5154. Value *Elt = Builder.CreateExtractElement(ldData, Builder.getInt32(i));
  5155. Value *Ptr =
  5156. Builder.CreateInBoundsGEP(tempArray, {zero, Builder.getInt32(i)});
  5157. Builder.CreateStore(Elt, Ptr);
  5158. }
  5159. // Load from temp array.
  5160. if (bInsertLdNextToGEP) {
  5161. // Insert the new GEP just before the old and to-be-deleted GEP
  5162. Builder.SetInsertPoint(GEP);
  5163. }
  5164. Value *EltGEP = Builder.CreateInBoundsGEP(tempArray, {zero, idx});
  5165. return Builder.CreateLoad(EltGEP);
  5166. }
  5167. }
  5168. void TranslateResourceInCB(LoadInst *LI,
  5169. HLObjectOperationLowerHelper *pObjHelper,
  5170. GlobalVariable *CbGV) {
  5171. if (LI->user_empty()) {
  5172. LI->eraseFromParent();
  5173. return;
  5174. }
  5175. GetElementPtrInst *Ptr = cast<GetElementPtrInst>(LI->getPointerOperand());
  5176. CallInst *CI = cast<CallInst>(LI->user_back());
  5177. CallInst *Anno = cast<CallInst>(CI->user_back());
  5178. DxilResourceProperties RP = pObjHelper->GetResPropsFromAnnotateHandle(Anno);
  5179. Value *ResPtr = pObjHelper->GetOrCreateResourceForCbPtr(Ptr, CbGV, RP);
  5180. // Lower Ptr to GV base Ptr.
  5181. Value *GvPtr = pObjHelper->LowerCbResourcePtr(Ptr, ResPtr);
  5182. IRBuilder<> Builder(LI);
  5183. Value *GvLd = Builder.CreateLoad(GvPtr);
  5184. LI->replaceAllUsesWith(GvLd);
  5185. LI->eraseFromParent();
  5186. }
  5187. void TranslateCBAddressUser(Instruction *user, Value *handle, Value *baseOffset,
  5188. hlsl::OP *hlslOP,
  5189. DxilFieldAnnotation *prevFieldAnnotation,
  5190. DxilTypeSystem &dxilTypeSys, const DataLayout &DL,
  5191. HLObjectOperationLowerHelper *pObjHelper) {
  5192. IRBuilder<> Builder(user);
  5193. if (CallInst *CI = dyn_cast<CallInst>(user)) {
  5194. HLOpcodeGroup group = GetHLOpcodeGroupByName(CI->getCalledFunction());
  5195. unsigned opcode = GetHLOpcode(CI);
  5196. if (group == HLOpcodeGroup::HLMatLoadStore) {
  5197. HLMatLoadStoreOpcode matOp = static_cast<HLMatLoadStoreOpcode>(opcode);
  5198. bool colMajor = matOp == HLMatLoadStoreOpcode::ColMatLoad;
  5199. DXASSERT(matOp == HLMatLoadStoreOpcode::ColMatLoad ||
  5200. matOp == HLMatLoadStoreOpcode::RowMatLoad,
  5201. "No store on cbuffer");
  5202. Type *matType = CI->getArgOperand(HLOperandIndex::kMatLoadPtrOpIdx)
  5203. ->getType()
  5204. ->getPointerElementType();
  5205. Value *newLd = TranslateConstBufMatLd(matType, handle, baseOffset,
  5206. colMajor, hlslOP, DL, Builder);
  5207. CI->replaceAllUsesWith(newLd);
  5208. CI->eraseFromParent();
  5209. } else if (group == HLOpcodeGroup::HLSubscript) {
  5210. HLSubscriptOpcode subOp = static_cast<HLSubscriptOpcode>(opcode);
  5211. Value *basePtr = CI->getArgOperand(HLOperandIndex::kMatSubscriptMatOpIdx);
  5212. HLMatrixType MatTy = HLMatrixType::cast(basePtr->getType()->getPointerElementType());
  5213. Type *EltTy = MatTy.getElementTypeForReg();
  5214. Value *EltByteSize = ConstantInt::get(
  5215. baseOffset->getType(), GetEltTypeByteSizeForConstBuf(EltTy, DL));
  5216. Value *idx = CI->getArgOperand(HLOperandIndex::kMatSubscriptSubOpIdx);
  5217. Type *resultType = CI->getType()->getPointerElementType();
  5218. unsigned resultSize = 1;
  5219. if (resultType->isVectorTy())
  5220. resultSize = resultType->getVectorNumElements();
  5221. DXASSERT(resultSize <= 16, "up to 4x4 elements in vector or matrix");
  5222. _Analysis_assume_(resultSize <= 16);
  5223. Value *idxList[16];
  5224. switch (subOp) {
  5225. case HLSubscriptOpcode::ColMatSubscript:
  5226. case HLSubscriptOpcode::RowMatSubscript: {
  5227. for (unsigned i = 0; i < resultSize; i++) {
  5228. Value *idx =
  5229. CI->getArgOperand(HLOperandIndex::kMatSubscriptSubOpIdx + i);
  5230. Value *offset = Builder.CreateMul(idx, EltByteSize);
  5231. idxList[i] = Builder.CreateAdd(baseOffset, offset);
  5232. }
  5233. } break;
  5234. case HLSubscriptOpcode::RowMatElement:
  5235. case HLSubscriptOpcode::ColMatElement: {
  5236. Constant *EltIdxs = cast<Constant>(idx);
  5237. for (unsigned i = 0; i < resultSize; i++) {
  5238. Value *offset =
  5239. Builder.CreateMul(EltIdxs->getAggregateElement(i), EltByteSize);
  5240. idxList[i] = Builder.CreateAdd(baseOffset, offset);
  5241. }
  5242. } break;
  5243. default:
  5244. DXASSERT(0, "invalid operation on const buffer");
  5245. break;
  5246. }
  5247. Value *ldData = UndefValue::get(resultType);
  5248. if (resultType->isVectorTy()) {
  5249. for (unsigned i = 0; i < resultSize; i++) {
  5250. Value *eltData =
  5251. GenerateCBLoad(handle, idxList[i], EltTy, hlslOP, Builder);
  5252. ldData = Builder.CreateInsertElement(ldData, eltData, i);
  5253. }
  5254. } else {
  5255. ldData = GenerateCBLoad(handle, idxList[0], EltTy, hlslOP, Builder);
  5256. }
  5257. for (auto U = CI->user_begin(); U != CI->user_end();) {
  5258. Value *subsUser = *(U++);
  5259. if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(subsUser)) {
  5260. Value *subData = GenerateVecEltFromGEP(ldData, GEP, Builder,
  5261. /*bInsertLdNextToGEP*/ true);
  5262. for (auto gepU = GEP->user_begin(); gepU != GEP->user_end();) {
  5263. Value *gepUser = *(gepU++);
  5264. // Must be load here;
  5265. LoadInst *ldUser = cast<LoadInst>(gepUser);
  5266. ldUser->replaceAllUsesWith(subData);
  5267. ldUser->eraseFromParent();
  5268. }
  5269. GEP->eraseFromParent();
  5270. } else {
  5271. // Must be load here.
  5272. LoadInst *ldUser = cast<LoadInst>(subsUser);
  5273. ldUser->replaceAllUsesWith(ldData);
  5274. ldUser->eraseFromParent();
  5275. }
  5276. }
  5277. CI->eraseFromParent();
  5278. } else {
  5279. DXASSERT(0, "not implemented yet");
  5280. }
  5281. } else if (LoadInst *ldInst = dyn_cast<LoadInst>(user)) {
  5282. Type *Ty = ldInst->getType();
  5283. Type *EltTy = Ty->getScalarType();
  5284. // Resource inside cbuffer is lowered after GenerateDxilOperations.
  5285. if (dxilutil::IsHLSLObjectType(Ty)) {
  5286. CallInst *CI = cast<CallInst>(handle);
  5287. // CI should be annotate handle.
  5288. // Need createHandle here.
  5289. if (GetHLOpcodeGroup(CI->getCalledFunction()) == HLOpcodeGroup::HLAnnotateHandle)
  5290. CI = cast<CallInst>(CI->getArgOperand(HLOperandIndex::kAnnotateHandleHandleOpIdx));
  5291. GlobalVariable *CbGV = cast<GlobalVariable>(
  5292. CI->getArgOperand(HLOperandIndex::kCreateHandleResourceOpIdx));
  5293. TranslateResourceInCB(ldInst, pObjHelper, CbGV);
  5294. return;
  5295. }
  5296. DXASSERT(!Ty->isAggregateType(), "should be flat in previous pass");
  5297. unsigned EltByteSize = GetEltTypeByteSizeForConstBuf(EltTy, DL);
  5298. Value *newLd = GenerateCBLoad(handle, baseOffset, EltTy, hlslOP, Builder);
  5299. if (Ty->isVectorTy()) {
  5300. Value *result = UndefValue::get(Ty);
  5301. result = Builder.CreateInsertElement(result, newLd, (uint64_t)0);
  5302. // Update offset by 4 bytes.
  5303. Value *offset =
  5304. Builder.CreateAdd(baseOffset, hlslOP->GetU32Const(EltByteSize));
  5305. for (unsigned i = 1; i < Ty->getVectorNumElements(); i++) {
  5306. Value *elt = GenerateCBLoad(handle, offset, EltTy, hlslOP, Builder);
  5307. result = Builder.CreateInsertElement(result, elt, i);
  5308. // Update offset by 4 bytes.
  5309. offset = Builder.CreateAdd(offset, hlslOP->GetU32Const(EltByteSize));
  5310. }
  5311. newLd = result;
  5312. }
  5313. ldInst->replaceAllUsesWith(newLd);
  5314. ldInst->eraseFromParent();
  5315. } else {
  5316. // Must be GEP here
  5317. GetElementPtrInst *GEP = cast<GetElementPtrInst>(user);
  5318. TranslateCBGep(GEP, handle, baseOffset, hlslOP, Builder,
  5319. prevFieldAnnotation, DL, dxilTypeSys, pObjHelper);
  5320. GEP->eraseFromParent();
  5321. }
  5322. }
  5323. void TranslateCBGep(GetElementPtrInst *GEP, Value *handle, Value *baseOffset,
  5324. hlsl::OP *hlslOP, IRBuilder<> &Builder,
  5325. DxilFieldAnnotation *prevFieldAnnotation,
  5326. const DataLayout &DL, DxilTypeSystem &dxilTypeSys,
  5327. HLObjectOperationLowerHelper *pObjHelper) {
  5328. SmallVector<Value *, 8> Indices(GEP->idx_begin(), GEP->idx_end());
  5329. Value *offset = baseOffset;
  5330. // update offset
  5331. DxilFieldAnnotation *fieldAnnotation = prevFieldAnnotation;
  5332. gep_type_iterator GEPIt = gep_type_begin(GEP), E = gep_type_end(GEP);
  5333. for (; GEPIt != E; GEPIt++) {
  5334. Value *idx = GEPIt.getOperand();
  5335. unsigned immIdx = 0;
  5336. bool bImmIdx = false;
  5337. if (Constant *constIdx = dyn_cast<Constant>(idx)) {
  5338. immIdx = constIdx->getUniqueInteger().getLimitedValue();
  5339. bImmIdx = true;
  5340. }
  5341. if (GEPIt->isPointerTy()) {
  5342. Type *EltTy = GEPIt->getPointerElementType();
  5343. unsigned size = 0;
  5344. if (StructType *ST = dyn_cast<StructType>(EltTy)) {
  5345. DxilStructAnnotation *annotation = dxilTypeSys.GetStructAnnotation(ST);
  5346. size = annotation->GetCBufferSize();
  5347. } else {
  5348. DXASSERT(fieldAnnotation, "must be a field");
  5349. if (ArrayType *AT = dyn_cast<ArrayType>(EltTy)) {
  5350. unsigned EltSize = dxilutil::GetLegacyCBufferFieldElementSize(
  5351. *fieldAnnotation, EltTy, dxilTypeSys);
  5352. // Decide the nested array size.
  5353. unsigned nestedArraySize = 1;
  5354. Type *EltTy = AT->getArrayElementType();
  5355. // support multi level of array
  5356. while (EltTy->isArrayTy()) {
  5357. ArrayType *EltAT = cast<ArrayType>(EltTy);
  5358. nestedArraySize *= EltAT->getNumElements();
  5359. EltTy = EltAT->getElementType();
  5360. }
  5361. // Align to 4 * 4 bytes.
  5362. unsigned alignedSize = (EltSize + 15) & 0xfffffff0;
  5363. size = nestedArraySize * alignedSize;
  5364. } else {
  5365. size = DL.getTypeAllocSize(EltTy);
  5366. }
  5367. }
  5368. // Align to 4 * 4 bytes.
  5369. size = (size + 15) & 0xfffffff0;
  5370. if (bImmIdx) {
  5371. unsigned tempOffset = size * immIdx;
  5372. offset = Builder.CreateAdd(offset, hlslOP->GetU32Const(tempOffset));
  5373. } else {
  5374. Value *tempOffset = Builder.CreateMul(idx, hlslOP->GetU32Const(size));
  5375. offset = Builder.CreateAdd(offset, tempOffset);
  5376. }
  5377. } else if (GEPIt->isStructTy()) {
  5378. StructType *ST = cast<StructType>(*GEPIt);
  5379. DxilStructAnnotation *annotation = dxilTypeSys.GetStructAnnotation(ST);
  5380. fieldAnnotation = &annotation->GetFieldAnnotation(immIdx);
  5381. unsigned structOffset = fieldAnnotation->GetCBufferOffset();
  5382. offset = Builder.CreateAdd(offset, hlslOP->GetU32Const(structOffset));
  5383. } else if (GEPIt->isArrayTy()) {
  5384. DXASSERT(fieldAnnotation != nullptr, "must a field");
  5385. unsigned EltSize = dxilutil::GetLegacyCBufferFieldElementSize(
  5386. *fieldAnnotation, *GEPIt, dxilTypeSys);
  5387. // Decide the nested array size.
  5388. unsigned nestedArraySize = 1;
  5389. Type *EltTy = GEPIt->getArrayElementType();
  5390. // support multi level of array
  5391. while (EltTy->isArrayTy()) {
  5392. ArrayType *EltAT = cast<ArrayType>(EltTy);
  5393. nestedArraySize *= EltAT->getNumElements();
  5394. EltTy = EltAT->getElementType();
  5395. }
  5396. // Align to 4 * 4 bytes.
  5397. unsigned alignedSize = (EltSize + 15) & 0xfffffff0;
  5398. unsigned size = nestedArraySize * alignedSize;
  5399. if (bImmIdx) {
  5400. unsigned tempOffset = size * immIdx;
  5401. offset = Builder.CreateAdd(offset, hlslOP->GetU32Const(tempOffset));
  5402. } else {
  5403. Value *tempOffset = Builder.CreateMul(idx, hlslOP->GetU32Const(size));
  5404. offset = Builder.CreateAdd(offset, tempOffset);
  5405. }
  5406. } else if (GEPIt->isVectorTy()) {
  5407. unsigned size = DL.getTypeAllocSize(GEPIt->getVectorElementType());
  5408. if (bImmIdx) {
  5409. unsigned tempOffset = size * immIdx;
  5410. offset = Builder.CreateAdd(offset, hlslOP->GetU32Const(tempOffset));
  5411. } else {
  5412. Value *tempOffset = Builder.CreateMul(idx, hlslOP->GetU32Const(size));
  5413. offset = Builder.CreateAdd(offset, tempOffset);
  5414. }
  5415. } else {
  5416. gep_type_iterator temp = GEPIt;
  5417. temp++;
  5418. DXASSERT(temp == E, "scalar type must be the last");
  5419. }
  5420. }
  5421. for (auto U = GEP->user_begin(); U != GEP->user_end();) {
  5422. Instruction *user = cast<Instruction>(*(U++));
  5423. TranslateCBAddressUser(user, handle, offset, hlslOP, fieldAnnotation,
  5424. dxilTypeSys, DL, pObjHelper);
  5425. }
  5426. }
  5427. void TranslateCBOperations(Value *handle, Value *ptr, Value *offset, OP *hlslOP,
  5428. DxilTypeSystem &dxilTypeSys, const DataLayout &DL,
  5429. HLObjectOperationLowerHelper *pObjHelper) {
  5430. auto User = ptr->user_begin();
  5431. auto UserE = ptr->user_end();
  5432. for (; User != UserE;) {
  5433. // Must be Instruction.
  5434. Instruction *I = cast<Instruction>(*(User++));
  5435. TranslateCBAddressUser(I, handle, offset, hlslOP,
  5436. /*prevFieldAnnotation*/ nullptr, dxilTypeSys, DL,
  5437. pObjHelper);
  5438. }
  5439. }
  5440. Value *GenerateCBLoadLegacy(Value *handle, Value *legacyIdx,
  5441. unsigned channelOffset, Type *EltTy, OP *hlslOP,
  5442. IRBuilder<> &Builder) {
  5443. Constant *OpArg = hlslOP->GetU32Const((unsigned)OP::OpCode::CBufferLoadLegacy);
  5444. DXASSERT(!EltTy->isIntegerTy(1), "Bools should not be loaded as their register representation.");
  5445. Type *doubleTy = Type::getDoubleTy(EltTy->getContext());
  5446. Type *halfTy = Type::getHalfTy(EltTy->getContext());
  5447. Type *i64Ty = Type::getInt64Ty(EltTy->getContext());
  5448. Type *i16Ty = Type::getInt16Ty(EltTy->getContext());
  5449. bool is64 = (EltTy == doubleTy) | (EltTy == i64Ty);
  5450. bool is16 = (EltTy == halfTy || EltTy == i16Ty) && !hlslOP->UseMinPrecision();
  5451. DXASSERT_LOCALVAR(is16, (is16 && channelOffset < 8) || channelOffset < 4,
  5452. "legacy cbuffer don't across 16 bytes register.");
  5453. if (is64) {
  5454. Function *CBLoad = hlslOP->GetOpFunc(OP::OpCode::CBufferLoadLegacy, EltTy);
  5455. Value *loadLegacy = Builder.CreateCall(CBLoad, {OpArg, handle, legacyIdx});
  5456. DXASSERT((channelOffset&1)==0,"channel offset must be even for double");
  5457. unsigned eltIdx = channelOffset>>1;
  5458. Value *Result = Builder.CreateExtractValue(loadLegacy, eltIdx);
  5459. return Result;
  5460. } else {
  5461. Function *CBLoad = hlslOP->GetOpFunc(OP::OpCode::CBufferLoadLegacy, EltTy);
  5462. Value *loadLegacy = Builder.CreateCall(CBLoad, { OpArg, handle, legacyIdx });
  5463. return Builder.CreateExtractValue(loadLegacy, channelOffset);
  5464. }
  5465. }
  5466. Value *GenerateCBLoadLegacy(Value *handle, Value *legacyIdx,
  5467. unsigned channelOffset, Type *EltTy,
  5468. unsigned vecSize, OP *hlslOP,
  5469. IRBuilder<> &Builder) {
  5470. Constant *OpArg = hlslOP->GetU32Const((unsigned)OP::OpCode::CBufferLoadLegacy);
  5471. DXASSERT(!EltTy->isIntegerTy(1), "Bools should not be loaded as their register representation.");
  5472. Type *doubleTy = Type::getDoubleTy(EltTy->getContext());
  5473. Type *i64Ty = Type::getInt64Ty(EltTy->getContext());
  5474. Type *halfTy = Type::getHalfTy(EltTy->getContext());
  5475. Type *shortTy = Type::getInt16Ty(EltTy->getContext());
  5476. bool is64 = (EltTy == doubleTy) | (EltTy == i64Ty);
  5477. bool is16 = (EltTy == shortTy || EltTy == halfTy) && !hlslOP->UseMinPrecision();
  5478. DXASSERT((is16 && channelOffset + vecSize <= 8) ||
  5479. (channelOffset + vecSize) <= 4,
  5480. "legacy cbuffer don't across 16 bytes register.");
  5481. if (is16) {
  5482. Function *CBLoad = hlslOP->GetOpFunc(OP::OpCode::CBufferLoadLegacy, EltTy);
  5483. Value *loadLegacy = Builder.CreateCall(CBLoad, {OpArg, handle, legacyIdx});
  5484. Value *Result = UndefValue::get(VectorType::get(EltTy, vecSize));
  5485. for (unsigned i = 0; i < vecSize; ++i) {
  5486. Value *NewElt = Builder.CreateExtractValue(loadLegacy, channelOffset + i);
  5487. Result = Builder.CreateInsertElement(Result, NewElt, i);
  5488. }
  5489. return Result;
  5490. } else if (is64) {
  5491. Function *CBLoad = hlslOP->GetOpFunc(OP::OpCode::CBufferLoadLegacy, EltTy);
  5492. Value *loadLegacy = Builder.CreateCall(CBLoad, { OpArg, handle, legacyIdx });
  5493. Value *Result = UndefValue::get(VectorType::get(EltTy, vecSize));
  5494. unsigned smallVecSize = 2;
  5495. if (vecSize < smallVecSize)
  5496. smallVecSize = vecSize;
  5497. for (unsigned i = 0; i < smallVecSize; ++i) {
  5498. Value *NewElt = Builder.CreateExtractValue(loadLegacy, channelOffset+i);
  5499. Result = Builder.CreateInsertElement(Result, NewElt, i);
  5500. }
  5501. if (vecSize > 2) {
  5502. // Got to next cb register.
  5503. legacyIdx = Builder.CreateAdd(legacyIdx, hlslOP->GetU32Const(1));
  5504. Value *loadLegacy = Builder.CreateCall(CBLoad, {OpArg, handle, legacyIdx});
  5505. for (unsigned i = 2; i < vecSize; ++i) {
  5506. Value *NewElt =
  5507. Builder.CreateExtractValue(loadLegacy, i-2);
  5508. Result = Builder.CreateInsertElement(Result, NewElt, i);
  5509. }
  5510. }
  5511. return Result;
  5512. } else {
  5513. Function *CBLoad = hlslOP->GetOpFunc(OP::OpCode::CBufferLoadLegacy, EltTy);
  5514. Value *loadLegacy = Builder.CreateCall(CBLoad, { OpArg, handle, legacyIdx });
  5515. Value *Result = UndefValue::get(VectorType::get(EltTy, vecSize));
  5516. for (unsigned i = 0; i < vecSize; ++i) {
  5517. Value *NewElt = Builder.CreateExtractValue(loadLegacy, channelOffset + i);
  5518. Result = Builder.CreateInsertElement(Result, NewElt, i);
  5519. }
  5520. return Result;
  5521. }
  5522. }
  5523. Value *TranslateConstBufMatLdLegacy(HLMatrixType MatTy, Value *handle,
  5524. Value *legacyIdx, bool colMajor, OP *OP,
  5525. bool memElemRepr, const DataLayout &DL,
  5526. IRBuilder<> &Builder) {
  5527. Type *EltTy = MatTy.getElementTypeForMem();
  5528. unsigned matSize = MatTy.getNumElements();
  5529. std::vector<Value *> elts(matSize);
  5530. unsigned EltByteSize = GetEltTypeByteSizeForConstBuf(EltTy, DL);
  5531. if (colMajor) {
  5532. unsigned colByteSize = 4 * EltByteSize;
  5533. unsigned colRegSize = (colByteSize + 15) >> 4;
  5534. for (unsigned c = 0; c < MatTy.getNumColumns(); c++) {
  5535. Value *col = GenerateCBLoadLegacy(handle, legacyIdx, /*channelOffset*/ 0,
  5536. EltTy, MatTy.getNumRows(), OP, Builder);
  5537. for (unsigned r = 0; r < MatTy.getNumRows(); r++) {
  5538. unsigned matIdx = MatTy.getColumnMajorIndex(r, c);
  5539. elts[matIdx] = Builder.CreateExtractElement(col, r);
  5540. }
  5541. // Update offset for a column.
  5542. legacyIdx = Builder.CreateAdd(legacyIdx, OP->GetU32Const(colRegSize));
  5543. }
  5544. } else {
  5545. unsigned rowByteSize = 4 * EltByteSize;
  5546. unsigned rowRegSize = (rowByteSize + 15) >> 4;
  5547. for (unsigned r = 0; r < MatTy.getNumRows(); r++) {
  5548. Value *row = GenerateCBLoadLegacy(handle, legacyIdx, /*channelOffset*/ 0,
  5549. EltTy, MatTy.getNumColumns(), OP, Builder);
  5550. for (unsigned c = 0; c < MatTy.getNumColumns(); c++) {
  5551. unsigned matIdx = MatTy.getRowMajorIndex(r, c);
  5552. elts[matIdx] = Builder.CreateExtractElement(row, c);
  5553. }
  5554. // Update offset for a row.
  5555. legacyIdx = Builder.CreateAdd(legacyIdx, OP->GetU32Const(rowRegSize));
  5556. }
  5557. }
  5558. Value *Vec = HLMatrixLower::BuildVector(EltTy, elts, Builder);
  5559. if (!memElemRepr)
  5560. Vec = MatTy.emitLoweredMemToReg(Vec, Builder);
  5561. return Vec;
  5562. }
  5563. void TranslateCBGepLegacy(GetElementPtrInst *GEP, Value *handle,
  5564. Value *legacyIdx, unsigned channelOffset,
  5565. hlsl::OP *hlslOP, IRBuilder<> &Builder,
  5566. DxilFieldAnnotation *prevFieldAnnotation,
  5567. const DataLayout &DL, DxilTypeSystem &dxilTypeSys,
  5568. HLObjectOperationLowerHelper *pObjHelper);
  5569. void TranslateCBAddressUserLegacy(Instruction *user, Value *handle,
  5570. Value *legacyIdx, unsigned channelOffset,
  5571. hlsl::OP *hlslOP,
  5572. DxilFieldAnnotation *prevFieldAnnotation,
  5573. DxilTypeSystem &dxilTypeSys,
  5574. const DataLayout &DL,
  5575. HLObjectOperationLowerHelper *pObjHelper) {
  5576. IRBuilder<> Builder(user);
  5577. if (CallInst *CI = dyn_cast<CallInst>(user)) {
  5578. HLOpcodeGroup group = GetHLOpcodeGroupByName(CI->getCalledFunction());
  5579. if (group == HLOpcodeGroup::HLMatLoadStore) {
  5580. unsigned opcode = GetHLOpcode(CI);
  5581. HLMatLoadStoreOpcode matOp = static_cast<HLMatLoadStoreOpcode>(opcode);
  5582. bool colMajor = matOp == HLMatLoadStoreOpcode::ColMatLoad;
  5583. DXASSERT(matOp == HLMatLoadStoreOpcode::ColMatLoad ||
  5584. matOp == HLMatLoadStoreOpcode::RowMatLoad,
  5585. "No store on cbuffer");
  5586. HLMatrixType MatTy = HLMatrixType::cast(
  5587. CI->getArgOperand(HLOperandIndex::kMatLoadPtrOpIdx)
  5588. ->getType()->getPointerElementType());
  5589. // This will replace a call, so we should use the register representation of elements
  5590. Value *newLd = TranslateConstBufMatLdLegacy(
  5591. MatTy, handle, legacyIdx, colMajor, hlslOP, /*memElemRepr*/false, DL, Builder);
  5592. CI->replaceAllUsesWith(newLd);
  5593. dxilutil::TryScatterDebugValueToVectorElements(newLd);
  5594. CI->eraseFromParent();
  5595. } else if (group == HLOpcodeGroup::HLSubscript) {
  5596. unsigned opcode = GetHLOpcode(CI);
  5597. HLSubscriptOpcode subOp = static_cast<HLSubscriptOpcode>(opcode);
  5598. Value *basePtr = CI->getArgOperand(HLOperandIndex::kMatSubscriptMatOpIdx);
  5599. HLMatrixType MatTy = HLMatrixType::cast(basePtr->getType()->getPointerElementType());
  5600. Type *EltTy = MatTy.getElementTypeForReg();
  5601. Value *idx = CI->getArgOperand(HLOperandIndex::kMatSubscriptSubOpIdx);
  5602. Type *resultType = CI->getType()->getPointerElementType();
  5603. unsigned resultSize = 1;
  5604. if (resultType->isVectorTy())
  5605. resultSize = resultType->getVectorNumElements();
  5606. DXASSERT(resultSize <= 16, "up to 4x4 elements in vector or matrix");
  5607. _Analysis_assume_(resultSize <= 16);
  5608. Value *idxList[16];
  5609. bool colMajor = subOp == HLSubscriptOpcode::ColMatSubscript ||
  5610. subOp == HLSubscriptOpcode::ColMatElement;
  5611. bool dynamicIndexing = !isa<ConstantInt>(idx) &&
  5612. !isa<ConstantAggregateZero>(idx) &&
  5613. !isa<ConstantDataSequential>(idx);
  5614. Value *ldData = UndefValue::get(resultType);
  5615. if (!dynamicIndexing) {
  5616. // This will replace a load or GEP, so we should use the memory representation of elements
  5617. Value *matLd = TranslateConstBufMatLdLegacy(
  5618. MatTy, handle, legacyIdx, colMajor, hlslOP, /*memElemRepr*/true, DL, Builder);
  5619. // The matLd is keep original layout, just use the idx calc in
  5620. // EmitHLSLMatrixElement and EmitHLSLMatrixSubscript.
  5621. switch (subOp) {
  5622. case HLSubscriptOpcode::RowMatSubscript:
  5623. case HLSubscriptOpcode::ColMatSubscript: {
  5624. for (unsigned i = 0; i < resultSize; i++) {
  5625. idxList[i] =
  5626. CI->getArgOperand(HLOperandIndex::kMatSubscriptSubOpIdx + i);
  5627. }
  5628. } break;
  5629. case HLSubscriptOpcode::RowMatElement:
  5630. case HLSubscriptOpcode::ColMatElement: {
  5631. Constant *EltIdxs = cast<Constant>(idx);
  5632. for (unsigned i = 0; i < resultSize; i++) {
  5633. idxList[i] = EltIdxs->getAggregateElement(i);
  5634. }
  5635. } break;
  5636. default:
  5637. DXASSERT(0, "invalid operation on const buffer");
  5638. break;
  5639. }
  5640. if (resultType->isVectorTy()) {
  5641. for (unsigned i = 0; i < resultSize; i++) {
  5642. Value *eltData = Builder.CreateExtractElement(matLd, idxList[i]);
  5643. ldData = Builder.CreateInsertElement(ldData, eltData, i);
  5644. }
  5645. } else {
  5646. Value *eltData = Builder.CreateExtractElement(matLd, idxList[0]);
  5647. ldData = eltData;
  5648. }
  5649. } else {
  5650. // Must be matSub here.
  5651. Value *idx = CI->getArgOperand(HLOperandIndex::kMatSubscriptSubOpIdx);
  5652. if (colMajor) {
  5653. // idx is c * row + r.
  5654. // For first col, c is 0, so idx is r.
  5655. Value *one = Builder.getInt32(1);
  5656. // row.x = c[0].[idx]
  5657. // row.y = c[1].[idx]
  5658. // row.z = c[2].[idx]
  5659. // row.w = c[3].[idx]
  5660. Value *Elts[4];
  5661. ArrayType *AT = ArrayType::get(EltTy, MatTy.getNumColumns());
  5662. IRBuilder<> AllocaBuilder(user->getParent()
  5663. ->getParent()
  5664. ->getEntryBlock()
  5665. .getFirstInsertionPt());
  5666. Value *tempArray = AllocaBuilder.CreateAlloca(AT);
  5667. Value *zero = AllocaBuilder.getInt32(0);
  5668. Value *cbufIdx = legacyIdx;
  5669. for (unsigned int c = 0; c < MatTy.getNumColumns(); c++) {
  5670. Value *ColVal =
  5671. GenerateCBLoadLegacy(handle, cbufIdx, /*channelOffset*/ 0,
  5672. EltTy, MatTy.getNumRows(), hlslOP, Builder);
  5673. // Convert ColVal to array for indexing.
  5674. for (unsigned int r = 0; r < MatTy.getNumRows(); r++) {
  5675. Value *Elt =
  5676. Builder.CreateExtractElement(ColVal, Builder.getInt32(r));
  5677. Value *Ptr = Builder.CreateInBoundsGEP(
  5678. tempArray, {zero, Builder.getInt32(r)});
  5679. Builder.CreateStore(Elt, Ptr);
  5680. }
  5681. Value *Ptr = Builder.CreateInBoundsGEP(tempArray, {zero, idx});
  5682. Elts[c] = Builder.CreateLoad(Ptr);
  5683. // Update cbufIdx.
  5684. cbufIdx = Builder.CreateAdd(cbufIdx, one);
  5685. }
  5686. if (resultType->isVectorTy()) {
  5687. for (unsigned int c = 0; c < MatTy.getNumColumns(); c++) {
  5688. ldData = Builder.CreateInsertElement(ldData, Elts[c], c);
  5689. }
  5690. } else {
  5691. ldData = Elts[0];
  5692. }
  5693. } else {
  5694. // idx is r * col + c;
  5695. // r = idx / col;
  5696. Value *cCol = ConstantInt::get(idx->getType(), MatTy.getNumColumns());
  5697. idx = Builder.CreateUDiv(idx, cCol);
  5698. idx = Builder.CreateAdd(idx, legacyIdx);
  5699. // Just return a row; 'col' is the number of columns in the row.
  5700. ldData = GenerateCBLoadLegacy(handle, idx, /*channelOffset*/ 0, EltTy,
  5701. MatTy.getNumColumns(), hlslOP, Builder);
  5702. }
  5703. if (!resultType->isVectorTy()) {
  5704. ldData = Builder.CreateExtractElement(ldData, Builder.getInt32(0));
  5705. }
  5706. }
  5707. for (auto U = CI->user_begin(); U != CI->user_end();) {
  5708. Value *subsUser = *(U++);
  5709. if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(subsUser)) {
  5710. Value *subData = GenerateVecEltFromGEP(ldData, GEP, Builder,
  5711. /*bInsertLdNextToGEP*/ true);
  5712. for (auto gepU = GEP->user_begin(); gepU != GEP->user_end();) {
  5713. Value *gepUser = *(gepU++);
  5714. // Must be load here;
  5715. LoadInst *ldUser = cast<LoadInst>(gepUser);
  5716. ldUser->replaceAllUsesWith(subData);
  5717. ldUser->eraseFromParent();
  5718. }
  5719. GEP->eraseFromParent();
  5720. } else {
  5721. // Must be load here.
  5722. LoadInst *ldUser = cast<LoadInst>(subsUser);
  5723. ldUser->replaceAllUsesWith(ldData);
  5724. ldUser->eraseFromParent();
  5725. }
  5726. }
  5727. CI->eraseFromParent();
  5728. } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(user)) {
  5729. if( II->getIntrinsicID() == Intrinsic::lifetime_start ||
  5730. II->getIntrinsicID() == Intrinsic::lifetime_end ) {
  5731. DXASSERT(II->use_empty(), "lifetime intrinsic can't have uses");
  5732. II->eraseFromParent();
  5733. } else {
  5734. DXASSERT(0, "not implemented yet");
  5735. }
  5736. } else {
  5737. DXASSERT(0, "not implemented yet");
  5738. }
  5739. } else if (LoadInst *ldInst = dyn_cast<LoadInst>(user)) {
  5740. Type *Ty = ldInst->getType();
  5741. Type *EltTy = Ty->getScalarType();
  5742. // Resource inside cbuffer is lowered after GenerateDxilOperations.
  5743. if (dxilutil::IsHLSLObjectType(Ty)) {
  5744. CallInst *CI = cast<CallInst>(handle);
  5745. // CI should be annotate handle.
  5746. // Need createHandle here.
  5747. if (GetHLOpcodeGroup(CI->getCalledFunction()) == HLOpcodeGroup::HLAnnotateHandle)
  5748. CI = cast<CallInst>(CI->getArgOperand(HLOperandIndex::kAnnotateHandleHandleOpIdx));
  5749. GlobalVariable *CbGV = cast<GlobalVariable>(
  5750. CI->getArgOperand(HLOperandIndex::kCreateHandleResourceOpIdx));
  5751. TranslateResourceInCB(ldInst, pObjHelper, CbGV);
  5752. return;
  5753. }
  5754. DXASSERT(!Ty->isAggregateType(), "should be flat in previous pass");
  5755. Value *newLd = nullptr;
  5756. if (Ty->isVectorTy())
  5757. newLd = GenerateCBLoadLegacy(handle, legacyIdx, channelOffset, EltTy,
  5758. Ty->getVectorNumElements(), hlslOP, Builder);
  5759. else
  5760. newLd = GenerateCBLoadLegacy(handle, legacyIdx, channelOffset, EltTy,
  5761. hlslOP, Builder);
  5762. ldInst->replaceAllUsesWith(newLd);
  5763. dxilutil::TryScatterDebugValueToVectorElements(newLd);
  5764. ldInst->eraseFromParent();
  5765. } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(user)) {
  5766. for (auto it = BCI->user_begin(); it != BCI->user_end(); ) {
  5767. Instruction *I = cast<Instruction>(*it++);
  5768. TranslateCBAddressUserLegacy(I,
  5769. handle, legacyIdx, channelOffset, hlslOP,
  5770. prevFieldAnnotation, dxilTypeSys,
  5771. DL, pObjHelper);
  5772. }
  5773. BCI->eraseFromParent();
  5774. } else {
  5775. // Must be GEP here
  5776. GetElementPtrInst *GEP = cast<GetElementPtrInst>(user);
  5777. TranslateCBGepLegacy(GEP, handle, legacyIdx, channelOffset, hlslOP, Builder,
  5778. prevFieldAnnotation, DL, dxilTypeSys, pObjHelper);
  5779. GEP->eraseFromParent();
  5780. }
  5781. }
  5782. void TranslateCBGepLegacy(GetElementPtrInst *GEP, Value *handle,
  5783. Value *legacyIndex, unsigned channel,
  5784. hlsl::OP *hlslOP, IRBuilder<> &Builder,
  5785. DxilFieldAnnotation *prevFieldAnnotation,
  5786. const DataLayout &DL, DxilTypeSystem &dxilTypeSys,
  5787. HLObjectOperationLowerHelper *pObjHelper) {
  5788. SmallVector<Value *, 8> Indices(GEP->idx_begin(), GEP->idx_end());
  5789. // update offset
  5790. DxilFieldAnnotation *fieldAnnotation = prevFieldAnnotation;
  5791. gep_type_iterator GEPIt = gep_type_begin(GEP), E = gep_type_end(GEP);
  5792. for (; GEPIt != E; GEPIt++) {
  5793. Value *idx = GEPIt.getOperand();
  5794. unsigned immIdx = 0;
  5795. bool bImmIdx = false;
  5796. if (Constant *constIdx = dyn_cast<Constant>(idx)) {
  5797. immIdx = constIdx->getUniqueInteger().getLimitedValue();
  5798. bImmIdx = true;
  5799. }
  5800. if (GEPIt->isPointerTy()) {
  5801. Type *EltTy = GEPIt->getPointerElementType();
  5802. unsigned size = 0;
  5803. if (StructType *ST = dyn_cast<StructType>(EltTy)) {
  5804. DxilStructAnnotation *annotation = dxilTypeSys.GetStructAnnotation(ST);
  5805. size = annotation->GetCBufferSize();
  5806. } else {
  5807. DXASSERT(fieldAnnotation, "must be a field");
  5808. if (ArrayType *AT = dyn_cast<ArrayType>(EltTy)) {
  5809. unsigned EltSize = dxilutil::GetLegacyCBufferFieldElementSize(
  5810. *fieldAnnotation, EltTy, dxilTypeSys);
  5811. // Decide the nested array size.
  5812. unsigned nestedArraySize = 1;
  5813. Type *EltTy = AT->getArrayElementType();
  5814. // support multi level of array
  5815. while (EltTy->isArrayTy()) {
  5816. ArrayType *EltAT = cast<ArrayType>(EltTy);
  5817. nestedArraySize *= EltAT->getNumElements();
  5818. EltTy = EltAT->getElementType();
  5819. }
  5820. // Align to 4 * 4 bytes.
  5821. unsigned alignedSize = (EltSize + 15) & 0xfffffff0;
  5822. size = nestedArraySize * alignedSize;
  5823. } else {
  5824. size = DL.getTypeAllocSize(EltTy);
  5825. }
  5826. }
  5827. // Skip 0 idx.
  5828. if (bImmIdx && immIdx == 0)
  5829. continue;
  5830. // Align to 4 * 4 bytes.
  5831. size = (size + 15) & 0xfffffff0;
  5832. // Take this as array idxing.
  5833. if (bImmIdx) {
  5834. unsigned tempOffset = size * immIdx;
  5835. unsigned idxInc = tempOffset >> 4;
  5836. legacyIndex = Builder.CreateAdd(legacyIndex, hlslOP->GetU32Const(idxInc));
  5837. } else {
  5838. Value *idxInc = Builder.CreateMul(idx, hlslOP->GetU32Const(size>>4));
  5839. legacyIndex = Builder.CreateAdd(legacyIndex, idxInc);
  5840. }
  5841. // Array always start from x channel.
  5842. channel = 0;
  5843. } else if (GEPIt->isStructTy()) {
  5844. StructType *ST = cast<StructType>(*GEPIt);
  5845. DxilStructAnnotation *annotation = dxilTypeSys.GetStructAnnotation(ST);
  5846. fieldAnnotation = &annotation->GetFieldAnnotation(immIdx);
  5847. unsigned idxInc = 0;
  5848. unsigned structOffset = 0;
  5849. if (fieldAnnotation->GetCompType().Is16Bit() &&
  5850. !hlslOP->UseMinPrecision()) {
  5851. structOffset = fieldAnnotation->GetCBufferOffset() >> 1;
  5852. channel += structOffset;
  5853. idxInc = channel >> 3;
  5854. channel = channel & 0x7;
  5855. }
  5856. else {
  5857. structOffset = fieldAnnotation->GetCBufferOffset() >> 2;
  5858. channel += structOffset;
  5859. idxInc = channel >> 2;
  5860. channel = channel & 0x3;
  5861. }
  5862. if (idxInc)
  5863. legacyIndex = Builder.CreateAdd(legacyIndex, hlslOP->GetU32Const(idxInc));
  5864. } else if (GEPIt->isArrayTy()) {
  5865. DXASSERT(fieldAnnotation != nullptr, "must a field");
  5866. unsigned EltSize = dxilutil::GetLegacyCBufferFieldElementSize(
  5867. *fieldAnnotation, *GEPIt, dxilTypeSys);
  5868. // Decide the nested array size.
  5869. unsigned nestedArraySize = 1;
  5870. Type *EltTy = GEPIt->getArrayElementType();
  5871. // support multi level of array
  5872. while (EltTy->isArrayTy()) {
  5873. ArrayType *EltAT = cast<ArrayType>(EltTy);
  5874. nestedArraySize *= EltAT->getNumElements();
  5875. EltTy = EltAT->getElementType();
  5876. }
  5877. // Align to 4 * 4 bytes.
  5878. unsigned alignedSize = (EltSize + 15) & 0xfffffff0;
  5879. unsigned size = nestedArraySize * alignedSize;
  5880. if (bImmIdx) {
  5881. unsigned tempOffset = size * immIdx;
  5882. unsigned idxInc = tempOffset >> 4;
  5883. legacyIndex = Builder.CreateAdd(legacyIndex, hlslOP->GetU32Const(idxInc));
  5884. } else {
  5885. Value *idxInc = Builder.CreateMul(idx, hlslOP->GetU32Const(size>>4));
  5886. legacyIndex = Builder.CreateAdd(legacyIndex, idxInc);
  5887. }
  5888. // Array always start from x channel.
  5889. channel = 0;
  5890. } else if (GEPIt->isVectorTy()) {
  5891. unsigned size = DL.getTypeAllocSize(GEPIt->getVectorElementType());
  5892. // Indexing on vector.
  5893. if (bImmIdx) {
  5894. unsigned tempOffset = size * immIdx;
  5895. if (size == 2) { // 16-bit types
  5896. unsigned channelInc = tempOffset >> 1;
  5897. DXASSERT((channel + channelInc) <= 8, "vector should not cross cb register (8x16bit)");
  5898. channel += channelInc;
  5899. if (channel == 8) {
  5900. // Get to another row.
  5901. // Update index and channel.
  5902. channel = 0;
  5903. legacyIndex = Builder.CreateAdd(legacyIndex, Builder.getInt32(1));
  5904. }
  5905. }
  5906. else {
  5907. unsigned channelInc = tempOffset >> 2;
  5908. DXASSERT((channel + channelInc) <= 4, "vector should not cross cb register (8x32bit)");
  5909. channel += channelInc;
  5910. if (channel == 4) {
  5911. // Get to another row.
  5912. // Update index and channel.
  5913. channel = 0;
  5914. legacyIndex = Builder.CreateAdd(legacyIndex, Builder.getInt32(1));
  5915. }
  5916. }
  5917. } else {
  5918. Type *EltTy = GEPIt->getVectorElementType();
  5919. // Load the whole register.
  5920. Value *newLd = GenerateCBLoadLegacy(handle, legacyIndex,
  5921. /*channelOffset*/ 0, EltTy,
  5922. /*vecSize*/ 4, hlslOP, Builder);
  5923. // Copy to array.
  5924. IRBuilder<> AllocaBuilder(GEP->getParent()->getParent()->getEntryBlock().getFirstInsertionPt());
  5925. Value *tempArray = AllocaBuilder.CreateAlloca(ArrayType::get(EltTy, 4));
  5926. Value *zeroIdx = hlslOP->GetU32Const(0);
  5927. for (unsigned i = 0; i < 4; i++) {
  5928. Value *Elt = Builder.CreateExtractElement(newLd, i);
  5929. Value *EltGEP = Builder.CreateInBoundsGEP(tempArray, {zeroIdx, hlslOP->GetU32Const(i)});
  5930. Builder.CreateStore(Elt, EltGEP);
  5931. }
  5932. // Make sure this is the end of GEP.
  5933. gep_type_iterator temp = GEPIt;
  5934. temp++;
  5935. DXASSERT(temp == E, "scalar type must be the last");
  5936. // Replace the GEP with array GEP.
  5937. Value *ArrayGEP = Builder.CreateInBoundsGEP(tempArray, {zeroIdx, idx});
  5938. GEP->replaceAllUsesWith(ArrayGEP);
  5939. return;
  5940. }
  5941. } else {
  5942. gep_type_iterator temp = GEPIt;
  5943. temp++;
  5944. DXASSERT(temp == E, "scalar type must be the last");
  5945. }
  5946. }
  5947. for (auto U = GEP->user_begin(); U != GEP->user_end();) {
  5948. Instruction *user = cast<Instruction>(*(U++));
  5949. TranslateCBAddressUserLegacy(user, handle, legacyIndex, channel, hlslOP, fieldAnnotation,
  5950. dxilTypeSys, DL, pObjHelper);
  5951. }
  5952. }
  5953. void TranslateCBOperationsLegacy(Value *handle, Value *ptr, OP *hlslOP,
  5954. DxilTypeSystem &dxilTypeSys,
  5955. const DataLayout &DL,
  5956. HLObjectOperationLowerHelper *pObjHelper) {
  5957. auto User = ptr->user_begin();
  5958. auto UserE = ptr->user_end();
  5959. Value *zeroIdx = hlslOP->GetU32Const(0);
  5960. for (; User != UserE;) {
  5961. // Must be Instruction.
  5962. Instruction *I = cast<Instruction>(*(User++));
  5963. TranslateCBAddressUserLegacy(
  5964. I, handle, zeroIdx, /*channelOffset*/ 0, hlslOP,
  5965. /*prevFieldAnnotation*/ nullptr, dxilTypeSys, DL, pObjHelper);
  5966. }
  5967. }
  5968. }
  5969. // Structured buffer.
  5970. namespace {
  5971. // Calculate offset.
  5972. Value *GEPIdxToOffset(GetElementPtrInst *GEP, IRBuilder<> &Builder,
  5973. hlsl::OP *OP, const DataLayout &DL) {
  5974. SmallVector<Value *, 8> Indices(GEP->idx_begin(), GEP->idx_end());
  5975. Value *addr = nullptr;
  5976. // update offset
  5977. if (GEP->hasAllConstantIndices()) {
  5978. unsigned gepOffset =
  5979. DL.getIndexedOffset(GEP->getPointerOperandType(), Indices);
  5980. addr = OP->GetU32Const(gepOffset);
  5981. } else {
  5982. Value *offset = OP->GetU32Const(0);
  5983. gep_type_iterator GEPIt = gep_type_begin(GEP), E = gep_type_end(GEP);
  5984. for (; GEPIt != E; GEPIt++) {
  5985. Value *idx = GEPIt.getOperand();
  5986. unsigned immIdx = 0;
  5987. if (llvm::Constant *constIdx = dyn_cast<llvm::Constant>(idx)) {
  5988. immIdx = constIdx->getUniqueInteger().getLimitedValue();
  5989. if (immIdx == 0) {
  5990. continue;
  5991. }
  5992. }
  5993. if (GEPIt->isPointerTy() || GEPIt->isArrayTy() || GEPIt->isVectorTy()) {
  5994. unsigned size = DL.getTypeAllocSize(GEPIt->getSequentialElementType());
  5995. if (immIdx) {
  5996. unsigned tempOffset = size * immIdx;
  5997. offset = Builder.CreateAdd(offset, OP->GetU32Const(tempOffset));
  5998. } else {
  5999. Value *tempOffset = Builder.CreateMul(idx, OP->GetU32Const(size));
  6000. offset = Builder.CreateAdd(offset, tempOffset);
  6001. }
  6002. } else if (GEPIt->isStructTy()) {
  6003. const StructLayout *Layout = DL.getStructLayout(cast<StructType>(*GEPIt));
  6004. unsigned structOffset = Layout->getElementOffset(immIdx);
  6005. offset = Builder.CreateAdd(offset, OP->GetU32Const(structOffset));
  6006. } else {
  6007. gep_type_iterator temp = GEPIt;
  6008. temp++;
  6009. DXASSERT(temp == E, "scalar type must be the last");
  6010. }
  6011. };
  6012. addr = offset;
  6013. }
  6014. // TODO: x4 for byte address
  6015. return addr;
  6016. }
  6017. // Load a value from a typedef buffer with an offset.
  6018. // Typed buffer do not directly support reading at offsets
  6019. // because the whole value (e.g. float4) must be read at once.
  6020. // If we are provided a non-zero offset, we need to simulate it
  6021. // by returning the correct elements.
  6022. using ResRetValueArray = std::array<Value*, 4>;
  6023. static ResRetValueArray GenerateTypedBufferLoad(
  6024. Value *Handle, Type *BufferElemTy, Value *ElemIdx, Value *StatusPtr,
  6025. OP* HlslOP, IRBuilder<> &Builder) {
  6026. OP::OpCode OpCode = OP::OpCode::BufferLoad;
  6027. Value* LoadArgs[] = { HlslOP->GetU32Const((unsigned)OpCode), Handle, ElemIdx, UndefValue::get(Builder.getInt32Ty()) };
  6028. Function* LoadFunc = HlslOP->GetOpFunc(OpCode, BufferElemTy);
  6029. Value* Load = Builder.CreateCall(LoadFunc, LoadArgs, OP::GetOpCodeName(OpCode));
  6030. ResRetValueArray ResultValues;
  6031. for (unsigned i = 0; i < ResultValues.size(); ++i) {
  6032. ResultValues[i] = cast<ExtractValueInst>(Builder.CreateExtractValue(Load, { i }));
  6033. }
  6034. UpdateStatus(Load, StatusPtr, Builder, HlslOP);
  6035. return ResultValues;
  6036. }
  6037. static AllocaInst* SpillValuesToArrayAlloca(ArrayRef<Value*> Values, IRBuilder<>& Builder) {
  6038. DXASSERT_NOMSG(!Values.empty());
  6039. IRBuilder<> AllocaBuilder(dxilutil::FindAllocaInsertionPt(Builder.GetInsertPoint()));
  6040. AllocaInst* ArrayAlloca = AllocaBuilder.CreateAlloca(ArrayType::get(Values[0]->getType(), Values.size()));
  6041. for (unsigned i = 0; i < Values.size(); ++i) {
  6042. Value* ArrayElemPtr = Builder.CreateGEP(ArrayAlloca, { Builder.getInt32(0), Builder.getInt32(i) });
  6043. Builder.CreateStore(Values[i], ArrayElemPtr);
  6044. }
  6045. return ArrayAlloca;
  6046. }
  6047. static Value* ExtractFromTypedBufferLoad(const ResRetValueArray& ResRet,
  6048. Type* ResultTy, Value* Offset, IRBuilder<>& Builder) {
  6049. unsigned ElemCount = ResultTy->isVectorTy() ? ResultTy->getVectorNumElements() : 1;
  6050. DXASSERT_NOMSG(ElemCount < ResRet.size());
  6051. unsigned ElemSizeInBytes = ResRet[0]->getType()->getScalarSizeInBits() / 8;
  6052. SmallVector<Value*, 4> Elems;
  6053. if (ConstantInt *OffsetAsConstantInt = dyn_cast<ConstantInt>(Offset)) {
  6054. // Get all elements to be returned
  6055. uint64_t FirstElemOffset = OffsetAsConstantInt->getLimitedValue();
  6056. DXASSERT_NOMSG(FirstElemOffset % ElemSizeInBytes == 0);
  6057. uint64_t FirstElemIdx = FirstElemOffset / ElemSizeInBytes;
  6058. DXASSERT_NOMSG(FirstElemIdx <= ResRet.size() - ElemCount);
  6059. for (unsigned ElemIdx = 0; ElemIdx < ElemCount; ++ElemIdx) {
  6060. Elems.emplace_back(ResRet[std::min<size_t>(FirstElemIdx + ElemIdx, ResRet.size() - 1)]);
  6061. }
  6062. }
  6063. else {
  6064. Value* ArrayAlloca = SpillValuesToArrayAlloca(
  6065. ArrayRef<Value*>(ResRet.data(), ResRet.size()), Builder);
  6066. // Get all elements to be returned through dynamic indices
  6067. Value *FirstElemIdx = Builder.CreateUDiv(Offset, Builder.getInt32(ElemSizeInBytes));
  6068. for (unsigned i = 0; i < ElemCount; ++i) {
  6069. Value *ElemIdx = Builder.CreateAdd(FirstElemIdx, Builder.getInt32(i));
  6070. Value* ElemPtr = Builder.CreateGEP(ArrayAlloca, { Builder.getInt32(0), ElemIdx });
  6071. Elems.emplace_back(Builder.CreateLoad(ElemPtr));
  6072. }
  6073. }
  6074. return ScalarizeElements(ResultTy, Elems, Builder);
  6075. }
  6076. Value *GenerateStructBufLd(Value *handle, Value *bufIdx, Value *offset,
  6077. Value *status, Type *EltTy,
  6078. MutableArrayRef<Value *> resultElts, hlsl::OP *OP,
  6079. IRBuilder<> &Builder, unsigned NumComponents, Constant *alignment) {
  6080. OP::OpCode opcode = OP::OpCode::RawBufferLoad;
  6081. DXASSERT(resultElts.size() <= 4,
  6082. "buffer load cannot load more than 4 values");
  6083. if (bufIdx == nullptr) {
  6084. // This is actually a byte address buffer load with a struct template type.
  6085. // The call takes only one coordinates for the offset.
  6086. bufIdx = offset;
  6087. offset = UndefValue::get(offset->getType());
  6088. }
  6089. Function *dxilF = OP->GetOpFunc(opcode, EltTy);
  6090. Constant *mask = GetRawBufferMaskForETy(EltTy, NumComponents, OP);
  6091. Value *Args[] = {OP->GetU32Const((unsigned)opcode),
  6092. handle,
  6093. bufIdx,
  6094. offset,
  6095. mask,
  6096. alignment};
  6097. Value *Ld = Builder.CreateCall(dxilF, Args, OP::GetOpCodeName(opcode));
  6098. for (unsigned i = 0; i < resultElts.size(); i++) {
  6099. resultElts[i] = Builder.CreateExtractValue(Ld, i);
  6100. }
  6101. // status
  6102. UpdateStatus(Ld, status, Builder, OP);
  6103. return Ld;
  6104. }
  6105. void GenerateStructBufSt(Value *handle, Value *bufIdx, Value *offset,
  6106. Type *EltTy, hlsl::OP *OP, IRBuilder<> &Builder,
  6107. ArrayRef<Value *> vals, uint8_t mask, Constant *alignment) {
  6108. OP::OpCode opcode = OP::OpCode::RawBufferStore;
  6109. DXASSERT(vals.size() == 4, "buffer store need 4 values");
  6110. Value *Args[] = {OP->GetU32Const((unsigned)opcode),
  6111. handle,
  6112. bufIdx,
  6113. offset,
  6114. vals[0],
  6115. vals[1],
  6116. vals[2],
  6117. vals[3],
  6118. OP->GetU8Const(mask),
  6119. alignment};
  6120. Function *dxilF = OP->GetOpFunc(opcode, EltTy);
  6121. Builder.CreateCall(dxilF, Args);
  6122. }
  6123. Value *TranslateStructBufMatLd(Type *matType, IRBuilder<> &Builder,
  6124. Value *handle, hlsl::OP *OP, Value *status,
  6125. Value *bufIdx, Value *baseOffset,
  6126. const DataLayout &DL) {
  6127. HLMatrixType MatTy = HLMatrixType::cast(matType);
  6128. Type *EltTy = MatTy.getElementTypeForMem();
  6129. unsigned EltSize = DL.getTypeAllocSize(EltTy);
  6130. Constant* alignment = OP->GetI32Const(EltSize);
  6131. Value *offset = baseOffset;
  6132. if (baseOffset == nullptr)
  6133. offset = OP->GetU32Const(0);
  6134. unsigned matSize = MatTy.getNumElements();
  6135. std::vector<Value *> elts(matSize);
  6136. unsigned rest = (matSize % 4);
  6137. if (rest) {
  6138. Value *ResultElts[4];
  6139. GenerateStructBufLd(handle, bufIdx, offset, status, EltTy, ResultElts, OP, Builder, 3, alignment);
  6140. for (unsigned i = 0; i < rest; i++)
  6141. elts[i] = ResultElts[i];
  6142. offset = Builder.CreateAdd(offset, OP->GetU32Const(EltSize * rest));
  6143. }
  6144. for (unsigned i = rest; i < matSize; i += 4) {
  6145. Value *ResultElts[4];
  6146. GenerateStructBufLd(handle, bufIdx, offset, status, EltTy, ResultElts, OP, Builder, 4, alignment);
  6147. elts[i] = ResultElts[0];
  6148. elts[i + 1] = ResultElts[1];
  6149. elts[i + 2] = ResultElts[2];
  6150. elts[i + 3] = ResultElts[3];
  6151. // Update offset by 4*4bytes.
  6152. offset = Builder.CreateAdd(offset, OP->GetU32Const(4 * EltSize));
  6153. }
  6154. Value *Vec = HLMatrixLower::BuildVector(EltTy, elts, Builder);
  6155. Vec = MatTy.emitLoweredMemToReg(Vec, Builder);
  6156. return Vec;
  6157. }
  6158. void TranslateStructBufMatSt(Type *matType, IRBuilder<> &Builder, Value *handle,
  6159. hlsl::OP *OP, Value *bufIdx, Value *baseOffset,
  6160. Value *val, const DataLayout &DL) {
  6161. HLMatrixType MatTy = HLMatrixType::cast(matType);
  6162. Type *EltTy = MatTy.getElementTypeForMem();
  6163. val = MatTy.emitLoweredRegToMem(val, Builder);
  6164. unsigned EltSize = DL.getTypeAllocSize(EltTy);
  6165. Constant *Alignment = OP->GetI32Const(EltSize);
  6166. Value *offset = baseOffset;
  6167. if (baseOffset == nullptr)
  6168. offset = OP->GetU32Const(0);
  6169. unsigned matSize = MatTy.getNumElements();
  6170. Value *undefElt = UndefValue::get(EltTy);
  6171. unsigned storeSize = matSize;
  6172. if (matSize % 4) {
  6173. storeSize = matSize + 4 - (matSize & 3);
  6174. }
  6175. std::vector<Value *> elts(storeSize, undefElt);
  6176. for (unsigned i = 0; i < matSize; i++)
  6177. elts[i] = Builder.CreateExtractElement(val, i);
  6178. for (unsigned i = 0; i < matSize; i += 4) {
  6179. uint8_t mask = 0;
  6180. for (unsigned j = 0; j < 4 && (i+j) < matSize; j++) {
  6181. if (elts[i+j] != undefElt)
  6182. mask |= (1<<j);
  6183. }
  6184. GenerateStructBufSt(handle, bufIdx, offset, EltTy, OP, Builder,
  6185. {elts[i], elts[i + 1], elts[i + 2], elts[i + 3]}, mask,
  6186. Alignment);
  6187. // Update offset by 4*4bytes.
  6188. offset = Builder.CreateAdd(offset, OP->GetU32Const(4 * EltSize));
  6189. }
  6190. }
  6191. void TranslateStructBufMatLdSt(CallInst *CI, Value *handle, hlsl::OP *OP,
  6192. Value *status, Value *bufIdx,
  6193. Value *baseOffset, const DataLayout &DL) {
  6194. IRBuilder<> Builder(CI);
  6195. HLOpcodeGroup group = hlsl::GetHLOpcodeGroupByName(CI->getCalledFunction());
  6196. unsigned opcode = GetHLOpcode(CI);
  6197. DXASSERT_LOCALVAR(group, group == HLOpcodeGroup::HLMatLoadStore,
  6198. "only translate matrix loadStore here.");
  6199. HLMatLoadStoreOpcode matOp = static_cast<HLMatLoadStoreOpcode>(opcode);
  6200. // Due to the current way the initial codegen generates matrix
  6201. // orientation casts, the in-register vector matrix has already been
  6202. // reordered based on the destination's row or column-major packing orientation.
  6203. switch (matOp) {
  6204. case HLMatLoadStoreOpcode::RowMatLoad:
  6205. case HLMatLoadStoreOpcode::ColMatLoad: {
  6206. Value *ptr = CI->getArgOperand(HLOperandIndex::kMatLoadPtrOpIdx);
  6207. Value *NewLd = TranslateStructBufMatLd(
  6208. ptr->getType()->getPointerElementType(), Builder, handle, OP, status,
  6209. bufIdx, baseOffset, DL);
  6210. CI->replaceAllUsesWith(NewLd);
  6211. } break;
  6212. case HLMatLoadStoreOpcode::RowMatStore:
  6213. case HLMatLoadStoreOpcode::ColMatStore: {
  6214. Value *ptr = CI->getArgOperand(HLOperandIndex::kMatStoreDstPtrOpIdx);
  6215. Value *val = CI->getArgOperand(HLOperandIndex::kMatStoreValOpIdx);
  6216. TranslateStructBufMatSt(ptr->getType()->getPointerElementType(), Builder,
  6217. handle, OP, bufIdx, baseOffset, val,
  6218. DL);
  6219. } break;
  6220. }
  6221. CI->eraseFromParent();
  6222. }
  6223. void TranslateStructBufSubscriptUser(Instruction *user,
  6224. Value *handle, HLResource::Kind ResKind,
  6225. Value *bufIdx, Value *baseOffset, Value *status,
  6226. hlsl::OP *OP, const DataLayout &DL);
  6227. // For case like mat[i][j].
  6228. // IdxList is [i][0], [i][1], [i][2],[i][3].
  6229. // Idx is j.
  6230. // return [i][j] not mat[i][j] because resource ptr and temp ptr need different
  6231. // code gen.
  6232. static Value *LowerGEPOnMatIndexListToIndex(
  6233. llvm::GetElementPtrInst *GEP, ArrayRef<Value *> IdxList) {
  6234. IRBuilder<> Builder(GEP);
  6235. Value *zero = Builder.getInt32(0);
  6236. DXASSERT(GEP->getNumIndices() == 2, "must have 2 level");
  6237. Value *baseIdx = (GEP->idx_begin())->get();
  6238. DXASSERT_LOCALVAR(baseIdx, baseIdx == zero, "base index must be 0");
  6239. Value *Idx = (GEP->idx_begin() + 1)->get();
  6240. if (ConstantInt *immIdx = dyn_cast<ConstantInt>(Idx)) {
  6241. return IdxList[immIdx->getSExtValue()];
  6242. }
  6243. else {
  6244. IRBuilder<> AllocaBuilder(
  6245. GEP->getParent()->getParent()->getEntryBlock().getFirstInsertionPt());
  6246. unsigned size = IdxList.size();
  6247. // Store idxList to temp array.
  6248. ArrayType *AT = ArrayType::get(IdxList[0]->getType(), size);
  6249. Value *tempArray = AllocaBuilder.CreateAlloca(AT);
  6250. for (unsigned i = 0; i < size; i++) {
  6251. Value *EltPtr = Builder.CreateGEP(tempArray, { zero, Builder.getInt32(i) });
  6252. Builder.CreateStore(IdxList[i], EltPtr);
  6253. }
  6254. // Load the idx.
  6255. Value *GEPOffset = Builder.CreateGEP(tempArray, { zero, Idx });
  6256. return Builder.CreateLoad(GEPOffset);
  6257. }
  6258. }
  6259. // subscript operator for matrix of struct element.
  6260. void TranslateStructBufMatSubscript(CallInst *CI,
  6261. Value *handle, HLResource::Kind ResKind,
  6262. Value *bufIdx, Value *baseOffset, Value *status,
  6263. hlsl::OP* hlslOP, const DataLayout &DL) {
  6264. unsigned opcode = GetHLOpcode(CI);
  6265. IRBuilder<> subBuilder(CI);
  6266. HLSubscriptOpcode subOp = static_cast<HLSubscriptOpcode>(opcode);
  6267. Value *basePtr = CI->getArgOperand(HLOperandIndex::kMatSubscriptMatOpIdx);
  6268. HLMatrixType MatTy = HLMatrixType::cast(basePtr->getType()->getPointerElementType());
  6269. Type *EltTy = MatTy.getElementTypeForReg();
  6270. Constant *alignment = hlslOP->GetI32Const(DL.getTypeAllocSize(EltTy));
  6271. Value *EltByteSize = ConstantInt::get(
  6272. baseOffset->getType(), GetEltTypeByteSizeForConstBuf(EltTy, DL));
  6273. Value *idx = CI->getArgOperand(HLOperandIndex::kMatSubscriptSubOpIdx);
  6274. Type *resultType = CI->getType()->getPointerElementType();
  6275. unsigned resultSize = 1;
  6276. if (resultType->isVectorTy())
  6277. resultSize = resultType->getVectorNumElements();
  6278. DXASSERT(resultSize <= 16, "up to 4x4 elements in vector or matrix");
  6279. _Analysis_assume_(resultSize <= 16);
  6280. std::vector<Value *> idxList(resultSize);
  6281. switch (subOp) {
  6282. case HLSubscriptOpcode::ColMatSubscript:
  6283. case HLSubscriptOpcode::RowMatSubscript: {
  6284. for (unsigned i = 0; i < resultSize; i++) {
  6285. Value *offset =
  6286. CI->getArgOperand(HLOperandIndex::kMatSubscriptSubOpIdx + i);
  6287. offset = subBuilder.CreateMul(offset, EltByteSize);
  6288. idxList[i] = subBuilder.CreateAdd(baseOffset, offset);
  6289. }
  6290. } break;
  6291. case HLSubscriptOpcode::RowMatElement:
  6292. case HLSubscriptOpcode::ColMatElement: {
  6293. Constant *EltIdxs = cast<Constant>(idx);
  6294. for (unsigned i = 0; i < resultSize; i++) {
  6295. Value *offset =
  6296. subBuilder.CreateMul(EltIdxs->getAggregateElement(i), EltByteSize);
  6297. idxList[i] = subBuilder.CreateAdd(baseOffset, offset);
  6298. }
  6299. } break;
  6300. default:
  6301. DXASSERT(0, "invalid operation on const buffer");
  6302. break;
  6303. }
  6304. Value *undefElt = UndefValue::get(EltTy);
  6305. for (auto U = CI->user_begin(); U != CI->user_end();) {
  6306. Value *subsUser = *(U++);
  6307. if (resultSize == 1) {
  6308. TranslateStructBufSubscriptUser(cast<Instruction>(subsUser),
  6309. handle, ResKind, bufIdx, idxList[0], status, hlslOP, DL);
  6310. continue;
  6311. }
  6312. if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(subsUser)) {
  6313. Value *GEPOffset = LowerGEPOnMatIndexListToIndex(GEP, idxList);
  6314. for (auto gepU = GEP->user_begin(); gepU != GEP->user_end();) {
  6315. Instruction *gepUserInst = cast<Instruction>(*(gepU++));
  6316. TranslateStructBufSubscriptUser(gepUserInst,
  6317. handle, ResKind, bufIdx, GEPOffset, status, hlslOP, DL);
  6318. }
  6319. GEP->eraseFromParent();
  6320. } else if (StoreInst *stUser = dyn_cast<StoreInst>(subsUser)) {
  6321. IRBuilder<> stBuilder(stUser);
  6322. Value *Val = stUser->getValueOperand();
  6323. if (Val->getType()->isVectorTy()) {
  6324. for (unsigned i = 0; i < resultSize; i++) {
  6325. Value *EltVal = stBuilder.CreateExtractElement(Val, i);
  6326. uint8_t mask = DXIL::kCompMask_X;
  6327. GenerateStructBufSt(handle, bufIdx, idxList[i], EltTy, hlslOP,
  6328. stBuilder, {EltVal, undefElt, undefElt, undefElt},
  6329. mask, alignment);
  6330. }
  6331. } else {
  6332. uint8_t mask = DXIL::kCompMask_X;
  6333. GenerateStructBufSt(handle, bufIdx, idxList[0], EltTy, hlslOP,
  6334. stBuilder, {Val, undefElt, undefElt, undefElt},
  6335. mask, alignment);
  6336. }
  6337. stUser->eraseFromParent();
  6338. } else {
  6339. // Must be load here.
  6340. LoadInst *ldUser = cast<LoadInst>(subsUser);
  6341. IRBuilder<> ldBuilder(ldUser);
  6342. Value *ldData = UndefValue::get(resultType);
  6343. if (resultType->isVectorTy()) {
  6344. for (unsigned i = 0; i < resultSize; i++) {
  6345. Value *ResultElt;
  6346. // TODO: This can be inefficient for row major matrix load
  6347. GenerateStructBufLd(handle, bufIdx, idxList[i],
  6348. /*status*/ nullptr, EltTy, ResultElt, hlslOP,
  6349. ldBuilder, 1, alignment);
  6350. ldData = ldBuilder.CreateInsertElement(ldData, ResultElt, i);
  6351. }
  6352. } else {
  6353. GenerateStructBufLd(handle, bufIdx, idxList[0], /*status*/ nullptr,
  6354. EltTy, ldData, hlslOP, ldBuilder, 4, alignment);
  6355. }
  6356. ldUser->replaceAllUsesWith(ldData);
  6357. ldUser->eraseFromParent();
  6358. }
  6359. }
  6360. CI->eraseFromParent();
  6361. }
  6362. void TranslateStructBufSubscriptUser(
  6363. Instruction *user, Value *handle, HLResource::Kind ResKind,
  6364. Value *bufIdx, Value *baseOffset, Value *status,
  6365. hlsl::OP *OP, const DataLayout &DL) {
  6366. IRBuilder<> Builder(user);
  6367. if (CallInst *userCall = dyn_cast<CallInst>(user)) {
  6368. HLOpcodeGroup group = // user call?
  6369. hlsl::GetHLOpcodeGroupByName(userCall->getCalledFunction());
  6370. unsigned opcode = GetHLOpcode(userCall);
  6371. // For case element type of structure buffer is not structure type.
  6372. if (baseOffset == nullptr)
  6373. baseOffset = OP->GetU32Const(0);
  6374. if (group == HLOpcodeGroup::HLIntrinsic) {
  6375. IntrinsicOp IOP = static_cast<IntrinsicOp>(opcode);
  6376. switch (IOP) {
  6377. case IntrinsicOp::MOP_Load: {
  6378. if (userCall->getType()->isPointerTy()) {
  6379. // Struct will return pointers which like []
  6380. } else {
  6381. // Use builtin types on structuredBuffer.
  6382. }
  6383. DXASSERT(0, "not implement yet");
  6384. } break;
  6385. case IntrinsicOp::IOP_InterlockedAdd: {
  6386. AtomicHelper helper(userCall, DXIL::OpCode::AtomicBinOp, handle, bufIdx,
  6387. baseOffset);
  6388. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::Add,
  6389. Builder, OP);
  6390. } break;
  6391. case IntrinsicOp::IOP_InterlockedAnd: {
  6392. AtomicHelper helper(userCall, DXIL::OpCode::AtomicBinOp, handle, bufIdx,
  6393. baseOffset);
  6394. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::And,
  6395. Builder, OP);
  6396. } break;
  6397. case IntrinsicOp::IOP_InterlockedExchange: {
  6398. Type *opType = nullptr;
  6399. PointerType *ptrType = dyn_cast<PointerType>(
  6400. userCall->getArgOperand(HLOperandIndex::kInterlockedDestOpIndex)->getType());
  6401. if (ptrType && ptrType->getElementType()->isFloatTy())
  6402. opType = Type::getInt32Ty(userCall->getContext());
  6403. AtomicHelper helper(userCall, DXIL::OpCode::AtomicBinOp, handle, bufIdx,
  6404. baseOffset, opType);
  6405. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::Exchange,
  6406. Builder, OP);
  6407. } break;
  6408. case IntrinsicOp::IOP_InterlockedMax: {
  6409. AtomicHelper helper(userCall, DXIL::OpCode::AtomicBinOp, handle, bufIdx,
  6410. baseOffset);
  6411. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::IMax,
  6412. Builder, OP);
  6413. } break;
  6414. case IntrinsicOp::IOP_InterlockedMin: {
  6415. AtomicHelper helper(userCall, DXIL::OpCode::AtomicBinOp, handle, bufIdx,
  6416. baseOffset);
  6417. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::IMin,
  6418. Builder, OP);
  6419. } break;
  6420. case IntrinsicOp::IOP_InterlockedUMax: {
  6421. AtomicHelper helper(userCall, DXIL::OpCode::AtomicBinOp, handle, bufIdx,
  6422. baseOffset);
  6423. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::UMax,
  6424. Builder, OP);
  6425. } break;
  6426. case IntrinsicOp::IOP_InterlockedUMin: {
  6427. AtomicHelper helper(userCall, DXIL::OpCode::AtomicBinOp, handle, bufIdx,
  6428. baseOffset);
  6429. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::UMin,
  6430. Builder, OP);
  6431. } break;
  6432. case IntrinsicOp::IOP_InterlockedOr: {
  6433. AtomicHelper helper(userCall, DXIL::OpCode::AtomicBinOp, handle, bufIdx,
  6434. baseOffset);
  6435. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::Or,
  6436. Builder, OP);
  6437. } break;
  6438. case IntrinsicOp::IOP_InterlockedXor: {
  6439. AtomicHelper helper(userCall, DXIL::OpCode::AtomicBinOp, handle, bufIdx,
  6440. baseOffset);
  6441. TranslateAtomicBinaryOperation(helper, DXIL::AtomicBinOpCode::Xor,
  6442. Builder, OP);
  6443. } break;
  6444. case IntrinsicOp::IOP_InterlockedCompareStore:
  6445. case IntrinsicOp::IOP_InterlockedCompareExchange: {
  6446. AtomicHelper helper(userCall, DXIL::OpCode::AtomicCompareExchange,
  6447. handle, bufIdx, baseOffset);
  6448. TranslateAtomicCmpXChg(helper, Builder, OP);
  6449. } break;
  6450. case IntrinsicOp::IOP_InterlockedCompareStoreFloatBitwise:
  6451. case IntrinsicOp::IOP_InterlockedCompareExchangeFloatBitwise: {
  6452. Type *i32Ty = Type::getInt32Ty(userCall->getContext());
  6453. AtomicHelper helper(userCall, DXIL::OpCode::AtomicCompareExchange,
  6454. handle, bufIdx, baseOffset, i32Ty);
  6455. TranslateAtomicCmpXChg(helper, Builder, OP);
  6456. } break;
  6457. default:
  6458. DXASSERT(0, "invalid opcode");
  6459. break;
  6460. }
  6461. userCall->eraseFromParent();
  6462. } else if (group == HLOpcodeGroup::HLMatLoadStore)
  6463. TranslateStructBufMatLdSt(userCall, handle, OP, status, bufIdx,
  6464. baseOffset, DL);
  6465. else if (group == HLOpcodeGroup::HLSubscript) {
  6466. TranslateStructBufMatSubscript(userCall,
  6467. handle, ResKind, bufIdx, baseOffset, status, OP, DL);
  6468. }
  6469. } else if (isa<LoadInst>(user) || isa<StoreInst>(user)) {
  6470. LoadInst *ldInst = dyn_cast<LoadInst>(user);
  6471. StoreInst *stInst = dyn_cast<StoreInst>(user);
  6472. Type *Ty = isa<LoadInst>(user) ? ldInst->getType()
  6473. : stInst->getValueOperand()->getType();
  6474. Type *pOverloadTy = Ty->getScalarType();
  6475. Value *offset = baseOffset;
  6476. unsigned arraySize = 1;
  6477. Value *eltSize = nullptr;
  6478. if (pOverloadTy->isArrayTy()) {
  6479. arraySize = pOverloadTy->getArrayNumElements();
  6480. eltSize = OP->GetU32Const(
  6481. DL.getTypeAllocSize(pOverloadTy->getArrayElementType()));
  6482. pOverloadTy = pOverloadTy->getArrayElementType()->getScalarType();
  6483. }
  6484. if (ldInst) {
  6485. auto LdElement = [=](Value *offset, IRBuilder<> &Builder) -> Value * {
  6486. unsigned numComponents = 0;
  6487. if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
  6488. numComponents = VTy->getNumElements();
  6489. }
  6490. else {
  6491. numComponents = 1;
  6492. }
  6493. Constant *alignment =
  6494. OP->GetI32Const(DL.getTypeAllocSize(Ty->getScalarType()));
  6495. if (ResKind == HLResource::Kind::TypedBuffer) {
  6496. // Typed buffer cannot have offsets, they must be loaded all at once
  6497. ResRetValueArray ResRet = GenerateTypedBufferLoad(
  6498. handle, pOverloadTy, bufIdx, status, OP, Builder);
  6499. return ExtractFromTypedBufferLoad(ResRet, Ty, offset, Builder);
  6500. }
  6501. else {
  6502. Value* ResultElts[4];
  6503. GenerateStructBufLd(handle, bufIdx, offset, status, pOverloadTy,
  6504. ResultElts, OP, Builder, numComponents, alignment);
  6505. return ScalarizeElements(Ty, ResultElts, Builder);
  6506. }
  6507. };
  6508. Value *newLd = LdElement(offset, Builder);
  6509. if (arraySize > 1) {
  6510. newLd =
  6511. Builder.CreateInsertValue(UndefValue::get(Ty), newLd, (uint64_t)0);
  6512. for (unsigned i = 1; i < arraySize; i++) {
  6513. offset = Builder.CreateAdd(offset, eltSize);
  6514. Value *eltLd = LdElement(offset, Builder);
  6515. newLd = Builder.CreateInsertValue(newLd, eltLd, i);
  6516. }
  6517. }
  6518. ldInst->replaceAllUsesWith(newLd);
  6519. } else {
  6520. Value *val = stInst->getValueOperand();
  6521. auto StElement = [&](Value *offset, Value *val, IRBuilder<> &Builder) {
  6522. Value *undefVal = llvm::UndefValue::get(pOverloadTy);
  6523. Value *vals[] = {undefVal, undefVal, undefVal, undefVal};
  6524. uint8_t mask = 0;
  6525. if (Ty->isVectorTy()) {
  6526. unsigned vectorNumElements = Ty->getVectorNumElements();
  6527. DXASSERT(vectorNumElements <= 4, "up to 4 elements in vector");
  6528. _Analysis_assume_(vectorNumElements <= 4);
  6529. for (unsigned i = 0; i < vectorNumElements; i++) {
  6530. vals[i] = Builder.CreateExtractElement(val, i);
  6531. mask |= (1<<i);
  6532. }
  6533. } else {
  6534. vals[0] = val;
  6535. mask = DXIL::kCompMask_X;
  6536. }
  6537. Constant *alignment =
  6538. OP->GetI32Const(DL.getTypeAllocSize(Ty->getScalarType()));
  6539. GenerateStructBufSt(handle, bufIdx, offset, pOverloadTy, OP, Builder,
  6540. vals, mask, alignment);
  6541. };
  6542. if (arraySize > 1)
  6543. val = Builder.CreateExtractValue(val, 0);
  6544. StElement(offset, val, Builder);
  6545. if (arraySize > 1) {
  6546. val = stInst->getValueOperand();
  6547. for (unsigned i = 1; i < arraySize; i++) {
  6548. offset = Builder.CreateAdd(offset, eltSize);
  6549. Value *eltVal = Builder.CreateExtractValue(val, i);
  6550. StElement(offset, eltVal, Builder);
  6551. }
  6552. }
  6553. }
  6554. user->eraseFromParent();
  6555. } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(user)) {
  6556. // Recurse users
  6557. for (auto U = BCI->user_begin(); U != BCI->user_end();) {
  6558. Value *BCIUser = *(U++);
  6559. TranslateStructBufSubscriptUser(cast<Instruction>(BCIUser),
  6560. handle, ResKind, bufIdx, baseOffset, status, OP, DL);
  6561. }
  6562. BCI->eraseFromParent();
  6563. } else {
  6564. // should only used by GEP
  6565. GetElementPtrInst *GEP = cast<GetElementPtrInst>(user);
  6566. Type *Ty = GEP->getType()->getPointerElementType();
  6567. Value *offset = GEPIdxToOffset(GEP, Builder, OP, DL);
  6568. DXASSERT_LOCALVAR(Ty, offset->getType() == Type::getInt32Ty(Ty->getContext()),
  6569. "else bitness is wrong");
  6570. offset = Builder.CreateAdd(offset, baseOffset);
  6571. for (auto U = GEP->user_begin(); U != GEP->user_end();) {
  6572. Value *GEPUser = *(U++);
  6573. TranslateStructBufSubscriptUser(cast<Instruction>(GEPUser),
  6574. handle, ResKind, bufIdx, offset, status, OP, DL);
  6575. }
  6576. // delete the inst
  6577. GEP->eraseFromParent();
  6578. }
  6579. }
  6580. void TranslateStructBufSubscript(CallInst *CI, Value *handle, Value *status,
  6581. hlsl::OP *OP, HLResource::Kind ResKind, const DataLayout &DL) {
  6582. Value *subscriptIndex = CI->getArgOperand(HLOperandIndex::kSubscriptIndexOpIdx);
  6583. Value* bufIdx = nullptr;
  6584. Value *offset = nullptr;
  6585. if (ResKind == HLResource::Kind::RawBuffer) {
  6586. offset = subscriptIndex;
  6587. }
  6588. else {
  6589. // StructuredBuffer, TypedBuffer, etc.
  6590. bufIdx = subscriptIndex;
  6591. offset = OP->GetU32Const(0);
  6592. }
  6593. for (auto U = CI->user_begin(); U != CI->user_end();) {
  6594. Value *user = *(U++);
  6595. TranslateStructBufSubscriptUser(cast<Instruction>(user),
  6596. handle, ResKind, bufIdx, offset, status, OP, DL);
  6597. }
  6598. }
  6599. }
  6600. // HLSubscript.
  6601. namespace {
  6602. Value *TranslateTypedBufLoad(CallInst *CI, DXIL::ResourceKind RK,
  6603. DXIL::ResourceClass RC, Value *handle,
  6604. LoadInst *ldInst, IRBuilder<> &Builder,
  6605. hlsl::OP *hlslOP, const DataLayout &DL) {
  6606. ResLoadHelper ldHelper(CI, RK, RC, handle, IntrinsicOp::MOP_Load, /*bForSubscript*/ true);
  6607. // Default sampleIdx for 2DMS textures.
  6608. if (RK == DxilResource::Kind::Texture2DMS ||
  6609. RK == DxilResource::Kind::Texture2DMSArray)
  6610. ldHelper.mipLevel = hlslOP->GetU32Const(0);
  6611. // use ldInst as retVal
  6612. ldHelper.retVal = ldInst;
  6613. TranslateLoad(ldHelper, RK, Builder, hlslOP, DL);
  6614. // delete the ld
  6615. ldInst->eraseFromParent();
  6616. return ldHelper.retVal;
  6617. }
  6618. Value *UpdateVectorElt(Value *VecVal, Value *EltVal, Value *EltIdx,
  6619. unsigned vectorSize, Instruction *InsertPt) {
  6620. IRBuilder<> Builder(InsertPt);
  6621. if (ConstantInt *CEltIdx = dyn_cast<ConstantInt>(EltIdx)) {
  6622. VecVal =
  6623. Builder.CreateInsertElement(VecVal, EltVal, CEltIdx->getLimitedValue());
  6624. } else {
  6625. BasicBlock *BB = InsertPt->getParent();
  6626. BasicBlock *EndBB = BB->splitBasicBlock(InsertPt);
  6627. TerminatorInst *TI = BB->getTerminator();
  6628. IRBuilder<> SwitchBuilder(TI);
  6629. LLVMContext &Ctx = InsertPt->getContext();
  6630. SwitchInst *Switch = SwitchBuilder.CreateSwitch(EltIdx, EndBB, vectorSize);
  6631. TI->eraseFromParent();
  6632. Function *F = EndBB->getParent();
  6633. IRBuilder<> endSwitchBuilder(EndBB->begin());
  6634. Type *Ty = VecVal->getType();
  6635. PHINode *VecPhi = endSwitchBuilder.CreatePHI(Ty, vectorSize + 1);
  6636. for (unsigned i = 0; i < vectorSize; i++) {
  6637. BasicBlock *CaseBB = BasicBlock::Create(Ctx, "case", F, EndBB);
  6638. Switch->addCase(SwitchBuilder.getInt32(i), CaseBB);
  6639. IRBuilder<> CaseBuilder(CaseBB);
  6640. Value *CaseVal = CaseBuilder.CreateInsertElement(VecVal, EltVal, i);
  6641. VecPhi->addIncoming(CaseVal, CaseBB);
  6642. CaseBuilder.CreateBr(EndBB);
  6643. }
  6644. VecPhi->addIncoming(VecVal, BB);
  6645. VecVal = VecPhi;
  6646. }
  6647. return VecVal;
  6648. }
  6649. void TranslateDefaultSubscript(CallInst *CI, HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  6650. Value *ptr = CI->getArgOperand(HLOperandIndex::kSubscriptObjectOpIdx);
  6651. hlsl::OP *hlslOP = &helper.hlslOP;
  6652. // Resource ptr.
  6653. Value *handle = ptr;
  6654. DXIL::ResourceClass RC = pObjHelper->GetRC(handle);
  6655. DXIL::ResourceKind RK = pObjHelper->GetRK(handle);
  6656. Type *Ty = CI->getType()->getPointerElementType();
  6657. for (auto It = CI->user_begin(); It != CI->user_end(); ) {
  6658. User *user = *(It++);
  6659. Instruction *I = cast<Instruction>(user);
  6660. IRBuilder<> Builder(I);
  6661. if (LoadInst *ldInst = dyn_cast<LoadInst>(user)) {
  6662. TranslateTypedBufLoad(CI, RK, RC, handle, ldInst, Builder, hlslOP, helper.dataLayout);
  6663. } else if (StoreInst *stInst = dyn_cast<StoreInst>(user)) {
  6664. Value *val = stInst->getValueOperand();
  6665. TranslateStore(RK, handle, val,
  6666. CI->getArgOperand(HLOperandIndex::kStoreOffsetOpIdx),
  6667. Builder, hlslOP);
  6668. // delete the st
  6669. stInst->eraseFromParent();
  6670. } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(user)) {
  6671. // Must be vector type here.
  6672. unsigned vectorSize = Ty->getVectorNumElements();
  6673. DXASSERT_NOMSG(GEP->getNumIndices() == 2);
  6674. Use *GEPIdx = GEP->idx_begin();
  6675. GEPIdx++;
  6676. Value *EltIdx = *GEPIdx;
  6677. for (auto GEPIt = GEP->user_begin(); GEPIt != GEP->user_end();) {
  6678. User *GEPUser = *(GEPIt++);
  6679. if (StoreInst *SI = dyn_cast<StoreInst>(GEPUser)) {
  6680. IRBuilder<> StBuilder(SI);
  6681. // Generate Ld.
  6682. LoadInst *tmpLd = StBuilder.CreateLoad(CI);
  6683. Value *ldVal = TranslateTypedBufLoad(CI, RK, RC, handle, tmpLd, StBuilder,
  6684. hlslOP, helper.dataLayout);
  6685. // Update vector.
  6686. ldVal = UpdateVectorElt(ldVal, SI->getValueOperand(), EltIdx,
  6687. vectorSize, SI);
  6688. // Generate St.
  6689. // Reset insert point, UpdateVectorElt may move SI to different block.
  6690. StBuilder.SetInsertPoint(SI);
  6691. TranslateStore(RK, handle, ldVal,
  6692. CI->getArgOperand(HLOperandIndex::kStoreOffsetOpIdx),
  6693. StBuilder, hlslOP);
  6694. SI->eraseFromParent();
  6695. continue;
  6696. }
  6697. if (LoadInst *LI = dyn_cast<LoadInst>(GEPUser)) {
  6698. IRBuilder<> LdBuilder(LI);
  6699. // Generate tmp vector load with vector type & translate it
  6700. LoadInst *tmpLd = LdBuilder.CreateLoad(CI);
  6701. Value *ldVal = TranslateTypedBufLoad(CI, RK, RC, handle, tmpLd, LdBuilder,
  6702. hlslOP, helper.dataLayout);
  6703. // get the single element
  6704. ldVal = GenerateVecEltFromGEP(ldVal, GEP, LdBuilder,
  6705. /*bInsertLdNextToGEP*/ false);
  6706. LI->replaceAllUsesWith(ldVal);
  6707. LI->eraseFromParent();
  6708. continue;
  6709. }
  6710. if (!isa<CallInst>(GEPUser)) {
  6711. // Invalid operations.
  6712. Translated = false;
  6713. dxilutil::EmitErrorOnInstruction(GEP, "Invalid operation on typed buffer.");
  6714. return;
  6715. }
  6716. CallInst *userCall = cast<CallInst>(GEPUser);
  6717. HLOpcodeGroup group =
  6718. hlsl::GetHLOpcodeGroupByName(userCall->getCalledFunction());
  6719. if (group != HLOpcodeGroup::HLIntrinsic) {
  6720. // Invalid operations.
  6721. Translated = false;
  6722. dxilutil::EmitErrorOnInstruction(userCall, "Invalid operation on typed buffer.");
  6723. return;
  6724. }
  6725. unsigned opcode = hlsl::GetHLOpcode(userCall);
  6726. IntrinsicOp IOP = static_cast<IntrinsicOp>(opcode);
  6727. switch (IOP) {
  6728. case IntrinsicOp::IOP_InterlockedAdd:
  6729. case IntrinsicOp::IOP_InterlockedAnd:
  6730. case IntrinsicOp::IOP_InterlockedExchange:
  6731. case IntrinsicOp::IOP_InterlockedMax:
  6732. case IntrinsicOp::IOP_InterlockedMin:
  6733. case IntrinsicOp::IOP_InterlockedUMax:
  6734. case IntrinsicOp::IOP_InterlockedUMin:
  6735. case IntrinsicOp::IOP_InterlockedOr:
  6736. case IntrinsicOp::IOP_InterlockedXor:
  6737. case IntrinsicOp::IOP_InterlockedCompareStore:
  6738. case IntrinsicOp::IOP_InterlockedCompareExchange:
  6739. case IntrinsicOp::IOP_InterlockedCompareStoreFloatBitwise:
  6740. case IntrinsicOp::IOP_InterlockedCompareExchangeFloatBitwise: {
  6741. // Invalid operations.
  6742. Translated = false;
  6743. dxilutil::EmitErrorOnInstruction(
  6744. userCall, "Typed resources used in atomic operations must have a scalar element type.");
  6745. return;
  6746. } break;
  6747. default:
  6748. // Invalid operations.
  6749. Translated = false;
  6750. dxilutil::EmitErrorOnInstruction(userCall, "Invalid operation on typed buffer.");
  6751. return;
  6752. break;
  6753. }
  6754. }
  6755. GEP->eraseFromParent();
  6756. } else {
  6757. CallInst *userCall = cast<CallInst>(user);
  6758. HLOpcodeGroup group =
  6759. hlsl::GetHLOpcodeGroupByName(userCall->getCalledFunction());
  6760. unsigned opcode = hlsl::GetHLOpcode(userCall);
  6761. if (group == HLOpcodeGroup::HLIntrinsic) {
  6762. IntrinsicOp IOP = static_cast<IntrinsicOp>(opcode);
  6763. if (RC == DXIL::ResourceClass::SRV) {
  6764. // Invalid operations.
  6765. Translated = false;
  6766. switch (IOP) {
  6767. case IntrinsicOp::IOP_InterlockedAdd:
  6768. case IntrinsicOp::IOP_InterlockedAnd:
  6769. case IntrinsicOp::IOP_InterlockedExchange:
  6770. case IntrinsicOp::IOP_InterlockedMax:
  6771. case IntrinsicOp::IOP_InterlockedMin:
  6772. case IntrinsicOp::IOP_InterlockedUMax:
  6773. case IntrinsicOp::IOP_InterlockedUMin:
  6774. case IntrinsicOp::IOP_InterlockedOr:
  6775. case IntrinsicOp::IOP_InterlockedXor:
  6776. case IntrinsicOp::IOP_InterlockedCompareStore:
  6777. case IntrinsicOp::IOP_InterlockedCompareExchange:
  6778. case IntrinsicOp::IOP_InterlockedCompareStoreFloatBitwise:
  6779. case IntrinsicOp::IOP_InterlockedCompareExchangeFloatBitwise: {
  6780. dxilutil::EmitErrorOnInstruction(
  6781. userCall, "Atomic operation targets must be groupshared or UAV.");
  6782. return;
  6783. } break;
  6784. default:
  6785. dxilutil::EmitErrorOnInstruction(userCall, "Invalid operation on typed buffer.");
  6786. return;
  6787. break;
  6788. }
  6789. }
  6790. switch (IOP) {
  6791. case IntrinsicOp::IOP_InterlockedAdd: {
  6792. ResLoadHelper helper(CI, RK, RC, handle, IntrinsicOp::IOP_InterlockedAdd);
  6793. AtomicHelper atomHelper(userCall, DXIL::OpCode::AtomicBinOp, handle,
  6794. helper.addr, /*offset*/ nullptr);
  6795. TranslateAtomicBinaryOperation(atomHelper, DXIL::AtomicBinOpCode::Add,
  6796. Builder, hlslOP);
  6797. } break;
  6798. case IntrinsicOp::IOP_InterlockedAnd: {
  6799. ResLoadHelper helper(CI, RK, RC, handle, IntrinsicOp::IOP_InterlockedAnd);
  6800. AtomicHelper atomHelper(userCall, DXIL::OpCode::AtomicBinOp, handle,
  6801. helper.addr, /*offset*/ nullptr);
  6802. TranslateAtomicBinaryOperation(atomHelper, DXIL::AtomicBinOpCode::And,
  6803. Builder, hlslOP);
  6804. } break;
  6805. case IntrinsicOp::IOP_InterlockedExchange: {
  6806. ResLoadHelper helper(CI, RK, RC, handle, IntrinsicOp::IOP_InterlockedExchange);
  6807. Type *opType = nullptr;
  6808. PointerType *ptrType = dyn_cast<PointerType>(
  6809. userCall->getArgOperand(HLOperandIndex::kInterlockedDestOpIndex)->getType());
  6810. if (ptrType && ptrType->getElementType()->isFloatTy())
  6811. opType = Type::getInt32Ty(userCall->getContext());
  6812. AtomicHelper atomHelper(userCall, DXIL::OpCode::AtomicBinOp, handle,
  6813. helper.addr, /*offset*/ nullptr, opType);
  6814. TranslateAtomicBinaryOperation(
  6815. atomHelper, DXIL::AtomicBinOpCode::Exchange, Builder, hlslOP);
  6816. } break;
  6817. case IntrinsicOp::IOP_InterlockedMax: {
  6818. ResLoadHelper helper(CI, RK, RC, handle, IntrinsicOp::IOP_InterlockedMax);
  6819. AtomicHelper atomHelper(userCall, DXIL::OpCode::AtomicBinOp, handle,
  6820. helper.addr, /*offset*/ nullptr);
  6821. TranslateAtomicBinaryOperation(
  6822. atomHelper, DXIL::AtomicBinOpCode::IMax, Builder, hlslOP);
  6823. } break;
  6824. case IntrinsicOp::IOP_InterlockedMin: {
  6825. ResLoadHelper helper(CI, RK, RC, handle, IntrinsicOp::IOP_InterlockedMin);
  6826. AtomicHelper atomHelper(userCall, DXIL::OpCode::AtomicBinOp, handle,
  6827. helper.addr, /*offset*/ nullptr);
  6828. TranslateAtomicBinaryOperation(
  6829. atomHelper, DXIL::AtomicBinOpCode::IMin, Builder, hlslOP);
  6830. } break;
  6831. case IntrinsicOp::IOP_InterlockedUMax: {
  6832. ResLoadHelper helper(CI, RK, RC, handle, IntrinsicOp::IOP_InterlockedUMax);
  6833. AtomicHelper atomHelper(userCall, DXIL::OpCode::AtomicBinOp, handle,
  6834. helper.addr, /*offset*/ nullptr);
  6835. TranslateAtomicBinaryOperation(
  6836. atomHelper, DXIL::AtomicBinOpCode::UMax, Builder, hlslOP);
  6837. } break;
  6838. case IntrinsicOp::IOP_InterlockedUMin: {
  6839. ResLoadHelper helper(CI, RK, RC, handle, IntrinsicOp::IOP_InterlockedUMin);
  6840. AtomicHelper atomHelper(userCall, DXIL::OpCode::AtomicBinOp, handle,
  6841. helper.addr, /*offset*/ nullptr);
  6842. TranslateAtomicBinaryOperation(
  6843. atomHelper, DXIL::AtomicBinOpCode::UMin, Builder, hlslOP);
  6844. } break;
  6845. case IntrinsicOp::IOP_InterlockedOr: {
  6846. ResLoadHelper helper(CI, RK, RC, handle, IntrinsicOp::IOP_InterlockedOr);
  6847. AtomicHelper atomHelper(userCall, DXIL::OpCode::AtomicBinOp, handle,
  6848. helper.addr, /*offset*/ nullptr);
  6849. TranslateAtomicBinaryOperation(atomHelper, DXIL::AtomicBinOpCode::Or,
  6850. Builder, hlslOP);
  6851. } break;
  6852. case IntrinsicOp::IOP_InterlockedXor: {
  6853. ResLoadHelper helper(CI, RK, RC, handle, IntrinsicOp::IOP_InterlockedXor);
  6854. AtomicHelper atomHelper(userCall, DXIL::OpCode::AtomicBinOp, handle,
  6855. helper.addr, /*offset*/ nullptr);
  6856. TranslateAtomicBinaryOperation(atomHelper, DXIL::AtomicBinOpCode::Xor,
  6857. Builder, hlslOP);
  6858. } break;
  6859. case IntrinsicOp::IOP_InterlockedCompareStore:
  6860. case IntrinsicOp::IOP_InterlockedCompareExchange: {
  6861. ResLoadHelper helper(CI, RK, RC, handle, IntrinsicOp::IOP_InterlockedCompareExchange);
  6862. AtomicHelper atomHelper(userCall, DXIL::OpCode::AtomicCompareExchange,
  6863. handle, helper.addr, /*offset*/ nullptr);
  6864. TranslateAtomicCmpXChg(atomHelper, Builder, hlslOP);
  6865. } break;
  6866. case IntrinsicOp::IOP_InterlockedCompareStoreFloatBitwise:
  6867. case IntrinsicOp::IOP_InterlockedCompareExchangeFloatBitwise: {
  6868. Type *i32Ty = Type::getInt32Ty(userCall->getContext());
  6869. ResLoadHelper helper(CI, RK, RC, handle, IntrinsicOp::IOP_InterlockedCompareExchange);
  6870. AtomicHelper atomHelper(userCall, DXIL::OpCode::AtomicCompareExchange,
  6871. handle, helper.addr, /*offset*/ nullptr, i32Ty);
  6872. TranslateAtomicCmpXChg(atomHelper, Builder, hlslOP);
  6873. } break;
  6874. default:
  6875. DXASSERT(0, "invalid opcode");
  6876. break;
  6877. }
  6878. } else {
  6879. DXASSERT(0, "invalid group");
  6880. }
  6881. userCall->eraseFromParent();
  6882. }
  6883. }
  6884. }
  6885. void TranslateHLSubscript(CallInst *CI, HLSubscriptOpcode opcode,
  6886. HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper, bool &Translated) {
  6887. if (CI->user_empty()) {
  6888. Translated = true;
  6889. return;
  6890. }
  6891. hlsl::OP *hlslOP = &helper.hlslOP;
  6892. Value *ptr = CI->getArgOperand(HLOperandIndex::kSubscriptObjectOpIdx);
  6893. if (opcode == HLSubscriptOpcode::CBufferSubscript) {
  6894. HLModule::MergeGepUse(CI);
  6895. // Resource ptr.
  6896. Value *handle = CI->getArgOperand(HLOperandIndex::kSubscriptObjectOpIdx);
  6897. if (helper.bLegacyCBufferLoad)
  6898. TranslateCBOperationsLegacy(handle, CI, hlslOP, helper.dxilTypeSys,
  6899. helper.dataLayout, pObjHelper);
  6900. else {
  6901. TranslateCBOperations(handle, CI, /*offset*/ hlslOP->GetU32Const(0),
  6902. hlslOP, helper.dxilTypeSys,
  6903. CI->getModule()->getDataLayout(), pObjHelper);
  6904. }
  6905. Translated = true;
  6906. return;
  6907. } else if (opcode == HLSubscriptOpcode::DoubleSubscript) {
  6908. // Resource ptr.
  6909. Value *handle = ptr;
  6910. DXIL::ResourceKind RK = pObjHelper->GetRK(handle);
  6911. Value *coord = CI->getArgOperand(HLOperandIndex::kSubscriptIndexOpIdx);
  6912. Value *mipLevel =
  6913. CI->getArgOperand(HLOperandIndex::kDoubleSubscriptMipLevelOpIdx);
  6914. auto U = CI->user_begin();
  6915. DXASSERT(CI->hasOneUse(), "subscript should only has one use");
  6916. // TODO: support store.
  6917. Instruction *ldInst = cast<Instruction>(*U);
  6918. ResLoadHelper ldHelper(ldInst, handle, coord, mipLevel);
  6919. IRBuilder<> Builder(CI);
  6920. TranslateLoad(ldHelper, RK, Builder, hlslOP, helper.dataLayout);
  6921. ldInst->eraseFromParent();
  6922. Translated = true;
  6923. return;
  6924. } else {
  6925. Type *HandleTy = hlslOP->GetHandleType();
  6926. if (ptr->getType() == HandleTy) {
  6927. // Resource ptr.
  6928. Value *handle = ptr;
  6929. DXIL::ResourceKind RK = pObjHelper->GetRK(handle);
  6930. if (RK == DxilResource::Kind::Invalid) {
  6931. Translated = false;
  6932. return;
  6933. }
  6934. Translated = true;
  6935. Type *ObjTy = pObjHelper->GetResourceType(handle);
  6936. Type *RetTy = ObjTy->getStructElementType(0);
  6937. if (DXIL::IsStructuredBuffer(RK)) {
  6938. TranslateStructBufSubscript(CI, handle, /*status*/ nullptr, hlslOP, RK,
  6939. helper.dataLayout);
  6940. } else if (RetTy->isAggregateType() &&
  6941. RK == DxilResource::Kind::TypedBuffer) {
  6942. TranslateStructBufSubscript(CI, handle, /*status*/ nullptr, hlslOP, RK,
  6943. helper.dataLayout);
  6944. // Clear offset for typed buf.
  6945. for (auto User = handle->user_begin(); User != handle->user_end(); ) {
  6946. CallInst *CI = cast<CallInst>(*(User++));
  6947. // Skip not lowered HL functions.
  6948. if (hlsl::GetHLOpcodeGroupByName(CI->getCalledFunction()) != HLOpcodeGroup::NotHL)
  6949. continue;
  6950. switch (hlslOP->GetDxilOpFuncCallInst(CI)) {
  6951. case DXIL::OpCode::BufferLoad: {
  6952. CI->setArgOperand(DXIL::OperandIndex::kBufferLoadCoord1OpIdx,
  6953. UndefValue::get(helper.i32Ty));
  6954. } break;
  6955. case DXIL::OpCode::BufferStore: {
  6956. CI->setArgOperand(DXIL::OperandIndex::kBufferStoreCoord1OpIdx,
  6957. UndefValue::get(helper.i32Ty));
  6958. } break;
  6959. case DXIL::OpCode::AtomicBinOp: {
  6960. CI->setArgOperand(DXIL::OperandIndex::kAtomicBinOpCoord1OpIdx,
  6961. UndefValue::get(helper.i32Ty));
  6962. } break;
  6963. case DXIL::OpCode::AtomicCompareExchange: {
  6964. CI->setArgOperand(DXIL::OperandIndex::kAtomicCmpExchangeCoord1OpIdx,
  6965. UndefValue::get(helper.i32Ty));
  6966. } break;
  6967. case DXIL::OpCode::RawBufferLoad: {
  6968. // Structured buffer inside a typed buffer must be converted to typed buffer load.
  6969. // Typed buffer load is equivalent to raw buffer load, except there is no mask.
  6970. StructType *STy = cast<StructType>(CI->getFunctionType()->getReturnType());
  6971. Type *ETy = STy->getElementType(0);
  6972. SmallVector<Value *, 4> Args;
  6973. Args.emplace_back(hlslOP->GetI32Const((unsigned)DXIL::OpCode::BufferLoad));
  6974. Args.emplace_back(CI->getArgOperand(1)); // handle
  6975. Args.emplace_back(CI->getArgOperand(2)); // index
  6976. Args.emplace_back(UndefValue::get(helper.i32Ty)); // offset
  6977. IRBuilder<> builder(CI);
  6978. Function *newFunction = hlslOP->GetOpFunc(DXIL::OpCode::BufferLoad, ETy);
  6979. CallInst *newCall = builder.CreateCall(newFunction, Args);
  6980. CI->replaceAllUsesWith(newCall);
  6981. CI->eraseFromParent();
  6982. } break;
  6983. default:
  6984. DXASSERT(0, "Invalid operation on resource handle");
  6985. break;
  6986. }
  6987. }
  6988. } else {
  6989. TranslateDefaultSubscript(CI, helper, pObjHelper, Translated);
  6990. }
  6991. return;
  6992. }
  6993. }
  6994. Value *basePtr = CI->getArgOperand(HLOperandIndex::kMatSubscriptMatOpIdx);
  6995. if (IsLocalVariablePtr(basePtr) || IsSharedMemPtr(basePtr)) {
  6996. // Translate matrix into vector of array for share memory or local
  6997. // variable should be done in HLMatrixLowerPass
  6998. DXASSERT_NOMSG(0);
  6999. Translated = true;
  7000. return;
  7001. }
  7002. // Other case should be take care in TranslateStructBufSubscript or
  7003. // TranslateCBOperations.
  7004. Translated = false;
  7005. return;
  7006. }
  7007. }
  7008. void TranslateSubscriptOperation(Function *F, HLOperationLowerHelper &helper, HLObjectOperationLowerHelper *pObjHelper) {
  7009. for (auto U = F->user_begin(); U != F->user_end();) {
  7010. Value *user = *(U++);
  7011. if (!isa<Instruction>(user))
  7012. continue;
  7013. // must be call inst
  7014. CallInst *CI = cast<CallInst>(user);
  7015. unsigned opcode = GetHLOpcode(CI);
  7016. bool Translated = true;
  7017. TranslateHLSubscript(
  7018. CI, static_cast<HLSubscriptOpcode>(opcode), helper, pObjHelper, Translated);
  7019. if (Translated) {
  7020. // delete the call
  7021. DXASSERT(CI->use_empty(),
  7022. "else TranslateHLSubscript didn't replace/erase uses");
  7023. CI->eraseFromParent();
  7024. }
  7025. }
  7026. }
  7027. // Create BitCast if ptr, otherwise, create alloca of new type, write to bitcast of alloca, and return load from alloca
  7028. // If bOrigAllocaTy is true: create alloca of old type instead, write to alloca, and return load from bitcast of alloca
  7029. static Instruction *BitCastValueOrPtr(Value* V, Instruction *Insert, Type *Ty, bool bOrigAllocaTy = false, const Twine &Name = "") {
  7030. IRBuilder<> Builder(Insert);
  7031. if (Ty->isPointerTy()) {
  7032. // If pointer, we can bitcast directly
  7033. return cast<Instruction>(Builder.CreateBitCast(V, Ty, Name));
  7034. } else {
  7035. // If value, we have to alloca, store to bitcast ptr, and load
  7036. IRBuilder<> AllocaBuilder(dxilutil::FindAllocaInsertionPt(Insert));
  7037. Type *allocaTy = bOrigAllocaTy ? V->getType() : Ty;
  7038. Type *otherTy = bOrigAllocaTy ? Ty : V->getType();
  7039. Instruction *allocaInst = AllocaBuilder.CreateAlloca(allocaTy);
  7040. Instruction *bitCast = cast<Instruction>(Builder.CreateBitCast(allocaInst, otherTy->getPointerTo()));
  7041. Builder.CreateStore(V, bOrigAllocaTy ? allocaInst : bitCast);
  7042. return Builder.CreateLoad(bOrigAllocaTy ? bitCast : allocaInst, Name);
  7043. }
  7044. }
  7045. static Instruction *CreateTransposeShuffle(IRBuilder<> &Builder, Value *vecVal, unsigned toRows, unsigned toCols) {
  7046. SmallVector<int, 16> castMask(toCols * toRows);
  7047. unsigned idx = 0;
  7048. for (unsigned r = 0; r < toRows; r++)
  7049. for (unsigned c = 0; c < toCols; c++)
  7050. castMask[idx++] = c * toRows + r;
  7051. return cast<Instruction>(
  7052. Builder.CreateShuffleVector(vecVal, vecVal, castMask));
  7053. }
  7054. void TranslateHLBuiltinOperation(Function *F, HLOperationLowerHelper &helper,
  7055. hlsl::HLOpcodeGroup group, HLObjectOperationLowerHelper *pObjHelper) {
  7056. if (group == HLOpcodeGroup::HLIntrinsic) {
  7057. // map to dxil operations
  7058. for (auto U = F->user_begin(); U != F->user_end();) {
  7059. Value *User = *(U++);
  7060. if (!isa<Instruction>(User))
  7061. continue;
  7062. // must be call inst
  7063. CallInst *CI = cast<CallInst>(User);
  7064. // Keep the instruction to lower by other function.
  7065. bool Translated = true;
  7066. TranslateBuiltinIntrinsic(CI, helper, pObjHelper, Translated);
  7067. if (Translated) {
  7068. // delete the call
  7069. DXASSERT(CI->use_empty(),
  7070. "else TranslateBuiltinIntrinsic didn't replace/erase uses");
  7071. CI->eraseFromParent();
  7072. }
  7073. }
  7074. } else {
  7075. if (group == HLOpcodeGroup::HLMatLoadStore) {
  7076. // Both ld/st use arg1 for the pointer.
  7077. Type *PtrTy =
  7078. F->getFunctionType()->getParamType(HLOperandIndex::kMatLoadPtrOpIdx);
  7079. if (PtrTy->getPointerAddressSpace() == DXIL::kTGSMAddrSpace) {
  7080. // Translate matrix into vector of array for shared memory
  7081. // variable should be done in HLMatrixLowerPass.
  7082. if (!F->user_empty())
  7083. F->getContext().emitError("Fail to lower matrix load/store.");
  7084. } else if (PtrTy->getPointerAddressSpace() == DXIL::kDefaultAddrSpace) {
  7085. // Default address space may be function argument in lib target
  7086. if (!F->user_empty()) {
  7087. for (auto U = F->user_begin(); U != F->user_end();) {
  7088. Value *User = *(U++);
  7089. if (!isa<Instruction>(User))
  7090. continue;
  7091. // must be call inst
  7092. CallInst *CI = cast<CallInst>(User);
  7093. IRBuilder<> Builder(CI);
  7094. HLMatLoadStoreOpcode opcode = static_cast<HLMatLoadStoreOpcode>(hlsl::GetHLOpcode(CI));
  7095. switch (opcode) {
  7096. case HLMatLoadStoreOpcode::ColMatStore:
  7097. case HLMatLoadStoreOpcode::RowMatStore: {
  7098. Value *vecVal = CI->getArgOperand(HLOperandIndex::kMatStoreValOpIdx);
  7099. Value *matPtr = CI->getArgOperand(HLOperandIndex::kMatStoreDstPtrOpIdx);
  7100. Value *castPtr = Builder.CreateBitCast(matPtr, vecVal->getType()->getPointerTo());
  7101. Builder.CreateStore(vecVal, castPtr);
  7102. CI->eraseFromParent();
  7103. } break;
  7104. case HLMatLoadStoreOpcode::ColMatLoad:
  7105. case HLMatLoadStoreOpcode::RowMatLoad: {
  7106. Value *matPtr = CI->getArgOperand(HLOperandIndex::kMatLoadPtrOpIdx);
  7107. Value *castPtr = Builder.CreateBitCast(matPtr, CI->getType()->getPointerTo());
  7108. Value *vecVal = Builder.CreateLoad(castPtr);
  7109. CI->replaceAllUsesWith(vecVal);
  7110. CI->eraseFromParent();
  7111. } break;
  7112. }
  7113. }
  7114. }
  7115. }
  7116. } else if (group == HLOpcodeGroup::HLCast) {
  7117. // HLCast may be used on matrix value function argument in lib target
  7118. if (!F->user_empty()) {
  7119. for (auto U = F->user_begin(); U != F->user_end();) {
  7120. Value *User = *(U++);
  7121. if (!isa<Instruction>(User))
  7122. continue;
  7123. // must be call inst
  7124. CallInst *CI = cast<CallInst>(User);
  7125. IRBuilder<> Builder(CI);
  7126. HLCastOpcode opcode = static_cast<HLCastOpcode>(hlsl::GetHLOpcode(CI));
  7127. bool bTranspose = false;
  7128. bool bColDest = false;
  7129. switch (opcode) {
  7130. case HLCastOpcode::RowMatrixToColMatrix:
  7131. bColDest = true;
  7132. case HLCastOpcode::ColMatrixToRowMatrix:
  7133. bTranspose = true;
  7134. case HLCastOpcode::ColMatrixToVecCast:
  7135. case HLCastOpcode::RowMatrixToVecCast: {
  7136. Value *matVal = CI->getArgOperand(HLOperandIndex::kInitFirstArgOpIdx);
  7137. Value *vecVal = BitCastValueOrPtr(matVal, CI, CI->getType(),
  7138. /*bOrigAllocaTy*/false,
  7139. matVal->getName());
  7140. if (bTranspose) {
  7141. HLMatrixType MatTy = HLMatrixType::cast(matVal->getType());
  7142. unsigned row = MatTy.getNumRows();
  7143. unsigned col = MatTy.getNumColumns();
  7144. if (bColDest) std::swap(row, col);
  7145. vecVal = CreateTransposeShuffle(Builder, vecVal, row, col);
  7146. }
  7147. CI->replaceAllUsesWith(vecVal);
  7148. CI->eraseFromParent();
  7149. } break;
  7150. }
  7151. }
  7152. }
  7153. } else if (group == HLOpcodeGroup::HLSubscript) {
  7154. TranslateSubscriptOperation(F, helper, pObjHelper);
  7155. }
  7156. // map to math function or llvm ir
  7157. }
  7158. }
  7159. typedef std::unordered_map<llvm::Instruction *, llvm::Value *> HandleMap;
  7160. static void TranslateHLExtension(Function *F,
  7161. HLSLExtensionsCodegenHelper *helper,
  7162. OP& hlslOp,
  7163. HLObjectOperationLowerHelper &objHelper) {
  7164. // Find all calls to the function F.
  7165. // Store the calls in a vector for now to be replaced the loop below.
  7166. // We use a two step "find then replace" to avoid removing uses while
  7167. // iterating.
  7168. SmallVector<CallInst *, 8> CallsToReplace;
  7169. for (User *U : F->users()) {
  7170. if (CallInst *CI = dyn_cast<CallInst>(U)) {
  7171. CallsToReplace.push_back(CI);
  7172. }
  7173. }
  7174. // Get the lowering strategy to use for this intrinsic.
  7175. llvm::StringRef LowerStrategy = GetHLLowerStrategy(F);
  7176. HLObjectExtensionLowerHelper extObjHelper(objHelper);
  7177. ExtensionLowering lower(LowerStrategy, helper, hlslOp, extObjHelper);
  7178. // Replace all calls that were successfully translated.
  7179. for (CallInst *CI : CallsToReplace) {
  7180. Value *Result = lower.Translate(CI);
  7181. if (Result && Result != CI) {
  7182. CI->replaceAllUsesWith(Result);
  7183. CI->eraseFromParent();
  7184. }
  7185. }
  7186. }
  7187. namespace hlsl {
  7188. void TranslateBuiltinOperations(
  7189. HLModule &HLM, HLSLExtensionsCodegenHelper *extCodegenHelper,
  7190. std::unordered_set<LoadInst *> &UpdateCounterSet) {
  7191. HLOperationLowerHelper helper(HLM);
  7192. HLObjectOperationLowerHelper objHelper = {HLM, UpdateCounterSet};
  7193. Module *M = HLM.GetModule();
  7194. SmallVector<Function *, 4> NonUniformResourceIndexIntrinsics;
  7195. // generate dxil operation
  7196. for (iplist<Function>::iterator F : M->getFunctionList()) {
  7197. if (F->user_empty())
  7198. continue;
  7199. if (!F->isDeclaration()) {
  7200. continue;
  7201. }
  7202. hlsl::HLOpcodeGroup group = hlsl::GetHLOpcodeGroup(F);
  7203. if (group == HLOpcodeGroup::NotHL) {
  7204. // Nothing to do.
  7205. continue;
  7206. }
  7207. if (group == HLOpcodeGroup::HLExtIntrinsic) {
  7208. TranslateHLExtension(F, extCodegenHelper, helper.hlslOP, objHelper);
  7209. continue;
  7210. }
  7211. if (group == HLOpcodeGroup::HLIntrinsic) {
  7212. CallInst *CI = cast<CallInst>(*F->user_begin()); // must be call inst
  7213. unsigned opcode = hlsl::GetHLOpcode(CI);
  7214. if (opcode == (unsigned)IntrinsicOp::IOP_NonUniformResourceIndex) {
  7215. NonUniformResourceIndexIntrinsics.push_back(F);
  7216. continue;
  7217. }
  7218. }
  7219. TranslateHLBuiltinOperation(F, helper, group, &objHelper);
  7220. }
  7221. // Translate last so value placed in NonUniformSet is still valid.
  7222. if (!NonUniformResourceIndexIntrinsics.empty()) {
  7223. for (auto F : NonUniformResourceIndexIntrinsics) {
  7224. TranslateHLBuiltinOperation(F, helper, HLOpcodeGroup::HLIntrinsic, &objHelper);
  7225. }
  7226. }
  7227. }
  7228. }