| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227 |
- //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass transforms loops that contain branches on loop-invariant conditions
- // to have multiple loops. For example, it turns the left into the right code:
- //
- // for (...) if (lic)
- // A for (...)
- // if (lic) A; B; C
- // B else
- // C for (...)
- // A; C
- //
- // This can increase the size of the code exponentially (doubling it every time
- // a loop is unswitched) so we only unswitch if the resultant code will be
- // smaller than a threshold.
- //
- // This pass expects LICM to be run before it to hoist invariant conditions out
- // of the loop, to make the unswitching opportunity obvious.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CodeMetrics.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <algorithm>
- #include <map>
- #include <set>
- using namespace llvm;
- #define DEBUG_TYPE "loop-unswitch"
- STATISTIC(NumBranches, "Number of branches unswitched");
- STATISTIC(NumSwitches, "Number of switches unswitched");
- STATISTIC(NumSelects , "Number of selects unswitched");
- STATISTIC(NumTrivial , "Number of unswitches that are trivial");
- STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
- STATISTIC(TotalInsts, "Total number of instructions analyzed");
- // The specific value of 100 here was chosen based only on intuition and a
- // few specific examples.
- static cl::opt<unsigned>
- Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
- cl::init(100), cl::Hidden);
- namespace {
- class LUAnalysisCache {
- typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> >
- UnswitchedValsMap;
- typedef UnswitchedValsMap::iterator UnswitchedValsIt;
- struct LoopProperties {
- unsigned CanBeUnswitchedCount;
- unsigned WasUnswitchedCount;
- unsigned SizeEstimation;
- UnswitchedValsMap UnswitchedVals;
- };
- // Here we use std::map instead of DenseMap, since we need to keep valid
- // LoopProperties pointer for current loop for better performance.
- typedef std::map<const Loop*, LoopProperties> LoopPropsMap;
- typedef LoopPropsMap::iterator LoopPropsMapIt;
- LoopPropsMap LoopsProperties;
- UnswitchedValsMap *CurLoopInstructions;
- LoopProperties *CurrentLoopProperties;
- // A loop unswitching with an estimated cost above this threshold
- // is not performed. MaxSize is turned into unswitching quota for
- // the current loop, and reduced correspondingly, though note that
- // the quota is returned by releaseMemory() when the loop has been
- // processed, so that MaxSize will return to its previous
- // value. So in most cases MaxSize will equal the Threshold flag
- // when a new loop is processed. An exception to that is that
- // MaxSize will have a smaller value while processing nested loops
- // that were introduced due to loop unswitching of an outer loop.
- //
- // FIXME: The way that MaxSize works is subtle and depends on the
- // pass manager processing loops and calling releaseMemory() in a
- // specific order. It would be good to find a more straightforward
- // way of doing what MaxSize does.
- unsigned MaxSize;
- public:
- LUAnalysisCache()
- : CurLoopInstructions(nullptr), CurrentLoopProperties(nullptr),
- MaxSize(Threshold) {}
- // Analyze loop. Check its size, calculate is it possible to unswitch
- // it. Returns true if we can unswitch this loop.
- bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
- AssumptionCache *AC);
- // Clean all data related to given loop.
- void forgetLoop(const Loop *L);
- // Mark case value as unswitched.
- // Since SI instruction can be partly unswitched, in order to avoid
- // extra unswitching in cloned loops keep track all unswitched values.
- void setUnswitched(const SwitchInst *SI, const Value *V);
- // Check was this case value unswitched before or not.
- bool isUnswitched(const SwitchInst *SI, const Value *V);
- // Returns true if another unswitching could be done within the cost
- // threshold.
- bool CostAllowsUnswitching();
- // Clone all loop-unswitch related loop properties.
- // Redistribute unswitching quotas.
- // Note, that new loop data is stored inside the VMap.
- void cloneData(const Loop *NewLoop, const Loop *OldLoop,
- const ValueToValueMapTy &VMap);
- };
- class LoopUnswitch : public LoopPass {
- LoopInfo *LI; // Loop information
- LPPassManager *LPM;
- AssumptionCache *AC;
- // LoopProcessWorklist - Used to check if second loop needs processing
- // after RewriteLoopBodyWithConditionConstant rewrites first loop.
- std::vector<Loop*> LoopProcessWorklist;
- LUAnalysisCache BranchesInfo;
- bool OptimizeForSize;
- bool redoLoop;
- Loop *currentLoop;
- DominatorTree *DT;
- BasicBlock *loopHeader;
- BasicBlock *loopPreheader;
- // LoopBlocks contains all of the basic blocks of the loop, including the
- // preheader of the loop, the body of the loop, and the exit blocks of the
- // loop, in that order.
- std::vector<BasicBlock*> LoopBlocks;
- // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
- std::vector<BasicBlock*> NewBlocks;
- public:
- static char ID; // Pass ID, replacement for typeid
- explicit LoopUnswitch(bool Os = false) :
- LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
- currentLoop(nullptr), DT(nullptr), loopHeader(nullptr),
- loopPreheader(nullptr) {
- initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
- }
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
- bool processCurrentLoop();
- /// This transformation requires natural loop information & requires that
- /// loop preheaders be inserted into the CFG.
- ///
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequiredID(LoopSimplifyID);
- AU.addPreservedID(LoopSimplifyID);
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addRequiredID(LCSSAID);
- AU.addPreservedID(LCSSAID);
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<ScalarEvolution>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- }
- private:
- void releaseMemory() override {
- BranchesInfo.forgetLoop(currentLoop);
- }
- void initLoopData() {
- loopHeader = currentLoop->getHeader();
- loopPreheader = currentLoop->getLoopPreheader();
- }
- /// Split all of the edges from inside the loop to their exit blocks.
- /// Update the appropriate Phi nodes as we do so.
- void SplitExitEdges(Loop *L, const SmallVectorImpl<BasicBlock *> &ExitBlocks);
- bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
- TerminatorInst *TI = nullptr);
- void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
- BasicBlock *ExitBlock, TerminatorInst *TI);
- void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
- TerminatorInst *TI);
- void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
- Constant *Val, bool isEqual);
- void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
- BasicBlock *TrueDest,
- BasicBlock *FalseDest,
- Instruction *InsertPt,
- TerminatorInst *TI);
- void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
- bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = nullptr,
- BasicBlock **LoopExit = nullptr);
- };
- }
- // Analyze loop. Check its size, calculate is it possible to unswitch
- // it. Returns true if we can unswitch this loop.
- bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
- AssumptionCache *AC) {
- LoopPropsMapIt PropsIt;
- bool Inserted;
- std::tie(PropsIt, Inserted) =
- LoopsProperties.insert(std::make_pair(L, LoopProperties()));
- LoopProperties &Props = PropsIt->second;
- if (Inserted) {
- // New loop.
- // Limit the number of instructions to avoid causing significant code
- // expansion, and the number of basic blocks, to avoid loops with
- // large numbers of branches which cause loop unswitching to go crazy.
- // This is a very ad-hoc heuristic.
- SmallPtrSet<const Value *, 32> EphValues;
- CodeMetrics::collectEphemeralValues(L, AC, EphValues);
- // FIXME: This is overly conservative because it does not take into
- // consideration code simplification opportunities and code that can
- // be shared by the resultant unswitched loops.
- CodeMetrics Metrics;
- for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
- ++I)
- Metrics.analyzeBasicBlock(*I, TTI, EphValues);
- Props.SizeEstimation = Metrics.NumInsts;
- Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
- Props.WasUnswitchedCount = 0;
- MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
- if (Metrics.notDuplicatable) {
- DEBUG(dbgs() << "NOT unswitching loop %"
- << L->getHeader()->getName() << ", contents cannot be "
- << "duplicated!\n");
- return false;
- }
- }
- // Be careful. This links are good only before new loop addition.
- CurrentLoopProperties = &Props;
- CurLoopInstructions = &Props.UnswitchedVals;
- return true;
- }
- // Clean all data related to given loop.
- void LUAnalysisCache::forgetLoop(const Loop *L) {
- LoopPropsMapIt LIt = LoopsProperties.find(L);
- if (LIt != LoopsProperties.end()) {
- LoopProperties &Props = LIt->second;
- MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
- Props.SizeEstimation;
- LoopsProperties.erase(LIt);
- }
- CurrentLoopProperties = nullptr;
- CurLoopInstructions = nullptr;
- }
- // Mark case value as unswitched.
- // Since SI instruction can be partly unswitched, in order to avoid
- // extra unswitching in cloned loops keep track all unswitched values.
- void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
- (*CurLoopInstructions)[SI].insert(V);
- }
- // Check was this case value unswitched before or not.
- bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
- return (*CurLoopInstructions)[SI].count(V);
- }
- bool LUAnalysisCache::CostAllowsUnswitching() {
- return CurrentLoopProperties->CanBeUnswitchedCount > 0;
- }
- // Clone all loop-unswitch related loop properties.
- // Redistribute unswitching quotas.
- // Note, that new loop data is stored inside the VMap.
- void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
- const ValueToValueMapTy &VMap) {
- LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
- LoopProperties &OldLoopProps = *CurrentLoopProperties;
- UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
- // Reallocate "can-be-unswitched quota"
- --OldLoopProps.CanBeUnswitchedCount;
- ++OldLoopProps.WasUnswitchedCount;
- NewLoopProps.WasUnswitchedCount = 0;
- unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
- NewLoopProps.CanBeUnswitchedCount = Quota / 2;
- OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
- NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
- // Clone unswitched values info:
- // for new loop switches we clone info about values that was
- // already unswitched and has redundant successors.
- for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
- const SwitchInst *OldInst = I->first;
- Value *NewI = VMap.lookup(OldInst);
- const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
- assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
- NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
- }
- }
- char LoopUnswitch::ID = 0;
- INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LCSSA)
- INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
- false, false)
- Pass *llvm::createLoopUnswitchPass(bool Os) {
- return new LoopUnswitch(Os);
- }
- /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is
- /// invariant in the loop, or has an invariant piece, return the invariant.
- /// Otherwise, return null.
- static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
- // We started analyze new instruction, increment scanned instructions counter.
- ++TotalInsts;
- // We can never unswitch on vector conditions.
- if (Cond->getType()->isVectorTy())
- return nullptr;
- // Constants should be folded, not unswitched on!
- if (isa<Constant>(Cond)) return nullptr;
- // TODO: Handle: br (VARIANT|INVARIANT).
- // Hoist simple values out.
- if (L->makeLoopInvariant(Cond, Changed))
- return Cond;
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
- if (BO->getOpcode() == Instruction::And ||
- BO->getOpcode() == Instruction::Or) {
- // If either the left or right side is invariant, we can unswitch on this,
- // which will cause the branch to go away in one loop and the condition to
- // simplify in the other one.
- if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
- return LHS;
- if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
- return RHS;
- }
- return nullptr;
- }
- bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
- if (skipOptnoneFunction(L))
- return false;
- AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
- *L->getHeader()->getParent());
- LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- LPM = &LPM_Ref;
- DominatorTreeWrapperPass *DTWP =
- getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- DT = DTWP ? &DTWP->getDomTree() : nullptr;
- currentLoop = L;
- Function *F = currentLoop->getHeader()->getParent();
- bool Changed = false;
- do {
- assert(currentLoop->isLCSSAForm(*DT));
- redoLoop = false;
- Changed |= processCurrentLoop();
- } while(redoLoop);
- if (Changed) {
- // FIXME: Reconstruct dom info, because it is not preserved properly.
- if (DT)
- DT->recalculate(*F);
- }
- return Changed;
- }
- /// processCurrentLoop - Do actual work and unswitch loop if possible
- /// and profitable.
- bool LoopUnswitch::processCurrentLoop() {
- bool Changed = false;
- initLoopData();
- // If LoopSimplify was unable to form a preheader, don't do any unswitching.
- if (!loopPreheader)
- return false;
- // Loops with indirectbr cannot be cloned.
- if (!currentLoop->isSafeToClone())
- return false;
- // Without dedicated exits, splitting the exit edge may fail.
- if (!currentLoop->hasDedicatedExits())
- return false;
- LLVMContext &Context = loopHeader->getContext();
- // Probably we reach the quota of branches for this loop. If so
- // stop unswitching.
- if (!BranchesInfo.countLoop(
- currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
- *currentLoop->getHeader()->getParent()),
- AC))
- return false;
- // Loop over all of the basic blocks in the loop. If we find an interior
- // block that is branching on a loop-invariant condition, we can unswitch this
- // loop.
- for (Loop::block_iterator I = currentLoop->block_begin(),
- E = currentLoop->block_end(); I != E; ++I) {
- TerminatorInst *TI = (*I)->getTerminator();
- if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- // If this isn't branching on an invariant condition, we can't unswitch
- // it.
- if (BI->isConditional()) {
- // See if this, or some part of it, is loop invariant. If so, we can
- // unswitch on it if we desire.
- Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
- currentLoop, Changed);
- if (LoopCond &&
- UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
- ++NumBranches;
- return true;
- }
- }
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
- Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
- currentLoop, Changed);
- unsigned NumCases = SI->getNumCases();
- if (LoopCond && NumCases) {
- // Find a value to unswitch on:
- // FIXME: this should chose the most expensive case!
- // FIXME: scan for a case with a non-critical edge?
- Constant *UnswitchVal = nullptr;
- // Do not process same value again and again.
- // At this point we have some cases already unswitched and
- // some not yet unswitched. Let's find the first not yet unswitched one.
- for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
- i != e; ++i) {
- Constant *UnswitchValCandidate = i.getCaseValue();
- if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
- UnswitchVal = UnswitchValCandidate;
- break;
- }
- }
- if (!UnswitchVal)
- continue;
- if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
- ++NumSwitches;
- return true;
- }
- }
- }
- // Scan the instructions to check for unswitchable values.
- for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
- BBI != E; ++BBI)
- if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
- Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
- currentLoop, Changed);
- if (LoopCond && UnswitchIfProfitable(LoopCond,
- ConstantInt::getTrue(Context))) {
- ++NumSelects;
- return true;
- }
- }
- }
- return Changed;
- }
- /// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
- /// loop with no side effects (including infinite loops).
- ///
- /// If true, we return true and set ExitBB to the block we
- /// exit through.
- ///
- static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
- BasicBlock *&ExitBB,
- std::set<BasicBlock*> &Visited) {
- if (!Visited.insert(BB).second) {
- // Already visited. Without more analysis, this could indicate an infinite
- // loop.
- return false;
- }
- if (!L->contains(BB)) {
- // Otherwise, this is a loop exit, this is fine so long as this is the
- // first exit.
- if (ExitBB) return false;
- ExitBB = BB;
- return true;
- }
- // Otherwise, this is an unvisited intra-loop node. Check all successors.
- for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
- // Check to see if the successor is a trivial loop exit.
- if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
- return false;
- }
- // Okay, everything after this looks good, check to make sure that this block
- // doesn't include any side effects.
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (I->mayHaveSideEffects())
- return false;
- return true;
- }
- /// isTrivialLoopExitBlock - Return true if the specified block unconditionally
- /// leads to an exit from the specified loop, and has no side-effects in the
- /// process. If so, return the block that is exited to, otherwise return null.
- static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
- std::set<BasicBlock*> Visited;
- Visited.insert(L->getHeader()); // Branches to header make infinite loops.
- BasicBlock *ExitBB = nullptr;
- if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
- return ExitBB;
- return nullptr;
- }
- /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
- /// trivial: that is, that the condition controls whether or not the loop does
- /// anything at all. If this is a trivial condition, unswitching produces no
- /// code duplications (equivalently, it produces a simpler loop and a new empty
- /// loop, which gets deleted).
- ///
- /// If this is a trivial condition, return true, otherwise return false. When
- /// returning true, this sets Cond and Val to the condition that controls the
- /// trivial condition: when Cond dynamically equals Val, the loop is known to
- /// exit. Finally, this sets LoopExit to the BB that the loop exits to when
- /// Cond == Val.
- ///
- bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
- BasicBlock **LoopExit) {
- BasicBlock *Header = currentLoop->getHeader();
- TerminatorInst *HeaderTerm = Header->getTerminator();
- LLVMContext &Context = Header->getContext();
- BasicBlock *LoopExitBB = nullptr;
- if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
- // If the header block doesn't end with a conditional branch on Cond, we
- // can't handle it.
- if (!BI->isConditional() || BI->getCondition() != Cond)
- return false;
- // Check to see if a successor of the branch is guaranteed to
- // exit through a unique exit block without having any
- // side-effects. If so, determine the value of Cond that causes it to do
- // this.
- if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
- BI->getSuccessor(0)))) {
- if (Val) *Val = ConstantInt::getTrue(Context);
- } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
- BI->getSuccessor(1)))) {
- if (Val) *Val = ConstantInt::getFalse(Context);
- }
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
- // If this isn't a switch on Cond, we can't handle it.
- if (SI->getCondition() != Cond) return false;
- // Check to see if a successor of the switch is guaranteed to go to the
- // latch block or exit through a one exit block without having any
- // side-effects. If so, determine the value of Cond that causes it to do
- // this.
- // Note that we can't trivially unswitch on the default case or
- // on already unswitched cases.
- for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
- i != e; ++i) {
- BasicBlock *LoopExitCandidate;
- if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop,
- i.getCaseSuccessor()))) {
- // Okay, we found a trivial case, remember the value that is trivial.
- ConstantInt *CaseVal = i.getCaseValue();
- // Check that it was not unswitched before, since already unswitched
- // trivial vals are looks trivial too.
- if (BranchesInfo.isUnswitched(SI, CaseVal))
- continue;
- LoopExitBB = LoopExitCandidate;
- if (Val) *Val = CaseVal;
- break;
- }
- }
- }
- // If we didn't find a single unique LoopExit block, or if the loop exit block
- // contains phi nodes, this isn't trivial.
- if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
- return false; // Can't handle this.
- if (LoopExit) *LoopExit = LoopExitBB;
- // We already know that nothing uses any scalar values defined inside of this
- // loop. As such, we just have to check to see if this loop will execute any
- // side-effecting instructions (e.g. stores, calls, volatile loads) in the
- // part of the loop that the code *would* execute. We already checked the
- // tail, check the header now.
- for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
- if (I->mayHaveSideEffects())
- return false;
- return true;
- }
- /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
- /// LoopCond == Val to simplify the loop. If we decide that this is profitable,
- /// unswitch the loop, reprocess the pieces, then return true.
- bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
- TerminatorInst *TI) {
- Function *F = loopHeader->getParent();
- Constant *CondVal = nullptr;
- BasicBlock *ExitBlock = nullptr;
- if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
- // If the condition is trivial, always unswitch. There is no code growth
- // for this case.
- UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock, TI);
- return true;
- }
- // Check to see if it would be profitable to unswitch current loop.
- if (!BranchesInfo.CostAllowsUnswitching()) {
- DEBUG(dbgs() << "NOT unswitching loop %"
- << currentLoop->getHeader()->getName()
- << " at non-trivial condition '" << *Val
- << "' == " << *LoopCond << "\n"
- << ". Cost too high.\n");
- return false;
- }
- // Do not do non-trivial unswitch while optimizing for size.
- if (OptimizeForSize || F->hasFnAttribute(Attribute::OptimizeForSize))
- return false;
- UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
- return true;
- }
- /// CloneLoop - Recursively clone the specified loop and all of its children,
- /// mapping the blocks with the specified map.
- static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
- LoopInfo *LI, LPPassManager *LPM) {
- Loop *New = new Loop();
- LPM->insertLoop(New, PL);
- // Add all of the blocks in L to the new loop.
- for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
- I != E; ++I)
- if (LI->getLoopFor(*I) == L)
- New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
- // Add all of the subloops to the new loop.
- for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
- CloneLoop(*I, New, VM, LI, LPM);
- return New;
- }
- static void copyMetadata(Instruction *DstInst, const Instruction *SrcInst,
- bool Swapped) {
- if (!SrcInst || !SrcInst->hasMetadata())
- return;
- SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
- SrcInst->getAllMetadata(MDs);
- for (auto &MD : MDs) {
- switch (MD.first) {
- default:
- break;
- case LLVMContext::MD_prof:
- if (Swapped && MD.second->getNumOperands() == 3 &&
- isa<MDString>(MD.second->getOperand(0))) {
- MDString *MDName = cast<MDString>(MD.second->getOperand(0));
- if (MDName->getString() == "branch_weights") {
- auto *ValT = cast_or_null<ConstantAsMetadata>(
- MD.second->getOperand(1))->getValue();
- auto *ValF = cast_or_null<ConstantAsMetadata>(
- MD.second->getOperand(2))->getValue();
- assert(ValT && ValF && "Invalid Operands of branch_weights");
- auto NewMD =
- MDBuilder(DstInst->getParent()->getContext())
- .createBranchWeights(cast<ConstantInt>(ValF)->getZExtValue(),
- cast<ConstantInt>(ValT)->getZExtValue());
- MD.second = NewMD;
- }
- }
- // fallthrough.
- case LLVMContext::MD_dbg:
- DstInst->setMetadata(MD.first, MD.second);
- }
- }
- }
- /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
- /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the
- /// code immediately before InsertPt.
- void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
- BasicBlock *TrueDest,
- BasicBlock *FalseDest,
- Instruction *InsertPt,
- TerminatorInst *TI) {
- // Insert a conditional branch on LIC to the two preheaders. The original
- // code is the true version and the new code is the false version.
- Value *BranchVal = LIC;
- bool Swapped = false;
- if (!isa<ConstantInt>(Val) ||
- Val->getType() != Type::getInt1Ty(LIC->getContext()))
- BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
- else if (Val != ConstantInt::getTrue(Val->getContext())) {
- // We want to enter the new loop when the condition is true.
- std::swap(TrueDest, FalseDest);
- Swapped = true;
- }
- // Insert the new branch.
- BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
- copyMetadata(BI, TI, Swapped);
- // If either edge is critical, split it. This helps preserve LoopSimplify
- // form for enclosing loops.
- auto Options = CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA();
- SplitCriticalEdge(BI, 0, Options);
- SplitCriticalEdge(BI, 1, Options);
- }
- /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
- /// condition in it (a cond branch from its header block to its latch block,
- /// where the path through the loop that doesn't execute its body has no
- /// side-effects), unswitch it. This doesn't involve any code duplication, just
- /// moving the conditional branch outside of the loop and updating loop info.
- void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
- BasicBlock *ExitBlock,
- TerminatorInst *TI) {
- DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
- << loopHeader->getName() << " [" << L->getBlocks().size()
- << " blocks] in Function "
- << L->getHeader()->getParent()->getName() << " on cond: " << *Val
- << " == " << *Cond << "\n");
- // First step, split the preheader, so that we know that there is a safe place
- // to insert the conditional branch. We will change loopPreheader to have a
- // conditional branch on Cond.
- BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI);
- // Now that we have a place to insert the conditional branch, create a place
- // to branch to: this is the exit block out of the loop that we should
- // short-circuit to.
- // Split this block now, so that the loop maintains its exit block, and so
- // that the jump from the preheader can execute the contents of the exit block
- // without actually branching to it (the exit block should be dominated by the
- // loop header, not the preheader).
- assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
- BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), DT, LI);
- // Okay, now we have a position to branch from and a position to branch to,
- // insert the new conditional branch.
- EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
- loopPreheader->getTerminator(), TI);
- LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
- loopPreheader->getTerminator()->eraseFromParent();
- // We need to reprocess this loop, it could be unswitched again.
- redoLoop = true;
- // Now that we know that the loop is never entered when this condition is a
- // particular value, rewrite the loop with this info. We know that this will
- // at least eliminate the old branch.
- RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
- ++NumTrivial;
- }
- /// SplitExitEdges - Split all of the edges from inside the loop to their exit
- /// blocks. Update the appropriate Phi nodes as we do so.
- void LoopUnswitch::SplitExitEdges(Loop *L,
- const SmallVectorImpl<BasicBlock *> &ExitBlocks){
- for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
- BasicBlock *ExitBlock = ExitBlocks[i];
- SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
- pred_end(ExitBlock));
- // Although SplitBlockPredecessors doesn't preserve loop-simplify in
- // general, if we call it on all predecessors of all exits then it does.
- SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa",
- /*AliasAnalysis*/ nullptr, DT, LI,
- /*PreserveLCSSA*/ true);
- }
- }
- /// UnswitchNontrivialCondition - We determined that the loop is profitable
- /// to unswitch when LIC equal Val. Split it into loop versions and test the
- /// condition outside of either loop. Return the loops created as Out1/Out2.
- void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
- Loop *L, TerminatorInst *TI) {
- Function *F = loopHeader->getParent();
- DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
- << loopHeader->getName() << " [" << L->getBlocks().size()
- << " blocks] in Function " << F->getName()
- << " when '" << *Val << "' == " << *LIC << "\n");
- if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
- SE->forgetLoop(L);
- LoopBlocks.clear();
- NewBlocks.clear();
- // First step, split the preheader and exit blocks, and add these blocks to
- // the LoopBlocks list.
- BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, DT, LI);
- LoopBlocks.push_back(NewPreheader);
- // We want the loop to come after the preheader, but before the exit blocks.
- LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
- SmallVector<BasicBlock*, 8> ExitBlocks;
- L->getUniqueExitBlocks(ExitBlocks);
- // Split all of the edges from inside the loop to their exit blocks. Update
- // the appropriate Phi nodes as we do so.
- SplitExitEdges(L, ExitBlocks);
- // The exit blocks may have been changed due to edge splitting, recompute.
- ExitBlocks.clear();
- L->getUniqueExitBlocks(ExitBlocks);
- // Add exit blocks to the loop blocks.
- LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
- // Next step, clone all of the basic blocks that make up the loop (including
- // the loop preheader and exit blocks), keeping track of the mapping between
- // the instructions and blocks.
- NewBlocks.reserve(LoopBlocks.size());
- ValueToValueMapTy VMap;
- for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
- BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
- NewBlocks.push_back(NewBB);
- VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping.
- LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
- }
- // Splice the newly inserted blocks into the function right before the
- // original preheader.
- F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
- NewBlocks[0], F->end());
- // FIXME: We could register any cloned assumptions instead of clearing the
- // whole function's cache.
- AC->clear();
- // Now we create the new Loop object for the versioned loop.
- Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
- // Recalculate unswitching quota, inherit simplified switches info for NewBB,
- // Probably clone more loop-unswitch related loop properties.
- BranchesInfo.cloneData(NewLoop, L, VMap);
- Loop *ParentLoop = L->getParentLoop();
- if (ParentLoop) {
- // Make sure to add the cloned preheader and exit blocks to the parent loop
- // as well.
- ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
- }
- for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
- BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
- // The new exit block should be in the same loop as the old one.
- if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
- ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
- assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
- "Exit block should have been split to have one successor!");
- BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
- // If the successor of the exit block had PHI nodes, add an entry for
- // NewExit.
- for (BasicBlock::iterator I = ExitSucc->begin();
- PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
- ValueToValueMapTy::iterator It = VMap.find(V);
- if (It != VMap.end()) V = It->second;
- PN->addIncoming(V, NewExit);
- }
- if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
- PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
- ExitSucc->getFirstInsertionPt());
- for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
- I != E; ++I) {
- BasicBlock *BB = *I;
- LandingPadInst *LPI = BB->getLandingPadInst();
- LPI->replaceAllUsesWith(PN);
- PN->addIncoming(LPI, BB);
- }
- }
- }
- // Rewrite the code to refer to itself.
- for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
- for (BasicBlock::iterator I = NewBlocks[i]->begin(),
- E = NewBlocks[i]->end(); I != E; ++I)
- RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
- // Rewrite the original preheader to select between versions of the loop.
- BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
- assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
- "Preheader splitting did not work correctly!");
- // Emit the new branch that selects between the two versions of this loop.
- EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
- TI);
- LPM->deleteSimpleAnalysisValue(OldBR, L);
- OldBR->eraseFromParent();
- LoopProcessWorklist.push_back(NewLoop);
- redoLoop = true;
- // Keep a WeakVH holding onto LIC. If the first call to RewriteLoopBody
- // deletes the instruction (for example by simplifying a PHI that feeds into
- // the condition that we're unswitching on), we don't rewrite the second
- // iteration.
- WeakVH LICHandle(LIC);
- // Now we rewrite the original code to know that the condition is true and the
- // new code to know that the condition is false.
- RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
- // It's possible that simplifying one loop could cause the other to be
- // changed to another value or a constant. If its a constant, don't simplify
- // it.
- if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
- LICHandle && !isa<Constant>(LICHandle))
- RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
- }
- /// RemoveFromWorklist - Remove all instances of I from the worklist vector
- /// specified.
- static void RemoveFromWorklist(Instruction *I,
- std::vector<Instruction*> &Worklist) {
- Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
- Worklist.end());
- }
- /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
- /// program, replacing all uses with V and update the worklist.
- static void ReplaceUsesOfWith(Instruction *I, Value *V,
- std::vector<Instruction*> &Worklist,
- Loop *L, LPPassManager *LPM) {
- DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
- // Add uses to the worklist, which may be dead now.
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
- if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
- Worklist.push_back(Use);
- // Add users to the worklist which may be simplified now.
- for (User *U : I->users())
- Worklist.push_back(cast<Instruction>(U));
- LPM->deleteSimpleAnalysisValue(I, L);
- RemoveFromWorklist(I, Worklist);
- I->replaceAllUsesWith(V);
- I->eraseFromParent();
- ++NumSimplify;
- }
- // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
- // the value specified by Val in the specified loop, or we know it does NOT have
- // that value. Rewrite any uses of LIC or of properties correlated to it.
- void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
- Constant *Val,
- bool IsEqual) {
- assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
- // FIXME: Support correlated properties, like:
- // for (...)
- // if (li1 < li2)
- // ...
- // if (li1 > li2)
- // ...
- // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
- // selects, switches.
- std::vector<Instruction*> Worklist;
- LLVMContext &Context = Val->getContext();
- // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
- // in the loop with the appropriate one directly.
- if (IsEqual || (isa<ConstantInt>(Val) &&
- Val->getType()->isIntegerTy(1))) {
- Value *Replacement;
- if (IsEqual)
- Replacement = Val;
- else
- Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
- !cast<ConstantInt>(Val)->getZExtValue());
- for (User *U : LIC->users()) {
- Instruction *UI = dyn_cast<Instruction>(U);
- if (!UI || !L->contains(UI))
- continue;
- Worklist.push_back(UI);
- }
- for (std::vector<Instruction*>::iterator UI = Worklist.begin(),
- UE = Worklist.end(); UI != UE; ++UI)
- (*UI)->replaceUsesOfWith(LIC, Replacement);
- SimplifyCode(Worklist, L);
- return;
- }
- // Otherwise, we don't know the precise value of LIC, but we do know that it
- // is certainly NOT "Val". As such, simplify any uses in the loop that we
- // can. This case occurs when we unswitch switch statements.
- for (User *U : LIC->users()) {
- Instruction *UI = dyn_cast<Instruction>(U);
- if (!UI || !L->contains(UI))
- continue;
- Worklist.push_back(UI);
- // TODO: We could do other simplifications, for example, turning
- // 'icmp eq LIC, Val' -> false.
- // If we know that LIC is not Val, use this info to simplify code.
- SwitchInst *SI = dyn_cast<SwitchInst>(UI);
- if (!SI || !isa<ConstantInt>(Val)) continue;
- SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
- // Default case is live for multiple values.
- if (DeadCase == SI->case_default()) continue;
- // Found a dead case value. Don't remove PHI nodes in the
- // successor if they become single-entry, those PHI nodes may
- // be in the Users list.
- BasicBlock *Switch = SI->getParent();
- BasicBlock *SISucc = DeadCase.getCaseSuccessor();
- BasicBlock *Latch = L->getLoopLatch();
- BranchesInfo.setUnswitched(SI, Val);
- if (!SI->findCaseDest(SISucc)) continue; // Edge is critical.
- // If the DeadCase successor dominates the loop latch, then the
- // transformation isn't safe since it will delete the sole predecessor edge
- // to the latch.
- if (Latch && DT->dominates(SISucc, Latch))
- continue;
- // FIXME: This is a hack. We need to keep the successor around
- // and hooked up so as to preserve the loop structure, because
- // trying to update it is complicated. So instead we preserve the
- // loop structure and put the block on a dead code path.
- SplitEdge(Switch, SISucc, DT, LI);
- // Compute the successors instead of relying on the return value
- // of SplitEdge, since it may have split the switch successor
- // after PHI nodes.
- BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
- BasicBlock *OldSISucc = *succ_begin(NewSISucc);
- // Create an "unreachable" destination.
- BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
- Switch->getParent(),
- OldSISucc);
- new UnreachableInst(Context, Abort);
- // Force the new case destination to branch to the "unreachable"
- // block while maintaining a (dead) CFG edge to the old block.
- NewSISucc->getTerminator()->eraseFromParent();
- BranchInst::Create(Abort, OldSISucc,
- ConstantInt::getTrue(Context), NewSISucc);
- // Release the PHI operands for this edge.
- for (BasicBlock::iterator II = NewSISucc->begin();
- PHINode *PN = dyn_cast<PHINode>(II); ++II)
- PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
- UndefValue::get(PN->getType()));
- // Tell the domtree about the new block. We don't fully update the
- // domtree here -- instead we force it to do a full recomputation
- // after the pass is complete -- but we do need to inform it of
- // new blocks.
- if (DT)
- DT->addNewBlock(Abort, NewSISucc);
- }
- SimplifyCode(Worklist, L);
- }
- /// SimplifyCode - Okay, now that we have simplified some instructions in the
- /// loop, walk over it and constant prop, dce, and fold control flow where
- /// possible. Note that this is effectively a very simple loop-structure-aware
- /// optimizer. During processing of this loop, L could very well be deleted, so
- /// it must not be used.
- ///
- /// FIXME: When the loop optimizer is more mature, separate this out to a new
- /// pass.
- ///
- void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
- const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
- while (!Worklist.empty()) {
- Instruction *I = Worklist.back();
- Worklist.pop_back();
- // Simple DCE.
- if (isInstructionTriviallyDead(I)) {
- DEBUG(dbgs() << "Remove dead instruction '" << *I);
- // Add uses to the worklist, which may be dead now.
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
- if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
- Worklist.push_back(Use);
- LPM->deleteSimpleAnalysisValue(I, L);
- RemoveFromWorklist(I, Worklist);
- I->eraseFromParent();
- ++NumSimplify;
- continue;
- }
- // See if instruction simplification can hack this up. This is common for
- // things like "select false, X, Y" after unswitching made the condition be
- // 'false'. TODO: update the domtree properly so we can pass it here.
- if (Value *V = SimplifyInstruction(I, DL))
- if (LI->replacementPreservesLCSSAForm(I, V)) {
- ReplaceUsesOfWith(I, V, Worklist, L, LPM);
- continue;
- }
- // Special case hacks that appear commonly in unswitched code.
- if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
- if (BI->isUnconditional()) {
- // If BI's parent is the only pred of the successor, fold the two blocks
- // together.
- BasicBlock *Pred = BI->getParent();
- BasicBlock *Succ = BI->getSuccessor(0);
- BasicBlock *SinglePred = Succ->getSinglePredecessor();
- if (!SinglePred) continue; // Nothing to do.
- assert(SinglePred == Pred && "CFG broken");
- DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
- << Succ->getName() << "\n");
- // Resolve any single entry PHI nodes in Succ.
- while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
- ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
- // If Succ has any successors with PHI nodes, update them to have
- // entries coming from Pred instead of Succ.
- Succ->replaceAllUsesWith(Pred);
- // Move all of the successor contents from Succ to Pred.
- Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
- Succ->end());
- LPM->deleteSimpleAnalysisValue(BI, L);
- BI->eraseFromParent();
- RemoveFromWorklist(BI, Worklist);
- // Remove Succ from the loop tree.
- LI->removeBlock(Succ);
- LPM->deleteSimpleAnalysisValue(Succ, L);
- Succ->eraseFromParent();
- ++NumSimplify;
- continue;
- }
- continue;
- }
- }
- }
|