| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538 |
- //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass looks for equivalent functions that are mergable and folds them.
- //
- // Order relation is defined on set of functions. It was made through
- // special function comparison procedure that returns
- // 0 when functions are equal,
- // -1 when Left function is less than right function, and
- // 1 for opposite case. We need total-ordering, so we need to maintain
- // four properties on the functions set:
- // a <= a (reflexivity)
- // if a <= b and b <= a then a = b (antisymmetry)
- // if a <= b and b <= c then a <= c (transitivity).
- // for all a and b: a <= b or b <= a (totality).
- //
- // Comparison iterates through each instruction in each basic block.
- // Functions are kept on binary tree. For each new function F we perform
- // lookup in binary tree.
- // In practice it works the following way:
- // -- We define Function* container class with custom "operator<" (FunctionPtr).
- // -- "FunctionPtr" instances are stored in std::set collection, so every
- // std::set::insert operation will give you result in log(N) time.
- //
- // When a match is found the functions are folded. If both functions are
- // overridable, we move the functionality into a new internal function and
- // leave two overridable thunks to it.
- //
- //===----------------------------------------------------------------------===//
- //
- // Future work:
- //
- // * virtual functions.
- //
- // Many functions have their address taken by the virtual function table for
- // the object they belong to. However, as long as it's only used for a lookup
- // and call, this is irrelevant, and we'd like to fold such functions.
- //
- // * be smarter about bitcasts.
- //
- // In order to fold functions, we will sometimes add either bitcast instructions
- // or bitcast constant expressions. Unfortunately, this can confound further
- // analysis since the two functions differ where one has a bitcast and the
- // other doesn't. We should learn to look through bitcasts.
- //
- // * Compare complex types with pointer types inside.
- // * Compare cross-reference cases.
- // * Compare complex expressions.
- //
- // All the three issues above could be described as ability to prove that
- // fA == fB == fC == fE == fF == fG in example below:
- //
- // void fA() {
- // fB();
- // }
- // void fB() {
- // fA();
- // }
- //
- // void fE() {
- // fF();
- // }
- // void fF() {
- // fG();
- // }
- // void fG() {
- // fE();
- // }
- //
- // Simplest cross-reference case (fA <--> fB) was implemented in previous
- // versions of MergeFunctions, though it presented only in two function pairs
- // in test-suite (that counts >50k functions)
- // Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A)
- // could cover much more cases.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/IPO.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/FoldingSet.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include <vector>
- using namespace llvm;
- #define DEBUG_TYPE "mergefunc"
- STATISTIC(NumFunctionsMerged, "Number of functions merged");
- STATISTIC(NumThunksWritten, "Number of thunks generated");
- STATISTIC(NumAliasesWritten, "Number of aliases generated");
- STATISTIC(NumDoubleWeak, "Number of new functions created");
- #if 0 // HLSL Change
- static cl::opt<unsigned> NumFunctionsForSanityCheck(
- "mergefunc-sanity",
- cl::desc("How many functions in module could be used for "
- "MergeFunctions pass sanity check. "
- "'0' disables this check. Works only with '-debug' key."),
- cl::init(0), cl::Hidden);
- #endif
- namespace {
- /// FunctionComparator - Compares two functions to determine whether or not
- /// they will generate machine code with the same behaviour. DataLayout is
- /// used if available. The comparator always fails conservatively (erring on the
- /// side of claiming that two functions are different).
- class FunctionComparator {
- public:
- FunctionComparator(const Function *F1, const Function *F2)
- : FnL(F1), FnR(F2) {}
- /// Test whether the two functions have equivalent behaviour.
- int compare();
- private:
- /// Test whether two basic blocks have equivalent behaviour.
- int compare(const BasicBlock *BBL, const BasicBlock *BBR);
- /// Constants comparison.
- /// Its analog to lexicographical comparison between hypothetical numbers
- /// of next format:
- /// <bitcastability-trait><raw-bit-contents>
- ///
- /// 1. Bitcastability.
- /// Check whether L's type could be losslessly bitcasted to R's type.
- /// On this stage method, in case when lossless bitcast is not possible
- /// method returns -1 or 1, thus also defining which type is greater in
- /// context of bitcastability.
- /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
- /// to the contents comparison.
- /// If types differ, remember types comparison result and check
- /// whether we still can bitcast types.
- /// Stage 1: Types that satisfies isFirstClassType conditions are always
- /// greater then others.
- /// Stage 2: Vector is greater then non-vector.
- /// If both types are vectors, then vector with greater bitwidth is
- /// greater.
- /// If both types are vectors with the same bitwidth, then types
- /// are bitcastable, and we can skip other stages, and go to contents
- /// comparison.
- /// Stage 3: Pointer types are greater than non-pointers. If both types are
- /// pointers of the same address space - go to contents comparison.
- /// Different address spaces: pointer with greater address space is
- /// greater.
- /// Stage 4: Types are neither vectors, nor pointers. And they differ.
- /// We don't know how to bitcast them. So, we better don't do it,
- /// and return types comparison result (so it determines the
- /// relationship among constants we don't know how to bitcast).
- ///
- /// Just for clearance, let's see how the set of constants could look
- /// on single dimension axis:
- ///
- /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
- /// Where: NFCT - Not a FirstClassType
- /// FCT - FirstClassTyp:
- ///
- /// 2. Compare raw contents.
- /// It ignores types on this stage and only compares bits from L and R.
- /// Returns 0, if L and R has equivalent contents.
- /// -1 or 1 if values are different.
- /// Pretty trivial:
- /// 2.1. If contents are numbers, compare numbers.
- /// Ints with greater bitwidth are greater. Ints with same bitwidths
- /// compared by their contents.
- /// 2.2. "And so on". Just to avoid discrepancies with comments
- /// perhaps it would be better to read the implementation itself.
- /// 3. And again about overall picture. Let's look back at how the ordered set
- /// of constants will look like:
- /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
- ///
- /// Now look, what could be inside [FCT, "others"], for example:
- /// [FCT, "others"] =
- /// [
- /// [double 0.1], [double 1.23],
- /// [i32 1], [i32 2],
- /// { double 1.0 }, ; StructTyID, NumElements = 1
- /// { i32 1 }, ; StructTyID, NumElements = 1
- /// { double 1, i32 1 }, ; StructTyID, NumElements = 2
- /// { i32 1, double 1 } ; StructTyID, NumElements = 2
- /// ]
- ///
- /// Let's explain the order. Float numbers will be less than integers, just
- /// because of cmpType terms: FloatTyID < IntegerTyID.
- /// Floats (with same fltSemantics) are sorted according to their value.
- /// Then you can see integers, and they are, like a floats,
- /// could be easy sorted among each others.
- /// The structures. Structures are grouped at the tail, again because of their
- /// TypeID: StructTyID > IntegerTyID > FloatTyID.
- /// Structures with greater number of elements are greater. Structures with
- /// greater elements going first are greater.
- /// The same logic with vectors, arrays and other possible complex types.
- ///
- /// Bitcastable constants.
- /// Let's assume, that some constant, belongs to some group of
- /// "so-called-equal" values with different types, and at the same time
- /// belongs to another group of constants with equal types
- /// and "really" equal values.
- ///
- /// Now, prove that this is impossible:
- ///
- /// If constant A with type TyA is bitcastable to B with type TyB, then:
- /// 1. All constants with equal types to TyA, are bitcastable to B. Since
- /// those should be vectors (if TyA is vector), pointers
- /// (if TyA is pointer), or else (if TyA equal to TyB), those types should
- /// be equal to TyB.
- /// 2. All constants with non-equal, but bitcastable types to TyA, are
- /// bitcastable to B.
- /// Once again, just because we allow it to vectors and pointers only.
- /// This statement could be expanded as below:
- /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
- /// vector B, and thus bitcastable to B as well.
- /// 2.2. All pointers of the same address space, no matter what they point to,
- /// bitcastable. So if C is pointer, it could be bitcasted to A and to B.
- /// So any constant equal or bitcastable to A is equal or bitcastable to B.
- /// QED.
- ///
- /// In another words, for pointers and vectors, we ignore top-level type and
- /// look at their particular properties (bit-width for vectors, and
- /// address space for pointers).
- /// If these properties are equal - compare their contents.
- int cmpConstants(const Constant *L, const Constant *R);
- /// Assign or look up previously assigned numbers for the two values, and
- /// return whether the numbers are equal. Numbers are assigned in the order
- /// visited.
- /// Comparison order:
- /// Stage 0: Value that is function itself is always greater then others.
- /// If left and right values are references to their functions, then
- /// they are equal.
- /// Stage 1: Constants are greater than non-constants.
- /// If both left and right are constants, then the result of
- /// cmpConstants is used as cmpValues result.
- /// Stage 2: InlineAsm instances are greater than others. If both left and
- /// right are InlineAsm instances, InlineAsm* pointers casted to
- /// integers and compared as numbers.
- /// Stage 3: For all other cases we compare order we meet these values in
- /// their functions. If right value was met first during scanning,
- /// then left value is greater.
- /// In another words, we compare serial numbers, for more details
- /// see comments for sn_mapL and sn_mapR.
- int cmpValues(const Value *L, const Value *R);
- /// Compare two Instructions for equivalence, similar to
- /// Instruction::isSameOperationAs but with modifications to the type
- /// comparison.
- /// Stages are listed in "most significant stage first" order:
- /// On each stage below, we do comparison between some left and right
- /// operation parts. If parts are non-equal, we assign parts comparison
- /// result to the operation comparison result and exit from method.
- /// Otherwise we proceed to the next stage.
- /// Stages:
- /// 1. Operations opcodes. Compared as numbers.
- /// 2. Number of operands.
- /// 3. Operation types. Compared with cmpType method.
- /// 4. Compare operation subclass optional data as stream of bytes:
- /// just convert it to integers and call cmpNumbers.
- /// 5. Compare in operation operand types with cmpType in
- /// most significant operand first order.
- /// 6. Last stage. Check operations for some specific attributes.
- /// For example, for Load it would be:
- /// 6.1.Load: volatile (as boolean flag)
- /// 6.2.Load: alignment (as integer numbers)
- /// 6.3.Load: synch-scope (as integer numbers)
- /// 6.4.Load: range metadata (as integer numbers)
- /// On this stage its better to see the code, since its not more than 10-15
- /// strings for particular instruction, and could change sometimes.
- int cmpOperations(const Instruction *L, const Instruction *R) const;
- /// Compare two GEPs for equivalent pointer arithmetic.
- /// Parts to be compared for each comparison stage,
- /// most significant stage first:
- /// 1. Address space. As numbers.
- /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method).
- /// 3. Pointer operand type (using cmpType method).
- /// 4. Number of operands.
- /// 5. Compare operands, using cmpValues method.
- int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR);
- int cmpGEPs(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) {
- return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
- }
- /// cmpType - compares two types,
- /// defines total ordering among the types set.
- ///
- /// Return values:
- /// 0 if types are equal,
- /// -1 if Left is less than Right,
- /// +1 if Left is greater than Right.
- ///
- /// Description:
- /// Comparison is broken onto stages. Like in lexicographical comparison
- /// stage coming first has higher priority.
- /// On each explanation stage keep in mind total ordering properties.
- ///
- /// 0. Before comparison we coerce pointer types of 0 address space to
- /// integer.
- /// We also don't bother with same type at left and right, so
- /// just return 0 in this case.
- ///
- /// 1. If types are of different kind (different type IDs).
- /// Return result of type IDs comparison, treating them as numbers.
- /// 2. If types are vectors or integers, compare Type* values as numbers.
- /// 3. Types has same ID, so check whether they belongs to the next group:
- /// * Void
- /// * Float
- /// * Double
- /// * X86_FP80
- /// * FP128
- /// * PPC_FP128
- /// * Label
- /// * Metadata
- /// If so - return 0, yes - we can treat these types as equal only because
- /// their IDs are same.
- /// 4. If Left and Right are pointers, return result of address space
- /// comparison (numbers comparison). We can treat pointer types of same
- /// address space as equal.
- /// 5. If types are complex.
- /// Then both Left and Right are to be expanded and their element types will
- /// be checked with the same way. If we get Res != 0 on some stage, return it.
- /// Otherwise return 0.
- /// 6. For all other cases put llvm_unreachable.
- int cmpTypes(Type *TyL, Type *TyR) const;
- int cmpNumbers(uint64_t L, uint64_t R) const;
- int cmpAPInts(const APInt &L, const APInt &R) const;
- int cmpAPFloats(const APFloat &L, const APFloat &R) const;
- int cmpStrings(StringRef L, StringRef R) const;
- int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
- // The two functions undergoing comparison.
- const Function *FnL, *FnR;
- /// Assign serial numbers to values from left function, and values from
- /// right function.
- /// Explanation:
- /// Being comparing functions we need to compare values we meet at left and
- /// right sides.
- /// Its easy to sort things out for external values. It just should be
- /// the same value at left and right.
- /// But for local values (those were introduced inside function body)
- /// we have to ensure they were introduced at exactly the same place,
- /// and plays the same role.
- /// Let's assign serial number to each value when we meet it first time.
- /// Values that were met at same place will be with same serial numbers.
- /// In this case it would be good to explain few points about values assigned
- /// to BBs and other ways of implementation (see below).
- ///
- /// 1. Safety of BB reordering.
- /// It's safe to change the order of BasicBlocks in function.
- /// Relationship with other functions and serial numbering will not be
- /// changed in this case.
- /// As follows from FunctionComparator::compare(), we do CFG walk: we start
- /// from the entry, and then take each terminator. So it doesn't matter how in
- /// fact BBs are ordered in function. And since cmpValues are called during
- /// this walk, the numbering depends only on how BBs located inside the CFG.
- /// So the answer is - yes. We will get the same numbering.
- ///
- /// 2. Impossibility to use dominance properties of values.
- /// If we compare two instruction operands: first is usage of local
- /// variable AL from function FL, and second is usage of local variable AR
- /// from FR, we could compare their origins and check whether they are
- /// defined at the same place.
- /// But, we are still not able to compare operands of PHI nodes, since those
- /// could be operands from further BBs we didn't scan yet.
- /// So it's impossible to use dominance properties in general.
- DenseMap<const Value*, int> sn_mapL, sn_mapR;
- };
- class FunctionNode {
- mutable AssertingVH<Function> F;
- public:
- FunctionNode(Function *F) : F(F) {}
- Function *getFunc() const { return F; }
- /// Replace the reference to the function F by the function G, assuming their
- /// implementations are equal.
- void replaceBy(Function *G) const {
- assert(!(*this < FunctionNode(G)) && !(FunctionNode(G) < *this) &&
- "The two functions must be equal");
- F = G;
- }
- void release() { F = 0; }
- bool operator<(const FunctionNode &RHS) const {
- return (FunctionComparator(F, RHS.getFunc()).compare()) == -1;
- }
- };
- }
- int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
- if (L < R) return -1;
- if (L > R) return 1;
- return 0;
- }
- int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
- if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
- return Res;
- if (L.ugt(R)) return 1;
- if (R.ugt(L)) return -1;
- return 0;
- }
- int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
- if (int Res = cmpNumbers((uint64_t)&L.getSemantics(),
- (uint64_t)&R.getSemantics()))
- return Res;
- return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
- }
- int FunctionComparator::cmpStrings(StringRef L, StringRef R) const {
- // Prevent heavy comparison, compare sizes first.
- if (int Res = cmpNumbers(L.size(), R.size()))
- return Res;
- // Compare strings lexicographically only when it is necessary: only when
- // strings are equal in size.
- return L.compare(R);
- }
- int FunctionComparator::cmpAttrs(const AttributeSet L,
- const AttributeSet R) const {
- if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
- return Res;
- for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
- AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
- RE = R.end(i);
- for (; LI != LE && RI != RE; ++LI, ++RI) {
- Attribute LA = *LI;
- Attribute RA = *RI;
- if (LA < RA)
- return -1;
- if (RA < LA)
- return 1;
- }
- if (LI != LE)
- return 1;
- if (RI != RE)
- return -1;
- }
- return 0;
- }
- /// Constants comparison:
- /// 1. Check whether type of L constant could be losslessly bitcasted to R
- /// type.
- /// 2. Compare constant contents.
- /// For more details see declaration comments.
- int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {
- Type *TyL = L->getType();
- Type *TyR = R->getType();
- // Check whether types are bitcastable. This part is just re-factored
- // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
- // we also pack into result which type is "less" for us.
- int TypesRes = cmpTypes(TyL, TyR);
- if (TypesRes != 0) {
- // Types are different, but check whether we can bitcast them.
- if (!TyL->isFirstClassType()) {
- if (TyR->isFirstClassType())
- return -1;
- // Neither TyL nor TyR are values of first class type. Return the result
- // of comparing the types
- return TypesRes;
- }
- if (!TyR->isFirstClassType()) {
- if (TyL->isFirstClassType())
- return 1;
- return TypesRes;
- }
- // Vector -> Vector conversions are always lossless if the two vector types
- // have the same size, otherwise not.
- unsigned TyLWidth = 0;
- unsigned TyRWidth = 0;
- if (const VectorType *VecTyL = dyn_cast<VectorType>(TyL))
- TyLWidth = VecTyL->getBitWidth();
- if (const VectorType *VecTyR = dyn_cast<VectorType>(TyR))
- TyRWidth = VecTyR->getBitWidth();
- if (TyLWidth != TyRWidth)
- return cmpNumbers(TyLWidth, TyRWidth);
- // Zero bit-width means neither TyL nor TyR are vectors.
- if (!TyLWidth) {
- PointerType *PTyL = dyn_cast<PointerType>(TyL);
- PointerType *PTyR = dyn_cast<PointerType>(TyR);
- if (PTyL && PTyR) {
- unsigned AddrSpaceL = PTyL->getAddressSpace();
- unsigned AddrSpaceR = PTyR->getAddressSpace();
- if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
- return Res;
- }
- if (PTyL)
- return 1;
- if (PTyR)
- return -1;
- // TyL and TyR aren't vectors, nor pointers. We don't know how to
- // bitcast them.
- return TypesRes;
- }
- }
- // OK, types are bitcastable, now check constant contents.
- if (L->isNullValue() && R->isNullValue())
- return TypesRes;
- if (L->isNullValue() && !R->isNullValue())
- return 1;
- if (!L->isNullValue() && R->isNullValue())
- return -1;
- if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
- return Res;
- switch (L->getValueID()) {
- case Value::UndefValueVal: return TypesRes;
- case Value::ConstantIntVal: {
- const APInt &LInt = cast<ConstantInt>(L)->getValue();
- const APInt &RInt = cast<ConstantInt>(R)->getValue();
- return cmpAPInts(LInt, RInt);
- }
- case Value::ConstantFPVal: {
- const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
- const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
- return cmpAPFloats(LAPF, RAPF);
- }
- case Value::ConstantArrayVal: {
- const ConstantArray *LA = cast<ConstantArray>(L);
- const ConstantArray *RA = cast<ConstantArray>(R);
- uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
- uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
- if (int Res = cmpNumbers(NumElementsL, NumElementsR))
- return Res;
- for (uint64_t i = 0; i < NumElementsL; ++i) {
- if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
- cast<Constant>(RA->getOperand(i))))
- return Res;
- }
- return 0;
- }
- case Value::ConstantStructVal: {
- const ConstantStruct *LS = cast<ConstantStruct>(L);
- const ConstantStruct *RS = cast<ConstantStruct>(R);
- unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
- unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
- if (int Res = cmpNumbers(NumElementsL, NumElementsR))
- return Res;
- for (unsigned i = 0; i != NumElementsL; ++i) {
- if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
- cast<Constant>(RS->getOperand(i))))
- return Res;
- }
- return 0;
- }
- case Value::ConstantVectorVal: {
- const ConstantVector *LV = cast<ConstantVector>(L);
- const ConstantVector *RV = cast<ConstantVector>(R);
- unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
- unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
- if (int Res = cmpNumbers(NumElementsL, NumElementsR))
- return Res;
- for (uint64_t i = 0; i < NumElementsL; ++i) {
- if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
- cast<Constant>(RV->getOperand(i))))
- return Res;
- }
- return 0;
- }
- case Value::ConstantExprVal: {
- const ConstantExpr *LE = cast<ConstantExpr>(L);
- const ConstantExpr *RE = cast<ConstantExpr>(R);
- unsigned NumOperandsL = LE->getNumOperands();
- unsigned NumOperandsR = RE->getNumOperands();
- if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
- return Res;
- for (unsigned i = 0; i < NumOperandsL; ++i) {
- if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
- cast<Constant>(RE->getOperand(i))))
- return Res;
- }
- return 0;
- }
- case Value::FunctionVal:
- case Value::GlobalVariableVal:
- case Value::GlobalAliasVal:
- default: // Unknown constant, cast L and R pointers to numbers and compare.
- return cmpNumbers((uint64_t)L, (uint64_t)R);
- }
- }
- /// cmpType - compares two types,
- /// defines total ordering among the types set.
- /// See method declaration comments for more details.
- int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
- PointerType *PTyL = dyn_cast<PointerType>(TyL);
- PointerType *PTyR = dyn_cast<PointerType>(TyR);
- const DataLayout &DL = FnL->getParent()->getDataLayout();
- if (PTyL && PTyL->getAddressSpace() == 0)
- TyL = DL.getIntPtrType(TyL);
- if (PTyR && PTyR->getAddressSpace() == 0)
- TyR = DL.getIntPtrType(TyR);
- if (TyL == TyR)
- return 0;
- if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
- return Res;
- switch (TyL->getTypeID()) {
- default:
- llvm_unreachable("Unknown type!");
- // Fall through in Release mode.
- case Type::IntegerTyID:
- case Type::VectorTyID:
- // TyL == TyR would have returned true earlier.
- return cmpNumbers((uint64_t)TyL, (uint64_t)TyR);
- case Type::VoidTyID:
- case Type::FloatTyID:
- case Type::DoubleTyID:
- case Type::X86_FP80TyID:
- case Type::FP128TyID:
- case Type::PPC_FP128TyID:
- case Type::LabelTyID:
- case Type::MetadataTyID:
- return 0;
- case Type::PointerTyID: {
- assert(PTyL && PTyR && "Both types must be pointers here.");
- return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
- }
- case Type::StructTyID: {
- StructType *STyL = cast<StructType>(TyL);
- StructType *STyR = cast<StructType>(TyR);
- if (STyL->getNumElements() != STyR->getNumElements())
- return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
- if (STyL->isPacked() != STyR->isPacked())
- return cmpNumbers(STyL->isPacked(), STyR->isPacked());
- for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
- if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
- return Res;
- }
- return 0;
- }
- case Type::FunctionTyID: {
- FunctionType *FTyL = cast<FunctionType>(TyL);
- FunctionType *FTyR = cast<FunctionType>(TyR);
- if (FTyL->getNumParams() != FTyR->getNumParams())
- return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
- if (FTyL->isVarArg() != FTyR->isVarArg())
- return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
- if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
- return Res;
- for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
- if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
- return Res;
- }
- return 0;
- }
- case Type::ArrayTyID: {
- ArrayType *ATyL = cast<ArrayType>(TyL);
- ArrayType *ATyR = cast<ArrayType>(TyR);
- if (ATyL->getNumElements() != ATyR->getNumElements())
- return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
- return cmpTypes(ATyL->getElementType(), ATyR->getElementType());
- }
- }
- }
- // Determine whether the two operations are the same except that pointer-to-A
- // and pointer-to-B are equivalent. This should be kept in sync with
- // Instruction::isSameOperationAs.
- // Read method declaration comments for more details.
- int FunctionComparator::cmpOperations(const Instruction *L,
- const Instruction *R) const {
- // Differences from Instruction::isSameOperationAs:
- // * replace type comparison with calls to isEquivalentType.
- // * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
- // * because of the above, we don't test for the tail bit on calls later on
- if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
- return Res;
- if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
- return Res;
- if (int Res = cmpTypes(L->getType(), R->getType()))
- return Res;
- if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
- R->getRawSubclassOptionalData()))
- return Res;
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
- if (int Res = cmpTypes(AI->getAllocatedType(),
- cast<AllocaInst>(R)->getAllocatedType()))
- return Res;
- if (int Res =
- cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()))
- return Res;
- }
- // We have two instructions of identical opcode and #operands. Check to see
- // if all operands are the same type
- for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
- if (int Res =
- cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
- return Res;
- }
- // Check special state that is a part of some instructions.
- if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
- if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
- return Res;
- if (int Res =
- cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
- return Res;
- if (int Res =
- cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
- return Res;
- if (int Res =
- cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope()))
- return Res;
- return cmpNumbers((uint64_t)LI->getMetadata(LLVMContext::MD_range),
- (uint64_t)cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
- }
- if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
- if (int Res =
- cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
- return Res;
- if (int Res =
- cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
- return Res;
- if (int Res =
- cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
- return Res;
- return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
- }
- if (const CmpInst *CI = dyn_cast<CmpInst>(L))
- return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
- if (const CallInst *CI = dyn_cast<CallInst>(L)) {
- if (int Res = cmpNumbers(CI->getCallingConv(),
- cast<CallInst>(R)->getCallingConv()))
- return Res;
- if (int Res =
- cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes()))
- return Res;
- return cmpNumbers(
- (uint64_t)CI->getMetadata(LLVMContext::MD_range),
- (uint64_t)cast<CallInst>(R)->getMetadata(LLVMContext::MD_range));
- }
- if (const InvokeInst *CI = dyn_cast<InvokeInst>(L)) {
- if (int Res = cmpNumbers(CI->getCallingConv(),
- cast<InvokeInst>(R)->getCallingConv()))
- return Res;
- if (int Res =
- cmpAttrs(CI->getAttributes(), cast<InvokeInst>(R)->getAttributes()))
- return Res;
- return cmpNumbers(
- (uint64_t)CI->getMetadata(LLVMContext::MD_range),
- (uint64_t)cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range));
- }
- if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
- ArrayRef<unsigned> LIndices = IVI->getIndices();
- ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
- if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
- return Res;
- for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
- if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
- return Res;
- }
- }
- if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
- ArrayRef<unsigned> LIndices = EVI->getIndices();
- ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
- if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
- return Res;
- for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
- if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
- return Res;
- }
- }
- if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
- if (int Res =
- cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
- return Res;
- return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
- }
- if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
- if (int Res = cmpNumbers(CXI->isVolatile(),
- cast<AtomicCmpXchgInst>(R)->isVolatile()))
- return Res;
- if (int Res = cmpNumbers(CXI->isWeak(),
- cast<AtomicCmpXchgInst>(R)->isWeak()))
- return Res;
- if (int Res = cmpNumbers(CXI->getSuccessOrdering(),
- cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
- return Res;
- if (int Res = cmpNumbers(CXI->getFailureOrdering(),
- cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
- return Res;
- return cmpNumbers(CXI->getSynchScope(),
- cast<AtomicCmpXchgInst>(R)->getSynchScope());
- }
- if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
- if (int Res = cmpNumbers(RMWI->getOperation(),
- cast<AtomicRMWInst>(R)->getOperation()))
- return Res;
- if (int Res = cmpNumbers(RMWI->isVolatile(),
- cast<AtomicRMWInst>(R)->isVolatile()))
- return Res;
- if (int Res = cmpNumbers(RMWI->getOrdering(),
- cast<AtomicRMWInst>(R)->getOrdering()))
- return Res;
- return cmpNumbers(RMWI->getSynchScope(),
- cast<AtomicRMWInst>(R)->getSynchScope());
- }
- return 0;
- }
- // Determine whether two GEP operations perform the same underlying arithmetic.
- // Read method declaration comments for more details.
- int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
- const GEPOperator *GEPR) {
- unsigned int ASL = GEPL->getPointerAddressSpace();
- unsigned int ASR = GEPR->getPointerAddressSpace();
- if (int Res = cmpNumbers(ASL, ASR))
- return Res;
- // When we have target data, we can reduce the GEP down to the value in bytes
- // added to the address.
- const DataLayout &DL = FnL->getParent()->getDataLayout();
- unsigned BitWidth = DL.getPointerSizeInBits(ASL);
- APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
- if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
- GEPR->accumulateConstantOffset(DL, OffsetR))
- return cmpAPInts(OffsetL, OffsetR);
- if (int Res = cmpNumbers((uint64_t)GEPL->getPointerOperand()->getType(),
- (uint64_t)GEPR->getPointerOperand()->getType()))
- return Res;
- if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
- return Res;
- for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
- if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
- return Res;
- }
- return 0;
- }
- /// Compare two values used by the two functions under pair-wise comparison. If
- /// this is the first time the values are seen, they're added to the mapping so
- /// that we will detect mismatches on next use.
- /// See comments in declaration for more details.
- int FunctionComparator::cmpValues(const Value *L, const Value *R) {
- // Catch self-reference case.
- if (L == FnL) {
- if (R == FnR)
- return 0;
- return -1;
- }
- if (R == FnR) {
- if (L == FnL)
- return 0;
- return 1;
- }
- const Constant *ConstL = dyn_cast<Constant>(L);
- const Constant *ConstR = dyn_cast<Constant>(R);
- if (ConstL && ConstR) {
- if (L == R)
- return 0;
- return cmpConstants(ConstL, ConstR);
- }
- if (ConstL)
- return 1;
- if (ConstR)
- return -1;
- const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
- const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
- if (InlineAsmL && InlineAsmR)
- return cmpNumbers((uint64_t)L, (uint64_t)R);
- if (InlineAsmL)
- return 1;
- if (InlineAsmR)
- return -1;
- auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
- RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
- return cmpNumbers(LeftSN.first->second, RightSN.first->second);
- }
- // Test whether two basic blocks have equivalent behaviour.
- int FunctionComparator::compare(const BasicBlock *BBL, const BasicBlock *BBR) {
- BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
- BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
- do {
- if (int Res = cmpValues(InstL, InstR))
- return Res;
- const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL);
- const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR);
- if (GEPL && !GEPR)
- return 1;
- if (GEPR && !GEPL)
- return -1;
- if (GEPL && GEPR) {
- if (int Res =
- cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
- return Res;
- if (int Res = cmpGEPs(GEPL, GEPR))
- return Res;
- } else {
- if (int Res = cmpOperations(InstL, InstR))
- return Res;
- assert(InstL->getNumOperands() == InstR->getNumOperands());
- for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
- Value *OpL = InstL->getOperand(i);
- Value *OpR = InstR->getOperand(i);
- if (int Res = cmpValues(OpL, OpR))
- return Res;
- if (int Res = cmpNumbers(OpL->getValueID(), OpR->getValueID()))
- return Res;
- // TODO: Already checked in cmpOperation
- if (int Res = cmpTypes(OpL->getType(), OpR->getType()))
- return Res;
- }
- }
- ++InstL, ++InstR;
- } while (InstL != InstLE && InstR != InstRE);
- if (InstL != InstLE && InstR == InstRE)
- return 1;
- if (InstL == InstLE && InstR != InstRE)
- return -1;
- return 0;
- }
- // Test whether the two functions have equivalent behaviour.
- int FunctionComparator::compare() {
- sn_mapL.clear();
- sn_mapR.clear();
- if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
- return Res;
- if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
- return Res;
- if (FnL->hasGC()) {
- if (int Res = cmpNumbers((uint64_t)FnL->getGC(), (uint64_t)FnR->getGC()))
- return Res;
- }
- if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
- return Res;
- if (FnL->hasSection()) {
- if (int Res = cmpStrings(FnL->getSection(), FnR->getSection()))
- return Res;
- }
- if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
- return Res;
- // TODO: if it's internal and only used in direct calls, we could handle this
- // case too.
- if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
- return Res;
- if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
- return Res;
- assert(FnL->arg_size() == FnR->arg_size() &&
- "Identically typed functions have different numbers of args!");
- // Visit the arguments so that they get enumerated in the order they're
- // passed in.
- for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
- ArgRI = FnR->arg_begin(),
- ArgLE = FnL->arg_end();
- ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
- if (cmpValues(ArgLI, ArgRI) != 0)
- llvm_unreachable("Arguments repeat!");
- }
- // We do a CFG-ordered walk since the actual ordering of the blocks in the
- // linked list is immaterial. Our walk starts at the entry block for both
- // functions, then takes each block from each terminator in order. As an
- // artifact, this also means that unreachable blocks are ignored.
- SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
- SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
- FnLBBs.push_back(&FnL->getEntryBlock());
- FnRBBs.push_back(&FnR->getEntryBlock());
- VisitedBBs.insert(FnLBBs[0]);
- while (!FnLBBs.empty()) {
- const BasicBlock *BBL = FnLBBs.pop_back_val();
- const BasicBlock *BBR = FnRBBs.pop_back_val();
- if (int Res = cmpValues(BBL, BBR))
- return Res;
- if (int Res = compare(BBL, BBR))
- return Res;
- const TerminatorInst *TermL = BBL->getTerminator();
- const TerminatorInst *TermR = BBR->getTerminator();
- assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
- for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
- if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
- continue;
- FnLBBs.push_back(TermL->getSuccessor(i));
- FnRBBs.push_back(TermR->getSuccessor(i));
- }
- }
- return 0;
- }
- namespace {
- /// MergeFunctions finds functions which will generate identical machine code,
- /// by considering all pointer types to be equivalent. Once identified,
- /// MergeFunctions will fold them by replacing a call to one to a call to a
- /// bitcast of the other.
- ///
- class MergeFunctions : public ModulePass {
- public:
- static char ID;
- MergeFunctions()
- : ModulePass(ID), HasGlobalAliases(false) {
- initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
- }
- bool runOnModule(Module &M) override;
- private:
- typedef std::set<FunctionNode> FnTreeType;
- /// A work queue of functions that may have been modified and should be
- /// analyzed again.
- std::vector<WeakVH> Deferred;
- /// Checks the rules of order relation introduced among functions set.
- /// Returns true, if sanity check has been passed, and false if failed.
- bool doSanityCheck(std::vector<WeakVH> &Worklist);
- /// Insert a ComparableFunction into the FnTree, or merge it away if it's
- /// equal to one that's already present.
- bool insert(Function *NewFunction);
- /// Remove a Function from the FnTree and queue it up for a second sweep of
- /// analysis.
- void remove(Function *F);
- /// Find the functions that use this Value and remove them from FnTree and
- /// queue the functions.
- void removeUsers(Value *V);
- /// Replace all direct calls of Old with calls of New. Will bitcast New if
- /// necessary to make types match.
- void replaceDirectCallers(Function *Old, Function *New);
- /// Merge two equivalent functions. Upon completion, G may be deleted, or may
- /// be converted into a thunk. In either case, it should never be visited
- /// again.
- void mergeTwoFunctions(Function *F, Function *G);
- /// Replace G with a thunk or an alias to F. Deletes G.
- void writeThunkOrAlias(Function *F, Function *G);
- /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
- /// of G with bitcast(F). Deletes G.
- void writeThunk(Function *F, Function *G);
- /// Replace G with an alias to F. Deletes G.
- void writeAlias(Function *F, Function *G);
- /// Replace function F with function G in the function tree.
- void replaceFunctionInTree(FnTreeType::iterator &IterToF, Function *G);
- /// The set of all distinct functions. Use the insert() and remove() methods
- /// to modify it.
- FnTreeType FnTree;
- /// Whether or not the target supports global aliases.
- bool HasGlobalAliases;
- };
- } // end anonymous namespace
- char MergeFunctions::ID = 0;
- INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
- ModulePass *llvm::createMergeFunctionsPass() {
- return new MergeFunctions();
- }
- bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
- #if 0 // Begin HLSL Change (NumFunctionsForSanityCheck is always zero)
- if (const unsigned Max = NumFunctionsForSanityCheck) {
- unsigned TripleNumber = 0;
- bool Valid = true;
- dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n";
- unsigned i = 0;
- for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end();
- I != E && i < Max; ++I, ++i) {
- unsigned j = i;
- for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) {
- Function *F1 = cast<Function>(*I);
- Function *F2 = cast<Function>(*J);
- int Res1 = FunctionComparator(F1, F2).compare();
- int Res2 = FunctionComparator(F2, F1).compare();
- // If F1 <= F2, then F2 >= F1, otherwise report failure.
- if (Res1 != -Res2) {
- dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber
- << "\n";
- F1->dump();
- F2->dump();
- Valid = false;
- }
- if (Res1 == 0)
- continue;
- unsigned k = j;
- for (std::vector<WeakVH>::iterator K = J; K != E && k < Max;
- ++k, ++K, ++TripleNumber) {
- if (K == J)
- continue;
- Function *F3 = cast<Function>(*K);
- int Res3 = FunctionComparator(F1, F3).compare();
- int Res4 = FunctionComparator(F2, F3).compare();
- bool Transitive = true;
- if (Res1 != 0 && Res1 == Res4) {
- // F1 > F2, F2 > F3 => F1 > F3
- Transitive = Res3 == Res1;
- } else if (Res3 != 0 && Res3 == -Res4) {
- // F1 > F3, F3 > F2 => F1 > F2
- Transitive = Res3 == Res1;
- } else if (Res4 != 0 && -Res3 == Res4) {
- // F2 > F3, F3 > F1 => F2 > F1
- Transitive = Res4 == -Res1;
- }
- if (!Transitive) {
- dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: "
- << TripleNumber << "\n";
- dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
- << Res4 << "\n";
- F1->dump();
- F2->dump();
- F3->dump();
- Valid = false;
- }
- }
- }
- }
- dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n";
- return Valid;
- }
- #endif // End HLSL Change
- return true;
- }
- bool MergeFunctions::runOnModule(Module &M) {
- bool Changed = false;
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
- if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
- Deferred.push_back(WeakVH(I));
- }
- do {
- std::vector<WeakVH> Worklist;
- Deferred.swap(Worklist);
- DEBUG(doSanityCheck(Worklist));
- DEBUG(dbgs() << "size of module: " << M.size() << '\n');
- DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
- // Insert only strong functions and merge them. Strong function merging
- // always deletes one of them.
- for (std::vector<WeakVH>::iterator I = Worklist.begin(),
- E = Worklist.end(); I != E; ++I) {
- if (!*I) continue;
- Function *F = cast<Function>(*I);
- if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
- !F->mayBeOverridden()) {
- Changed |= insert(F);
- }
- }
- // Insert only weak functions and merge them. By doing these second we
- // create thunks to the strong function when possible. When two weak
- // functions are identical, we create a new strong function with two weak
- // weak thunks to it which are identical but not mergable.
- for (std::vector<WeakVH>::iterator I = Worklist.begin(),
- E = Worklist.end(); I != E; ++I) {
- if (!*I) continue;
- Function *F = cast<Function>(*I);
- if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
- F->mayBeOverridden()) {
- Changed |= insert(F);
- }
- }
- DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n');
- } while (!Deferred.empty());
- FnTree.clear();
- return Changed;
- }
- // Replace direct callers of Old with New.
- void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
- Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
- for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
- Use *U = &*UI;
- ++UI;
- CallSite CS(U->getUser());
- if (CS && CS.isCallee(U)) {
- remove(CS.getInstruction()->getParent()->getParent());
- U->set(BitcastNew);
- }
- }
- }
- // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
- void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
- if (HasGlobalAliases && G->hasUnnamedAddr()) {
- if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
- G->hasWeakLinkage()) {
- writeAlias(F, G);
- return;
- }
- }
- writeThunk(F, G);
- }
- // Helper for writeThunk,
- // Selects proper bitcast operation,
- // but a bit simpler then CastInst::getCastOpcode.
- static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) {
- Type *SrcTy = V->getType();
- if (SrcTy->isStructTy()) {
- assert(DestTy->isStructTy());
- assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
- Value *Result = UndefValue::get(DestTy);
- for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
- Value *Element = createCast(
- Builder, Builder.CreateExtractValue(V, makeArrayRef(I)),
- DestTy->getStructElementType(I));
- Result =
- Builder.CreateInsertValue(Result, Element, makeArrayRef(I));
- }
- return Result;
- }
- assert(!DestTy->isStructTy());
- if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
- return Builder.CreateIntToPtr(V, DestTy);
- else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
- return Builder.CreatePtrToInt(V, DestTy);
- else
- return Builder.CreateBitCast(V, DestTy);
- }
- // Replace G with a simple tail call to bitcast(F). Also replace direct uses
- // of G with bitcast(F). Deletes G.
- void MergeFunctions::writeThunk(Function *F, Function *G) {
- if (!G->mayBeOverridden()) {
- // Redirect direct callers of G to F.
- replaceDirectCallers(G, F);
- }
- // If G was internal then we may have replaced all uses of G with F. If so,
- // stop here and delete G. There's no need for a thunk.
- if (G->hasLocalLinkage() && G->use_empty()) {
- G->eraseFromParent();
- return;
- }
- Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
- G->getParent());
- BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
- IRBuilder<false> Builder(BB);
- SmallVector<Value *, 16> Args;
- unsigned i = 0;
- FunctionType *FFTy = F->getFunctionType();
- for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
- AI != AE; ++AI) {
- Args.push_back(createCast(Builder, (Value*)AI, FFTy->getParamType(i)));
- ++i;
- }
- CallInst *CI = Builder.CreateCall(F, Args);
- CI->setTailCall();
- CI->setCallingConv(F->getCallingConv());
- if (NewG->getReturnType()->isVoidTy()) {
- Builder.CreateRetVoid();
- } else {
- Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
- }
- NewG->copyAttributesFrom(G);
- NewG->takeName(G);
- removeUsers(G);
- G->replaceAllUsesWith(NewG);
- G->eraseFromParent();
- DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
- ++NumThunksWritten;
- }
- // Replace G with an alias to F and delete G.
- void MergeFunctions::writeAlias(Function *F, Function *G) {
- PointerType *PTy = G->getType();
- auto *GA = GlobalAlias::create(PTy, G->getLinkage(), "", F);
- F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
- GA->takeName(G);
- GA->setVisibility(G->getVisibility());
- removeUsers(G);
- G->replaceAllUsesWith(GA);
- G->eraseFromParent();
- DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
- ++NumAliasesWritten;
- }
- // Merge two equivalent functions. Upon completion, Function G is deleted.
- void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
- if (F->mayBeOverridden()) {
- assert(G->mayBeOverridden());
- // Make them both thunks to the same internal function.
- Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
- F->getParent());
- H->copyAttributesFrom(F);
- H->takeName(F);
- removeUsers(F);
- F->replaceAllUsesWith(H);
- unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
- if (HasGlobalAliases) {
- writeAlias(F, G);
- writeAlias(F, H);
- } else {
- writeThunk(F, G);
- writeThunk(F, H);
- }
- F->setAlignment(MaxAlignment);
- F->setLinkage(GlobalValue::PrivateLinkage);
- ++NumDoubleWeak;
- } else {
- writeThunkOrAlias(F, G);
- }
- ++NumFunctionsMerged;
- }
- /// Replace function F for function G in the map.
- void MergeFunctions::replaceFunctionInTree(FnTreeType::iterator &IterToF,
- Function *G) {
- Function *F = IterToF->getFunc();
- // A total order is already guaranteed otherwise because we process strong
- // functions before weak functions.
- assert(((F->mayBeOverridden() && G->mayBeOverridden()) ||
- (!F->mayBeOverridden() && !G->mayBeOverridden())) &&
- "Only change functions if both are strong or both are weak");
- (void)F;
- IterToF->replaceBy(G);
- }
- // Insert a ComparableFunction into the FnTree, or merge it away if equal to one
- // that was already inserted.
- bool MergeFunctions::insert(Function *NewFunction) {
- std::pair<FnTreeType::iterator, bool> Result =
- FnTree.insert(FunctionNode(NewFunction));
- if (Result.second) {
- DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n');
- return false;
- }
- const FunctionNode &OldF = *Result.first;
- // Don't merge tiny functions, since it can just end up making the function
- // larger.
- // FIXME: Should still merge them if they are unnamed_addr and produce an
- // alias.
- if (NewFunction->size() == 1) {
- if (NewFunction->front().size() <= 2) {
- DEBUG(dbgs() << NewFunction->getName()
- << " is to small to bother merging\n");
- return false;
- }
- }
- // Impose a total order (by name) on the replacement of functions. This is
- // important when operating on more than one module independently to prevent
- // cycles of thunks calling each other when the modules are linked together.
- //
- // When one function is weak and the other is strong there is an order imposed
- // already. We process strong functions before weak functions.
- if ((OldF.getFunc()->mayBeOverridden() && NewFunction->mayBeOverridden()) ||
- (!OldF.getFunc()->mayBeOverridden() && !NewFunction->mayBeOverridden()))
- if (OldF.getFunc()->getName() > NewFunction->getName()) {
- // Swap the two functions.
- Function *F = OldF.getFunc();
- replaceFunctionInTree(Result.first, NewFunction);
- NewFunction = F;
- assert(OldF.getFunc() != F && "Must have swapped the functions.");
- }
- // Never thunk a strong function to a weak function.
- assert(!OldF.getFunc()->mayBeOverridden() || NewFunction->mayBeOverridden());
- DEBUG(dbgs() << " " << OldF.getFunc()->getName()
- << " == " << NewFunction->getName() << '\n');
- Function *DeleteF = NewFunction;
- mergeTwoFunctions(OldF.getFunc(), DeleteF);
- return true;
- }
- // Remove a function from FnTree. If it was already in FnTree, add
- // it to Deferred so that we'll look at it in the next round.
- void MergeFunctions::remove(Function *F) {
- // We need to make sure we remove F, not a function "equal" to F per the
- // function equality comparator.
- FnTreeType::iterator found = FnTree.find(FunctionNode(F));
- size_t Erased = 0;
- if (found != FnTree.end() && found->getFunc() == F) {
- Erased = 1;
- FnTree.erase(found);
- }
- if (Erased) {
- DEBUG(dbgs() << "Removed " << F->getName()
- << " from set and deferred it.\n");
- Deferred.emplace_back(F);
- }
- }
- // For each instruction used by the value, remove() the function that contains
- // the instruction. This should happen right before a call to RAUW.
- void MergeFunctions::removeUsers(Value *V) {
- std::vector<Value *> Worklist;
- Worklist.push_back(V);
- while (!Worklist.empty()) {
- Value *V = Worklist.back();
- Worklist.pop_back();
- for (User *U : V->users()) {
- if (Instruction *I = dyn_cast<Instruction>(U)) {
- remove(I->getParent()->getParent());
- } else if (isa<GlobalValue>(U)) {
- // do nothing
- } else if (Constant *C = dyn_cast<Constant>(U)) {
- for (User *UU : C->users())
- Worklist.push_back(UU);
- }
- }
- }
- }
|