DxilContainerAssembler.cpp 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945
  1. ///////////////////////////////////////////////////////////////////////////////
  2. // //
  3. // DxilContainerAssembler.cpp //
  4. // Copyright (C) Microsoft Corporation. All rights reserved. //
  5. // This file is distributed under the University of Illinois Open Source //
  6. // License. See LICENSE.TXT for details. //
  7. // //
  8. // Provides support for serializing a module into DXIL container structures. //
  9. // //
  10. ///////////////////////////////////////////////////////////////////////////////
  11. #include "llvm/ADT/MapVector.h"
  12. #include "llvm/IR/Module.h"
  13. #include "llvm/IR/DebugInfo.h"
  14. #include "llvm/Bitcode/ReaderWriter.h"
  15. #include "llvm/Support/MD5.h"
  16. #include "dxc/HLSL/DxilContainer.h"
  17. #include "dxc/HLSL/DxilModule.h"
  18. #include "dxc/HLSL/DxilShaderModel.h"
  19. #include "dxc/HLSL/DxilRootSignature.h"
  20. #include "dxc/Support/Global.h"
  21. #include "dxc/Support/Unicode.h"
  22. #include "dxc/Support/WinIncludes.h"
  23. #include "dxc/Support/FileIOHelper.h"
  24. #include "dxc/Support/dxcapi.impl.h"
  25. #include "dxc/HLSL/DxilPipelineStateValidation.h"
  26. #include <algorithm>
  27. #include <functional>
  28. using namespace llvm;
  29. using namespace hlsl;
  30. static DxilProgramSigSemantic KindToSystemValue(Semantic::Kind kind, DXIL::TessellatorDomain domain) {
  31. switch (kind) {
  32. case Semantic::Kind::Arbitrary: return DxilProgramSigSemantic::Undefined;
  33. case Semantic::Kind::VertexID: return DxilProgramSigSemantic::VertexID;
  34. case Semantic::Kind::InstanceID: return DxilProgramSigSemantic::InstanceID;
  35. case Semantic::Kind::Position: return DxilProgramSigSemantic::Position;
  36. case Semantic::Kind::Coverage: return DxilProgramSigSemantic::Coverage;
  37. case Semantic::Kind::InnerCoverage: return DxilProgramSigSemantic::InnerCoverage;
  38. case Semantic::Kind::PrimitiveID: return DxilProgramSigSemantic::PrimitiveID;
  39. case Semantic::Kind::SampleIndex: return DxilProgramSigSemantic::SampleIndex;
  40. case Semantic::Kind::IsFrontFace: return DxilProgramSigSemantic::IsFrontFace;
  41. case Semantic::Kind::RenderTargetArrayIndex: return DxilProgramSigSemantic::RenderTargetArrayIndex;
  42. case Semantic::Kind::ViewPortArrayIndex: return DxilProgramSigSemantic::ViewPortArrayIndex;
  43. case Semantic::Kind::ClipDistance: return DxilProgramSigSemantic::ClipDistance;
  44. case Semantic::Kind::CullDistance: return DxilProgramSigSemantic::CullDistance;
  45. case Semantic::Kind::Barycentrics: return DxilProgramSigSemantic::Barycentrics;
  46. case Semantic::Kind::TessFactor: {
  47. switch (domain) {
  48. case DXIL::TessellatorDomain::IsoLine:
  49. // Will bu updated to DetailTessFactor in next row.
  50. return DxilProgramSigSemantic::FinalLineDensityTessfactor;
  51. case DXIL::TessellatorDomain::Tri:
  52. return DxilProgramSigSemantic::FinalTriEdgeTessfactor;
  53. case DXIL::TessellatorDomain::Quad:
  54. return DxilProgramSigSemantic::FinalQuadEdgeTessfactor;
  55. }
  56. }
  57. case Semantic::Kind::InsideTessFactor: {
  58. switch (domain) {
  59. case DXIL::TessellatorDomain::IsoLine:
  60. DXASSERT(0, "invalid semantic");
  61. return DxilProgramSigSemantic::Undefined;
  62. case DXIL::TessellatorDomain::Tri:
  63. return DxilProgramSigSemantic::FinalTriInsideTessfactor;
  64. case DXIL::TessellatorDomain::Quad:
  65. return DxilProgramSigSemantic::FinalQuadInsideTessfactor;
  66. }
  67. }
  68. case Semantic::Kind::Invalid:
  69. return DxilProgramSigSemantic::Undefined;
  70. case Semantic::Kind::Target: return DxilProgramSigSemantic::Target;
  71. case Semantic::Kind::Depth: return DxilProgramSigSemantic::Depth;
  72. case Semantic::Kind::DepthLessEqual: return DxilProgramSigSemantic::DepthLE;
  73. case Semantic::Kind::DepthGreaterEqual: return DxilProgramSigSemantic::DepthGE;
  74. case Semantic::Kind::StencilRef:
  75. __fallthrough;
  76. default:
  77. DXASSERT(kind == Semantic::Kind::StencilRef, "else Invalid or switch is missing a case");
  78. return DxilProgramSigSemantic::StencilRef;
  79. }
  80. // TODO: Final_* values need mappings
  81. }
  82. static DxilProgramSigCompType CompTypeToSigCompType(hlsl::CompType value) {
  83. switch (value.GetKind()) {
  84. case CompType::Kind::I32: return DxilProgramSigCompType::SInt32;
  85. case CompType::Kind::U32: return DxilProgramSigCompType::UInt32;
  86. case CompType::Kind::F32: return DxilProgramSigCompType::Float32;
  87. case CompType::Kind::I16: return DxilProgramSigCompType::SInt16;
  88. case CompType::Kind::I64: return DxilProgramSigCompType::SInt64;
  89. case CompType::Kind::U16: return DxilProgramSigCompType::UInt16;
  90. case CompType::Kind::U64: return DxilProgramSigCompType::UInt64;
  91. case CompType::Kind::F16: return DxilProgramSigCompType::Float16;
  92. case CompType::Kind::F64: return DxilProgramSigCompType::Float64;
  93. case CompType::Kind::Invalid: __fallthrough;
  94. case CompType::Kind::I1: __fallthrough;
  95. default:
  96. return DxilProgramSigCompType::Unknown;
  97. }
  98. }
  99. static DxilProgramSigMinPrecision CompTypeToSigMinPrecision(hlsl::CompType value) {
  100. switch (value.GetKind()) {
  101. case CompType::Kind::I32: return DxilProgramSigMinPrecision::Default;
  102. case CompType::Kind::U32: return DxilProgramSigMinPrecision::Default;
  103. case CompType::Kind::F32: return DxilProgramSigMinPrecision::Default;
  104. case CompType::Kind::I1: return DxilProgramSigMinPrecision::Default;
  105. case CompType::Kind::U64: __fallthrough;
  106. case CompType::Kind::I64: __fallthrough;
  107. case CompType::Kind::F64: return DxilProgramSigMinPrecision::Default;
  108. case CompType::Kind::I16: return DxilProgramSigMinPrecision::SInt16;
  109. case CompType::Kind::U16: return DxilProgramSigMinPrecision::UInt16;
  110. case CompType::Kind::F16: return DxilProgramSigMinPrecision::Float16; // Float2_8 is not supported in DXIL.
  111. case CompType::Kind::Invalid: __fallthrough;
  112. default:
  113. return DxilProgramSigMinPrecision::Default;
  114. }
  115. }
  116. template <typename T>
  117. struct sort_second {
  118. bool operator()(const T &a, const T &b) {
  119. return std::less<decltype(a.second)>()(a.second, b.second);
  120. }
  121. };
  122. struct sort_sig {
  123. bool operator()(const DxilProgramSignatureElement &a,
  124. const DxilProgramSignatureElement &b) {
  125. return (a.Stream < b.Stream) |
  126. ((a.Stream == b.Stream) & (a.Register < b.Register));
  127. }
  128. };
  129. class DxilProgramSignatureWriter : public DxilPartWriter {
  130. private:
  131. const DxilSignature &m_signature;
  132. DXIL::TessellatorDomain m_domain;
  133. bool m_isInput;
  134. size_t m_fixedSize;
  135. typedef std::pair<const char *, uint32_t> NameOffsetPair;
  136. typedef llvm::SmallMapVector<const char *, uint32_t, 8> NameOffsetMap;
  137. uint32_t m_lastOffset;
  138. NameOffsetMap m_semanticNameOffsets;
  139. unsigned m_paramCount;
  140. const char *GetSemanticName(const hlsl::DxilSignatureElement *pElement) {
  141. DXASSERT_NOMSG(pElement != nullptr);
  142. DXASSERT(pElement->GetName() != nullptr, "else sig is malformed");
  143. return pElement->GetName();
  144. }
  145. uint32_t GetSemanticOffset(const hlsl::DxilSignatureElement *pElement) {
  146. const char *pName = GetSemanticName(pElement);
  147. NameOffsetMap::iterator nameOffset = m_semanticNameOffsets.find(pName);
  148. uint32_t result;
  149. if (nameOffset == m_semanticNameOffsets.end()) {
  150. result = m_lastOffset;
  151. m_semanticNameOffsets.insert(NameOffsetPair(pName, result));
  152. m_lastOffset += strlen(pName) + 1;
  153. }
  154. else {
  155. result = nameOffset->second;
  156. }
  157. return result;
  158. }
  159. void write(std::vector<DxilProgramSignatureElement> &orderedSig,
  160. const hlsl::DxilSignatureElement *pElement) {
  161. const std::vector<unsigned> &indexVec = pElement->GetSemanticIndexVec();
  162. unsigned eltCount = pElement->GetSemanticIndexVec().size();
  163. unsigned eltRows = 1;
  164. if (eltCount)
  165. eltRows = pElement->GetRows() / eltCount;
  166. DXASSERT_NOMSG(eltRows == 1);
  167. DxilProgramSignatureElement sig;
  168. memset(&sig, 0, sizeof(DxilProgramSignatureElement));
  169. sig.Stream = pElement->GetOutputStream();
  170. sig.SemanticName = GetSemanticOffset(pElement);
  171. sig.SystemValue = KindToSystemValue(pElement->GetKind(), m_domain);
  172. sig.CompType = CompTypeToSigCompType(pElement->GetCompType());
  173. sig.Register = pElement->GetStartRow();
  174. sig.Mask = pElement->GetColsAsMask();
  175. // Only mark exist channel write for output.
  176. // All channel not used for input.
  177. if (!m_isInput)
  178. sig.NeverWrites_Mask = ~(sig.Mask);
  179. else
  180. sig.AlwaysReads_Mask = 0;
  181. sig.MinPrecision = CompTypeToSigMinPrecision(pElement->GetCompType());
  182. for (unsigned i = 0; i < eltCount; ++i) {
  183. sig.SemanticIndex = indexVec[i];
  184. orderedSig.emplace_back(sig);
  185. if (pElement->IsAllocated())
  186. sig.Register += eltRows;
  187. if (sig.SystemValue == DxilProgramSigSemantic::FinalLineDensityTessfactor)
  188. sig.SystemValue = DxilProgramSigSemantic::FinalLineDetailTessfactor;
  189. }
  190. }
  191. void calcSizes() {
  192. // Calculate size for signature elements.
  193. const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
  194. uint32_t result = sizeof(DxilProgramSignature);
  195. m_paramCount = 0;
  196. for (size_t i = 0; i < elements.size(); ++i) {
  197. DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
  198. if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
  199. continue;
  200. unsigned semanticCount = elements[i]->GetSemanticIndexVec().size();
  201. result += semanticCount * sizeof(DxilProgramSignatureElement);
  202. m_paramCount += semanticCount;
  203. }
  204. m_fixedSize = result;
  205. m_lastOffset = m_fixedSize;
  206. // Calculate size for semantic strings.
  207. for (size_t i = 0; i < elements.size(); ++i) {
  208. GetSemanticOffset(elements[i].get());
  209. }
  210. }
  211. public:
  212. DxilProgramSignatureWriter(const DxilSignature &signature,
  213. DXIL::TessellatorDomain domain, bool isInput)
  214. : m_signature(signature), m_domain(domain), m_isInput(isInput) {
  215. calcSizes();
  216. }
  217. __override uint32_t size() const {
  218. return m_lastOffset;
  219. }
  220. __override void write(AbstractMemoryStream *pStream) {
  221. UINT64 startPos = pStream->GetPosition();
  222. const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
  223. DxilProgramSignature programSig;
  224. programSig.ParamCount = m_paramCount;
  225. programSig.ParamOffset = sizeof(DxilProgramSignature);
  226. IFT(WriteStreamValue(pStream, programSig));
  227. // Write structures in register order.
  228. std::vector<DxilProgramSignatureElement> orderedSig;
  229. for (size_t i = 0; i < elements.size(); ++i) {
  230. DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
  231. if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
  232. continue;
  233. write(orderedSig, elements[i].get());
  234. }
  235. std::sort(orderedSig.begin(), orderedSig.end(), sort_sig());
  236. for (size_t i = 0; i < orderedSig.size(); ++i) {
  237. DxilProgramSignatureElement &sigElt = orderedSig[i];
  238. IFT(WriteStreamValue(pStream, sigElt));
  239. }
  240. // Write strings in the offset order.
  241. std::vector<NameOffsetPair> ordered;
  242. ordered.assign(m_semanticNameOffsets.begin(), m_semanticNameOffsets.end());
  243. std::sort(ordered.begin(), ordered.end(), sort_second<NameOffsetPair>());
  244. for (size_t i = 0; i < ordered.size(); ++i) {
  245. const char *pName = ordered[i].first;
  246. ULONG cbWritten;
  247. UINT64 offsetPos = pStream->GetPosition();
  248. DXASSERT_LOCALVAR(offsetPos, offsetPos - startPos == ordered[i].second, "else str offset is incorrect");
  249. IFT(pStream->Write(pName, strlen(pName) + 1, &cbWritten));
  250. }
  251. // Verify we wrote the bytes we though we would.
  252. UINT64 endPos = pStream->GetPosition();
  253. DXASSERT_LOCALVAR(endPos - startPos, endPos - startPos == size(), "else size is incorrect");
  254. }
  255. };
  256. DxilPartWriter *hlsl::NewProgramSignatureWriter(const DxilModule &M, DXIL::SignatureKind Kind) {
  257. switch (Kind) {
  258. case DXIL::SignatureKind::Input:
  259. return new DxilProgramSignatureWriter(M.GetInputSignature(),
  260. M.GetTessellatorDomain(), true);
  261. case DXIL::SignatureKind::Output:
  262. return new DxilProgramSignatureWriter(M.GetOutputSignature(),
  263. M.GetTessellatorDomain(), false);
  264. case DXIL::SignatureKind::PatchConstant:
  265. return new DxilProgramSignatureWriter(M.GetPatchConstantSignature(),
  266. M.GetTessellatorDomain(), /*IsInput*/ M.GetShaderModel()->IsDS());
  267. }
  268. return nullptr;
  269. }
  270. class DxilProgramRootSignatureWriter : public DxilPartWriter {
  271. private:
  272. const RootSignatureHandle &m_Sig;
  273. public:
  274. DxilProgramRootSignatureWriter(const RootSignatureHandle &S) : m_Sig(S) {}
  275. uint32_t size() const {
  276. return m_Sig.GetSerializedSize();
  277. }
  278. void write(AbstractMemoryStream *pStream) {
  279. ULONG cbWritten;
  280. IFT(pStream->Write(m_Sig.GetSerializedBytes(), size(), &cbWritten));
  281. }
  282. };
  283. DxilPartWriter *hlsl::NewRootSignatureWriter(const RootSignatureHandle &S) {
  284. return new DxilProgramRootSignatureWriter(S);
  285. }
  286. class DxilFeatureInfoWriter : public DxilPartWriter {
  287. private:
  288. // Only save the shader properties after create class for it.
  289. DxilShaderFeatureInfo featureInfo;
  290. public:
  291. DxilFeatureInfoWriter(const DxilModule &M) {
  292. featureInfo.FeatureFlags = M.m_ShaderFlags.GetFeatureInfo();
  293. }
  294. __override uint32_t size() const {
  295. return sizeof(DxilShaderFeatureInfo);
  296. }
  297. __override void write(AbstractMemoryStream *pStream) {
  298. IFT(WriteStreamValue(pStream, featureInfo.FeatureFlags));
  299. }
  300. };
  301. DxilPartWriter *hlsl::NewFeatureInfoWriter(const DxilModule &M) {
  302. return new DxilFeatureInfoWriter(M);
  303. }
  304. class DxilPSVWriter : public DxilPartWriter {
  305. private:
  306. const DxilModule &m_Module;
  307. PSVInitInfo m_PSVInitInfo;
  308. DxilPipelineStateValidation m_PSV;
  309. uint32_t m_PSVBufferSize;
  310. SmallVector<char, 512> m_PSVBuffer;
  311. SmallVector<char, 256> m_StringBuffer;
  312. SmallVector<uint32_t, 8> m_SemanticIndexBuffer;
  313. std::vector<PSVSignatureElement0> m_SigInputElements;
  314. std::vector<PSVSignatureElement0> m_SigOutputElements;
  315. std::vector<PSVSignatureElement0> m_SigPatchConstantElements;
  316. void SetPSVSigElement(PSVSignatureElement0 &E, const DxilSignatureElement &SE) {
  317. memset(&E, 0, sizeof(PSVSignatureElement0));
  318. if (SE.GetKind() == DXIL::SemanticKind::Arbitrary && strlen(SE.GetName()) > 0) {
  319. E.SemanticName = (uint32_t)m_StringBuffer.size();
  320. StringRef Name(SE.GetName());
  321. m_StringBuffer.append(Name.size()+1, '\0');
  322. memcpy(m_StringBuffer.data() + E.SemanticName, Name.data(), Name.size());
  323. } else {
  324. // m_StringBuffer always starts with '\0' so offset 0 is empty string:
  325. E.SemanticName = 0;
  326. }
  327. // Search index buffer for matching semantic index sequence
  328. DXASSERT_NOMSG(SE.GetRows() == SE.GetSemanticIndexVec().size());
  329. auto &SemIdx = SE.GetSemanticIndexVec();
  330. bool match = false;
  331. for (uint32_t offset = 0; offset + SE.GetRows() - 1 < m_SemanticIndexBuffer.size(); offset++) {
  332. match = true;
  333. for (uint32_t row = 0; row < SE.GetRows(); row++) {
  334. if ((uint32_t)SemIdx[row] != m_SemanticIndexBuffer[offset + row]) {
  335. match = false;
  336. break;
  337. }
  338. }
  339. if (match) {
  340. E.SemanticIndexes = offset;
  341. break;
  342. }
  343. }
  344. if (!match) {
  345. E.SemanticIndexes = m_SemanticIndexBuffer.size();
  346. for (uint32_t row = 0; row < SemIdx.size(); row++) {
  347. m_SemanticIndexBuffer.push_back((uint32_t)SemIdx[row]);
  348. }
  349. }
  350. DXASSERT_NOMSG(SE.GetRows() <= 32);
  351. E.Rows = (uint8_t)SE.GetRows();
  352. DXASSERT_NOMSG(SE.GetCols() <= 4);
  353. E.ColsAndStart = (uint8_t)SE.GetCols() & 0xF;
  354. if (SE.IsAllocated()) {
  355. DXASSERT_NOMSG(SE.GetStartCol() < 4);
  356. DXASSERT_NOMSG(SE.GetStartRow() < 32);
  357. E.ColsAndStart |= 0x40 | (SE.GetStartCol() << 4);
  358. E.StartRow = (uint8_t)SE.GetStartRow();
  359. }
  360. E.SemanticKind = (uint8_t)SE.GetKind();
  361. E.ComponentType = (uint8_t)CompTypeToSigCompType(SE.GetCompType());
  362. E.InterpolationMode = (uint8_t)SE.GetInterpolationMode()->GetKind();
  363. DXASSERT_NOMSG(SE.GetOutputStream() < 4);
  364. E.DynamicMaskAndStream = (uint8_t)((SE.GetOutputStream() & 0x3) << 4);
  365. E.DynamicMaskAndStream |= (SE.GetDynIdxCompMask()) & 0xF;
  366. }
  367. const uint32_t *CopyViewIDState(const uint32_t *pSrc, uint32_t InputScalars, uint32_t OutputScalars, PSVComponentMask ViewIDMask, PSVDependencyTable IOTable) {
  368. unsigned MaskDwords = PSVComputeMaskDwordsFromVectors(PSVALIGN4(OutputScalars) / 4);
  369. if (ViewIDMask.IsValid()) {
  370. DXASSERT_NOMSG(!IOTable.Table || ViewIDMask.NumVectors == IOTable.OutputVectors);
  371. memcpy(ViewIDMask.Mask, pSrc, 4 * MaskDwords);
  372. pSrc += MaskDwords;
  373. }
  374. if (IOTable.IsValid() && IOTable.InputVectors && IOTable.OutputVectors) {
  375. DXASSERT_NOMSG((InputScalars <= IOTable.InputVectors * 4) && (IOTable.InputVectors * 4 - InputScalars < 4));
  376. DXASSERT_NOMSG((OutputScalars <= IOTable.OutputVectors * 4) && (IOTable.OutputVectors * 4 - OutputScalars < 4));
  377. memcpy(IOTable.Table, pSrc, 4 * MaskDwords * InputScalars);
  378. pSrc += MaskDwords * InputScalars;
  379. }
  380. return pSrc;
  381. }
  382. public:
  383. DxilPSVWriter(const DxilModule &module, uint32_t PSVVersion = 0)
  384. : m_Module(module),
  385. m_PSVInitInfo(PSVVersion)
  386. {
  387. unsigned ValMajor, ValMinor;
  388. m_Module.GetValidatorVersion(ValMajor, ValMinor);
  389. // Allow PSVVersion to be upgraded
  390. if (m_PSVInitInfo.PSVVersion < 1 && (ValMajor > 1 || (ValMajor == 1 && ValMinor >= 1)))
  391. m_PSVInitInfo.PSVVersion = 1;
  392. const ShaderModel *SM = m_Module.GetShaderModel();
  393. UINT uCBuffers = m_Module.GetCBuffers().size();
  394. UINT uSamplers = m_Module.GetSamplers().size();
  395. UINT uSRVs = m_Module.GetSRVs().size();
  396. UINT uUAVs = m_Module.GetUAVs().size();
  397. m_PSVInitInfo.ResourceCount = uCBuffers + uSamplers + uSRVs + uUAVs;
  398. if (m_PSVInitInfo.PSVVersion > 0) {
  399. m_PSVInitInfo.ShaderStage = (PSVShaderKind)SM->GetKind();
  400. // Copy Dxil Signatures
  401. m_StringBuffer.push_back('\0'); // For empty semantic name (system value)
  402. m_PSVInitInfo.SigInputElements = m_Module.GetInputSignature().GetElements().size();
  403. m_SigInputElements.resize(m_PSVInitInfo.SigInputElements);
  404. m_PSVInitInfo.SigOutputElements = m_Module.GetOutputSignature().GetElements().size();
  405. m_SigOutputElements.resize(m_PSVInitInfo.SigOutputElements);
  406. m_PSVInitInfo.SigPatchConstantElements = m_Module.GetPatchConstantSignature().GetElements().size();
  407. m_SigPatchConstantElements.resize(m_PSVInitInfo.SigPatchConstantElements);
  408. uint32_t i = 0;
  409. for (auto &SE : m_Module.GetInputSignature().GetElements()) {
  410. SetPSVSigElement(m_SigInputElements[i++], *(SE.get()));
  411. }
  412. i = 0;
  413. for (auto &SE : m_Module.GetOutputSignature().GetElements()) {
  414. SetPSVSigElement(m_SigOutputElements[i++], *(SE.get()));
  415. }
  416. i = 0;
  417. for (auto &SE : m_Module.GetPatchConstantSignature().GetElements()) {
  418. SetPSVSigElement(m_SigPatchConstantElements[i++], *(SE.get()));
  419. }
  420. // Set String and SemanticInput Tables
  421. m_PSVInitInfo.StringTable.Table = m_StringBuffer.data();
  422. m_PSVInitInfo.StringTable.Size = m_StringBuffer.size();
  423. m_PSVInitInfo.SemanticIndexTable.Table = m_SemanticIndexBuffer.data();
  424. m_PSVInitInfo.SemanticIndexTable.Entries = m_SemanticIndexBuffer.size();
  425. // Set up ViewID and signature dependency info
  426. m_PSVInitInfo.UsesViewID = m_Module.m_ShaderFlags.GetViewID() ? true : false;
  427. m_PSVInitInfo.SigInputVectors = m_Module.GetInputSignature().NumVectorsUsed(0);
  428. for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
  429. m_PSVInitInfo.SigOutputVectors[streamIndex] = m_Module.GetOutputSignature().NumVectorsUsed(streamIndex);
  430. }
  431. m_PSVInitInfo.SigPatchConstantVectors = m_PSVInitInfo.SigPatchConstantVectors = 0;
  432. if (SM->IsHS()) {
  433. m_PSVInitInfo.SigPatchConstantVectors = m_Module.GetPatchConstantSignature().NumVectorsUsed(0);
  434. }
  435. if (SM->IsDS()) {
  436. m_PSVInitInfo.SigPatchConstantVectors = m_Module.GetPatchConstantSignature().NumVectorsUsed(0);
  437. }
  438. }
  439. if (!m_PSV.InitNew(m_PSVInitInfo, nullptr, &m_PSVBufferSize)) {
  440. DXASSERT(false, "PSV InitNew failed computing size!");
  441. }
  442. }
  443. __override uint32_t size() const {
  444. return m_PSVBufferSize;
  445. }
  446. __override void write(AbstractMemoryStream *pStream) {
  447. m_PSVBuffer.resize(m_PSVBufferSize);
  448. if (!m_PSV.InitNew(m_PSVInitInfo, m_PSVBuffer.data(), &m_PSVBufferSize)) {
  449. DXASSERT(false, "PSV InitNew failed!");
  450. }
  451. DXASSERT_NOMSG(m_PSVBuffer.size() == m_PSVBufferSize);
  452. // Set DxilRuntimInfo
  453. PSVRuntimeInfo0* pInfo = m_PSV.GetPSVRuntimeInfo0();
  454. PSVRuntimeInfo1* pInfo1 = m_PSV.GetPSVRuntimeInfo1();
  455. const ShaderModel* SM = m_Module.GetShaderModel();
  456. pInfo->MinimumExpectedWaveLaneCount = 0;
  457. pInfo->MaximumExpectedWaveLaneCount = (UINT)-1;
  458. switch (SM->GetKind()) {
  459. case ShaderModel::Kind::Vertex: {
  460. pInfo->VS.OutputPositionPresent = 0;
  461. const DxilSignature &S = m_Module.GetOutputSignature();
  462. for (auto &&E : S.GetElements()) {
  463. if (E->GetKind() == Semantic::Kind::Position) {
  464. // Ideally, we might check never writes mask here,
  465. // but this is not yet part of the signature element in Dxil
  466. pInfo->VS.OutputPositionPresent = 1;
  467. break;
  468. }
  469. }
  470. break;
  471. }
  472. case ShaderModel::Kind::Hull: {
  473. pInfo->HS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
  474. pInfo->HS.OutputControlPointCount = (UINT)m_Module.GetOutputControlPointCount();
  475. pInfo->HS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
  476. pInfo->HS.TessellatorOutputPrimitive = (UINT)m_Module.GetTessellatorOutputPrimitive();
  477. break;
  478. }
  479. case ShaderModel::Kind::Domain: {
  480. pInfo->DS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
  481. pInfo->DS.OutputPositionPresent = 0;
  482. const DxilSignature &S = m_Module.GetOutputSignature();
  483. for (auto &&E : S.GetElements()) {
  484. if (E->GetKind() == Semantic::Kind::Position) {
  485. // Ideally, we might check never writes mask here,
  486. // but this is not yet part of the signature element in Dxil
  487. pInfo->DS.OutputPositionPresent = 1;
  488. break;
  489. }
  490. }
  491. pInfo->DS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
  492. break;
  493. }
  494. case ShaderModel::Kind::Geometry: {
  495. pInfo->GS.InputPrimitive = (UINT)m_Module.GetInputPrimitive();
  496. // NOTE: For OutputTopology, pick one from a used stream, or if none
  497. // are used, use stream 0, and set OutputStreamMask to 1.
  498. pInfo->GS.OutputTopology = (UINT)m_Module.GetStreamPrimitiveTopology();
  499. pInfo->GS.OutputStreamMask = m_Module.GetActiveStreamMask();
  500. if (pInfo->GS.OutputStreamMask == 0) {
  501. pInfo->GS.OutputStreamMask = 1; // This is what runtime expects.
  502. }
  503. pInfo->GS.OutputPositionPresent = 0;
  504. const DxilSignature &S = m_Module.GetOutputSignature();
  505. for (auto &&E : S.GetElements()) {
  506. if (E->GetKind() == Semantic::Kind::Position) {
  507. // Ideally, we might check never writes mask here,
  508. // but this is not yet part of the signature element in Dxil
  509. pInfo->GS.OutputPositionPresent = 1;
  510. break;
  511. }
  512. }
  513. break;
  514. }
  515. case ShaderModel::Kind::Pixel: {
  516. pInfo->PS.DepthOutput = 0;
  517. pInfo->PS.SampleFrequency = 0;
  518. {
  519. const DxilSignature &S = m_Module.GetInputSignature();
  520. for (auto &&E : S.GetElements()) {
  521. if (E->GetInterpolationMode()->IsAnySample() ||
  522. E->GetKind() == Semantic::Kind::SampleIndex) {
  523. pInfo->PS.SampleFrequency = 1;
  524. }
  525. }
  526. }
  527. {
  528. const DxilSignature &S = m_Module.GetOutputSignature();
  529. for (auto &&E : S.GetElements()) {
  530. if (E->IsAnyDepth()) {
  531. pInfo->PS.DepthOutput = 1;
  532. break;
  533. }
  534. }
  535. }
  536. break;
  537. }
  538. }
  539. // Set resource binding information
  540. UINT uResIndex = 0;
  541. for (auto &&R : m_Module.GetCBuffers()) {
  542. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  543. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  544. DXASSERT_NOMSG(pBindInfo);
  545. pBindInfo->ResType = (UINT)PSVResourceType::CBV;
  546. pBindInfo->Space = R->GetSpaceID();
  547. pBindInfo->LowerBound = R->GetLowerBound();
  548. pBindInfo->UpperBound = R->GetUpperBound();
  549. uResIndex++;
  550. }
  551. for (auto &&R : m_Module.GetSamplers()) {
  552. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  553. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  554. DXASSERT_NOMSG(pBindInfo);
  555. pBindInfo->ResType = (UINT)PSVResourceType::Sampler;
  556. pBindInfo->Space = R->GetSpaceID();
  557. pBindInfo->LowerBound = R->GetLowerBound();
  558. pBindInfo->UpperBound = R->GetUpperBound();
  559. uResIndex++;
  560. }
  561. for (auto &&R : m_Module.GetSRVs()) {
  562. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  563. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  564. DXASSERT_NOMSG(pBindInfo);
  565. if (R->IsStructuredBuffer()) {
  566. pBindInfo->ResType = (UINT)PSVResourceType::SRVStructured;
  567. } else if (R->IsRawBuffer()) {
  568. pBindInfo->ResType = (UINT)PSVResourceType::SRVRaw;
  569. } else {
  570. pBindInfo->ResType = (UINT)PSVResourceType::SRVTyped;
  571. }
  572. pBindInfo->Space = R->GetSpaceID();
  573. pBindInfo->LowerBound = R->GetLowerBound();
  574. pBindInfo->UpperBound = R->GetUpperBound();
  575. uResIndex++;
  576. }
  577. for (auto &&R : m_Module.GetUAVs()) {
  578. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  579. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  580. DXASSERT_NOMSG(pBindInfo);
  581. if (R->IsStructuredBuffer()) {
  582. if (R->HasCounter())
  583. pBindInfo->ResType = (UINT)PSVResourceType::UAVStructuredWithCounter;
  584. else
  585. pBindInfo->ResType = (UINT)PSVResourceType::UAVStructured;
  586. } else if (R->IsRawBuffer()) {
  587. pBindInfo->ResType = (UINT)PSVResourceType::UAVRaw;
  588. } else {
  589. pBindInfo->ResType = (UINT)PSVResourceType::UAVTyped;
  590. }
  591. pBindInfo->Space = R->GetSpaceID();
  592. pBindInfo->LowerBound = R->GetLowerBound();
  593. pBindInfo->UpperBound = R->GetUpperBound();
  594. uResIndex++;
  595. }
  596. DXASSERT_NOMSG(uResIndex == m_PSVInitInfo.ResourceCount);
  597. if (m_PSVInitInfo.PSVVersion > 0) {
  598. DXASSERT_NOMSG(pInfo1);
  599. // Write MaxVertexCount
  600. if (SM->IsGS()) {
  601. DXASSERT_NOMSG(m_Module.GetMaxVertexCount() <= 1024);
  602. pInfo1->MaxVertexCount = (uint16_t)m_Module.GetMaxVertexCount();
  603. }
  604. // Write Dxil Signature Elements
  605. for (unsigned i = 0; i < m_PSV.GetSigInputElements(); i++) {
  606. PSVSignatureElement0 *pInputElement = m_PSV.GetInputElement0(i);
  607. DXASSERT_NOMSG(pInputElement);
  608. memcpy(pInputElement, &m_SigInputElements[i], sizeof(PSVSignatureElement0));
  609. }
  610. for (unsigned i = 0; i < m_PSV.GetSigOutputElements(); i++) {
  611. PSVSignatureElement0 *pOutputElement = m_PSV.GetOutputElement0(i);
  612. DXASSERT_NOMSG(pOutputElement);
  613. memcpy(pOutputElement, &m_SigOutputElements[i], sizeof(PSVSignatureElement0));
  614. }
  615. for (unsigned i = 0; i < m_PSV.GetSigPatchConstantElements(); i++) {
  616. PSVSignatureElement0 *pPatchConstantElement = m_PSV.GetPatchConstantElement0(i);
  617. DXASSERT_NOMSG(pPatchConstantElement);
  618. memcpy(pPatchConstantElement, &m_SigPatchConstantElements[i], sizeof(PSVSignatureElement0));
  619. }
  620. // Gather ViewID dependency information
  621. auto &viewState = m_Module.GetViewIdState().GetSerialized();
  622. if (!viewState.empty()) {
  623. const uint32_t *pSrc = viewState.data();
  624. const uint32_t InputScalars = *(pSrc++);
  625. uint32_t OutputScalars[4];
  626. for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
  627. OutputScalars[streamIndex] = *(pSrc++);
  628. pSrc = CopyViewIDState(pSrc, InputScalars, OutputScalars[streamIndex], m_PSV.GetViewIDOutputMask(streamIndex), m_PSV.GetInputToOutputTable(streamIndex));
  629. if (!SM->IsGS())
  630. break;
  631. }
  632. if (SM->IsHS()) {
  633. const uint32_t PCScalars = *(pSrc++);
  634. pSrc = CopyViewIDState(pSrc, InputScalars, PCScalars, m_PSV.GetViewIDPCOutputMask(), m_PSV.GetInputToPCOutputTable());
  635. } else if (SM->IsDS()) {
  636. const uint32_t PCScalars = *(pSrc++);
  637. pSrc = CopyViewIDState(pSrc, PCScalars, OutputScalars[0], PSVComponentMask(), m_PSV.GetPCInputToOutputTable());
  638. }
  639. DXASSERT_NOMSG(viewState.data() + viewState.size() == pSrc);
  640. }
  641. }
  642. ULONG cbWritten;
  643. IFT(pStream->Write(m_PSVBuffer.data(), m_PSVBufferSize, &cbWritten));
  644. DXASSERT_NOMSG(cbWritten == m_PSVBufferSize);
  645. }
  646. };
  647. DxilPartWriter *hlsl::NewPSVWriter(const DxilModule &M, uint32_t PSVVersion) {
  648. return new DxilPSVWriter(M, PSVVersion);
  649. }
  650. class DxilContainerWriter_impl : public DxilContainerWriter {
  651. private:
  652. class DxilPart {
  653. public:
  654. DxilPartHeader Header;
  655. WriteFn Write;
  656. DxilPart(uint32_t fourCC, uint32_t size, WriteFn write) : Write(write) {
  657. Header.PartFourCC = fourCC;
  658. Header.PartSize = size;
  659. }
  660. };
  661. llvm::SmallVector<DxilPart, 8> m_Parts;
  662. public:
  663. __override void AddPart(uint32_t FourCC, uint32_t Size, WriteFn Write) {
  664. m_Parts.emplace_back(FourCC, Size, Write);
  665. }
  666. __override uint32_t size() const {
  667. uint32_t partSize = 0;
  668. for (auto &part : m_Parts) {
  669. partSize += part.Header.PartSize;
  670. }
  671. return (uint32_t)GetDxilContainerSizeFromParts((uint32_t)m_Parts.size(), partSize);
  672. }
  673. __override void write(AbstractMemoryStream *pStream) {
  674. DxilContainerHeader header;
  675. const uint32_t PartCount = (uint32_t)m_Parts.size();
  676. uint32_t containerSizeInBytes = size();
  677. InitDxilContainer(&header, PartCount, containerSizeInBytes);
  678. IFT(pStream->Reserve(header.ContainerSizeInBytes));
  679. IFT(WriteStreamValue(pStream, header));
  680. uint32_t offset = sizeof(header) + (uint32_t)GetOffsetTableSize(PartCount);
  681. for (auto &&part : m_Parts) {
  682. IFT(WriteStreamValue(pStream, offset));
  683. offset += sizeof(DxilPartHeader) + part.Header.PartSize;
  684. }
  685. for (auto &&part : m_Parts) {
  686. IFT(WriteStreamValue(pStream, part.Header));
  687. size_t start = pStream->GetPosition();
  688. part.Write(pStream);
  689. DXASSERT_LOCALVAR(start, pStream->GetPosition() - start == (size_t)part.Header.PartSize, "out of bound");
  690. }
  691. DXASSERT(containerSizeInBytes == (uint32_t)pStream->GetPosition(), "else stream size is incorrect");
  692. }
  693. };
  694. DxilContainerWriter *hlsl::NewDxilContainerWriter() {
  695. return new DxilContainerWriter_impl();
  696. }
  697. static bool HasDebugInfo(const Module &M) {
  698. for (Module::const_named_metadata_iterator NMI = M.named_metadata_begin(),
  699. NME = M.named_metadata_end();
  700. NMI != NME; ++NMI) {
  701. if (NMI->getName().startswith("llvm.dbg.")) {
  702. return true;
  703. }
  704. }
  705. return false;
  706. }
  707. static void GetPaddedProgramPartSize(AbstractMemoryStream *pStream,
  708. uint32_t &bitcodeInUInt32,
  709. uint32_t &bitcodePaddingBytes) {
  710. bitcodeInUInt32 = pStream->GetPtrSize();
  711. bitcodePaddingBytes = (bitcodeInUInt32 % 4);
  712. bitcodeInUInt32 = (bitcodeInUInt32 / 4) + (bitcodePaddingBytes ? 1 : 0);
  713. }
  714. static void WriteProgramPart(const ShaderModel *pModel,
  715. AbstractMemoryStream *pModuleBitcode,
  716. AbstractMemoryStream *pStream) {
  717. DXASSERT(pModel != nullptr, "else generation should have failed");
  718. DxilProgramHeader programHeader;
  719. uint32_t shaderVersion =
  720. EncodeVersion(pModel->GetKind(), pModel->GetMajor(), pModel->GetMinor());
  721. unsigned dxilMajor, dxilMinor;
  722. pModel->GetDxilVersion(dxilMajor, dxilMinor);
  723. uint32_t dxilVersion = DXIL::MakeDxilVersion(dxilMajor, dxilMinor);
  724. InitProgramHeader(programHeader, shaderVersion, dxilVersion, pModuleBitcode->GetPtrSize());
  725. uint32_t programInUInt32, programPaddingBytes;
  726. GetPaddedProgramPartSize(pModuleBitcode, programInUInt32,
  727. programPaddingBytes);
  728. ULONG cbWritten;
  729. IFT(WriteStreamValue(pStream, programHeader));
  730. IFT(pStream->Write(pModuleBitcode->GetPtr(), pModuleBitcode->GetPtrSize(),
  731. &cbWritten));
  732. if (programPaddingBytes) {
  733. uint32_t paddingValue = 0;
  734. IFT(pStream->Write(&paddingValue, programPaddingBytes, &cbWritten));
  735. }
  736. }
  737. void hlsl::SerializeDxilContainerForModule(DxilModule *pModule,
  738. AbstractMemoryStream *pModuleBitcode,
  739. AbstractMemoryStream *pFinalStream,
  740. SerializeDxilFlags Flags) {
  741. // TODO: add a flag to update the module and remove information that is not part
  742. // of DXIL proper and is used only to assemble the container.
  743. DXASSERT_NOMSG(pModule != nullptr);
  744. DXASSERT_NOMSG(pModuleBitcode != nullptr);
  745. DXASSERT_NOMSG(pFinalStream != nullptr);
  746. unsigned ValMajor, ValMinor;
  747. pModule->GetValidatorVersion(ValMajor, ValMinor);
  748. if (ValMajor == 1 && ValMinor == 0)
  749. Flags &= ~SerializeDxilFlags::IncludeDebugNamePart;
  750. DxilProgramSignatureWriter inputSigWriter(pModule->GetInputSignature(),
  751. pModule->GetTessellatorDomain(),
  752. /*IsInput*/ true);
  753. DxilProgramSignatureWriter outputSigWriter(pModule->GetOutputSignature(),
  754. pModule->GetTessellatorDomain(),
  755. /*IsInput*/ false);
  756. DxilPSVWriter PSVWriter(*pModule);
  757. DxilContainerWriter_impl writer;
  758. // Write the feature part.
  759. DxilFeatureInfoWriter featureInfoWriter(*pModule);
  760. writer.AddPart(DFCC_FeatureInfo, featureInfoWriter.size(), [&](AbstractMemoryStream *pStream) {
  761. featureInfoWriter.write(pStream);
  762. });
  763. // Write the input and output signature parts.
  764. writer.AddPart(DFCC_InputSignature, inputSigWriter.size(), [&](AbstractMemoryStream *pStream) {
  765. inputSigWriter.write(pStream);
  766. });
  767. writer.AddPart(DFCC_OutputSignature, outputSigWriter.size(), [&](AbstractMemoryStream *pStream) {
  768. outputSigWriter.write(pStream);
  769. });
  770. DxilProgramSignatureWriter patchConstantSigWriter(
  771. pModule->GetPatchConstantSignature(), pModule->GetTessellatorDomain(),
  772. /*IsInput*/ pModule->GetShaderModel()->IsDS());
  773. if (pModule->GetPatchConstantSignature().GetElements().size()) {
  774. writer.AddPart(DFCC_PatchConstantSignature, patchConstantSigWriter.size(),
  775. [&](AbstractMemoryStream *pStream) {
  776. patchConstantSigWriter.write(pStream);
  777. });
  778. }
  779. // Write the DxilPipelineStateValidation (PSV0) part.
  780. writer.AddPart(DFCC_PipelineStateValidation, PSVWriter.size(), [&](AbstractMemoryStream *pStream) {
  781. PSVWriter.write(pStream);
  782. });
  783. // Write the root signature (RTS0) part.
  784. DxilProgramRootSignatureWriter rootSigWriter(pModule->GetRootSignature());
  785. CComPtr<AbstractMemoryStream> pInputProgramStream = pModuleBitcode;
  786. if (!pModule->GetRootSignature().IsEmpty()) {
  787. writer.AddPart(
  788. DFCC_RootSignature, rootSigWriter.size(),
  789. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  790. pModule->StripRootSignatureFromMetadata();
  791. pInputProgramStream.Release();
  792. CComPtr<IMalloc> pMalloc;
  793. IFT(CoGetMalloc(1, &pMalloc));
  794. IFT(CreateMemoryStream(pMalloc, &pInputProgramStream));
  795. raw_stream_ostream outStream(pInputProgramStream.p);
  796. WriteBitcodeToFile(pModule->GetModule(), outStream, true);
  797. }
  798. // If we have debug information present, serialize it to a debug part, then use the stripped version as the canonical program version.
  799. CComPtr<AbstractMemoryStream> pProgramStream = pInputProgramStream;
  800. if (HasDebugInfo(*pModule->GetModule())) {
  801. uint32_t debugInUInt32, debugPaddingBytes;
  802. GetPaddedProgramPartSize(pInputProgramStream, debugInUInt32, debugPaddingBytes);
  803. if (Flags & SerializeDxilFlags::IncludeDebugInfoPart) {
  804. writer.AddPart(DFCC_ShaderDebugInfoDXIL, debugInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
  805. WriteProgramPart(pModule->GetShaderModel(), pInputProgramStream, pStream);
  806. });
  807. }
  808. pProgramStream.Release();
  809. llvm::StripDebugInfo(*pModule->GetModule());
  810. pModule->StripDebugRelatedCode();
  811. CComPtr<IMalloc> pMalloc;
  812. IFT(CoGetMalloc(1, &pMalloc));
  813. IFT(CreateMemoryStream(pMalloc, &pProgramStream));
  814. raw_stream_ostream outStream(pProgramStream.p);
  815. WriteBitcodeToFile(pModule->GetModule(), outStream, true);
  816. if (Flags & SerializeDxilFlags::IncludeDebugNamePart) {
  817. CComPtr<AbstractMemoryStream> pHashStream;
  818. // If the debug name should be specific to the sources, base the name on the debug
  819. // bitcode, which will include the source references, line numbers, etc. Otherwise,
  820. // do it exclusively on the target shader bitcode.
  821. pHashStream = (int)(Flags & SerializeDxilFlags::DebugNameDependOnSource) ? pModuleBitcode : pProgramStream;
  822. const uint32_t DebugInfoNameHashLen = 32; // 32 chars of MD5
  823. const uint32_t DebugInfoNameSuffix = 4; // '.lld'
  824. const uint32_t DebugInfoNameNullAndPad = 4; // '\0\0\0\0'
  825. const uint32_t DebugInfoContentLen =
  826. sizeof(DxilShaderDebugName) + DebugInfoNameHashLen +
  827. DebugInfoNameSuffix + DebugInfoNameNullAndPad;
  828. writer.AddPart(DFCC_ShaderDebugName, DebugInfoContentLen, [&](AbstractMemoryStream *pStream) {
  829. DxilShaderDebugName NameContent;
  830. NameContent.Flags = 0;
  831. NameContent.NameLength = DebugInfoNameHashLen + DebugInfoNameSuffix;
  832. IFT(WriteStreamValue(pStream, NameContent));
  833. ArrayRef<uint8_t> Data((uint8_t *)pHashStream->GetPtr(), pHashStream->GetPtrSize());
  834. llvm::MD5 md5;
  835. llvm::MD5::MD5Result md5Result;
  836. SmallString<32> Hash;
  837. md5.update(Data);
  838. md5.final(md5Result);
  839. md5.stringifyResult(md5Result, Hash);
  840. ULONG cbWritten;
  841. IFT(pStream->Write(Hash.data(), Hash.size(), &cbWritten));
  842. const char SuffixAndPad[] = ".lld\0\0\0";
  843. IFT(pStream->Write(SuffixAndPad, _countof(SuffixAndPad), &cbWritten));
  844. });
  845. }
  846. }
  847. // Compute padded bitcode size.
  848. uint32_t programInUInt32, programPaddingBytes;
  849. GetPaddedProgramPartSize(pProgramStream, programInUInt32, programPaddingBytes);
  850. // Write the program part.
  851. writer.AddPart(DFCC_DXIL, programInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
  852. WriteProgramPart(pModule->GetShaderModel(), pProgramStream, pStream);
  853. });
  854. writer.write(pFinalStream);
  855. }
  856. void hlsl::SerializeDxilContainerForRootSignature(hlsl::RootSignatureHandle *pRootSigHandle,
  857. AbstractMemoryStream *pFinalStream) {
  858. DXASSERT_NOMSG(pRootSigHandle != nullptr);
  859. DXASSERT_NOMSG(pFinalStream != nullptr);
  860. DxilContainerWriter_impl writer;
  861. // Write the root signature (RTS0) part.
  862. DxilProgramRootSignatureWriter rootSigWriter(*pRootSigHandle);
  863. if (!pRootSigHandle->IsEmpty()) {
  864. writer.AddPart(
  865. DFCC_RootSignature, rootSigWriter.size(),
  866. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  867. }
  868. writer.write(pFinalStream);
  869. }